

Vuong Phuc Thanh

IOS MOBILE APPLICATION FOR

 ORDERING SYSTEM

Technology and Communication

2018

ACKNOWLEDGEMENT

Firstly, I would like to show my appreciation and my respect toward Dr. Ghodrat
Moghadampour, my supervisor, for all the knowledge I have been taught during
my journey studying at VAMK.
His conscientious and passionate instructions influenced to become a software
engineer in the future. After two years majoring in Software Engineering, I have
achieved many methods as well as skills from his courses, which I applied for the
process of my final thesis. I would like to thank him for the massive support.

I would like to thank my colleague, Huy Phan. He played an important role as my
customer, giving his designs and ideas for the whole mobile application. Without
his collaboration, my thesis would be a mess in the user interfaces.

Also, the community of developer on Stack Overflow, Github and colleagues
from the company where I completed my internship, helped me a lot with many
problems that I faced during implementing period. I would like to thank them, for
spending time with my questions.

Finally, I would like to express my appreciation to my parents, who supported me
financially and mentally for four-years period of study. Without their encourage-
ment, It would be difficult to complete the bachelor degree.

I want to show my gratitude to all of you, thank you.

Vaasa, 23.03.2018

Vuong Phuc Thanh

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Technology and Communication

ABSTRACT

Author Vuong Phuc Thanh
Title IOS Mobile Application For Ordering System
Year 2018
Language English
Pages 68
Name of Supervisor Ghodrat Moghadampour

The objective of this thesis was to develop a complete system for ordering goods
and foods, which allow customers to order products from a mobile device.

The application includes two different views. A web-based Admin Dashboard for
store managers, where they can manage orders, edit products, menus, and process
the information of orders with the customers. This admin dashboard is built by
Python with Django framework and SQLite.

The second view displays a list of stores and restaurants, with the details of prod-
ucts, foods on the menu. Clients are able to order and make payment and send
their information and location to the admin side through RESTful API. This IOS
application is built with Swift.

Basically, the project has achieved all the must-have requirements and has been
tested by some colleagues. The application is not only a multi-functional but also
provides a clear user interfaces.

The thesis can be extended for future development with potential features, which
can be applied in many specific stores that require a system for online ordering.

