
Ossi Paldanius

Reference Cryptographic Accelerator

Implementing AES Algorithm on an FPGA

Helsinki Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

27 May 2018



Abstract

Author(s)
Title

Number of Pages
Date

Ossi Paldanius
Reference Cryptographic Accelerator

54 pages
27 May 2018

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s) Ville Jääskeläinen, Head of Programme, Master’s program in
Information Technology

Securing data in the evermore networked world of today, is a profound necessity that is
embraced by a corporate world as well as an increasing awareness of the internet user
base. One of the many important mechanisms of securing data is encrypting the data
traffic traversing via public networks, which is a core concept behind this thesis. As the
amounts of data transmitted through unsecured or public networks increase rapidly all
the time, a demand for a low power consuming, yet highly efficient hardware acceleration
solutions for encryption and decryption processes grow higher.

Whenever an encryption is involved in a product, designers need to address issues
regarding securing the secret components that are involved in the ciphering process,
such as the encryption keys. When introducing a hardware acceleration, the overall
device design gets more complex. A careful planning and design trade-offs are to be
made to get the security right in a cost effective manner.

For this thesis, a simple FPGA - based hardware accelerator device was built which can
be placed between public and private networks. The device encrypts all data sent from a
private to a public network and decrypts incoming data from a public to a private network.
The key aspects of the design were, that the cryptographic acceleration is performed by
a separate FPGA logic circuit, and that there is no possibility to breach the device from a
public network side such, that e.g. encryption keys and other sensitive information would
be compromised. Beyond describing the implemented device, this thesis discusses the
difference between the device and real world products, and sheds some light into the
problems that are present when designing them.

The hardware acceleration for designs using FPGAs, can be highly effective for increas-
ing the computational performance of the cryptographic algorithms, if the algorithm used
supports concurrency. The data transmission between different nodes in the system has
to be carefully designed and implemented to be able to provide the increased throughput
requirement. Also when a separate cryptographic accelerator nodes are added to the
design, the security can be increased if properly designed.

Keywords AES, FPGA, Cryptography



Contents

1 Introduction 1

2 Material and Methods 3

2.1 Requirements 3

2.2 Design Process 4

2.3 Evaluation 6

3 Background on Used Technologies 7

3.1 Foreword on Cryptography 7

3.2 Field Programmable Gate Array 8

3.3 Hardware-based Cryptographic Acceleration 10

3.3.1 Implementation methods 10

3.3.2 Hardware acceleration security 11

3.3.3 FPGA vs. ASIC 11

3.3.4 FPGA vs. Software Implementation 12

3.4 Advanced Encryption Standard 13

3.4.1 General view 13

3.4.2 Cipher 14

3.4.3 Inverse Cipher 19

3.4.4 Key Expansion 22

3.4.5 Mode of Operation: Cipher-block Chaining - CBC 24

4 Implemented Reference Device 26



4.1 Hardware Components 26

4.1.1 Selection Process 26

4.1.2 Raspberry Pi 27

4.1.3 DE0-Nano 28

4.2 Device Operation 28

4.3 FPGA design 31

4.3.1 Overview 31

4.3.2 Configuration 32

4.3.3 Data Path 33

4.3.4 AES Cipher Algorithm 34

4.3.5 AES Decipher Algorithm 37

4.3.6 Key Generator 38

4.3.7 Mode of Operation: CBC 40

4.4 Linux Software Architecture 42

4.5 Development Environment 42

4.5.1 Tools 42

4.5.2 Development & Testing 43

5 Results and Analysis 46

5.1 Implementation Status 46

5.2 Performance Analysis 47

5.2.1 AES+CBC FPGA Implementation 47

5.2.2 User Data Transmission 47

5.2.3 Linux Software Modules 48

5.3 Deviation to Real World Products 48

5.4 Improvement Ideas 51

5.5 Few Words on the Development Process 51

6 Conclusions and Summary 53

References



Abbreviations

AES Advanced Encryption Standard.
ASIC Application Specific Integrated Circuits.

CBC Cipher Block Chaining.
CLB Configurable Logic Blocks.
CLI Command-line Interface.
CPU Central Processing Unit.

DSP Digital Signal Processor.

ECB Electronic Code Book.

FPGA Field Programmable Gate Array.

GPGPU General-purpose Computing on Graphics Processing Units.
GPIO General Purpose Input/Output.

HDL Hardware Description Language.
HSM Hardware Security Modules.
HW Hardware.

IRQ Interrupt Request.
IV Initialization Vector.

JTAG Joint Test Action Group.

LE Logic Elements.

MAC Multiply And Accumulate.

NIST National Institute of Standards and Technology.

OSS Open-source Software.

PC Personal Computer.
PLD Programmable Logic Devices.

RTL Register Transfer Level.

SBC Single Board Computer.
SPI Serial Peripheral Interface.
SSH Secure Shell.
SSL Secure Socket Layer.
SW Software.

TCP Transmission Control Protocol.

UART Universal Asynchronous Receiver/Transmitter.

VHDL Very high speed integrated circuit Hardware Description Language.
VPN Virtual Private Network.



1

1 Introduction

Cryptography can be described as study or practices to obfuscate information in such a

way, that original contents of the information cannot be understood by people or entities

who do not possess the means to decipher the information. It has been used since ancient

times to secure written messages between counterparts for example for military purposes

or to prevent otherwise sensitive information to fall on wrong hands [1] [2].

This day and age, computerization is involved in everything we do. As part of it cryp-

tography has become an integral part of our everyday life. Whether it is used to protect

company confidential information in our work laptops, or to keep our Google searches

out of sight of evermore prying eyes lurking on the Internet. Protection of our privacy and

intellectual properties are important but only a small part of applications computer based

cryptography is applied [3]. One could go as far as to say that all data that is not supposed

to be shared publicly, could be worthwhile to be encrypted. This is becoming reality as

computing power for any given task increases all the time, lowering the computational cost

of encrypting and decrypting user data. Furthermore, many integrated circuits, whether

in cell phones, data centers, or in highly specific devices house high-speed accelerator

blocks for providing powerful and transparent acceleration for wide variety of computing

tasks. This is also true for cryptographic applications.

This thesis describes the implementation of a reference cryptography accelerator using

Advanced Encryption Standard (AES) [4], which has very wide adoption at the time of

writing. Aim is to provide essentials of a practical approach to implementing AES encryp-

tion and decryption algorithms on a Field Programmable Gate Array (FPGA). Important

feature is also the ability to enhance and to develop further the design provided during

the work of this thesis. To support this requirement, two low cost Linux computer units

were used to interface the FPGA on a development board, to provide network access and

configuration interface.

Thesis is provided for a case company, which requires a functional reference device with

mentioned characteristics for internal study of hardware accelerated cyprographic de-



2

vice, especially FPGA based one. In addition to the device, Study is done on how to

implement FGPA based cryptographic accelerator in an efficient manner and with tight

security. Some of the findings are implemented in the device design, and some more are

discussed in pages of this document. As the field of cryptography and hardware accel-

eration is wide, this thesis concentrates on a Virtual Private Network (VPN) like network

appliance. In other words a gateway device, which may be placed between public and

private network, encrypting all data send to public network. To be even more precise, only

algorithm performance, data transmission and intrusion prevention topics are discussed

in this thesis.

Following documentation is divided between following chapters. Material and Methods

explains device requierements in more detail, as well as how design, implementation and

study process is done as a whole. Evaluation criteria for the thesis is also discussed.

Background on Used Technologies chapter takes a look into cryptography and its hard-

ware accelereation. AES is explained in simplified manner, to ease understanding device

implementation and result evaluation in further chapters. Implemented Reference Device

chapter goes into details of the implemented device, its hardware components, overall

operation, FPGA design and Linux software architecture. Used development environ-

ment is also briefly visited. Results and Analysis explores the implemented device from

the requirements point of view, and discusses security and performance related topics

for FPGA based cryptographic accelerator design. Conclusion and Summary is a brief

overlook and wrap up on topics mostly discussed in Results and Analysis chapter.



3

2 Material and Methods

This section aims to provide basic look on some of the concepts used as well as introduc-

ing requirements for the work. Also used tools and methods are looked into, as well as

evaluation criteria.

2.1 Requirements

Original requirement for this thesis is to provide a working, proven reference logic design

on an FPGA of a cryptographic algorithm. In addition to that, it is important to open up

some of the design topics that concern cryptographic design on a hardware. Like men-

tioned AES was chosen to be the implemented algorithm due to it’s wide usage in the

industry. Testability and adaptability were also important factors, so an actual device is

needed to be put together. Device needs to have network connectivity so that it can op-

erate autonomously between networks very much like a simplified VPN gateway. Device

will have two network interfaces, one towards private or secure network where data can

be handled in unencrypted form, and the other towards for example public network to/from

data must be handled encrypted. It is important that there is no access to FPGA design

internals, such as the key used for encryption/decryption from the public network side. It

should not be possible to access the private network even if access to the device is com-

promised from the public network side. AES Key management and other configuration

should be able to be handled from the trusted side. For AES, 256-bit key size is to be

used (explained in detail in section 3.4).

Network interfaces are requested to be handled by Linux computer units for simple us-

ability and expandability in future.

Cost of this entire project is to be kept to a minimum. This does not only concern the device

itself to be put together, but also all the tools used for the development work have to be

cheap or no-cost as well. It is far simpler to continue experimenting with the reference

device if the equipment used is readily available and does not require major investment



4

Figure 1: Overall view of the device requirements

of either developer time, Hardware (HW) resources or Software (SW) licenses.

2.2 Design Process

Requirements for the project were rather clear from the beginning. This made it easy to

define the work ahead, and they can be divided roughly into following categories.

Study of AES and Relevant Cryptographic Topics

Quite obvious first step is to invest time on studying the actual algorithm and cryptog-

raphy in general. It was important to scout for e.g. other possible implementations of

AES on FPGA:s. That study was important step before selecting FPGA hardware, for

which the project were be developed. Besides just AES algorithm itself, other security

related requirements or concerns were in play as well. Thus it was important to gain more

understanding about those topics.

Hardware Selection & Overall Device Design

After real requirements for AES implementation were better understood from the FPGA

point of view, selection of HW components could be done. Core of the design were an

FPGA development kit for sure, with possible additional circuit boards to support network

access and configuration. This was the stage where overall design was locked in place

as well. Key elements of interfaces between FPGA and Central Processing Unit (CPU)



5

running Linux were to be defined.

Tools Selection

Choice of design and testing tools are not exactly separate from the actual HW selection

process. In fact, it was quite crucial that design tools are easily taken into use and provide

ways to rapidly ramp up development process. As the actual demands for components

used for the device were not that specific, Tools availability did dictate choice of HW to a

large extent. Open-source Software (OSS) solutions were favored if at all feasible.

Algorithm Implementation and Testing in Simulator

After previous steps had been completed to a point where the project was quite well de-

fined, actual implementation work could commence. This work stage were separated be-

tween implementation and testing while using a simulation SW, and testing in real FPGA.

Development and simulation was done as a SW development task entirely in a Personal

Computer (PC) environment using Hardware Description Language (HDL) to describe the

algorithm logic.

