

Miika Moilanen

Deploying an application using Docker and Kubernetes

Deploying an application using Docker and Kubernetes

Miika Moilanen
Bachelor’s Thesis
Spring 2018
Business Information Technology
Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
System administration, Business Information Technology

Author: Miika Moilanen
Title of thesis: Deploying an application using Docker and Kubernetes
Supervisor: Jukka Kaisto
Term and year when the thesis was submitted: Spring 2018 Number of pages: 44 + 7

This thesis researches container technologies using Docker and Kubernetes. The main objective
is to create a Dockerfile, which forms the base image for the deployment. The image is then used
to deploy to Kubernetes. This thesis was commissioned by Sparta Consulting Ltd. The idea came
from the application development team with a need to make the deployment process more
streamline for testing purposes. Although automation is not included in this thesis, the basis is
made from which the creation of the automated deployment pipeline can be started.

The goal of this thesis is to find a quick and efficient way to deploy new versions of the application
in a test- and potentially a production environment. The research for this thesis conducted from a
practical viewpoint. The most used research method in this thesis was “Fail often and fail fast”.
Through this kind of thinking the wrong solutions are removed quickly, while the right answers
remain.

Keywords: Docker, containers, virtualization, Kubernetes, open-source, Linux, networking.

4

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Järjestelmäasiantuntemus, Tietojenkäsittely

Tekijä: Miika Moilanen
Opinnäytetyön nimi: Deploying an application using Docker and Kubernetes
Työn ohjaaja: Jukka Kaisto
Työn valmistumislukukausi- ja vuosi: Kevät 2018 Number of pages: 44 + 7

Tämä opinnäytetyö tutkii konttiteknologioita, käyttäen Dockeria ja Kubernetesta. Perusideana on
luoda Dockerfile, jonka tarkoituksena on tehdä kuvake applikaatiosta käyttöönottoa varten. Kuvake
otetaan käyttöön myöhemmin Kubernetes ryppäässä. Idea tähän opinnäytetyö tuli
tuotekehitystiimiltä, jolla on tarve nopeuttaa sovelluksen käyttöönotto prosessia testausta varten.
Tässä opinnäytetyössä ei käydä automaatioprosessia läpi, mutta se luo perustan josta voi
myöhemmin luoda automatisoidun sovelluksen käyttöönottoputken.

Opinnäytetyön tavoitteena on löytää nopea ja kustannustehokas keino käyttöönottaa uudet versiot
applikaatiosta testiympäristöön ja potentiaalisesti myöskin produktioympäristöihin asiakkaalle.
Tämä opinnäytetyö tehdään käytännönläheisestä näkökulmasta. Opinnäytetyössä eniten käytetty
tutkimusmetodi on ”Epäonnistu nopeasti ja usein”. Tämän mallisella ajattelutavalla väärät ratkaisut
ovat nopeasti löydetty ja jäljelle jää vain oikea vastaus.

Avainsanat: Docker, kontit, virtualisaatio, Kubernetes, avoin lähdekoodi, Linux

5

TABLE OF CONTENTS

1 INTRODUCTION ... 6

2 DOCKER ... 9

2.1 Virtual machines and containers .. 10

2.2 Docker and Virtual machines .. 11

2.3 Linux containers ... 12

2.4 Storage drivers ... 14

2.5 Dockerfile ... 14

2.5.1 BUILD phase .. 16

2.5.2 RUN phase .. 17

2.6 Dockerfile best practices .. 19

2.7 Docker-compose .. 20

3 KUBERNETES .. 22

4 KUBERNETES CONCEPTS.. 24

4.1 Cluster .. 24

4.2 Pod ... 25

4.3 Service ... 26

4.4 Volumes ... 26

4.5 Volume deletion .. 27

4.6 Namespace .. 27

4.7 Ingresses .. 28

5 DEPLOYING THE APPLICATION ... 29

5.1 Minikube cluster creation .. 29

5.2 Nginx .. 31

5.3 Encrypting the traffic ... 33

5.4 Creating a certificate .. 34

5.5 Deployment .. 35

6 CONCLUSION ... 38

REFERENCES .. 40

6

1 INTRODUCTION

Before container technologies, deploying an application usually took quite a long time. The

deployment had to be done manually, which cost the company time and resources. When container

technologies came more popular with Docker and Kubernetes, the whole process became more

streamlined and standardized. The container technologies can be used to automate the

deployment process quite effortlessly and therefore the value of a well configured container

platform is intangible. Docker is a tool to create an image of an application and the dependencies

needed to run it. The image can then later be used on a containerization platform such as

Kubernetes.

The two main components used in this thesis are Docker and Kubernetes. Docker is used to create

a Dockerimage of the application by using a Dockerfile. A Dockerfile has all the instructions on how

to build the final image for deployment and distribution. The images that are made are reusable

perpetually. The image is then used by Kubernetes for the deployment. The benefits of Docker are,

for example, the reusability of once created resources and the fast setup of the target environment,

whether it is for testing or production purposes. This is achieved through container technologies

made possible by Docker and Kubernetes. Container technology is a quite new technology which

has been growing for the past five years. (Docker Company 2018, cited 14.1.2018.)

Once the Dockerimage is created with the Docker platform, it is ready to be used with the

Kubernetes container platform. With the Docker platform a base image is created, which is then

used by the Kubernetes deployment platform. At best this is done with a press of a button. The

ease-of-deployment eliminates possible human errors in the process, which makes the deployment

reliable, efficient and quick. The reason Kubernetes was selected is its versatility, scalability and

the potential automatization of the deployment process. The technologies are still quite new and

are being developed every day to improve the end-user experience, which already is enjoyable.

The field of Development and Operations (DevOps) benefit greatly from containerization in the form

of automating the deployment. There are several types of software to create a continuous

integration and deployment pipeline (CI/CD). This enables the DevOps team to deploy an

application seamlessly to the targeted environment. Compared to normal virtual machines,

containerized platforms require less configuration and can be deployed quickly with the CI/CD

7

pipeline. Container technologies also solve the problem of software environment mismatches

because all the needed dependencies are installed inside the container and they do not

communicate with the outer world. This way the container is isolated and has everything it needs

to run the application. (Rubens 2017, cited 26.12.2017.)

With containers, all the possible mismatches between different software versions and operating

systems are canceled out. It enables the developers to use whichever programming language and

software tool they want to, if they can run it without problems inside the container. This combined

with the deployment process, makes the whole ordeal agile, highly scalable and most importantly,

fast. With Docker and Kubernetes, it is possible to create a continuous integration- and deployment-

pipeline which for example guarantees a quickly deployed development version of an application

to test locally. (Janmyr 2015, cited 4.1.2018.)

Workflow is seen in Figure 1. The whole installation is based on Ubuntu 16.04, on top of which a

hypervisor installed in addition to Nginx. Inside the hypervisor Docker and Kubernetes Minikube

and Kompose are installed. With the Dockerfile, according to specific instructions, the base image

for the deployment is built. The image is then used in docker-compose.yml as the base image. The

docker-compose.yml file is used by Kompose to deploy the application to Minikube. After the

deployment is finished, an Nginx reverse proxy must be configured to redirect traffic to Minikube.