Keywords Python, Django, SQLite, Swift, RESTful API

TABLE	OF	CONTENTS	

ACKNOWLEDGEMENT	

ABSTRACT	

1	 INTRODUCTION	...	10	

1.1	 BACKGROUND	...	10	

1.2	 MOTIVATIONS	..	10	

1.3	 OBJECTIVES	..	11	

2	 RELEVANT	TECHNOLOGIES	..	12	

2.1	 PYTHON	...	12	

2.2	 DJANGO	WEB	FRAMEWORK	...	12	

2.3	 PIP	AND	VIRTUALENV	...	13	

2.4	 SQLITE	..	13	

2.5	 DJANGO	OAUTH	TOOLKIT	AND	REST	FRAMEWORK	SOCIAL	OAUTH	...	14	

2.6	 BOOTSTRAP	..	14	

2.7	 XCODE	IDE	AND	SWIFT	PROGRAMMING	LANGUAGE	..	15	

2.8	 COCOAPODS	...	15	

2.9	 SWIFTYJSON	AND	ALAMOFIRE	..	15	

2.10	 STRIPE	...	16	

2.11	 RESTFUL	WEB	SERVICE	...	16	

3	 APPLICATION	DESCRIPTION	...	18	

3.1	 GENERAL	DESCRIPTION	...	18	

3.2	 QUALITY	FUNCTION	DEPLOYMENT	..	18	

3.2.1	 Must	–	have	requirements	..	18	

3.2.2	 Should	–	have	requirements	...	19	

3.2.3	 Nice	–	to	–have	requirements	...	19	

3.3	 USE	CASE	DIAGRAM	..	20	

3.4	 CLASS	DIAGRAM	..	21	

3.5	 SEQUENCE	DIAGRAM	...	24	

3.5.1	 Admin	Dashboard	Registration	Sequence	Diagram	..	24	

3.5.2	 User	Login	Sequence	Diagram	..	24	

3.5.3	 Adding	meal	Sequence	Diagram	...	25	

3.5.4	 Editing	meal	Sequence	Diagram	...	26	

3.5.5	 Editing	account	sequence	diagram	...	27	

3.5.6	 Order	page	sequence	diagram	...	27	

3.5.7	 Mobile	User	Login	Sequence	Diagram	..	28	

3.5.8	 Getting	Restaurant	List	On	Mobile	Sequence	Diagram	..	29	

3.5.9	 Creating	Order	Sequence	Diagram	...	29	

3.5.10	 Meal	Page	Sequence	Diagram	...	30	

3.6	 COMPONENT	DIAGRAM	..	31	

4	 DATABASE	AND	GUI	DESIGN	...	33	

4.1	 DATABASE	DESIGN	...	33	

4.2	 GUI	DESIGN	...	34	

4.2.1	 Admin	Dashboard	web	base	application	..	35	

4.2.2	 GUI	of	Mobile	Application	...	39	

5	 IMPLEMENTATION	..	43	

5.1	 GENERAL	DESCRIPTION	OF	IMPLEMENTATION	...	43	

5.2	 IMPLEMENTATION	OF	DIFFERENT	PARTS	...	44	

5.2.1	 Implementation	of	Admin	Dashboard	web	based	application	44	

5.2.2	 Mobile	application	..	52	

6	 TESTING	..	59	

6.1	 SIGNING	UP	A	NEW	RESTAURANT	...	59	

6.2	 EDITING	ACCOUNT	INFORMATION	...	60	

6.3	 ADDING	MEAL	...	60	

6.4	 EDITING	MEAL	..	61	

6.5	 SIGNING	WITH	FACEBOOK	ON	MOBILE	..	62	

6.6	 GETTING	LIST	OF	RESTAURANTS	..	62	

6.7	 GETTING	LIST	OF	MEALS	..	63	

6.8	 MAKING	AN	ORDER	..	64	

6.9	 CHANGING	ORDER	STATUS.	...	65	

7	 CONCLUSION	...	66	

FUTURE	WORKS	...	66	

REFERENCES

LIST OF FIGURES AND TABLES

Figure 1. MVT architecture. .. 13	

Figure 2. REST api Login with Facebook process. ... 14	

Figure 3. Stripe payment process .. 16	

Figure 4. RESTful web service process example. .. 17	

Figure 5. Functions for store owner. .. 20	

Figure 6. Functions for Customer. ... 21	

Figure 7. Diagram for View ... 22	

Figure 8. Class Diagram for API ... 22	

Figure 9. Class Diagram for APImanager .. 23	

Figure 10. Admin Registration ... 24	

Figure 11. User Login Sequence Diagram ... 25	

Figure 12. Adding meal sequence diagram .. 25	

Figure 13. Editing meal sequence diagram .. 26	

Figure 14. Editing account sequence diagram. .. 27	

Figure 15. Order page sequence diagram ... 27	

Figure 16. Facebook Login sequence diagram .. 28	

Figure 17. Getting Restaurant List on Mobile Sequence Diagram 29	

Figure 18. Creating Order Sequence Diagram ... 30	

Figure 19. Meal and Meal details Sequence Diagram ... 30	

Figure 20. Component Diagram. .. 31	

Figure 21. ER diagram. .. 33	

Figure 22. Sign in page for web application. ... 35	

Figure 23. Sign up page. .. 35	

Figure 24. Order page. ... 36	

Figure 25. Meal page. .. 36	

Figure 26. Add meal page. ... 37	

Figure 27. Edit meal page. ... 37	

Figure 28. Account page. ... 38	

Figure 29. Navigation Bar .. 38	

Figure 30. Log in page. .. 39	

Figure 31, Figure 32. Restaurant list and Meal list. .. 39	

Figure 33. Side bar. .. 40	

Figure 34. Meal details page. ... 41	

Figure 35, Figure 36. Shopping cart, Empty cart. ... 41	