Adapting Design to Hardware

Once tested in simulation environment, AES HDL design were synthesized to a real FPGA

and tested. At this point Linux CPU interfaces need to be taken into use as FPGA must be

fed with test data, and results needed to be extracted as well. In this phase interfacing all

components of the device were to be addressed, and some form of configuration interface

needed to be implemented too.

Linux Software Implementation and Testing

Last development phase was writing software for Linux environment. That SW would

make configuration and control of the device possible, and it would feed the data to the

encryption FPGA.



6

2.3 Evaluation

First obvious evaluation criteria for this project is whether the device works as intended

or not. If the device fails to operate, none of the design work learning or produced source

codes matter. However, as a reference device, implementation itself is of even more im-

portance than the absolute functionality. Thus once working, all the source code written

especially for the FPGA is of interest and must be clearly implemented and properly docu-

mented. Design choices will be clarified in this document, and some effort is put to reflect

those choices to cryptographic HW designs in real life products.



7

3 Background on Used Technologies

This Chapter aims to open up key areas of interest of this thesis for the reader. These in-

clude brief overlook into cryptography, FPGA technology, cryptographic HW design and

AES cryptosystem itself. There are other technologically relevant parts like Linux ap-

plication and network programming among others. They are required part of fulfilling the

requirements for the produced device, but are not the main focus. Those topics are there-

fore not discussed here and are only briefly touched in chapter 4.

3.1 Foreword on Cryptography

Cryptography is a very large and complex topic, and it is discussed mostly from AES

perspective in section 3.4. This chapter just describes what encryption and decryption

mean for this particular thesis so that requirements of it can be understood better. From

now on, cryptography is only discussed in digital, or computerized context.

Encryption and Decryption in digital Cryptography

Encryption process is basically converting plaintext data to ciphertext, by applying a math-

ematical algorithm that obfuscates the ordinary, readable plaintext information into seem-

ingly unreadable ciphertext. When that process is reversed to convert ciphertext into

plaintext, it is called decryption. To make the encrypted ciphertext difficult to decrypt for

unwanted parties, proper algorithms (such as AES) use specific secret key in the cipher-

ing process. So to decrypt ciphertext, both the key and used algorithm is needed to be

known [5].

Symmetric Key vs. Public Key Algorithm

Symmetric key algorithm is an algorithm that uses the same key for both encryption and

decryption. AES is a symmetric key algorithm. Positive aspect of this is the simplicity,

since only one key is needed to be used. Downside is the security problem, since all



8

trusted parties need to know the same secret key in order to decipher the ciphertext. Also

it is clear that symmetric key approach is not feasible when there are e.g. multiple clients

and one server instance, which are not allowed to access other clients’ data. As then

it would be necessary to have multiple key pair combinations for each client. This also

poses a key management and negotiation problem.

Public key (or asymmetric key) algorithm on the other hand requires a key pair. One public

and one secret. Both are generated by the same party, and they are related to each other.

Public key is used for encryption and private (secret) is used for decryption. In this way

it is possible to distribute the public key to anyone who would want to encrypt data for

only the holder of the private key to be able to decipher [5]. Public/private key concept is

used today in many applications like digital signing, securing web traffic via Secure Socket

Layer (SSL) [6], and many more. Public/private key technology can be also used to trade

symmetric keys like is done in many Virtual Private Network (VPN) solutions, thus solving

the key management and negotiation problem mentioned .

3.2 Field Programmable Gate Array

FPGAs are reprogrammable integrated digital logic circuits, which belong to Pro-

grammable Logic Devices (PLD) [7]. PLD is a digital circuit, which can be programmed in

target circuit board multiple times after manufacturing the board. Since the introduction

of FPGA technology in mid 80’s [8], FPGAs have gained wide adoption in different fields

of embedded computing, and is expected to grow in popularity as a market [9] [10].

Fundamentals

Basic building blocks of a traditional FPGA are I/O blocks, Configurable Logic Blocks

(CLB) and interconnects between them. CLBs containing logic elements or logic cells are

main building blocks which are configured, or programmed to perform logic operations

as required by the design. I/O blocks are attached to I/O pads of the chip which connect

to external circuitry.

As simplified illustration of FPGA internal structure show, CLBs can be arranged as an



9

Figure 2: Basic FPGA block diagram & logic element sketch [11]

array separated with interconnects. This is what ”Gate Array” stands for in FPGA. Modern

day FPGAs have other types of CLB placement schemes, where multiple CLBs are clus-

tered together for faster connectivity between them. These are utilized by design software

to produce more optimized designs.

Modern largest FPGAs can house several million Logic Elements (LE). In addition to that,

FPGAs of today often contain hard IP elements in addition to programmable logic. These

hard IP elements include fast I/O controllers like PCI Express controllers, Multiply And

Accumulate (MAC) accelerators for DSP solutions, external memory controllers and even

complete multiprocessor clusters. Hard IPs are built-in functionality which user cannot

alter like generic FPGA fabric, but may use to support own FPGA logic design. Larger

and more sophisticated FPGAs can be viewed as System On Chips or SoCs due to ever

increasing use of hard IP technology [12] [13].

FPGA internal logic is defined traditionally by first writing description of the logic with HDL,

such as Verilog or Very high speed integrated circuit Hardware Description Language

(VHDL). HDL source code is compiled and synthesized to a binary programming file called

bitstream, which is programmed to the target device by separate programmer integrated

circuits, a CPU connected to FPGA on same circuit board or via Joint Test Action Group

(JTAG) boundary scan connection. HDL compilation, synthesis and JTAG operations are

performed with vendor locked-in tools provided by FPGA manufacturers. Writing HDL

designs by hand is not the only method of describing logic in FPGAs, as vendors and

third parties offer soft IP cores and functions, a HW designers equivalent to software

libraries, which can be applied to FPGA without having the need to write them.



10

3.3 Hardware-based Cryptographic Acceleration

Executing cryptographic algorithms may gain significant performance boost when run on

dedicated accelerators, even when compared against DSP based implementations [14].

Other important reason for offloading cryptography onto hardware may be improved se-

curity. Hardware acceleration or offloading can be implemented in different ways, which

are briefly mentioned here. chapter 4 is more focused on the FPGA solution implemented

in this thesis and more detailed comparison to other FPGA based solutions are discussed

there.

3.3.1 Implementation methods

Cryptographic hardware acceleration can be done many ways, with different levels of

security, feasibility for the application design and performance profile. These include:

• host processor instruction set extensions

• generic purpose HW accelerators

• on-die co-processor core

• separate cryptographic processor

• separate crytpomodule device.

Many general purpose CPU manufacturers offer built in extended instruction sets for

accelerating crypto algorithms, especially for AES, such as many x86 and ARM ven-

dors [15] [16] [17]. Extended instruction set offers improved performance for software

execution, but do not offer any added security. Usability of instruction set extension ap-

proach is thus limited to any environment where software solution is acceptable. Similar

security environment is applicable when generic purpose accelerators are used, such as

modern graphic cards. They offer massive gains in algorithm performance, especially

when parallel execution can be utilized to the fullest [18].

On-die co-processors are common in SoCs, or specific application processors. Common

usage for co-processor is a security co-processor which is responsible for security fea-



11

tures for the device itself. Example of such devices are device managers in high end

FPGAs, where they maintain e.g. security of the FPGA bitstream [19]. Separate crypto-

processors and cryptomodules are similar in the sense that they may connected to a client

device (such as a CPU) via separate bus or link. One major example of separate cryp-

tomodule or cryptoprocessor use is Hardware Security Modules (HSM) [20], which may

be used in for example secure key management and securing other important assets of

the product that are needed to be kept out of hands of the application in case of being

compromised [21]. General-purpose Computing on Graphics Processing Units (GPGPU)

technology is also feasible platform for hardware acceleration. GPUs offer vast amount

of computational resources if solution can be parallelized efficiently, which is the case for

many cryptographic applications [22].

3.3.2 Hardware acceleration security

Like many other subsections in this thesis, this topic is too wide to be adequately dis-

cussed here. Since this topic has been important for the implementation of the device in

this thesis, it is briefly touched to aid in understanding the design.

If HW is used only to accelerate algorithm execution as is in case of instruction set ex-

tensions, added security is of no concern. Separate cryptocores, processors or modules,

may offer increased security if so designed. Key principle in separate cryptomodules can

be seen as a device which completely handles all cryptography related operations with-

out client application interference. That is, application simply uses security module as a

service. This way even erroneous, buggy or malicious software cannot access secrets

such as encryption keys that reside in cryptomodule. How this requirement is achieved,

is entirely based on given application. FIPS Pub 140-2 standard [23] defines levels of

security for cryptographic modules, as well as design guidelines which can be utilized.

3.3.3 FPGA vs. ASIC

As mentioned, FPGAs and other PLDs can be reprogrammed after manufacture. It means

their internal structure can be rewired to produce different logic circuit each time. Applica-

tion Specific Integrated Circuits (ASIC)s are integrated circuits manufactured once without



12

a possibility of reprogramming. FPGA and ASIC as technologies are often viable solutions

for same type of applications, but each technology has its own advantage over the other.

Main advantages of ASICs over FPGAs are cost per unit produced when manufactured in

high volumes, and more optimized chip design make higher performance possible. ASIC

has an advantage also when power consumption is considered. On the other hand, FP-

GAs are easier to develop and have shorter time to market. The most obvious benefit of

FPGAs is of course reprogrammability in target and on site (hence the term ”Field Pro-

grammable”). This makes design alterations and corrections possible after shipping the

product.

Thus FPGAs have been generally used in high end and low volume products in the past.

FPGA technology has improved over the years however, offering more capacity and re-

ducing power consumption. This has made it possible for the FPGA technology to not

only be used more in traditional ASIC domain, but also to gain foothold over applications

run on CPUs or Digital Signal Processor (DSP)s [7] [24] [25].

3.3.4 FPGA vs. Software Implementation

FPGAs excel in areas where custom I/O or a lot of parallelism is required, or simply when

product requires high level of custom logic integration. Also when design has really tight

real time requirements FPGA based solutions is often more feasible choice. Software

based solutions may be more easily portable between products. Development of soft-

ware based solutions may often be faster due to high availability of development & test-

ing environments. Embedded operating systems are readily available for practically all

processors sold with support from the manufacturers. Also many complex algorithms (i.e.

with lot of branching) are easier to develop with software. However, different processor

types such as DSPs enhance software algorithm performance in suitable scenarios. [26].

Because of the very different nature of using FPGA and purely software solutions, it has

been increasingly viable to deploy both methods. This has become more accessible since

SoC solutions are available throughout FPGA manufacturers’ product portfolios [12] [13].

SoCs with hard IP CPU cores are not necessarily needed though. FPGA chip manufac-

turers & third parties provide various soft IP CPUs which can be deployed to any FPGA



13

with enough capacity, offering decent solution for executing e.g. control code where high

clock speeds are not required. OpenCL language which is commonly used for GPGPU

programming, can also be applied to FPGA fabric directly [27]. Instead of using FPGA

as an accelerator controlled by separate CPUs or those inside a SoC, it is possible to

deploy Register Transfer Level (RTL) designs written in HDL alongside openCL instanti-

ations [27] [28].