A TLS- certificate was installed to enforce HTTPS- traffic. After opening the ports 80 and 443 as

ingress and egress in the firewall configuration, traffic could access Minikube. The last step was to

create an ingress controller and an ingress resource. The purpose of the ingress controller is to

create an open port in the edge router between Minikube and the application. Now the application

is accessible.

8

FIGURE 1. Workflow and description of resources used to achieve the result.

The company that assigned the thesis is Sparta Consulting Ltd. The company itself was founded

in 2012. Sparta operates in the Information Management (IM) and Cyber Security consultancy

business. In addition to support services in this junction, they have also developed a software

product to support them in this. Currently there are below 50 Spartans. The employees mostly

consist of consultants but also includes a small development and deployment team. The company

has two main locations, the headquarters reside in the heart of Helsinki and the development team

is located in Jyväskylä, Central Finland.

The consultants advise enterprises in areas like information management, business development

and cybersecurity. A "Spartan" advises enterprises in which direction to take regarding these three

areas. They do consulting in an ethical way, delivering worthwhile solutions to companies.

9

2 DOCKER

Docker is a tool that promises to easily encapsulate the process of creating a distributable artifact

for any application. With it comes the easy deployment of an application at scale into any

environment and streamlining the workflow and responsiveness of agile software organizations.

(Matthias & Kane 2015, 1.) When talking about Docker containers, many people connect them to

virtual machines however, this is neither completely right or completely wrong. Discerning these

two concepts is challenging. While it is true that both are a certain type of virtualization, the

difference between them is that containers are built to contain only the necessary libraries and

dependencies inside them. Their bulkier counterpart, virtual machines, start off with a full operating

system and all included software that come with them. (Docker eBook 2016, 3.)

One of the most powerful things about Docker is the flexibility it affords IT organizations.
The decision of where to run your applications can be based 100% on what’s right for your
business. -- you can pick and choose and mix and match in whatever manner makes sense
for your organization. -- With Docker containers you get a great combination of agility,
portability, and control. (Coleman, 2016).

Compared to virtual machines, containers are reproducible standardized environments that follow

a certain ideology, create once – use many. After a container environment with the Dockerfile is

manually crafted, it is available to be utilized when needed. The containers take only seconds to

deploy, while virtual machines take significantly more time.

For instance, the Finnish railway company VR Group, uses Docker to automate the deployment

and testing process. Their problems were high operating costs, quality issues and a slow time-to-

market process. After implementing the Docker EE (Enterprise Edition), their average cost savings

were increased by 50%. The logging and monitoring was easier for all used applications.

Standardizing the applications on one platform enables the usage everywhere. A delivery pipeline

was set up, which works for the whole platform. This enables easy implementation of new items to

the same environment. (Docker VR 2017, cited 9.2.2018)

10

2.1 Virtual machines and containers

When comparing container technologies to normal virtual machines, there are several upsides to

it. Containers are fast to set up and configure, while virtual machines are more bulky and slow to

set up and configure. Since the containers nature is very agile, they provide a good basis for

development & operations (DevOps) processes. To update a new version of the application, a

CI/CD- pipeline can be utilized. This way the application is quickly installed on the target

environment. This enables the fast testing of the newly developed versions of the application and

pushing new versions to production environments. Even though containers and virtual machines

are quite different, they can be combined to get the good sides of them both. The robustness of the

virtual machine and the agility of containers, provide a good basis for the deployment process.

(Docker container 2018, cited 13.1.2018.)

“Virtual machines (VMs) are an abstraction of physical hardware turning one server into many

servers.” (Docker container 2018, cited 13.1.2018). Virtual machines are built on top of a

hypervisor, which allows several virtual machines to run on one machine (FIGURE 2). Each virtual

machine instance contains a full copy of an operating system and all the dependencies needed to

run, which take up several gigabytes of storage space. Virtual machines also take several minutes

to boot up. (Docker container 2018, cited 13.1.2018.)

FIGURE 2. Depiction of VM architecture (Docker container 2018, cited 13.1.2018)

According to the Docker container introduction page, containers are an abstraction at the

application layer that packages code and dependencies together. Containers are built on top of the

11

Host operating system (FIGURE 3). Several of them can be run simultaneously and they share the

same OS (Operating System) kernel with other containers. Each container runs as an isolated

process in user space, which means that there is not necessarily communication between them.

Containers are typically only megabytes in size and boot up virtually instantly. (Docker container

2018, cited 13.1.2018).

FIGURE 3. Depiction of container architecture (Docker container 2018, cited 13.1.2018)

2.2 Docker and Virtual machines

Instead of using Docker as a standalone process, they can be combined with a virtual machine. All

hypervisors are a good platform for the Docker host: VirtualBox, Hyper-V, AWS EC2 Instance. No

matter the hypervisor, Docker will perform well. Sometimes a virtual machine might be the place to

run the docker container (FIGURE 4), but you don’t necessarily need to. The container can be run

as a stand-alone service on top of bare metal (Docker eBook 2016, 5; Coleman 2016, cited

18.01.2018.)

12

FIGURE 4. Docker built inside a virtual machine. (Docker container 2018, cited 13.1.2018).

During the early years of virtual machines, they gained popularity for their ability to enable higher

levels of server utilization, which is still true today. By mixing and combining Docker hosts with

regular virtual machines, system administrators can maximize efficiency from their physical

hardware. (Coleman 2016, cited 18.01.2018). Building a container cluster on top of a virtual

machine, whether it was made with Docker Swarm or Kubernetes, enables the usage of all the

resources provided by the physical machine to maximize performance.

2.3 Linux containers

When Docker first came out, Linux- based containers had been there for quite some time and the

technologies it is based on are not brand new. At first, Dockers’ purpose was to build a specialized

LinuX Container (LXC). Docker then detached itself from it and created its own platform. The

predecessor of Docker, LXC, had been around for almost a decade and at first Docker’s purpose

was to build a specialized LXC container. (Matthias & Kane 2015, 4; Upguard 2017, cited

13.1.2018). At the most basic level when comparing these two technologies there are some

similarities (TABLE 1). They both are light use-space virtualization mechanisms and they both use

cgroups (control groups) and namespaces for resource management. (Wang 2017, cited

18.01.2018).

13

TABLE 1. Similarities between LXC and Docker (Rajdep 2014, slide 25/30).

Parameter LXC Docker

Process isolation Uses PID namespace Uses PID namespace

Resource isolation Uses cgroups Uses cgroups

Network isolation Uses net namespace Uses net namespace

Filesystem isolation Using chroot Using chroot

Container lifecycle Tools lxc-create, lxc-stop, lxc-

start to create, start and stop a

container

Uses docker daemon and a

client to manage the

containers

When it comes to understanding containers, the concepts of chroot, cgroup and namespace must

first be understood. They are the Linux kernel features that create the boundaries between

containers and the processes running on the host. (Wang 2017, cited 18.01.2018.) According to

Wang, the Linux namespaces take a portion of the system resources and give them to a single

process, making it look like they are dedicated to that specific process.

Linux control groups, or cgroups, allow you to allocate resources to a specific group of processes.

If there is, for example, an application that uses too much of the computers resources, they can be

reallocated to a cgroup. This way the usage of CPU cycles and RAM memory can be determined.

The difference between namespaces and cgroups is that namespaces only deal with a single

process and cgroups allocate resources for a group of processes. (Wang 2017, cited 18.01.2018.)