Figure 37, Figure 38. Order page and Payment page. ... 42	

Figure 39. Structure of the admin dashboard application. ... 43	

Figure 40. Structure of the mobile application. ... 44	

Figure 41. The page shows error message. .. 59	

Figure 42. Successfully registered. .. 59	

Figure 43. New information is saved. .. 60	

Figure 44. Filling the form. .. 61	

Figure 45. New meal displayed on the Meal page. .. 61	

Figure 46. Editing form. ... 61	

Figure 47. New description updated. ... 62	

Figure 48, Figure 49. Sign in button, Information of user from FB 62	

Figure 50. List of restaurants which includes also a testing restaurant. 63	

Figure 51. meal list of testing restaurant. ... 63	

Figure 52, Figure 53. Submit address, After making payment. 64	

Figure 54. Order is sent to the Admin dashboard. ... 64	

Figure 55. Changing status from Admin side. ... 65	

Figure 56. Status of the order is changed on the mobile application. 65	

LIST OF SNIPPETS

Code Snippet 1. Setting up urls for functions. ... 45	

Code Snippet 2. Creating model forms. .. 46	

Code Snippet 3. Sign up function. ... 47	

Code Snippet 4. Modify function for user’s account. .. 47	

Code Snippet 5. Function for getting data of orders and meals. 48	

Code Snippet 6. Function for adding new meal. ... 48	

Code Snippet 7. Function for editing meal. ... 49	

Code Snippet 8. Serializer. .. 50	

Code Snippet 9. Creating API. .. 51	

Code Snippet 10. Getting restaurant list function. ... 53	

Code Snippet 11. Searching restaurant function. .. 53	

Code Snippet 12. Getting meal list function. ... 54	

Code Snippet 13. Changing quantity of meal and add to tray button function. 54	

Code Snippet 14. Taking location. .. 55	

Code Snippet 15. POST request for creating order. .. 56	

Code Snippet 16. Getting latest order. ... 57	

Code Snippet 17. getting user data from Facebook ... 58	

LIST OF ABBREVIATIONS

API Application Programming Interface

JSON Javascript Object Notation

OS Operating system

SQL Structured Query Language

GUI Graphical User Interface

HTML Hypertext Markup Language

IDE Integrated Development Environment

SDK Software Development Kit

HTTP Hypertext Transfer Protocol

REST Representational state transfer

CSS Cascading Style Sheet

UI User Interface

URL Uniform Resource Locator

10

1 INTRODUCTION

The introduction of the project including background, objectives and motivations is dis-

cussed.

1.1 Background

People are living in the technology age, where each day there is something invented to

improve human’s lives. There were many technology innovations, and big machines

have now evolved into smaller devices with stronger functionalities. The usage percent-

ages of mobile phones are overtaking the market that can lead to a prediction: mobile

devices are the future of technology. IOS is an operating system developed by Apple

that lifted the world of technology to a new page in 2007 and it is continuously growing

thanks to a powerful system and friendly design.

The RESTful web service is one of the most popular types of API, which offers an easy

way for connecting, integrating and extending a software system. In practice, RESTful

web service would be a reasonable choice, when making communication between sepa-

rate servers and clients.

 Python and Swift are two of the most used programming languages in the developer

community. Both of these languages are effective and powerful. With numerous librar-

ies and frameworks, they were used to build many big applications. Also, Python and

Swift were chosen in this thesis because of readability, which makes the developer’s life

much easier. It allows the user to express programming thought, without many syntax

errors and to easily build an application.