3.4 Advanced Encryption Standard

AES is a complete crytposystem [5] standardized by U.S. National Institute of Standards

and Technology (NIST). It is sometimes referred to as Rijndael, the name which is de-

rived from original designers of the algorithm, Vincent Rijmen and Joan Daemen [29].

Reason for the duplicate naming is that NIST held a selection process for new Advanced

Encryption Standard, and slightly reduced version of Rijndael was selected [30].

AES is documented in its standards release [4], but a simplified walk-through is presented

here since it’s internals are important for understanding FPGA implementation described

in chapter 4.

3.4.1 General view

AES is a block cipher algorithm, for which the block size is set to 128 bits. This means

that algorithm encrypts or decrypts user data 128 bits (16 bytes) at a time. From algorithm

point of view those 16 bytes form a 4 by 4 matrix called the State. Like so:


b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15



AES cipher and decipher (decrypt) operations are divided into steps, or ’transformations’,

which all operate on a given State. All steps operate on a row of 4 bytes, on a column

of 4 bytes, or on single bytes during a single round of operation. AES supports key sizes



14

of 128, 192 and 256 bytes. It depends on key size how many rounds of operation are

subjected to each State.

Table 1: AES Key size to # of rounds

Key Size # of rounds
128 10
192 12
256 14

As requirement is to use 256-bit key size, 14 rounds are applied in the implementation

of this reference device. AES standard uses pseudo code functions to explain algorithm

routines, which are included in this chapter for convenience. In them several variables

are used, which are key length, block size and number of rounds to be applied. block size

and key length are presented in number of 4-byte words.

Table 2: Variables used in pseudo code blocks

Nk (Key Length) 8
Nb (Block Size) 4
(Nr (# of rounds) 14

3.4.2 Cipher

When State (16 bytes) of plain text data is encrypted, it goes through cipher algorithm.

It utilizes repeatedly independent transformation operations called SubBytes, ShiftRows,

MixColumns and AddRoundKey. Transformations are executed in # of rounds +1 times

(15 rounds for 256-bit key), of which first and last rounds differ from each other and the

core rounds in between, which for 256-bit key are run 13 times.



15

Figure 3: Cipher Transformations during rounds

First round takes the original plaintext state as input, but further rounds each take the

output of the previous round as the input data. Logically each transformation function

uses output of the previous transformation function as its input. Following subsections

discuss transformations in more detail. Cipher algorithm is presented in pseudo code in

AES standard, shown in Listing Listing 1, from which Figure 3 is derived from.

1 Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
2 begin
3 byte state[4,Nb]
4 state = in
5 AddRoundKey(state, w[0, Nb-1])
6 for round = 1 step 1 to Nr–1
7 SubBytes(state)
8 ShiftRows(state)
9 MixColumns(state)

10 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
11 end for
12 SubBytes(state)
13 ShiftRows(state)
14 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
15 out = state
16 end

Listing 1: Pseudo Code for Cipher as in AES Standard



16

SubBytes() Transformation

In SubBytes, each byte of the input State is substituted by a corresponding byte in static 16

by 16 byte matrix table called S-Box, which contains 16*16=256 predefined bytes. S-Box

contents is defined in AES standard [4]. Substitution selection works by using 1st half of

input byte as row indicator and 2nd half of input byte as column indicator for selecting byte

from the S-Box table, which will replace the byte in the input State. Below is an example

illustrating SubBytes transformation.

Figure 4: SubBytes() operation [31]

Mathematical background explaining how table entries are derived is explained in Sub-

Bytes chapter 5.1.1 in [4]

ShiftRows() Transformation

ShiftRows rotates bytes to left in 2nd, 3rd and 4th row of the input State by one, two and

three bytes respectively.

Figure 5: ShiftRows() operation [32]

MixColumns() Transformation

Mathematically, MixColumns is the most involved operation of AES cipher. MixColumns

operate on each of the four columns in input State separately, to produce new column to

output.



17

H

Figure 6: MixColumns() operation [33]

All four bytes in the column are used as operands to calculate contents of the out-

put column, and are treated as four term polynomial as described in chapter 4.3 of

the AES specification. The columns are considered as polynomials over finite field (or

Galois Field) GF (28) and multiplied modulo x4+1 with a fixed polynomial a(x), defined as:

(x) = 03x3 + 01x2 + 01x+ 02 (1)

As the specification describes, it can be seen as matrix multiplication where all bytes in

the column bi (input) are replaced by bo (output):


bi,0

bi,1

bi,2

bi,3




02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 =


bo,0

 bo,1

bo,2

bo,3

 (2)

Which yields according to AES specification:



18

(02 • bi,0)⊕ (03 • bi,1)⊕ bi,2 ⊕ bi,3 = bo,0

bi,0 ⊕ (02 • bi,1)⊕ (03 • bi,2)⊕ bi,3 = bo,1

bi,0 ⊕ bi,1 ⊕ (02 • bi,2)⊕ (03 • bi,3) = bo,2

(03 • bi,0)⊕ bi,1 ⊕ bi,2 ⊕ (02 • bi,3) = bo,3 (3)

Here ⊕ denotes logical exclusive OR operation and • denotes multiplication in GF (28) [4].

In short, the specification explains that in byte level, multiplying byte with a constant

x = 02, can be implemented as a left shift and bitwise exclusive OR with 1b. Specification

uses xtime() to denote this operation:

bi,x • 02 = xtime(bi,x) (4)

It also states that multiplying bytes by higher powers (of two) of x are implemented by

repeating the xtime() procedure, and that any constant can be used in multiplication

by adding the intermediate results. As addition in GF (28) is handled by exclusive OR

operation, multiplication with constant 03 becomes:

bi,x • (01⊕ 02) = bi,x ⊕ xtime(bi,x) (5)

To summarize, even as MixColumns() is more computationally demanding transformation

than the other ones used for cipher, it still boils down to a series of bitwise shift left and

XOR operations on bytes in each four columns.

AddRoundKey() Transformation

In AddRoundKey, corresponding round key from the Key Schedule is added to the input

State. Round key generation is touched in subsection 3.4.4 As Key Schedule can be

interpreted as size 15 array of 4-byte words, key to apply each round is indexed starting

from the beginning. Transformation is done by bitwise exclusive ORing each column in

input State with corresponding 4-byte word in round key. Or to be precise, corresponding



19

bytes between those.

Figure 7: AddRoundKey() operation [34]

3.4.3 Inverse Cipher

When encrypted ciphertext is being decrypted, it is run through inverse cipher algorithm.

Process itself is very similar than cipher, but with several changes. SubBytes, Mix-

Columns and Shiftrows transformations have inverse equivalents. AddRoundKey does

not, since it is basically a XOR operation. As AES is a symmetric key algorithm, same key

will be used for inverse cipher, and same Key Schedule as well. Just that when traversing

through the rounds, round keys are applied in reverse order compared to cipher.



20

Figure 8: Inverse Cipher Transformations during rounds

Pseudo code for Inverse Cipher from the standard is in Listing Listing 2.

1 InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
2 begin
3 byte state[4,Nb]
4 state = in
5 AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
6 for round = Nr-1 step -1 downto 1
7 InvShiftRows(state)
8 InvSubBytes(state)
9 AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

10 InvMixColumns(state)
11 end for
12 InvShiftRows(state)
13 InvSubBytes(state)
14 AddRoundKey(state, w[0, Nb-1])
15 out = state
16 end

Listing 2: Pseudo Code for Inverse Cipher as in AES Standard

InvShiftRows() Transformation



21

InvShiftRows is similar to ShiftRows, but instead of rotating rows to the left, they are

rotated to the right.

InvSubBytes() Transformation

InvSubBytes is exactly the same operation as SubBytes, but with a different 16 by 16

bytes static matrix called Inverse S-Box. Static values in Inverse S-Box are designed

such, that when SubBytes output is used as an input to InvSubBytes, original input to

SubBytes is returned.

InvMixcolumns() Transformation

InvMixColumns() is very similar to MixColumns() transformation, but to produce the in-

verse, different fixed polynomial is used:

ai(x) = 0bx3 + 0dx2 + 09x+ 0e (6)

Now that turns out as as matrix multiplication where all bytes in the column bi (input) are

replaced by bo (output):


bi,0

bi,1

bi,2

bi,3




0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

 =


bo,0

 bo,1

bo,2

bo,3

 (7)

Which yields according to AES specification:



22

(0e • bi,0)⊕ (0b • bi,1)⊕ (0d • bi,2)⊕ (09 • bi,3)

(09 • bi,0)⊕ (0e • bi,1)⊕ (0b • bi,2)⊕ (0d • bi,3)

(0d • bi,0)⊕ (09 • bi,1)⊕ (0e • bi,2)⊕ (0b • bi,3)

(0b • bi,0)⊕ (0d • bi,1)⊕ (09 • bi,2)⊕ (0e • bi,3) (8)

So in InvMixColumns() higher powers of multiplicands are used than in MixColumns().

This leads to more computationally demanding procedure with more xtime() operations.

For example when input byte bi,x is multiplied by 0e we see the operation becomes:

bi,x • (02) = xtime(bx,1) = xt2

bi,x • (04) = xtime(xt2) = xt4

bi,x • (08) = xtime(xt4) = xt8

thus,

bi,x • (0e) = xt8 ⊕ xt4 ⊕ xt2 (9)

Same logic applies when multiplied by 09, 0b and 0d. Not only does multiplications need

more xtime() operations as coefficients are of higher power, but now each member of the

column polynomial have to be multiplied with with a higher power coefficient. That is,

compared to MixColumns() transformation. This has implications for logic design as is

explained in subsection 4.3.5.

3.4.4 Key Expansion

Given 256-bit key is first needed to be expanded to a set of 128-bit round keys called Key

Schedule. Each round key in key schedule are interpreted as four 4-byte words. The

amount of round keys equal to number of rounds +1. This process in AES is called Key

Expansion. Each of the round keys in key schedule are used by cipher and inverse cipher

states during different rounds of operation. Key Expansion implementation is described

in detail in chapter 5.2 in [4], but here it is described in a bit more simplified manner.



23

Key Expansion is, like cipher and inverse cipher, illustrated as a pseudo code function in

AES standard.

1 KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
2 begin
3 word temp
4 i = 0
5 while (i < Nk)
6 w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])
7 i = i+1
8 end while
9 i = Nk

10 while (i < Nb * (Nr+1))
11 temp = w[i-1]
12 if (i mod Nk = 0)
13 temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
14 else if (Nk > 6 and i mod Nk = 4)
15 temp = SubWord(temp)
16 end if
17 w[i] = w[i-Nk] xor temp
18 i = i + 1
19 end while
20 end

Listing 3: Pseudo Code for Key Expansion as in AES Standard

When using 256-bit key, standard defines Nk, Nb and Nr to be as shown in Table

2. Pseudo code uses two functions, RotWord() and SubWord(). RotWord() performs

cyclic permutation on the input, producing output as [a0, a1, a2, a3] to [a1, a2, a3, a0].

SubWord() substitutes each of the four bytes with S −Box() used by cipher as well (see

Subbytes in subsection 3.4.2). Rcon[] is a 256-byte array which contents are calculated

as described in the standard. It can be precalculated and hard coded for the execution

of the algorithm to simplify implementation. For 256-bit Key Schedule only Rcon[] index

values 1 to 7 are used.