By allocating resources per each process or a group of processes, it is possible to scale up and

down the needed amount of resources when, for example, during traffic peaks. This makes the

utilization of processing power of the physical computer possible and more importantly, efficient.

Chroot (change root) is used to change the working directory of the application. Its purpose is to

isolate certain applications from the operating system. This is called a chroot jail. This is especially

14

handy when a program is tested that could potentially harm the computer or is insecure in some

way. An important thing to remember is disabling root permissions from the application which is

placed inside the jail, so that it cannot run privileged commands. Other potential use cases are, for

example, running 32-bit applications on 64-bit operating systems, executing old versions of certain

applications on modern operating systems. (Ubuntu 2015, cited 12.2.2018.)

2.4 Storage drivers

“For image management, Docker relies heavily on its storage backend, which communicates with

the underlying Linux filesystem to build and manage the multiple layers that combine into a single

usable image.” (Matthias & Kane 2015, 44). In case the operating systems’ kernel supports multiple

storage drivers, Docker has a list of usable storage drivers, if no driver is configured separately. By

default, the Docker Community edition uses the overlay2- filesystem, which provides a quick copy-

on-write system for image management (Docker storage 2018, cited 17.01.2018).

The default filesystem was used in this project because as there was no need to switch to a different

one. Depending on the operating system Docker is installed on, some filesystems might not be

enabled, and need specific drivers installed. When having doubts choosing the right storage driver,

the best and safest way is to use a modern Linux distribution with a kernel that supports the

overlay2 storage driver. (Docker storage 2018, cited 17.01.2018.)

There are generally two levels regarding the storage drivers, file and block level. For example, the

filesystem drivers aufs, overlay, and overlay2 operate at the file level. They use memory more

efficiently, but in turn the writable layer of the container can grow unnecessarily large in write-heavy

workloads. The default overlay2- driver was chosen since there are not any write-heavy workloads

in the project. The devicemapper, btrfs and zfs are block-level storage drivers and they perform

well on write-heavy workloads (Docker storage 2018, cited 17.01.2018.)

2.5 Dockerfile

To build an image from an application a Dockerfile is needed. The purpose of the Dockerfile is to

automate the image building process, in which all the necessary dependencies and libraries are

installed. This project required the configuring of a multi-stage Dockerfile. This enables defining

15

multiple build stages in the same file. It makes the build process more efficient through reducing

the size of the final image, which is determined in the last phase of the build (FIGURE 5) (Dockerfile

2017, cited 25.12.2017.) In the first phase all the needed dependencies are installed and

compressed into an artifact. An artifact in Linux environments is usually a compressed .tar.gz- file.

In the second phase the artifact is taken and extracted. The result is a ready Docker image, which

can be further used in a deployment.

FIGURE 5. Images built with multiphase dockerfile, first and second phase.

Although premade images are available for use from the Docker Hub (https://hub.docker.com/), it

is sometimes better to make a specific Dockerfile. This way, you know how the final image is built,

what licenses and/or properties it contains. The downside of this is that the responsibility to keep

the Dockerfile updated falls on the organization. It is also possible to combine prepared images

with self-made Dockerfiles to maximize efficiency.

The Dockerfile supports 13 different commands, as seen in TABLE 2, which tell the Dockerfile how

to build the image and how to run it inside a container. There are two phases in the building process:

Build and Run. In the BUILD -phase you determine the commands which are executed during the

build process. In the RUN- phase the commands specified are run when the container is run from

the image. The two commands WORKDIR and USER can be used by both phases. (Janmyr 2015,

cited 4.1.2018.)

TABLE 2. Instructions used by Dockerfile. (Janmyr 2015, cited 4.1.2018.)

BUILD Both RUN

FROM WORKDIR CMD

MAINTAINER USER ENV

COPY EXPOSE

16

ADD VOLUME

RUN ENTRYPOINT

2.5.1 BUILD phase

The FROM command tells the Dockerfile where to get the image for the for the build. Depending

on the use case, the Dockerfile can start FROM scratch, which starts the container without any

operating system. Normally, an operating system is pulled from the Dockerhub to act as a basis for

the final image. Many popular Linux distributions have their own official Dockerfiles there, such as

Ubuntu, Centos, Debian, Alpine and CoreOS. (Dockerfile 2017, cited 25.12.2017.)

The MAINTAINER command simply dictates the name and e-mail of the author. The purpose of

this command is to notify the end-user who to contact in case of problem situations. It is good to

keep in mind that the author in question might not keep the Dockerfile updated and does not reply

to questions. In this case, it is best to create a new Dockerfile. (Dockerfile 2017, cited 25.12.2017.)

COPY command is used to copy items from the sources system to the target destination inside the

container. It can also be used to specify multiple sources. In the case of this project, the folder

where the application resided, was copied. The command: COPY ./ /root (FIGURE 6) states that

all the contents of the current folder, are copied to the root path inside that image. (Janetakis 2017,

cited 18.01.2018.)

The ADD command is the same as COPY, but with ADD, the extraction of a single tar- file is

possible from the source to the destination. In addition, an URL- address can be used instead of a

local file. Use cases might be when extracting a remote TAR- file into a specific directory in the

Docker image. (Janetakis 2017, cited 18.01.2018.)

The RUN command executes commands inside a new layer on the current image. The results are

then committed and used for the next step inside the Dockerfile. This is used when installing

important dependencies or updates. For example, if the base image of the Dockerfile, usually an

operating system, needs to be updated so a command needs to be executed: RUN apt-get

upgrade. (Dockerfile 2017, cited 25.12.2017.)

17

The ONBUILD command adds a trigger instruction into the image, which is executed later. This is

useful when building an image which is used later as a base for other images. For example

something like this could be added to the Dockerfile: ONBUILD ADD . /app/src. What this does, is

that it registers advance instructions to run in the next build stage. (Dockerfile 2017, cited

25.12.2017.)

2.5.2 RUN phase

The purpose of the CMD instruction is to provide a command, which is executed when the container

is built from the final image. There can only be one CMD instruction, and if there are several the

latest one is used. A use case for this specific instruction might be, for example, running a command

shell inside the container: CMD /bin/bash. (Matthias & Kane 2015, 44.)

The ENV instruction is meant to define the environment of the application running inside the

container. These are heavily application specific, for example when determining users and

passwords for a PostgreSQL instance. These are best specified inside a docker-compose.yml file,

if one is used in a project. (Matthias & Kane 2015, 43.)

The EXPOSE instruction tells docker which ports the container listens to during runtime. The port

being listened to can be specified as TCP or UDP. This instruction does not publish the port, it just

informs which port will be published. (Dockerfile 2017, cited 25.12.2017.) In this project, the port

assignment is done within the docker-compose.yml file. (APPENDIX 7.)

“The VOLUME instruction creates a mount point with the specified name and marks it as holding

externally mounted volumes from native host or other containers.”. (Dockerfile 2017, cited

25.12.2017). It can be used to mount for example a shell script, which is then run in the docker-

compose up phase. Volumes can be also used in docker environments to create a persistent

storage for important information such as user databases.

The ENTRYPOINT instruction allows the user to configure a container that runs as an executable

process. Like the CMD instruction, when listing several entrypoints only the last one will have an

effect in the Dockerfile. Entrypoint can be used in specific scenarios, where the container needs to

behave as if it was the executable it withholds. It is used when the end user is not allowed to

18

override the specified executable. (Dockerfile 2017, cited 25.12.2017; DeHamer 2015, cited

10.2.2018.)