1.2 Motivations

The motivation for this thesis came from the idea that making a third party for ordering

food can be applied in industry. Similar to Amazon or Ebay, owners of restaurants or

stores related to food industry can sign up and advertise products for customers in a

specific area. Due to real life situation in Vaasa or Helsinki, ordering food is mostly

done by searching a website and calling the restaurant which is inconvenient when the

customer must look through many restaurants.

11

The motivation also came from personal interests and practical skills for becoming an

IOS developer as well as a full stack developer in the future.

1.3 Objectives

The project should be completed with features based on the ideas the come from the

motivations. The admin dashboard should have a user friendly interface for the user to

manage the products and orders, and also be easy to navigate action between pages. The

mobile application should have good communication with the server using the REST

web service to take all information and afterward display it on the screen. The infor-

mation of users and payments should also be secured.

The services include a page for creating menu and order, list and details of the menu for

the mobile application, ordering system, making payment and sending the location with

Google API.

12

2 RELEVANT TECHNOLOGIES

This section will take a review through all the relevant tools and technologies used for

the project.

2.1 Python

Python is a scripting programming language developed by Guido van Rossum in 1989.

It supports many types of programming paradigms including procedural, imperative and

object-oriented. /1/

Python has a simple, easy-to-use syntax that allows developers from any level to ex-

press ideas and algorithms with readability counts. One of the unique features of Python

is whitespace acts as statement indentation, which help the code written by Python to be

cleaner and have fewer lines compared to Java or C# languages. /1/

Python has not only a large standard library, but also huge packages of third-party li-

braries with a wide range of functionality, making Python powerful enough to complete

any tasks with different purposes./1/

For this project, the newest version Python 3.6 is used with supported third-party librar-

ies for stable application.

2.2 Django web framework

Django is a web framework written by Python, which was created in 2003 by Adrian

Holovaty and Simon Wilison.

Django follows the Model – View –Template(MVT) software architecture, similar to

MVC, which assists the application with faster development process and ability to pro-

vide multiple views./2/

Django Admin Dashboard allows user to use ‘create, read, update, delete’ interface that

is generated and configured via admin models./2/

13

Figure 1. MVT architecture. /15/

In a Django web application, View file has a collection of functions for the application

and Templates is a HTML file for user interfaces. The MVT model is slightly different

from MVC, Django itself acts as a controller./2/

Django 2.0 is the latest version of Django framework with the newest release on March

2018. For this project, Django version 1.10 is used, because Django 2.0 is still under

development and lack of supporting libraries.

2.3 Pip and Virtualenv

Pip is known as Python Package Manager, used for installing and updating standard or

third-party libraries./3/

Virtualenv is used for separating different projects. It allows to create virtual environ-

ments with different settings and packages, so that breaking the packages installed will

not happen when switching between projects./3/

2.4 SQLite

SQLite is a relational database management system which is an embedded database, the

database runs as a part of the application. SQLite is a lightweight system that does not

require its own process or user management./4/

By default, after installing Python and Django, the system uses SQLite for database. It

is an easy to configure database system which is serverless, also the best choice for

standalone applications./5/

14

2.5 Django OAuth toolkit and Rest framework social OAuth

OAuth is an open standard for access delegation, used to grant permission and infor-

mation of the user on websites or applications without giving identification such as

passwords. This methods used with accounts such as Facebook, Google, Twitter and

many more. The application that has been authorized is limited by an access token given

from the third-party clients. This access token will be used to protect resources which

are held by the resource server./6/

Figure 2. REST api Login with Facebook process.

For this project, the Django rest-framework Social Oauth2 module is used with a

Oauth2 support for communicating between the mobile application and the server, and

allows clients to login by a social media account in a most effective and secure way.