For 256-bit AES KeyExpansion has one 256-bit input argument key, presented as 32-byte

array in the pseudocode, which is the original 256-bit AES key. It has one 1920-bit output

argument, presented as an array of 60 words (4*byte). In first phase, original input key is

copied to in the beginning of the output data array. It will be used as such for first round

key for cipher. During second phase, KeyExpansion uses previous word in the output

array (starting from the last in the original key), and performs operations on it, adding it to

the output array once done. Simply put, second phase performs exclusive OR operation



24

between previous word in the current output array, and the word located 8 indexes before

that, for each word it creates. In addition to that, every 4th word is manipulated before

that. For every 8th word (starting from the 1st index after original key), bytes in the word

are shifted by RotWord, replaced by SubWord, and exclusive ORred with incrementing

word from the precalculated Rcon table. For Every 8th word (starting from the 4th index

after original key), bytes int the word are substituted by SubWord. Second phase is run

52 times in total filling the output array, which then consists 1920/128 = 15 round keys.

3.4.5 Mode of Operation: Cipher-block Chaining - CBC

As AES is a block cipher, it encrypts or decrypts data in blocks. When the amount of

data to be encrypted or decrypted exceeds block size of the cipher, most simple solution

is to divide data to 16-byte blocks and process each separately [5]. This is the most

basic mode of operation for block cipher and is called Electronic Code Book (ECB). Since

ECB mode not very secure, other modes of operation have been developed, varying in

complexity and security. National Institute of Standards and Technology has released

recommendations and explanations of several of them [35]. Out of the many available,

Cipher Block Chaining (CBC) was selected early on for this project as it is rather simple

to implement, but does offer improved security over ECB mode. CBC works, as the name

implies, by chaining subsequent processed blocks in such a way, that input of the next

state is dependent of the output of the previous one.

Figure 9: Cipher Block Chaining mode of operation: Encrypt [36]

In encryption, first plaintext 16-byte state is first XORred with a 16-byte data block called

Initialization Vector (IV), before it is encrypted with AES. Every subsequent 16-byte plain-

text state is in turn XORred with previously encrypted ciphertext 16-byte state. See Fig-

ure 9.



25

Figure 10: Cipher Block Chaining mode of operation: Decrypt [37]

When data is decrypted, it must be processed in same block order as it was encrypted.

After first 16-byte ciphertext state is decrypted, its output is XORred with same IV as

was used in encryption. This works since exclusive OR operation is its own inverse. In

ciphertext, every following decrypted plaintext 16-byte state is XORred with ciphertext of

the previous 16-byte state, and thus CBC process is reversed. Decryption is illustrated in

Figure 10.

Counter mode (CTR) of operation was also considered, mainly for its appealing ability to

allow ciphering and deciphering of 16-byte blocks in parallel. CBC was selected for this

thesis due to simpler implementation.



26

4 Implemented Reference Device

This chapter describes the device implemented for this thesis. The hardware components

and software design is explained, as well as choices that were made during selection

process.

4.1 Hardware Components

Even though a HW acceleratior is designed, this thesis can be seen as a software project.

There would be enough effort to get everything done without having to work on any specific

hardware, so efforts put on HW were to keep as small as possible.

4.1.1 Selection Process

Requirement demands that FPGA is able to house AES encrypt and decrypt data paths,

and that both plaintext and ciphertext domains have a network access and are operated

under Linux operating system. Evaluation of commercial, off-the-shelf products was con-

ducted in the beginning of the project, to be able to build a device that would satisfy those

requirements. Selection was based on these key principles:

• suitability

• availability

• price

• availability of development tools

• ease of use.

List above is only roughly in order, since all of them needed to be fulfilled. Suitability

study was begun by first studying available documented AES implementations on FPGA,

and estimating the FPGA circuit that was sufficient for the device. It was soon clear that

fairly small FPGA would be capable enough, so that left many development boards and



27

FPGAs available for the project, which would fit the budget and were readily available

from multiple vendors. It was important that development tools were available without

much of a licensing cost or hassle, and are professional enough for the all development

tasks regardless. Ease of use was an overall view on how much effort it would take to

take any product into use and tailor all tools to satisfy the needs of developing this device.

The selected target was to have as open source friendly environment as possible, but

without sacrificing any of the above mentioned key principles. It became evident very

soon that open source design or synthesis tools were not available for FPGAs on sale, if

not considering some projects on select devices based on reverse engineered bitstreams

built with official tools. Therefore selection for the FPGA was biased on behalf of devices

made by Altera, for two major reasons. Author had experience working with several Altera

FPGA products in the past, so there was familiarity with the development tools, making

for a rapid ramp up in starting of the development. Also Terasic corporation had a small,

affordable and yet highly suitable development board on the market called DE0-Nano [38],

based on Altera Cyclone® IV [39] FPGA device.

After selecting the FPGA dev board which did not have any CPUs or network interfaces

in it, separate Linux computer unit was needed. Raspberry Pi [40] is a very popular ARM

based Single Board Computer (SBC), which filled the requirements. It has wide user

base and is simple to take into use for rapid development and prototyping, yet capable

of running full Linux operating system. There was however, a clear requirement that on

ciphertext domain, FPGA internals must be decoupled from the Linux operating system

in that domain. This requirement was tackled with adding second raspberry PI for the

ciphertext side.

4.1.2 Raspberry Pi

Raspberry Pi is a credit card size development board produced by Raspberry Pi foun-

dation. At the time of implementing the device, Raspberry Pi 3 model B was the current

model, which was used for this project. It is based on 4 core 64-bit Broadcomm BCM2837

SoC, which runs at 1,4 GHz clock frequency. Processor itself is easily powerful enough

for the purpose of this device. Raspberry Pi 3 has multiple interfacing options, but for



28

this project 40-pin IO header was used for interfacing the DE0-Nano FPGA board, and

Ethernet interface for network connectivity.

4.1.3 DE0-Nano

The DE0-Nano is a FPGA development board slightly smaller than the Raspberry Pi. It

is based on Cyclone IV EP4CE22 FPGA which contains 22000 logic elements. DE0-

Nano has two 40-pin expansion headers with 72 of EP4CE22s I/O pins available. Apart

from generic I/O, DE0-Nano has 8 LEDs, 4-position DIP-switch, 2 push buttons, 3-axis

accelerometer, A/D converter, 32MB of SDRAM memory, 2Kb I2C EEPROM, USB port for

powering the board & programming the FPGA, and EPCS64 serial configuration device.

External oscillator drives the FPGA clock inputs with 50 MHz clock signal. For this project

I/O headers were used to connect the Raspberry Pis, EPCS64 to house created FPGA

bitstream, USB for programming and debugging the design. FPGA is clocked by a 50

MHz oscillator.

4.2 Device Operation

Reference device consists of two Raspberry Pi’s and one DE0-Nano. Both Raspberry

Pi’s connect to network via Ethernet, one for plaintext domain, other to ciphertext do-

main. Ethernet connections are only means of using the device. DE0-Nano FPGA board

is placed in between the two Raspberry Pi’s, and is connected to them by 40-pin ribbon

cables. Only small number of pins are used for data transmission between the boards,

but ribbon cable was found to be much more reliable for high clock speed transmission

than single poor quality unshielded wires, so for simplicity the whole 40-pin cables were

used. Only wires connected to 5V power pins on the Raspberry Pi side were cut. Connec-

tions between Plaintext RPi and DE0-Nano are two separate Serial Peripheral Interface

(SPI) buses, I2C bus and Interrupt Request (IRQ), buffer status & reset signals. Buffer

status, IRQ and reset signals are implemented on the Raspberry PI side by using Gen-

eral Purpose Input/Output (GPIO) available on the Raspberry Pi. Connections between

Ciphertext RPi and DE0-Nano are the two SPI buses and IRQ & buffer status signals. SPI

buses are used for transferring user payload data to and from the FPGA, while I2C and

reset are used when configuring the FPGA on the DE0-Nano. Overall view of the device



29

is shown in Figure 11.

Figure 11: Block diagram of the device operation

For the sake of the device implemented for this thesis, actual separate Raspberry Pi and

DE0-Nano devices are not the focus. Rather, from the application operational point of

view the device can be seen as an FPGA between two CPUs running Linux OS, as they

could be located on a single circuit board as well. Therefore for the simplicity, in this

document Plaintext CPU, FPGA and Ciphertext CPU may be used in place of Plaintext

RPi, DE0-Nano, and Ciphertext RPi respectively. This results in slightly easier read read

in many situations. Detailed connections between CPUs and the FPGA are shown in

Figure 12

Encrypt Path

First step on the encryption path is a simple Linux user space software module running on

plaintext CPU. It acts as a Transmission Control Protocol (TCP) server, and simply waits

for incoming TCP packets over the Ethernet interface. Once packets arrive it checks

whether input buffers on the FPGA have enough room for new data, by inspecting buffer

status GPIO signal. When enough data is available software initiates SPI transfer of 64

bytes containing four AES States worth of data to the FPGA input buffer. AES Encryption

algorithm inside FPGA encrypts those four states and places corresponding ciphertext



30

Figure 12: Connections between Raspberry Pi CPUs and the FPGA

result to the output buffers, and notifies ciphertext CPU by activating the IRQ. On the

ciphertext CPU, there is similar small Linux application doing the reverse than the one on

plaintext side. Once activated by the IRQ, it initiates SPI transfer reading that 64 bytes of

ciphertext data, and sends it via TCP connection over the Ethernet interface.

Decrypt Path

Decrypt path is in fact exactly the same as encrypt path, just in reverse direction. Soft-

ware modules on the CPUs are the same, as they do not interfere with the ciphering or

deciphering process in any way. Different physical SPI bus is used for encrypt and de-

crypt data paths on the Raspberry Pi. Software modules running on the Pi see them just

as SPI bus for sending, and SPI bus for receiving. They are mapped to be the same for

both boards. IRQ and buffer status GPIO signals are physically the same from RPi point

of view. This makes it possible to use same software modules for both Raspberry Pi’s.

Management

Device is managed by simply accessing both Raspberry Pi’s either locally (by con-

necting keyboard, mouse & monitor directly to Pi), via Universal Asynchronous Re-

ceiver/Transmitter (UART), or by connecting remotely e.g. via Secure Shell (SSH). All

software components are either started manually via Command-line Interface (CLI) or



31

scripted to be started up during Linux boot. No time was spent on lean user interface, as

it is not viable for the use case of the device.

Security Aspects of the Design

As a reference device not to be used in any real world application, actual security con-

cerns are non existent for the design. Still, as stated in section 2.1, there can be no access

from ciphertext side to any of the FPGA internals, such as encryption key used for AES.