For this project, not all Dockerfile instructions were used. The CMD command for instance was

moved to the docker-compose.yml file. This was done so that command can be easily modified

without rebuilding the image. This saved tons of time in the process.

Here is the Dockerfile created for this project (FIGURE 6). For convenience and compatibility uses,

the image nikolauska/phoenix:1.5.3-ubuntu was pulled straight from the Docker hub

(https://hub.docker.com) to be used in this project. This made the deployment process easier due

to having a ready image on which to base the build. The mix commands are specific to the

application and not related to this thesis, so they will not be explained.

FIGURE 6. Instructions for the Dockerfile made for this project

19

2.6 Dockerfile best practices

Docker images are layered. When building an image, Docker creates a new intermediate container

for each instruction described in the Dockerfile. When the commands are chained together to form

a coherent line of build instructions, it reduces the build time and resources the Dockerfile might

use (FIGURE 7). (Dockerfile guide 2017, cited 25.12.2017.)

FIGURE 7. Chaining commands in a Dockerfile

Each of the RUN commands described in the “Un-optimized” part, create their own intermediate

container. Each of them takes time to setup making the build process slower than the optimized

version, which only creates one layer to handle the instructions. (Dockerfile guide 2017, cited

25.12.2017.)

Using multistage builds help decrease the final image size. In the example before, the first stage of

the build is where all the dependencies and libraries are installed, the application is built and

compressed into an artifact. In the second phase of the build the artifact is taken and unpacked.

The application itself contains specific information on how to run it, and it will be determined in the

docker-compose.yml file (APPENDIX 7). The image contains the needed dependencies to run the

application, and it will be referred to in the docker-compose.yml file.

When configuring the Dockerfile, a plan should be made what the final image needs and doesn’t

need. For instance, there is no need for a PDF reader inside a database instance. Minimizing the

number of unnecessary packages is one of the biggest goals. It helps make the image fast to use,

and efficient when thinking about processing power. (McKendrick & Gallagher 2017, 36; Dockerfile

guide 2017, cited 25.12.2017.)

20

The purpose of the .dockerignore file is to exclude the unwanted files which are not needed in the

docker build process. The build context is what the Dockerfile uses to build the final image. By

using a .dockerignore file, all the irrelevant items can be left out of the build context. (Dockerfile

guide. 2017). They will seem quite familiar to people who have been working with .gitignore files in

GitHub. (Cane 2017, cited 18.01.2018; McKendrick & Gallagher 2017, 36.)

To leave out items of the build context, for example the docker-compose.yml file, just simply type

in the name of the file. To add items to the build context, an exclamation mark (!) can be added

before the filename (FIGURE 8). The file is read from top to bottom, which means that the

instructions on top will be executed first. As an example: when telling the file to leave out all

markdown files (*.md), a specific file can be added with the exclamation mark flag (!README.md)

(Cane 2017, cited 18.01.2018).

FIGURE 8. Example of a .dockerignore file. (Cane 2017, cited 18.01.2018).

2.7 Docker-compose

“Compose is a tool for defining and running multi-container Docker applications.” (Docker

Compose. 2017). When thinking about Docker Compose and Dockerfiles, in a sense they are quite

similar: Both have two sets of unique instructions for building images and running containers.

(Podviaznikov 2017, cited 11.01.2018.) After the successful building of the Docker image, the

docker-compose.yaml file can be configured.

The purpose of the file is to build and link the containers together. This is used, for example, when

making a multi-container application such as linking an application to one or multiple databases. In

this thesis the actual docker-compose up command is not used. The Kubernetes’ own tool,

kompose, is used. It is very similar to docker-compose but instead of building the image straight

from the docker-compose.yml file, it first translates it into Kubernetes readable resources. After

translating, it can then use the instructions to deploy the applications inside containers. (Kubernetes

21

kompose 2018, cited 14.1.2018.) An example docker-compose.yml file (APPENDIX 7) in which an

application (app) is linked with three database instances (DB1, DB2, DB3)

22

3 KUBERNETES

“Kubernetes is an open-source platform designed to automate deploying, scaling, and operating

application containers.” (Kubernetes 2018, cited 14.1.2018). Kubernetes is the leading container

orchestration engine in the field of containerization. Developed by Google, it uses the Docker

images as a basis to deploy applications into the containers. With Kubernetes, the containers are

easily scaled up, destroyed and remade. Compared to normal virtual machines, they are deployed

faster, more efficiently and reliably. Docker creates the image, which is used in Kubernetes. In the

world of growing virtualization and the Internet of Things, applications and services need to be

deployed quickly and efficiently. This is where Kubernetes comes in.

Instead of operating at the hardware level and rather in the container level, Kubernetes provides

some features related to a Platform as a Service (PaaS). PaaS usually refers to a cloud service. In

the cloud service, the user can develop, deploy and run applications using several environments

provided by the service provider. Essentially, the provider takes all the responsibility in installing

and configuring the environment. This way the customers is free to apply the application code to

the cloud. This is what Kubernetes basically does, except that the cluster is managed by the

developer or cluster administrator and it can be done locally. These features include for example,

deployment, scaling, load balancing, logging and monitoring. Kubernetes comprises of a set of

independent control processes that drives the current state of the deployment to the wanted result.

(Kubernetes 2018, cited 14.1.2018; Meegan 2016, cited 12.2.2018.)

The reason Kubernetes was chosen instead of the native Docker cluster, Docker Swarm, is its

scalability, portability and self-healing attributes. Kubernetes has been around longer than Docker

Swarm and therefore has much more documentation. It also has more widespread 3rd party

application support available. (Kubernetes 2018, cited 14.1.2018; Docker 2017, cited 13.1.2018.)

The popular game Pokémon GO, uses Kubernetes containers. They were especially critical during

the launch, where millions of users connected almost simultaneously. The actual traffic that had to

be handled was 50 times larger compared to the expected traffic. This is where the scalability of

Kubernetes kicks in. When the traffic increases rapidly, Kubernetes sees this and automatically

deploys more containers to adapt. Deployed on the Google Cloud, it was a great success and tens

23

of thousands of cores were provided dynamically to enable an enjoyable user experience to the

end user. (Stone 2017, cited 9.2.2018.)

24

4 KUBERNETES CONCEPTS

Before working with Kubernetes, it’s important to know some of the basic concepts concerning

Kubernetes architecture. It is easier to work when the basic concepts are known when starting on

a new subject. The concepts used in the deployment process are described in the next chapters

which are the following: Cluster, Node, Master, Pod, Service, Volume, Namespace and Ingress.

4.1 Cluster

 “A cluster is a collection of hosts storage and networking resources that Kubernetes uses to run

the various workloads that comprise your system.” (Sayfan 2017, cited 25.12.2017). The Minikube

single node cluster, which is used in this project, consists of three resources: The master, which

coordinates the cluster. The second part are the nodes which manage run the kubelet, kube proxy

and the Docker engine. (FIGURE 10). (Kubernetes Cluster 2018, cited 14.1.2018.)

FIGURE 9. Kubernetes cluster depicted. (Kubernetes Cluster 2018, cited 14.1.2018.)