In this design that is achieved by having physically separated interfaces for trusted (plain-

text), and untrusted (ciphertext) side. Encryption key is delivered to FPGA from trusted

side Raspberry Pi, with dedicated signals (I2C in this case). Only physical connection

between ciphertext Raspberry Pi and the FPGA, are the signals used for transferring pay-

load data to and from the FPGA. These signals cannot be used to hack, tamper or in

any way interfere with any of the cryptographic logic or relevant data, even if ciphertext

Raspberry Pi is compromised and being used maliciously. In worst case, incorrect data

can be sent to the FPGA for deciphering which would just end up being gibberish once

past the decrypt data path. If this device would be used in real environment, ciphertext

side Raspberry Pi should be hardened accordingly, and all maintenance should be done

by using UART or locally with keyboard and monitor setup, but not via same network in-

terface which is exposed untrusted domain. If software update or reconfiguration were

needed, another network interface could be introduced (i.e. USB Ethernet dongle) for the

SW update network access.

4.3 FPGA design

FPGA design is the core of this thesis project, and in this chapter it is described in detail.

After overview of the design, each block or section is explained. VHDL implementation of

the AES algorithm is also viewed in detail.

4.3.1 Overview

Logically FPGA design can be divided into four parts; Configuration, Key Generator, and

Encrypt & Decrypt data paths. as is shown in Figure 13. Configuration block is given the



32

initial Key, which is delivered for Key Generator to calculate the round keys. Along with the

Key, Initialization vector for CBC Block chaining is given. It also distributes external reset

signal across the logic. After Key Generator has calculated the round keys, Encrypt and

decrypt data paths can begin to process input data. Encrypt Data Path encrypts plaintext

input to ciphertext output, and Decrypt Data Path decrytps ciphertext input into plaintext

output. Both datapaths operate independently of each other. 50MHz core clock signal is

used to clock the design.

Figure 13: Block diagram of the FPGA design

4.3.2 Configuration

Configuration consists of I2C slave block, and the actual configuration control block on the

FPGA. After Plaintext RPi SW activates I2C BUS for writing, configuration control block

drives the FPGA into configuration mode. In this mode, data path pipelines are stalled

and do not process any data even if there would be some stored in FIFOs. Configuration

SW on the plaintext RPi sends CBC initialization vector and AES key over the I2C BUS,

being 48 bytes in total. After all data is received, Configuration control block stores both



33

IV and key to its output registers and asserts internal reset signal for two clock cycles.

Reset clears internal data buffers such as FIFOs and serial/parallel buffers, and resets

I2C and SPI states. When Reset is lifted, Key Generator is triggered to begin calculating

round keys.

In addition to receiving configuration data, Configuration control block also receives ex-

ternal reset asserted by Plaintext Raspberry Pi SW, via Pi’s GPIO pin.

4.3.3 Data Path

Block diagram in Figure 14 describes the data path in logical level. First block in the

Figure 14: Block diagram of the FPGA data path

pipeline is the SPI slave module, which receives input serial data bits which are sent

from the Raspberry Pi. If enough room is available, every received byte is send to State

Buffer In, in which one AES state (16 bytes) is stored. State Buffer In notifies SPI Slave in

when data has been read by asserting Data Read Ind strobe. State FIFO In in turn stores

several states worth of data for AES+CBC block to process. At the time of writing this

thesis report the amount of states stored in FIFO is 8, which is two times the CBC block

of 4 states. State FIFO In registers input state when State Buffer In asserts State Write

strobe signal.

If State Available Ind signal notifies availability of new state to be processed, AES+CBC

block begins to cipher or decipher the state by first issuing State Read strobe, which

notifies State FIFO In that state it had in output port is read. This is done reading the

initialization vector CBC IV from the config output port if this is the first state of CBC

block. If not, AES+CBC uses internal intermediate value instead of CV. This is described



34

in subsection 4.3.7. Key Expansion output port has precalculated round keys available

for AES block to use for calculating round operations.

Once AES+CBC block has processed one state of data, output state is stored in State

FIFO Out by asserting State Write strobe signal. If State FIFO Out holds at least one

state, it has State Available Ind signal active. State Buffer Out is a parallel to serial buffer

functioning as a reverse for State Buffer In. If it has empty internal parallel buffer and State

Available Ind from State FIFO Out, new state is read in by asserting State Read strobe,

after which it activates Data Available Ind signal and stores one byte to the 8 bit output

port. When receiving end Raspberry Pi issues a SPI read, SPI Slave Out reads the data

from State Buffer Out output port and notifies it by asserting Data Sent Ind strobe signal.

All SPI blocks in this FPGA design are SPI slaves. Therefore Raspberry Pi’s are always

initiating SPI transfers as they are SPI masters. Data path keeps both sending and re-

ceiving end Pi’s notified whether there is room to send data to FPGA or read from it. This

is done by FIFOs. State FIFO In and State FIFO Out keep Buffer Free Ind active as long

it has at least one CBC block worth of free buffer space available. On the output side,

State FIFO Out activates Data Ready Ind if it has at least one CBC block worth of data

available for reading. SPI transfer is always done by writing or reading one CBC block of

data at a time.

4.3.4 AES Cipher Algorithm

In this design, AES Encrypt block is fully responsible for ciphering the 16-byte State input

from CBC block. AES cipher is thoroughly explained in subsection 3.4.2. Simplified block

diagram of the AES cipher algorithm implementation on the FPGA is presented in Fig-

ure 15. When inspecting the actual RTL logic level output of the compilation result, one

can see that it is vastly more complex than this block diagram illustration pictures. This

level is enough to grasp the logic behind the implementation and to verify its performance.



35

Figure 15: Block diagram of AES cipher FPGA implementation

AES Encrypt has, in this simplified view, five different inputs.

• State In Valid signal

• Clock signal

• Keys Valid signal

• 16-byte input State to be ciphered

• Round Keys generated beforehand by KeyExpansion as 16-bytes key array.

It outputs the ciphered 16-byte output State, as well output validity strobe. AES Encrypt



36

operation is controlled by Finite State Machine (FSM) block, which keeps track of cipher

rounds, and transforms them to internal states, as shown in Table 3. FSM is clocked by

the same 50 MHz clock that the rest of the design. FSM begins clocking rounds when

’State Valid In’ signal assertion notifies of new data in ’State In’ port is valid. Requirement

for clocking rounds is that ’Keys Valid’ signal is asserted, which it is always after KeyEx-

pansion has created round keys after reset. FSM block routes the input clock through

to the SubBytes function block, and provides correct ’Round Key Index’ for AddRound-

Key so it is using correct key form ’Round Keys’. Once rounds are complete, it asserts

’State Valid Out’ signal to notify completion. Subbytes, MixColumns, AddRoundKey and

ShiftRows logic blocks implement the functions described in subsection 3.4.2. AES En-

crypt internal state is not to be confused with 16-byte State, a synonym for 16-byte data

block algorithm operates on.

Table 3: AES Encrypt FSM rounds to internal states

Internal state: AES round #:
0 -
1 1
2 2-14
3 -

Internal state is labeled as ’FSM State’ in Figure 15. Round Data block is in effect a simple

multiplexer, which selects which of the 16-byte input States it feeds to AddRoundKey

function block. Selection is done based on FSM internal state as shown in Table 4.

Table 4: Round Data multiplexer output selection

Internal state: Selected Round Data output:
0 State In
1 State In
2 output State from MixColumns
3 output State from ShiftRows

Key thing to note from Figure 15 is, that only FSM and MixColumns blocks are clocked.

That is because they are the only ones containing register logic. The rest of the blocks

are purely combinational designs. This leads to very efficient design, as during rounds 2-



37

14, all four transformation functions are passed during one clock cycle. SubBytes function

block comes as a natural place to have single round to wait to be clocked, as it use precal-

culated substitution box (S-Box) contents to substitute input bytes. These precalculated

contents reside in SRAM memory of the Cyclone IV FPGA, which can be accessed via

registered read.

Performance wise, 16 bytes pass through AES Encrypt block in 15 clock cycles. When

one clock is added from CBC operation, throughput is one 16-byte AES State in ciphered

in 16 clock cycles. 50 MHz core clock then yields 50 MB/s throughput for this AES design.

4.3.5 AES Decipher Algorithm

AES Decrypt block is equivalent to AES Encrypt block, but for deciphering ciphertext

input, and it is illustrated in Figure 16. AES Decrypt implements AES decipher algorithm

described in subsection 3.4.3.

FSM State machine is almost identical to the one used in AES Encrypt, except round

key indexes output to AddRoundKey as ’Round Key Index’ are reversed. Other clear

difference is, that instead of using only one multiplexer for selecting intermediate 16-byte

State to AddRoundKey, other one is needed to select State outputs for InvShiftRows from

between InvMixColumns and AddRoundKey. Truth tables for selecting RD Add Key input

is shown in Table 5, and for RD InvShift in Table 6.

Table 5: RD Add Key multiplexer selection

Internal state: Selected Round Data output:
0 State In
1 State In
2 output State from DecSubBytes
3 output State from DecSubBytes

Same performance logic applies as for AES Encrypt. InvSubBytes uses precalculated



38

Figure 16: Block diagram of AES decipher FPGA implementation

S-Box tables stored in SRAM, requiring registered read access. This clocks the design

same way as is done on the encrypt side.

4.3.6 Key Generator

Key Generator implements KeyExpansion routine described in subsection 3.4.4.

KeyExpansion in fact operates on bytes one word at a time. Each processed word needs

output of previous processed word as an input. When implemented in software, KeyEx-



39

Table 6: RD InvShift Key multiplexer selection

Internal state: Selected Round Data output:
0 AddRoundKey
1 AddRoundKey
2 output State from InvMixCol
3 output State from InvMixCol

pansion could be seen as running 52 rounds, with branches every 4th round (as is the

case in the pseudocode in the specification). In selected way to implement this on the

FPGA, one round can be seen as being 8 word operations long pipeline. In the pipeline,

Word 1 and word 5 get special treatments. For word 1, RotWord, SubWord, and Rcon

XOR operations are performed, and SubWord for word 5. For each word XOR operation

is applied as described in subsection 3.4.4. Each round generates 256 bytes of generated

key data to the output. The very first round would be to copy input 256-bit original key

to the generated keys array. Simplification of the KeyExpansion FPGA implementation is

illustrated in Figure 17.

As is the case with Cipher and Decipher designs, state machine controls the KeyExpan-

sion block execution. Once ’Key In Valid’ signal from configuration block is asserted,

meaning that configuration block has received new Keys, FSM state machine block starts

to clock the design. FSM states translate to 8 ’rounds’, of which first one is practically

used to copy the original key to the beginning of ’Generated Keys’ array. This is han-

dled by Write Port block, which is responsible for placing data output to ’Generated Keys’.

’Generated Keys’ array is naturally used for the input for Read Port Block as well which,

depending on the round or ’Internal State’, provides previous round data to all Word pro-

cessing blocks as shown in Figure 17. Write Port block stores Data output from the Word

processing blocks to the ’Generated Keys’ output array depending on the ’Internal State’.

Word blocks are all clocked and they perform tasks for their corresponding word of the

pipeline.



40

Figure 17: Block diagram of KeyExpansion FPGA implementation

4.3.7 Mode of Operation: CBC

CBC for encrypt was implemented in a straightforward way. In encrypt direction, every

fourth input plaintext state, beginning from the first, is XORred with IV available, and

read from config module. All the three plaintext states in between, are XORred with the

encrypted ciphertext output of the previous state. Operation is managed by simple module

between State FIFO In and AES encrypt module as illustrated in Figure 18.



41

Figure 18: CBC Encrypt block diagram

CBC for Decrypt was implemented in similar manner, except in reverse as described in

subsection 3.4.5, and illustrated in Figure 19.

Figure 19: CBC Decrypt block diagram



42

4.4 Linux Software Architecture

Four simple CLI applications are used for the device operation and are run as command

line commands:

• TCP to FPGA data transfer

• FPGA to TCP data transfer

• reset

• configuration.

First two are used by encrypt and decrypt data paths as described in section 4.2. Re-

set and configuration commands are used only on the plaintext Raspberry Pi. Reset

command issues reset for the FPGA circuitry by asserting corresponding GPIO signal.

Configuration command is used to deliver new AES key and CBC IV for the FPGA via

issuing an I2C transfer.

4.5 Development Environment

Development environment for the project was a basic Linux PC workstation set up. No

special equipment were needed since no own electronics or hardware were produced

during implementation. USB and Ethernet were enough to access all the circuit boards

which would en up being the target device, and they were powered by wall adapter power

supplies or USB ports. Requirement was to use open source software as much as possi-

ble, or at least tools that were licensed so that no extra cost would be introduced for the

project.

4.5.1 Tools

Development tools used to implement all the SW can be divided following areas:

• VHDL implementation & simulation

• FPGA synthesis & verification

• Linux SW development.



43

All VHDL code was first compiled in a Linux environment by using open source GHDL tool.

GHDL was also used to simulate AES algorithm implementation, including key expansion,

and CBC block cipher mode implementation during the development phase. Once simu-

lation proved accurate results, VHDL code was synthesized and programmed onto target

FPGA with Alteras Quartus Prime design software, which is a necessity when working

with Alteras FPGAs. Quartus Prime combines all the tools needed for the FPGA devel-

opment, even the ModelSim simulator, so the use of GHDL was an experiment whether it

was sufficient enough for the task at hand. It was, so Quartus Prime was used for produc-

ing the actual programming file for the target FPGA, and debugging with Signal Tap logic

analyzer. Signal Tap works by adding additional logic into the design when it is being built

with Quartus. This logic will store states of predefined signals triggered by certain events

determined by the user, and clocked by user selected clock signal. After programming

the FPGA, user can command Signal Tap to record signal states of those signals that

were needed for the debugging. These states are stored into internal SRAM memory of

the FPGA. Recorded data is then retrieved by Quartus for the user to verify. Availability

of Signal Tap for Quartus was essential for the development of the FPGA design. All the

serial/parallel data transmission & configuration related functionality was only tested in

target by using Signal Tap, since it was found to be too much effort for simulating it all

beforehand. Throughout the entire VHDL coding & debugging process GHDL was used

for 1st phase compilation test as it was very rapid to verify VHDL code correctness before

attempting synthesis with Quartus Prime.

All Linux SW was written in C programming language. As the software modules were

not too complex, no test environment or simulations of any kind were needed. Raspberry

Pi based modules were coded in Raspberry Pi Linux environment and tested run time.

Linux PC test software modules were written & tested run time as well. Software tools

used for developing Linux application modules were made by or at least originated from

GNU project.

4.5.2 Development & Testing

Development work was divided between following phases, roughly in order:

• implementation & simulation of AES encrypt VHDL code



44

• implementing simple data pass through for FPGA between DE0-Nano and Pi’s

• testing & Debugging AES encrypt implementation in FPGA

• implementation & simulation of AES Key Expansion VHDL code

• testing & Debugging AES Key Expansion in FPGA

• adding CBC Mode of Operation

• implementation & simulation of AES decrypt VHDL code

• testing & Debugging AES decrypt implementation in FPGA

• improvement of data transfer rate between DE0-Nano and Pi’s

• testing & Debugging AES both directions in FPGA

• Linux SW finalization.

Most important aspect of this thesis work was to implement AES in VHDL and successfully

deploy it to the selected FPGA platform, so from there the work begun. Implementing a

cryptographic algorithm like AES is challenging task as debugging is quite difficult, since

the process is designed to obfuscate the input data. It either works and produces the

expected result or it does not. In every step of the way, developer is dealing with nothing

but hex dumps of 16 bytes in size. To aid the developers, NIST included test vectors in the

AES specification, for which correct immediate values have been precalculated through

the encryption, decryption and key expansion process. That is, e,g. for encrypt, output

state of each transformation during each round is known without having to produce the

end result. These test vectors were used in writing automated test scripts using GHDL,

and this made possible to rapidly develop and verify VHDL implementation correctness.

After AES encryption produced correct results, Actual data pipeline was tested by imple-

menting SPI data transfer logic into the FPGA towards both Pi’s and data buffering in

between them. First phase test software was needed for the Pi’s, which would utilize the

SPI buses of the BCM2837 SoC to transfer data between DE0-Nano and the Pi’s. After

this phase it was clear that all the tools were in place and that reset of the project would

likely succeed as planned.

With AES encrypt VHDL code passing simulation and design which made data throughput

possible in place in FPGA, logical next step was to verify that AES encrypt VHDL imple-

mentation would work correctly run on the FPGA. It would need several modifications and

corrections before operating correctly in real device rather than in mere simulation, but all



45

the key tools were in place for the following steps to commence. Details of the difficulties

and successes are covered more in chapter 5.

FIPS has published a separate document containing multiple test vectors for simplify-

ing AES development called AESAVS [41]. It includes test vectors for several Modes of

Operation including CBC. These test vectors were used for verifying the algorithm imple-

mentation for both simulation and on hardware. Simple test programs were written for

Raspberry Pi’s which would send test vector data and on the other end receive it and

verify it. This was the cornerstone of lot of the testing done.

After enough stability were gained for the design, test programs that sent files through the

FPGA were also written. These SW modules would pad the data with some known data

pattern which would be removed in the receiving end. specific tool named openssl was

used to decrypt or encrypt files after or before to verify that the design would work against

the standard. It would not have been enough to test the device by sending a file through

encrypt data path and then decrypt data path, since there could be fundamental flaw in

the design that could affect both data paths nullifying the error in the end. However, in

the final phases of the testing this method was exactly what was used. Huge amounts

(hundreds of megabytes) of data were sent from either ciphertext or plaintext domain and

looped back from the adjacent domain to stress the device ensure stability. This was done

only after correctness of the algorithm was verified.



46

5 Results and Analysis

In this chapter finished product is analyzed in terms of performance, success compared

to original requirements and current status of the implementation is clarified. Comparison

between real world products and the reference device implemented here are also looked

into. Few words on the development process is provided.

5.1 Implementation Status

At the time of writing this thesis, device implementation is almost complete. One major

issue remains to be solved, and one feature is missing from the implementation. Issue to

be fixed is, the FPGA implementation is not properly constrained. In practice, this leads

to seldom random incorrectly decrypted states in the decipher pipeline. This is obviously

such a fatal problem that it needs to addressed before handing the device over to case

company. Luckily the root cause is known, and it is possible to be corrected. Far too long

combinational logic chains exist between registered flip-flops, especially in the decipher

pipeline. Mostly because more complex InvMixColumns() transformation as described in

subsection 4.3.5. This can be fixed by adding core clocked flip-flops in some of the logic

blocks that are now purely combinational.

The one completely missing feature is configuration interface from plaintext Raspberry

Pi to the FPGA, and actual configuration update functionality in the FPGA. In essence,

I2C interface is not yet implemented. This feature was deliberately left to be done last,

as it is least significant for the operation of the device. Currently CBC initialization vector

and AES key are hard coded into VHDL implementation. This feature will also be added

before handing the project over.

FPGA constraining and I2C configuration interface will be done after finishing this doc-

ument due to schedule problems. This work has taken much more time to finish than

originally intended, and separate deadlines for graduation and device completion force

the issue.



47

5.2 Performance Analysis

This device was never intended to be a highly performing one. Still, this section explains

design and implementation choices regarding the performance.

5.2.1 AES+CBC FPGA Implementation

As described in chapter 4, AES+CBC block is able to process one 16-byte data block,

or State, in 16 clock cycles. This is true for both encrypt and decrypt directions. This

provides 50 MB/s throughput with 50 MHz core clock, which is very satisfactory result.

Design is not without problems though. In its current state, clock frequency cannot be

increased, as the long combinational signal paths would not meet timing requirements

and design will fail to operate correctly. Selected operation mode, CBC, is secure and

is easy to implement, but does not support States to be encrypted in parallel. If more

throughput were needed from single data path, changes to the design are mandatory.

5.2.2 User Data Transmission

Data transmission in this context refers to the phases in cipher and decipher pipelines,

where Linux software module in sending Raspberry Pi unit sends data to the FPGA, up to

the point that data is accessible by CBC + AES crypto core inside FPGA. And again after

data leaves CBC + AES cryptocore and is received by the Linux software module in the

receiving Raspberry Pi unit. This consists of SPI data transfer initiated by BCM2837 SPI

subsystem, governed by Linux kernel, and parallel buffers & state FIFOs in FPGA design.

Data transmission is a bottle neck for the data throughput of this device, and was known

to be so from the point where used hardware components were selected. However, the

magnitude of the problem was not expected to be what it eventually became to be. As

stated, CBC+AES crypto core is able to process data at a rate of 50 MB/s per pipeline.

Still, due to data transmission issues, actual measured data throughput is around 160

KB/s in both directions. That is, CBC+AES core stands idle for 99.68% of the time. And

that result was achieved with test SW modules which send single hard coded data block as



48

fast as possible. When adding network interface handling to the mix, it gets worse. That

amount of overall inefficiency is largely due to better than expected algorithm performance

in FPGA, but still major blame goes to SPI usage. Stable data rate between these boards

and used parallel cables were measured to be 10 MHz maximum, that is, around 1 MB/S

in theory. Linux kernel driver is used to issue a DMA transfer which sends requested data

through SPI subsystem, and once on the wire, that 1 MB/s is achieved during that transfer.

However, arming the transfer from user space SW module takes a variable very long time

to actually start sending data. On the other hand, it also takes long time for SW module

to check the state of the I/O pin FPGA uses to signal internal buffer availability, and begin

issuing the transfer. Exact profiling study was not done since it was not of interest, but

overall data throughput shows that Raspberry Pi SW implementation is spending more

time not sending data than it is sending.

5.2.3 Linux Software Modules

All Linux software were written as user space SW modules. Also for reading the states

of the GPIO pins which FPGA uses to signal receiving Raspberry Pi application of the

available data. First draft implemented was using simple fast infinite loop for reading

the input pins and this stuck due to not having time to implement proper level triggered

IRQ mechanism in kernel space. Level triggered IRQ approach would be less resource

consuming overall, as one ARM core would not be spent entirely on looping the status

of GPIO pin. Current design is also plagued with uncertainty scheduling wise, since it

is not kernel which raises the IRQ. However, Linux is not a hard real time OS so there

is no way developer can guarantee a specific response time to an IRQ, even if properly

implemented in the kernel.

5.3 Deviation to Real World Products

Cryptographic HW accelerators do come in many shapes, forms and solve wide variety of

application problems. As this reference device is built mostly around the requirement of

the FPGA based algorithm implementation, it does not compare well to any actual devices

on the market. Closest reference would probably be a VPN gateway or so. Still, several

key concepts can be identified which have to be improved in real world devices compared



49

to the outcome of this thesis project.