The master is the head of Kubernetes cluster. It consists of multiple parts, such as an API server,

a scheduler and a controller manager. “The master is responsible for the global cluster-level

scheduling of pods and handling events.” (Sayfan 2017, cited 25.12.2017). All the instructions

25

made via kubectl go through the API server, which are then redirected to the designated worker

nodes.

The worker units inside the clusters are called nodes. A node is a single host inside the cluster, it

can be a physical or a virtual machine. Their purpose is to manage pods. Each node run several

Kubernetes managed components, such as kube proxy and kube ingress. All the nodes are

managed by the Kubernetes master and their job is to do all the work given by the Kubernetes

master. (Sayfan 2017, cited 25.12.2017).

4.2 Pod

A pod consists of one more containers, with shared network and storage and instructions on how

to run containers. Pods are managed by the nodes. They are the smallest deployable units which

can be created in Kubernetes. “Containers within a pod share an IP address, a port space and can

find each other via localhost”. Pods can be used to create vertical application stacks, such as a

LAMP-stack, although their main purpose is to support co-located and managed helper programs,

like proxies, file and data loaders, log and checkpoint backups. (Kubernetes pod 2018, cited

14.1.2018; Kubernetes Cluster 2018, cited 14.1.2018.)

When pods are destroyed, they are not resurrected. Specifically, ReplicationControllers are

designed to create and delete pods dynamically when, for example, commencing rolling updates

or scaling the deployment up or down. (Kubernetes service 2018, cited 14.1.2018.) This enables

for the processes running inside the pod to have a good uptime, when in a disaster situation they

are remade by the Replication Controller.

They can also communicate using standard inter-process communications (IPC). Containers in

different pods have unique IP addresses and cannot communicate via IPC without specific

configuration. They usually communicate via pod IP addresses. (Kubernetes Cluster 2018, cited

14.1.2018).

26

4.3 Service

The basic idea of services is that they define a policy with which there is a way to gain access to

the pods. They take care of the variables needed for communication: an IP address, ports and with

a group of pods, also load balancing. When a service and a deployment are linked, the service

should be started first and then the deployment. They can be deploying using one YAML file. The

instructions need to be separated with a line containing several hyphens. (Abbassi 2016, cited

24.1.2018.)

“Services are used to expose some functionality to users or other services.” (Sayfan 2017, cited

25.12.2017). Kubernetes pods don’t have a long lifecycle and when they are taken down, they are

not resurrected. Pods are created dynamically when taken down. Because of this, to communicate

with newly created pods there is a need for a concept which abstracts away the pod, and this is

achieved with services. (Kubernetes service 2018, cited 14.1.2018. Hong 2017, cited 11.01.2018.)

4.4 Volumes

Kubernetes uses PersistentVolumes (PV) to persist data between reboots and system

catastrophies. So that the PV can be used, a PersistentVolumeClaim (PVC) must be created. Their

job is to link the PV to the container for which the PVC is configured. They can be implemented

straight on the host, through Network File Shares (NFS), and various other methods. (Kubernetes

Storage 2018, cited 23.1.2018.)

For the purposes of this thesis, since we don’t have valuable data which would result in a disaster

when lost, we’ll be using dynamically allocated PersistentVolumes with the reclaim policy of

“Delete”. To keep the volumes intact after deleting the PersistentVolumeClaims (PVC), the reclaim

policy must be changed to “Retain”. This way when the claim is deleted, the volumes are moved to

the “released” phase, where the data it withholds can be recovered manually. (Kubernetes Storage

2018, cited 23.1.2018.)

27

4.5 Volume deletion

The PV’s are dynamically created with each deployment with Minikube when the default-

storageclass addon is enabled. They are set up according to the specifications made for the PVC,

which in this case reside inside the docker-compose.yml file. Dynamically created

PersistentVolumes have a default reclaim policy of “Delete”. (Kubernetes volume 2018, cited

22.01.2018.)

The reason for the deletion policy for dynamically created PVs is the goal of automating the lifecycle

of storage resources (Kubernetes Storage 2018, cited 23.1.2018). If the PV’s didn’t delete

themselves on PVC deletion, they could quickly flood the storage of the computer and cause

problems to the inattentive cluster-administrator. This means that when the PVC’s are deleted so

are the volumes.

4.6 Namespace

In Kubernetes, you can assign virtual clusters called namespaces. They are used to keep different

versions of the application separate, such as development and production versions (Kubernetes

namespace 2018, cited 16.01.2018). This is to ensure potential mix ups between versions. A

namespace is created based on the instructions inside a YAML file with, for example, the following

information (FIGURE 11).

The namespaces in Kubernetes are based on Linux namespaces. They have the same kind of

working principle. The purposes of these are to allocate resources to a specific namespace along

with isolating the applications deployed between different namespaces.

FIGURE 10. Prod namespace creation instructions

28

4.7 Ingresses

For Minikube to properly redirect traffic to the exposed services, an Ingress is needed. The services

and pods inside the cluster network are only accessible internally. All the traffic that try to access

the services, is dropped or redirected by an edge router. By default, the cluster is isolated from the

Internet so that the cluster network is not directly accessible from outside (Oranagwa 2017, cited

16.01.2018; Kubernetes ingress 2018, cited 10.2.2018).

 An Ingress allows inbound connection to reach the cluster services through the edge router by

creating a “hole” in it. To access the service, an Ingress resource must be created. The resources

are created via YAML files (FIGURE 12). For the production namespace, the following ingress was

created.

FIGURE 11. Instructions to create an Ingress resource.

To make the resource work, the cluster must have an Ingress controller. The controller is

responsible for taking the resource and using its instructions to redirect traffic to the wanted

destination. Minikube versions v0.14.0 and above come with Nginx ingress setup as an addon. It

is enabled by typing minikube addons enable ingress in the Linux terminal. (Oranagwa 2017, cited

16.01.2018.)

29

5 DEPLOYING THE APPLICATION

This chapter goes into detail on how the deployment was achieved. The different components used

in the process are explained and how they are linked together. The application is deployed with a

tool called Kompose on top of a Minikube cluster. To redirect the traffic, a Nginx reverse proxy is

configured. The traffic is redirected to the Minikube master node, which in turn redirects the traffic

to the application through an ingress controller. For the controller to function, an ingress resource

is created. Its job is to create a hole in the edge router of the Minikube cluster.

The application is deployed onto an Ubuntu 16.04 Xenial server. The server itself resides in

OpenStack, to which an SSH connection is made from the local workstation. Ubuntu was chosen

as the basis for the deployment because the author has some familiarity with it. For the deployment

process, the following tools were installed: Docker (appendix 1), Minikube (appendix 2), Kubectl

(appendix 3), Kompose (appendix 4), Nginx (appendix 5), basic authorization for the website

(appendix 6) and Oracle VirtualBox.

5.1 Minikube cluster creation

Before the Minikube cluster can be created, a hypervisor is needed. In this case, Oracle VirtualBox

was installed. The Ubuntu file repositories contain the hypervisor by default, so the installation is

easy. It is installed by running sudo apt-get install virtualbox. The command then installs the latest

version of the hypervisor.

When creating the Minikube single node cluster, the target system needs to have the necessary

resources to run it. By default; Minikube uses 1048 GB of RAM and 1 CPU. It can be modified with

the following command: minikube start –cpus=2 –memory=2048. (Aliakhtar 2016, cited

11.01.2018). For this deployment, only the default resources are needed. If a different hypervisor

than Oracle VirtualBox is used, it needs to be determined with the “--vm-driver=” (FIGURE 13),

however, for this project the default VirtualBox driver was used.