One obvious difference between this device and official product would be usability and

configurability, which would need to be on a completely different level than they are in

this device. Wide variety of different configuration options would have to be in place from

cryptographic parameters, networking related configurations and the like. These topics

however, go so far beyond the scope of this thesis that they are not discussed further.

More relevant topics here are security and performance.

Any real world device should have to have much better overall performance to validate

its existence. Simply put, it should be able to encrypt and decrypt at native speed of the

network interface into which the data path is connected to. As discussed in section 5.2,

performance can roughly be divided between the actual throughput of the crypto core

itself, and circuitry feeding user data to it, that is, data transmission.

If any meaningful throughput is required, SPI or similar slow interfaces, especially via

generic GPIO headers through unshielded wiring can be forgotten. Data should be fed to

the FPGA either directly via Ethernet or other communication medium, or if sent from other

processing units like is the case in this reference device, via some high speed bus like

PCI Express or RapidIO. Naturally there needs to be accelerator subsystems in place in

all other devices on the bus, and either hard or soft IPs could be utilized in the FPGA side.

One important aspect would be to have FPGA have much larger data buffers before and

after the crypto core blocks, than what this reference design does. This is a necessity as

regardless of the selected transmission mechanism or bus, communicating and preparing

the data send will be the bottle neck in the data path pipeline.

While looking into crypto core itself, which in this device was the CBC+AES implemen-

tation, there are also several deviations expected to be found in real world applications.

When implemented in FPGA, rather than ASIC, concurrency is where the real perfor-

mance gains are to be made. In the most simplistic view, as in the example of a VPN

gateway, an FPGA could simply process multiple data paths simultaneously. Also algo-

rithm choices themselves play their part. Implemented reference device processes 50

MB/s per data path. For an Ethernet connected device, this would be sufficient for 100

megabit Fast Ethernet but not 1G or beyond. As simple clock speed increase is not pos-



50

sible due to design not functioning in higher clock speeds, data path specific concurrent

processing needs to be applied. Different algorithms can be used, and in case of AES

different operation mode could be utilized. For example, selected CBC operation mode

requires each state to be processed sequentially, therefore it is not possible to cipher or

decipher states in parallel. If e.g. EBC or CRT operation modes were used, concurrent

processing would be possible. More logic elements are required, thus it is highly probable

that real FPGA based applications will be deployed on more massive FPGAs than what

is used in this design. On top of all that, author is confident that data path pipeline and

crypto core implementation can be better optimized, allowing for higher clock speeds to

be utilized by real world applications.

Security level requirements are dependent on the given application, but one that was set

for this reference device is viable to many different designs. That is the impenetrability

of the plaintext domain from the ciphertext domain. The device produced for this thesis

does indeed guarantee that, but with a rather cumbersome overall design. Maintenance of

ciphertext side Raspberry Pi and software running on it are inconvenient and problematic

security wise. Actual product would have to have a single point of configuration and

maintenance interface, which would be secure and sufficiently isolated from ciphertext

domain. Almost same level of isolation could be achieved by for example connecting

ciphertext and plaintext domain Ethernet connections directly to an FPGA. All Ethernet

frames would be processed by the FPGA design logic, and no host operating system in

private plaintext domain would be vulnerable. As a downside, This approach requires

much more complex design, as TCP/IP stacks would be needed to be implemented in

FPGA fabric.

Some combination of openCL, traditional HDL design, and third party or vendor pro-

vided soft IP cores, could prove to produce efficient and secure networked crypto de-

vice with meaningful effort estimations. OpenCL could be used for rapid generation of

cryptographic algorithm kernels, whereas soft cores could fill the gap between fast HW

interconnects on the circuit board, such as network protocol handling and HW interfacing.

Additional application specific HDL may be necessary to fill in the gaps.



51

5.4 Improvement Ideas

Several modifications could be applied to current design to increase its performance or

making usability and modifiability more diverse.

Plaintext Raspberry PI and DE0-Nano could be replaced by e.g. SoC development board

with an Ethernet interface. SoC would need to have a hard processor capable of running

Linux OS. SoC internal bridge connections between Linux processor and FPGA fabric

would replace external SPI and I2C interfaces used now between plaintext Raspberry PI

and DE0-Nano. Benefit would be simpler HW usage, as only two circuit boards would

be needed. Also this would allow for wider experimentation surface for the user of the

reference device, as SoC FPGAs are gaining more wider adoption in the market. For

example, manufacturer of DE0-Nano offers development board containing Cyclone V SoC

which would cost even less than DE0-Nano and one Raspberry Pi combined.

5.5 Few Words on the Development Process

Key elements of the device to be implemented were agreed upon very early in the project.

Them being the choice of HW platforms, Raspberry Pi’s & DE0-Nano, and AES cryptosys-

tem with CBC mode of operation. Already at that time project seemed to be rather involv-

ing for the author, as the FPGA/VHDL development with this complexity, and AES were

new topics to learn. Customer of the project was also not the primary employer, so this

work was done completely during spare time. Still, it was not seen as overwhelming, as a

lot of reference material, such as AES HDL implementations, were readily available on the

internet. The amount of technical difficulties and the extent of project delay was therefore

somewhat surprising. No less than four times more time were sunk in this project that

was initially estimated.

Algorithm implementation, and partly adaptation from internet sources, was rather nicely

progressing experience. That is, up to the point of simulation proven VHDL design. For

instance, it took quite a lot more time and rewriting to make it work on real hardware. Most

problematic issue throughout the project was without question the data transfer between

Raspberry Pi’s and DE0-Nano circuit boards. At first, simple cheap wires were used



52

for SPI transfer which were not of sufficient quality for the purpose. A lot of time was

wasted investigating design problems in either RPi software or FPGA logic, even the

real culprit was cabling which caused lot of glitches in transmission and control signals.

No electrical measurement devices were available during development, but debugging

was based purely on FPGA internal logic analyzer and traditional software debugging

methods. This made it difficult to detect electrical issues.

Development of data transmission between Linux SW and AES+CBC blocks did consume

much more time as anticipated, even after cabling issues were solved. Even if it was

known from the beginning, that data transmission speed would not probably match that

of the algorithm performance in the FPGA, it did leave much to hope for.

On the positive side, wrestling with the difficulties faced during the development process,

taught the author fair amount of how real world fast interconnects should be designed.

And when going beyond the issues faced, author did learn much about cryptographic

acceleration device design. That itself made it a worthwhile experience.



53

6 Conclusions and Summary

The original goal was to put together a networked cryptographic accelerator device, which

would have the AES algorithm implemented on an FPGA. The key design goal was to se-

cure sensitive information and data on the plaintext side of the device. In the process,

hardware based cryptographic acceleration topics were to be investigated from both per-

formance, and security points of view. What are the major design characteristics that

make FPGAs formidable platforms to implement cryptographic acceleration on? What

are the major points to consider when security is concerned in this type of a device?

FPGAs of today are powerful platforms to apply many kinds of applications. Due to their

rather low clock frequencies, at least when compared to those offered by ASICs, they ex-

cel in solutions where a concurrent processing can be utilized. Cryptographic algorithms

that can be applied on multiple blocks of data of the same data stream simultaneously

can see immense benefit when deployed on FPGA. Modern massive FPGAs can be used

to cipher or decipher multiple data streams simultaneously even when each single data

stream processing would be processed by multiple encryption blocks. Requirement is,

that data is being fed to encryption blocks or cores fast enough to keep them busy. A fast

data transfer to the FPGA itself requires either hard or soft IP cores in the FPGA to handle

fast enough data transmission protocols or interfaces properly.

When the security is a critical concern, FPGAs are fairly easy to design in a way that

at least a remote intrusion to critical data is not possible. The key design aspect is to

separate plaintext and ciphertext sides such, that there is no access to a plaintext section

of the device from ciphertext side. The FPGA design developed for this thesis offers only

user a plane data interface, the SPI in this case, to ciphertext or public network side. It

is also important that FPGA itself cannot be tampered remotely by forcing it into reset

or reprogram itself or so. This is achievable with a proper care when designing such a

device.

Using FPGA as a cryptographic accelerator platform really becomes viable when FPGAs

with high capacity are used, to provide the required performance boost and interfacing ca-



54

pabilities. Especially so with networked solutions. Dividing the hardware design properly

between public and protected sides tends to increase an overall device complexity, again

increasing the cost. Due to these design considerations it is highly likely that FPGAs are

used for cryptographic accelerators in high end solutions.



References

1 David Mertz. 2001. Introduction to cryptology Part 1: Basic cryptology
concepts. Network article. IBM Developer Works.
<https://www.ibm.com/developerworks/tivoli/tutorials/s-crypto/s-crypto.html>.
Accessed February 21, 2018.

2 Prof.Waghmare S.P and Simran Sikhwal and Shreyas Nimje and Tanvi Pawar.
History Of Cryptography, International Journal For Technological Research In
Engineering, Volume 4, Issue 8. 2017 April;.

3 Faranak Nekoogar. 2001. Digital Cryptography: Rijndael Encryption and AES
Applications. Network article. EE Times.
<https://www.eetimes.com/document.asp?doc_id=1275908>. Accessed
February 21, 2018.

4 Federal Information Processing Standards Publications. Advanced Encryption
Standard (AES) (FIPS PUB 197). 2001;<https:
//csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf>.

5 Alfred J. Menezes , Paul C. van Oorschot and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC-Press. 1996.

6 RFC 6101: The Secure Sockets Layer (SSL) Protocol Version 3.0. 2011.
Network article. Internet Engineering Task Forse.
<https://tools.ietf.org/html/rfc6101>. Accessed April 01, 2018.

7 J. Serrano. Introduction to FPGA
design;<https://cds.cern.ch/record/1100537/files/p231.pdf>.

8 Introduction to FPGA Technology: Top 5 Benefits. 2012. Network article.
National Instruments. <http://www.ni.com/white-paper/6984/en/>. Accessed
March 19, 2018.

9 Field Programmable Gate Array Market (By Product Type: SRAM, Flash
Based, and Antifuse; By Application: Industrial, Automotive, Consumer
Electronics, Military & Aerospace, Telecom, Data Processing; By Geography:
North America, Europe, Asia-Pacific, RoW) Global Scenario, Market Size,
Outlook, Trend and Forecast, 2015-2024. 2015. Network article. Variant
Market Research.
<https://www.variantmarketresearch.com/report-categories/semiconductor-
electronics/field-programmable-gate-array-market>. Accessed March 19,
2018.

10 Andrew Moore, Ron Wilson. FPGAs For Dummies, 2nd Intel Special Edition.
John Wiley & Sons. 2017.

11 Optimally Fortifying Logic Reliability through Criticality Ranking. 2015. Network
article. MDPI. <http://www.mdpi.com/2079-9292/4/1/150/htm>. Accessed

https://www.ibm.com/developerworks/tivoli/tutorials/s-crypto/s-crypto.html
https://www.eetimes.com/document.asp?doc_id=1275908
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://tools.ietf.org/html/rfc6101
https://cds.cern.ch/record/1100537/files/p231.pdf
http://www.ni.com/white-paper/6984/en/
https://www.variantmarketresearch.com/report-categories/semiconductor-electronics/field-programmable-gate-array-market
https://www.variantmarketresearch.com/report-categories/semiconductor-electronics/field-programmable-gate-array-market
http://www.mdpi.com/2079-9292/4/1/150/htm


March 31, 2018.

12 UltraScale Architecture and Product Data Sheet: Overview. 2018. Network
article. Xilinx.
<https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-
overview.pdf>. Accessed March 31, 2018.

13 intel® USER-CUSTOMIZABLE soc FPGAs. 2017. Network article. Intel
Corporation. <https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/br/br-soc-fpga.pdf>. Accessed March 31,
2018.

14 Guerric Meurice de Dormale and Jean-Jacques Quisquater. High-speed
hardware implementations of Elliptic Curve Cryptography: A survey.
2007;<url=”https:
//www.sciencedirect.com/science/article/pii/S1383762106001044”>.

15 Intel® 64 and IA-32 Architectures Software Developer’s Manual. 2016.
Network article. Intel Corporation. <https://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-software-developer-
instruction-set-reference-manual-325383.pdf>. Accessed March 31, 2018.

16 AMD64 Architecture Programmer’s Manual Volume 4: 128-Bit and 256-Bit
Media Instructions. 2017. Network article. Advanced Micro Devices.
<https://support.amd.com/TechDocs/26568.pdf>. Accessed March 31, 2018.

17 ARM® Cortex® -A57 MPCore Processor Cryptography Extension. 2015.
Network article. ARM. <http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0514g/DDI0514G_cortex_a57_mpcore_cryptography_trm.pdf>. Accessed
March 31, 2018.

18 CUDA COMPATIBLE GPU AS AN EFFICIENT HARDWARE ACCELERATOR
FOR AES CRYPTOGRAPHY. 2007. Network article. Institute of Electrical and
Electronics Engineers.
<http://ieeexplore.ieee.org/abstract/document/4728256/>. Accessed March 31,
2018.

19 Secure Device Manager for Intel® Stratix® 10 Devices Provides FPGA and
SoC Security. 2014. Network article. Intel Corporation.
<https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/
wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf>. Accessed
March 31, 2018.

20 Peter Smirnoff. 2017. Understanding Hardware Security Modules (HSMs).
Network article. Cryptomathic. <https://www.cryptomathic.com/news-
events/blog/understanding-hardware-security-modules-hsms>. Accessed
March 31, 2018.

21 Marko Wolf and Timo Gendrullis. Design, Implementation, and Evaluation of a
Vehicular Hardware Security Module.
2007;<url=”http://www.marko-wolf.de/files/WoGe12_Automotive_HSM.pdf”>.

https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/br/br-soc-fpga.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/br/br-soc-fpga.pdf
url = "https://www.sciencedirect.com/science/article/pii/S1383762106001044"
url = "https://www.sciencedirect.com/science/article/pii/S1383762106001044"
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://support.amd.com/TechDocs/26568.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0514g/DDI0514G_cortex_a57_mpcore_cryptography_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0514g/DDI0514G_cortex_a57_mpcore_cryptography_trm.pdf
http://ieeexplore.ieee.org/abstract/document/4728256/
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf
https://www.cryptomathic.com/news-events/blog/understanding-hardware-security-modules-hsms
https://www.cryptomathic.com/news-events/blog/understanding-hardware-security-modules-hsms
url = "http://www.marko-wolf.de/files/WoGe12_Automotive_HSM.pdf"


22 Owen Harrison and John Waldron. Practical Symmetric Key Cryptography on
Modern Graphics Hardware. 2008;<url=”https:
//www.scss.tcd.ie/publications/tech-reports/reports.08/TCD-CS-2008-20.pdf”>.

23 Security Requirements Fof Crytpographic Modules. 2001. Network article.
NIST. <https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf>.
Accessed March 31, 2018.

24 Q Sedeeq, Mays and Salih, Muataz and F Yousif, Omar and Q Mohammed,
Nada. THE VANTAGE OF UTILIZING FPGA IN THE DESIGN OF AN
EMBEDDED MULTIPROCESSOR. 2016;<url=”https://www.researchgate.net/
publication/312017323_THE_VANTAGE_OF_UTILIZING_FPGA_IN_THE_
DESIGN_OF_AN_EMBEDDED_MULTIPROCESSOR”>.

25 Mukul Shirvaikar and Tariq Bushnaq. A Comparison between DSP and FPGA
Platforms for Real-Time Imaging Applications. 2009;<url=”https:
//www.researchgate.net/publication/228453392_A_comparison_between_
DSP_and_FPGA_platforms_for_real-time_imaging_applications”>.

26 Choosing the Right Architecture for Real-Time Signal Processing Designs.
2002. Network article. Texas Instruments.
<http://www.ti.com/lit/wp/spra879/spra879.pdf>. Accessed March 31, 2018.

27 Will OpenCL open the gates for FPGAs?. 2015. Network article. Scientific
Computing World.
<https://www.scientific-computing.com/feature/will-opencl-open-gates-fpgas>.
Accessed April 30, 2018.

28 Intel FPGA SDK for OpenCL, Programming Guide. 2017. Network article. Intel.
<https://www.altera.com/en_US/pdfs/literature/hb/opencl-
sdk/aocl_programming_guide.pdf>. Accessed April 30, 2018.

29 Joan Daemen and Vincent Rijmen. The Rijndael Block Cipher.
1999;<https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-
guidelines/documents/aes-development/rijndael-ammended.pdf>.

30 Kevin Lee. Advanced Encryption Standard (AES) Selection Process - How
Rijndael Won.
2015;<https://www.usna.edu/Users/math/wdj/_files/documents/sm473-
capstone/Rinjdael-16WeekFinalDraft-KevinLee.pdf>.

31 AES-SubBytes.svg. 2006. Network article. Wikimedia Commons.
<https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg>. Accessed
May 14, 2018.

32 AES-ShiftRows.svg. 2006. Network article. Wikimedia Commons.
<https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg>. Accessed
May 14, 2018.

33 File:AES-MixColumns.svg. 2006. Network article. Wikimedia Commons.
<https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg>. Accessed
May 14, 2018.

url = "https://www.scss.tcd.ie/publications/tech-reports/reports.08/TCD-CS-2008-20.pdf"
url = "https://www.scss.tcd.ie/publications/tech-reports/reports.08/TCD-CS-2008-20.pdf"
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
url = "https://www.researchgate.net/publication/312017323_THE_VANTAGE_OF_UTILIZING_FPGA_IN_THE_DESIGN_OF_AN_EMBEDDED_MULTIPROCESSOR"
url = "https://www.researchgate.net/publication/312017323_THE_VANTAGE_OF_UTILIZING_FPGA_IN_THE_DESIGN_OF_AN_EMBEDDED_MULTIPROCESSOR"
url = "https://www.researchgate.net/publication/312017323_THE_VANTAGE_OF_UTILIZING_FPGA_IN_THE_DESIGN_OF_AN_EMBEDDED_MULTIPROCESSOR"
url = "https://www.researchgate.net/publication/228453392_A_comparison_between_DSP_and_FPGA_platforms_for_real-time_imaging_applications"
url = "https://www.researchgate.net/publication/228453392_A_comparison_between_DSP_and_FPGA_platforms_for_real-time_imaging_applications"
url = "https://www.researchgate.net/publication/228453392_A_comparison_between_DSP_and_FPGA_platforms_for_real-time_imaging_applications"
http://www.ti.com/lit/wp/spra879/spra879.pdf
https://www.scientific-computing.com/feature/will-opencl-open-gates-fpgas
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://www.usna.edu/Users/math/wdj/_files/documents/sm473-capstone/Rinjdael-16WeekFinalDraft-KevinLee.pdf
https://www.usna.edu/Users/math/wdj/_files/documents/sm473-capstone/Rinjdael-16WeekFinalDraft-KevinLee.pdf
https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg
https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg
https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg


34 File:AES-AddRoundKey.svg. 2006. Network article. Wikimedia Commons.
<https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg>. Accessed
May 14, 2018.

35 Recommendation for Block Cipher Modes of Operation - Methods and
Techniques. 2001. Network article. National Institute of Standards and
Technology. <https:
//nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf>.
Accessed March 22, 2018.

36 File:CBC encryption.svg. 2013. Network article. Wikimedia Commons.
<https://commons.wikimedia.org/wiki/File:CBC_encryption.svg>. Accessed
May 14, 2018.

37 File:CBC decryption.svg. 2013. Network article. Wikimedia Commons.
<https://commons.wikimedia.org/wiki/File:CBC_decryption.svg>. Accessed
May 14, 2018.

38 DE0-Nano User Manual. 2013. Network article. Terasic Technologies Inc.
<https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=
English&No=593&FID=75023fa36c9bf8639384f942e65a46f3>. Accessed
Jan 31, 2018.

39 Cyclone IV Overview. 2018. Network article. Intel Corporation. <https:
//www.altera.com/products/fpga/cyclone-series/cyclone-iv/overview.html>.
Accessed March 31, 2018.

40 Raspberry Pi website. 2018. Network article. Raspberry Pi Foundation.
<https://www.raspberrypi.org/>. Accessed March 31, 2018.

41 Federal Information Processing Standards Publications. The Advanced
Encryption Standard Algorithm Validation Suite (AESAVS).
2002;<https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-
Validation-Program/documents/aes/AESAVS.pdf>.

https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://commons.wikimedia.org/wiki/File:CBC_encryption.svg
https://commons.wikimedia.org/wiki/File:CBC_decryption.svg
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=593&FID=75023fa36c9bf8639384f942e65a46f3
https://www.terasic.com.tw/cgi-bin/page/archive_download.pl?Language=English&No=593&FID=75023fa36c9bf8639384f942e65a46f3
https://www.altera.com/products/fpga/cyclone-series/cyclone-iv/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-iv/overview.html
https://www.raspberrypi.org/
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/aes/AESAVS.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/aes/AESAVS.pdf

	Introduction
	Material and Methods
	Requirements
	Design Process
	Evaluation

	Background on Used Technologies
	Foreword on Cryptography
	Field Programmable Gate Array
	Hardware-based Cryptographic Acceleration
	Implementation methods
	Hardware acceleration security
	FPGA vs. ASIC
	FPGA vs. Software Implementation

	Advanced Encryption Standard
	General view
	Cipher
	Inverse Cipher
	Key Expansion
	Mode of Operation: Cipher-block Chaining - CBC


	Implemented Reference Device
	Hardware Components
	Selection Process
	Raspberry Pi
	DE0-Nano

	Device Operation
	FPGA design
	Overview
	Configuration
	Data Path
	AES Cipher Algorithm
	AES Decipher Algorithm
	Key Generator
	Mode of Operation: CBC

	Linux Software Architecture
	Development Environment
	Tools
	Development & Testing


	Results and Analysis
	Implementation Status
	Performance Analysis
	AES+CBC FPGA Implementation
	User Data Transmission
	Linux Software Modules

	Deviation to Real World Products
	Improvement Ideas
	Few Words on the Development Process

	Conclusions and Summary
	References