30

FIGURE 12. Creation of the minikube cluster with the command: minikube start --vm-
driver=virtualbox

Now that the single node cluster is running, the IP address of the master node must be found out.

The IP address can be checked IP address by running minikube ip (FIGURE 14) or if more detailed

information is needed kubectl cluster-info can be run (FIGURE 15). The cluster-info command

shows all the components running in a cluster. For Minikube, there is only the Kubernetes master.

FIGURE 13. Fetching Minikube IP address.

FIGURE 14. Fetching Minikube IP address with kubectl

For the Minikube cluster to communicate with Docker, the following environment variable must be

set. This is needed so that Kubernetes can communicate with the Docker daemon to fetch the

image used in the deployment process. The variable is set with: eval $(minikube docker-env).

(Kubernetes quickstart 2018, cited 11.01.2018.)

After setting the variable, the image can be loaded to the Docker daemon. To achieve this, the

secure copy command (scp) was used to transfer the docker image. The image was moved from

a local virtual machine to the target machine. When the transfer was completed, the image was

loaded from the tar file with the docker load -i command (FIGURE 16).

31

FIGURE 15. Loading the compressed Docker image on the target machine.

With the Minikube environment set to communicate with the Docker daemon, the following output

should be available with the docker images command (FIGURE 17). The two images, postgres and

app, are the ones loaded from the tar file. The rest of the images are native to Kubernetes and are

automatically loaded upon installation.

FIGURE 16. Docker images output after setting the environment variable and loading new image.

5.2 Nginx

“NGINX is open source software for web serving, reverse proxying, caching, load balancing, media

streaming, and more.” (Nginx glossary 2018, cited 16.01.2018.) It was originally created by Igor

Sysoev in 1999 to tackle a problem called C10K which derives from “10000 concurrent

connections”. The problem concerned the existing web servers that experienced difficulties when

handling large numbers of concurrent connections. The project was then open sourced in 2004 and

after it grew exponentially, Sysoev founded Nginx. Inc. to maintain the development process and

offer a commercial product, Nginx Plus, for enterprises. Nowadays, Nginx powers more than 50%

of sites, such as Netflix, in the World Wide Web (Nginx glossary 2018, cited 16.01.2018).

Nginx was designed to be a multifunction tool. It can be used as a load balancer, reverse proxy,

content cache and a web server, which decreases the number of tools used in the organization and

32

software mismatches. In this project, Nginx is used as a reverse proxy to redirect traffic from the

Internet to the exposed Minikube nodes, through the Minikube cluster master. Nginx was chosen

for its well documented user manual and its relatively easy-to-configure nature. (Ellingwood 2016,

cited 2.1.2018; Nginx glossary 2018, cited 16.01.2018.)

Once Nginx is installed and Minikube is up and running, the Nginx reverse proxy needs to be

configured. The configuration file should dictate how the Nginx proxy redirects traffic from the

Internet to the Minikube master node cluster. From the Master node, the traffic is redirected to the

application inside the cluster. To achieve this, configuration files need to be created in the following

location: /etc/nginx/conf.d. By default, there are no configuration files, so new files must be made

from scratch. The Minikube IP address needs to be found out first, as seen in FIGURE 14.

The configuration of the Nginx reverse proxy is shown in FIGURES 18, 19 and 20, in the

configurations made for the website are described. For each figure, the main points are explained

to clarify their purpose. The template which was used for this thesis, was made by the development

team and it gave good base for the configuration. It was found from the company’s internal GitLab

repository. The first configuration block, as seen in FIGURE 18, listens to the port 80 for HTTP

traffic. If traffic is found, it then redirects it to port 443 for HTTPS.

FIGURE 17. First server block, listens to HTTP traffic on port 80.

This is the second server block for a TLS enabled server (FIGURE 19). It listens to HTTPS traffic

on the default port 443 and has SSL certificates configured. The SSL certificates were requested

with CertBot, which is a software application made by LetsEncrypt. CertBot will be explained in the

33

next chapter. Enforcing the SSL protocol TLSv1.2 is a good practice, because its older versions,

1.1 and 1.0, are insecure and pose a security risk for the server.

FIGURE 18. Second server block for HTTPS traffic.

Next is the location block (FIGURE 20). Here the redirect address is configured to redirect traffic to

the Minikube master. The basic authorization (APPENDIX 7) and specific access restrictions (IP-

blacklisting) and configurations go here.

FIGURE 19. Nginx configuration files, location part. Private information has been changed.

5.3 Encrypting the traffic

For encryption a software application made by Let’s Encrypt was used. Let’s Encrypt is a free to

use, automated certificate authority that uses the Automatic Certificate Management Environment

protocol to provide free TLS/SSL certificates to any compatible client (Boucheron 2017, cited

11.01.2018). The purpose of the certificates is to encrypt the traffic between the webserver and its

users.

34

There are several clients with which the certificate can be allocated. In this thesis, a software

application CertBot was used. Citing the CertBot introduction page: “Certbot is part of EFF’s effort

to encrypt the entire Internet. Secure communication over the Web relies on HTTPS, which requires

the use of a digital certificate that lets browsers verify the identity of web servers (e.g., is that really

google.com?).” (Certbot Intro 2016, cited 11.01.2018.)

Certbot is developed by the Electronic Frontier Foundation, and in addition to just verifying domain

ownerships and fetching certificates, it can automatically configure TLS/SSL for the web server

(Boucheron 2017, cited 11.01.2018). To this day roughly 50% of websites in the Internet use

HTTPS. This is a step towards a more secure Internet. HTTPS encrypts the traffic from the

webserver to the client, making it harder for an attacker to hijack, for example, credit card

information and passwords.

5.4 Creating a certificate

Configuring a certificate with Certbot is done with sudo certbot, or sudo certbot certonly in case the

Nginx configuration file needs to be manually configured. A dry run was simulated to show the

certificate creation process (FIGURE 21).

FIGURE 20. Simulated CertBot certificate creation. Domain names blacked out due to privacy
reasons.

35

When the certificate creation is complete, the client tells where the certificates are located, which

by default is:

/etc/letsencrypt/live/domain_name/fullchain.pem

/etc/letsencrypt/live/domain_name/privkey.pem.

Now that the certificates are configured and ready to use. They are then added to the Nginx

configuration file which was shown in the previous figure. (FIGURE 21). Whenever making changes

to the configuration files, the Nginx service must be restarted to apply the settings.

5.5 Deployment

Now that the configurations are ready, certificates set, the application can now be deployed to

Minikube. Like docker-compose, Kubernetes has its own version called Kompose. During the build

process, it first translates the docker-compose.yml file into several YAML files which are readable

by Kubernetes. From the files it can then read the instructions for the deployment. When using

kompose up, the YAML files do not persist and are deleted after the building is done. (Kubernetes

kompose 2018, cited 14.1.2018.)

If different kind of resources are needed, the docker-compose file can be first converted into

Kubernetes readable syntax. This is done via kompose convert. From one file, depending how it is

configured, there will be several YAML files with each their own instructions for deployment.

(Kubernetes kompose 2018, cited 14.1.2018.) For instance, for one docker-compose file which

deploys one application you might get two files for deployment and service. The application is then

deployed using the kompose up command (FIGURE 22). A specific file can be determined by using

the -f flag, for instance, kompose up -f prod-application.yaml.

FIGURE 21. Output of kompose up.

36

The deployment is ready, in this case we deployed an application in to the “prod” namespace. The

deployment consists of three databases, which are linked to the application. To view the details of

the deployment, the following command can be run: kubectl get deployment,svc,pods,pvc,pv.

(FIGURE 23).

FIGURE 22. Output of deployed application, Deployments, services, pods,
PersistentVolumeClaims (PVC) and PersistentVolumes (PV).

To access the application, prod-app, in this case Kubernetes uses the exposed port 31400. The

Nginx reverse proxy that was configured, sends the incoming traffic to the Kubernetes master.

From the master node, the traffic is sent to the application, through the Ingress controller. The

database instances communicate with each other inside the cluster, so there is no need for expose

them to the Internet. The application is exposed as a service via NodePort, which is determined in

the docker-compose.yml file with a Kubernetes label (APPENDIX 7). The service persists between

deployment reboots and has a static port assigned to.

When the Nginx- reverse proxy is configured to redirect traffic to the Minikube cluster master, it will

automatically know where to redirect the traffic if an ingress controller is enabled and has a properly

configured resource. For different versions of applications (dev, staging, prod) namespaces and an

ingress resource for each namespace should be created to point to right place (FIGURES 11 &

12). With the Nginx proxy configured, the application exposed as NodePort and the Minikube

ingress is set to point at the prod-app service in production namespace, the application is now

accessible in the assigned web domain. (FIGURE 24).

37

FIGURE 23. The dashboard of the application showing different statistics.

The front page opens to the situation room of the Huginn application and it is the heart of the

application, from where the current situation is displayed. There are three different areas that are

being monitored. The “Issue statistics” field declares if there are any errors in the data reported by

the rules created. Issues generated can be monitored hourly, daily, weekly or monthly. The “Record

statistics” monitor all the generated rows in databases, deleted, changed and new rows. Rule

statistics display how many rule checks per run have been checked. The situation room shows the

recent issues created and tells which ones are the most critical.

The purpose of the application is to detect information anomalies in the targeted system. If such

anomalies are detected, they are then reported in the form of "Issues". This enables the observer

to react quickly against possible threats and mitigate already happened misuses quickly. For

instance, the billing process can be monitored. Huginn pays attention to the IBAN numbers which

are used to complete the payment. If a mismatch is found, Huginn creates an issue. This prevents

false billing addresses and increases the chances of preventing the accident if reacted to quickly.

38

6 CONCLUSION

The goal of the project was to create a Docker image of the Huginn application and deploy it on

Kubernetes. The goal was achieved, and the test version of the application was available for the

allotted time. The next step would be to use the existing files created during the process for

automation and deployment to a real production environment.

The whole project was a blast to do. Before starting I had never heard of Docker and Kubernetes

and it took quite a lot of research and trying out new things to finally get to the wanted result. The

whole project took around two months to complete. Some things could have been done better in

this thesis, but I am happy with the result.

The hardest part of this thesis was tackling a whole new subject. With next to none knowledge of

Docker and Kubernetes, it required a lot of reading through the manuals and trial of error. When

nearing towards the end of the thesis, keeping up with references became harder and possible

typing errors also grew more frequent and required more attention.

What was done well in my opinion, was the configuration of the Dockerfile and docker-compose.yml

file. When moving on to the Kompose tool, there were no problems when deploying the application.

Also, the Nginx proxy configuration was well done, for a first timer. The created configuration files

can be used afterwards giving direction to similar projects.

What could have been done better, was for example using a bigger cluster, such as the minimal

Kubernetes cluster, kubernetes-core. Since Minikube is meant for local development, it was not the

best choice for the deployment. But since they generally use the same commands, only the

installation process is different. Also, instead of using the docker-compose.yml file to do the

deployment, Kubernetes specific YAML files could have been made, but for this thesis it was not

required.

When starting the next Docker and Kubernetes related project, it will be much easier to do and

instead of Googling the answers for a few weeks I will know where to begin and what needs to be

done to reach the goal. I feel that this project broadened my knowledge in the areas of

39

containerization, virtualization, domains and networking overall and has set me on the path to be a

DevOps professional one day.

40

REFERENCES

Abbassi, P. (2016) Understanding Basic Kubernetes Concepts III – Services give you abstraction.

Cited 24.01.2018, https://blog.giantswarm.io/basic-kubernetes-concepts-iii-services-give-

abstraction

Aliakhtar. (2016). Insufficient memory / CPU? Cited 11.01.2018,

https://github.com/kubernetes/minikube/issues/567.

Boucheron, Brian. (2017). An Introduction to Let’s Encrypt. Cited 11.01.2018,

https://www.digitalocean.com/community/tutorials/an-introduction-to-let-s-encrypt.

Cane, B (2017). Leveraging the Dockerignore file to create smaller images. Cited 18.01.2018,

https://blog.codeship.com/leveraging-the-dockerignore-file-to-create-smaller-images/

Certbot Intro. (2016) Introduction. Cited 11.01.2018, https://certbot.eff.org/docs/intro.html

Coleman, M. (2016). Containers and VMs together. Cited 18.01.2018,

https://blog.docker.com/2016/04/containers-and-vms-together/

DeHamer, Brian. (2015). Dockerfile: ENTRYPOINT vs CMD. Cited 10.02.2018,

https://www.ctl.io/developers/blog/post/dockerfile-entrypoint-vs-cmd/

Dockerfile (2017). Dockerfile reference. Cited 25.12 2017,

https://docs.docker.com/engine/reference/builder/

Dockerfile guide (2017). Best practices for writing Dockerfiles. Cited 25.12.2017,

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/

Docker Company. (2018). Docker Milestones. Cited 14.1.2018, https://www.docker.com/company

Docker Compose. (2017). Docker Compose. Cited 11.01.2018,

https://docs.docker.com/compose/

41

Docker container. (2018). What container? Cited 13.1.2018, https://www.docker.com/what-

container

Docker eBook. (2016). Docker for the Virtualization Admin eBook. Docker. 3-5. Cited 28.12.2017,

https://goto.docker.com/rs/929-FJL-178/images/Docker-for-Virtualization-Admin-

eBook.pdf?mkt_tok=eyJpIjoiTlRaa09ERXhNelE1TVRabCIsInQiOiJNdHVcL1N5a3hqdlp1ekUzR3

hhQ0xtUW5UUEIzYVd5aXR4XC9BSEZpZVVJT05KZndGWWY4ZURpTzJ0bmdsK2U2VkFBaUxr

NTBFMmRVN1g1WmNkS0w3RmhvMHAwa3RhcTNWY3UxWXNxRXJLQTF3PSJ9

Docker storage. (2018) Select a storage driver. Cited 17.01.2018,

https://docs.docker.com/engine/userguide/storagedriver/selectadriver/

Docker VR. (2018). Finnish railways unifies app modernization projects with Docker Enterprise

edition. Cited 9.2.2018, https://www.docker.com/customers/finnish-railways-unifies-app-

modernization-projects-docker-enterprise-edition

Ellingwood, Justin. (2016). How to Install Nginx on Ubuntu 16.04. Cited 2.1.2018,

https://www.digitalocean.com/community/tutorials/how-to-install-nginx-on-ubuntu-16-04

Hong, K. (2017). Running Kubernetes locally via Minikube. Cited 11.01.2018,

http://www.bogotobogo.com/DevOps/DevOps-Kubernetes-1-Running-Kubernetes-Locally-via-

Minikube.php

Janetakis, N. (2017). Docker Tip #2: The difference between COPY and ADD in a Dockerfile.

Cited 18.01.2018, https://nickjanetakis.com/blog/docker-tip-2-the-difference-between-copy-and-

add-in-a-dockerile

Janmyr, A. (2015). A not very short introduction to docker. Cited 4.1.2018,

https://blog.jayway.com/2015/03/21/a-not-very-short-introduction-to-docker/

Kubernetes. (2018) What is Kubernetes? Cited 14.1.2018,

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

42

Kubernetes cluster. (2018) Cluster Intro. Cited 14.1.2018,

https://kubernetes.io/docs/tutorials/kubernetes-basics/cluster-intro/

Kubernetes ingress. (2018). Ingress. Cited 10.2.2018,

https://kubernetes.io/docs/concepts/services-networking/ingress/

Kubernetes kompose. (2018). Translate a Docker Compose File to Kubernetes Resources. Cited

14.1.2018, https://kubernetes.io/docs/tools/kompose/user-guide/#kompose-convert

Kubernetes namespace. (2018). Namespaces. Cited 16.01.2018,

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Kubernetes pod. (2018). Pods. Cited 14.01.2018,

https://kubernetes.io/docs/concepts/workloads/pods/pod/

Kubernetes quickstart. (2018). Getting started guide: Running Kubernetes Locally via Minikube.

Cited 11.01.2018, https://kubernetes.io/docs/getting-started-guides/minikube/

Kubernetes service. (2018). Services. Cited 14.01.2018,

https://kubernetes.io/docs/concepts/services-networking/service/

Kubernetes storage. (2018). Dynamic Provisioning and Storage classes in Kubernetes. Cited

23.01.2018, http://blog.kubernetes.io/2017/03/dynamic-provisioning-and-storage-classes-

kubernetes.html

Kubernetes volume. (2018). Persistent Volumes. Cited 22.01.2018,

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Matthias, Karl. & Kane, Sean P. (2015). Docker Up & Running. United States of America: O’Reilly

Media, Inc, 1-44.

McKendrick, Russ & Gallagher, Scott. (2017) Mastering Docker. Second Edition. Birmingham,

UK: Packt Publishing Ltd, 36.

43

Meegan, J. (2016). A practical guide to platform as a service: What is PaaS? Cited 12.2.2018,

https://www.ibm.com/blogs/cloud-computing/2016/08/practical-guide-paas/

Nginx glossary. (2018) What is Nginx? Cited 16.01.2018,

https://www.nginx.com/resources/glossary/nginx/

Oranagwa, O. (2017). Setting up Ingress on Minikube. Cited 16.01.2018,

https://medium.com/@Oskarr3/setting-up-ingress-on-minikube-6ae825e98f82

Podviaznikov, Anton. (2017). The Versatility of Docker Compose. Cited 11.01.2018,

https://runnable.com/blog/the-versatility-of-docker-compose

Rahul, K. (2016). How to install Oracle VirtualBox 5.2 on Ubuntu. Cited 25.12.2017,

https://tecadmin.net/install-oracle-virtualbox-on-ubuntu/

Rajdep. (2014). Virtualization vs Containerization to support PaaS. Cited 13.01.2018,

https://www.slideshare.net/rajdeep/conference-presentationv3

Rubens, Paul. (2017). What are containers and why do you need them? Cited 26.12.2017,

https://www.cio.com/article/2924995/software/what-are-containers-and-why-do-you-need-

them.html#toc-1

Sayfan, Gigi. (2017). Mastering Kubernetes. Packt Publishing, 2017. Cited 25.12.2017,

http://proquestcombo.safaribooksonline.com.ezp.oamk.fi:2048/book/software-engineering-and-

development/9781786461001/1dot-understanding-kubernetes-architecture/ch01s02_html

Stone, L. (2016) Bringing Pokémon GO to life on Google Cloud. Cited 9.2.2018,

https://cloudplatform.googleblog.com/2016/09/bringing-Pokemon-GO-to-life-on-Google-

Cloud.html

Ubuntu. (2015). BasicChroot. Cited 12.2.20128, https://help.ubuntu.com/community/BasicChroot

Upguard. (2017). Docker vs LXC. Cited 13.01.2018, https://www.upguard.com/articles/docker-vs-

lxc

44

Wang, C (2017). What is Docker? Linux containers explained. Cited 18.01.2018,

https://www.infoworld.com/article/3204171/linux/what-is-docker-linux-containers-explained.html

45

INSTALLING DOCKER APPENDIX 1

Install Docker dependencies (Ubuntu 16.04)

sudo apt-get install \

 apt-transport-https \

 ca-certificates \

 curl \

 software-properties-common

Add the GNU Privacy Guard- key (GPG) for Docker

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add –

Compare fingerprints:

sudo apt-key fingerprint 0EBFCD88

Add Docker repository:

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu

$(lsb_release -cs) stable”

Install Docker:

sudo apt-get update

sudo apt-get install docker-ce

46

INSTALLING MINIKUBE APPENDIX 2

Download Minikube:

curl -Lo minikube https://storage.googleapis.com/minikube/releases/v0.24.1/minikube-linux-

Change permissions:

chmod +x minikube

Moving the file to a different path. It can be changed in case the user wants to.

sudo mv minikube /usr/local/bin/

47

INSTALLING KUBECTL APPENDIX 3

Kubectl installation:

curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s

https://storage.googleapis.com/kubernetes-

release/release/stable.txt)/bin/linux/amd64/kubectl

Install specific version (1.9.0):

curl -LO

https://storage.googleapis.com/kubernetesrelease/release/v1.9.0/bin/linux/amd64/kubectl

Permissions for kubectl:

chmod +x ./kubectl

Relocating kubectl binary:

sudo mv ./kubectl /usr/local/bin/kubectl

Autocomplete commands:

 echo "source <(kubectl completion bash)" >> ~/.bashrc

48

INSTALLING KOMPOSE APPENDIX 4

Download the binary via Curl:

curl -L https://github.com/kubernetes/kompose/releases/download/v1.7.0/kompose-linux-

amd64 -o kompose

Change permissions so it can be executed:

chmod +x kompose

Move the file to a different location, can be changed to a different one:

sudo mv ./kompose /usr/local/bin/kompose

49

INSTALLING NGINX APPENDIX 5

Installing Nginx for Ubuntu 16.04:

sudo apt-get update

sudo apt-get install nginx

UFW Firewall configuration:

sudo ufw allow 'Nginx HTTPS'

sudo ufw allow 'Nginx HTTP'

sudo ufw allow ‘OpenSSH’

Enabling firewall:

sudo ufw enable

sudo service ufw start

50

INSTALLING BASIC AUTH APPENDIX 6

sudo apt-get install apache2-utils

sudo htpasswd -c /etc/nginx/.htpasswd jerry

Add filepath to reverse proxy configuration:

auth_basic_user_file /etc/nginx/.htpasswd;

51

DOCKER-COMPOSE.YML APPENDIX 7