2.6 Bootstrap

Bootstrap is a front-end development framework that contains HTML and CSS based

for typography, forms, buttons and many other components. One of the advantages for

using Bootstrap is the grid system, developers can easily design a responsive web inter-

face without too many details in CSS and HTML. /7/

15

2.7 Xcode IDE and Swift programming language

Xcode is an integrated development environment (IDE) developed by Apple which con-

tains tools for developing applications on macOS, iOS and other operating systems from

Apple. This IDE is mostly used for Swift programming and has many features that bring

a massive support for developers. /8/

Swift is a general-purpose and multi-paradigm programming language developed by

Apple, which was introduced in 2014. Swift is highly ranked among the developer

community for a friendly design and simple syntax./9/

Swift is a powerful and intuitive programming language for developing applications for

operating systems that released by Apple. Swift code along with Xcode IDE gives an

interactive environment to developers and improves complicated development processes

to be faster and cleaner. /10/

2.8 CocoaPods

CocoaPods is a dependency manager for Swift and Objective-C projects, contains thou-

sands of libraries that improve discoverability if third-party libraries.

Users can use a single text file called Podfile which CocoaPods recognize libraries in

the file, fetch the resulting source code and link it an and Xcode workspace. /11/

2.9 SwiftyJSON and Alamofire

SwiftyJSON and Alamofire are both third-party libraries that installed by using Co-

coaPods.

Dealing with JSON with SwiftyJSON is much easier and cleaner when developers will

not have to worry about writing a huge amount of code for some JSON data.

SwiftyJSON simply decreases the unreadable mess to be simpler.

Alamofire is a Swift-based HTTP networking library, which assists developers to per-

form networking tasks such as HTTP request, response and other methods for data from

a RESTful API./12/

16

2.10 Stripe

Stripe iOS SDK provides quick and easy methods to build payment experiences on iOS

app. Stripe SDK can be customized with the UI screens and elements which help to im-

prove user interfaces. The features of Stripe are simplified security, support Apple Pay

and Credit Card payment and also Native UI.

For this project, Stripe is used in a simple way to obtain the idea of payment experienc-

es with credit card. /13/

Figure 3. Stripe payment process /16/

2.11 RESTful web service

REST means representational state transfer and is an architectural style of a software.

RESTful web service is for implementing such an architecture and used for client –

server communication where they are both separate applications.

The RESTful API uses HTTP standard methods such as GET, POST, PUT, DELETE to

process data between client and server and the results are returned in the form of JSON,

XML. /14/

17

Figure 4. RESTful web service process example. /17/

18

3 APPLICATION DESCRIPTION

In this section, a detailed descriptions of the project and requirements are explained.

3.1 General Description

The objective of the application is to build an ordering system with separated client –

server applications that communicate with each other through a web service. The appli-

cation encompasses an iOS application and a web-based admin dashboard which in-

clude the following features:

• iOS application

Displays a list of restaurants and a list of products, items on the menu. Users are

allowed to choose products, change the quantity and make the payment for the

order.

• Admin Dashboard:

Allows users to create a restaurant, add the menu and meals for the store and

check orders that have been sent from the customer. The application also allows

to change the status of the orders.

3.2 Quality Function Deployment

The requirements of the project can be divided into three different parts based on the

priorities: must-have, should-have and nice-to-have. Must-have features are the core

functionalities of the project, while should-have and nice-to-have features are additional

for future development of the application.

3.2.1 Must-have requirements

• For the iOS Client Application:

o Searching for the name of store and restaurant.

o Displaying the list of products and restaurants.

o Adding products to the shopping cart, calculating the total price for the

payment based on quantity and price for a single item.

19

o Adding customer information.

o Status of orders that have been made before.

• For the admin dashboard application:

o Signing in/ signing out of the dashboard.

o Signing up for registering a new restaurant.

o Editing account information including name, phone, address and logo of

the restaurant.

o Adding products and meals to the menu with name, description, price

and image of product.

o Editing existing product on the menu.

o Checking orders that have been sent from the client with the detail in-

formation of customers: name, address, total price and created time.

o Changing status of the order which can be displayed to the client side.

3.2.2 Should-have requirements

• For the iOS application:

o Logging in with a social media account

o Making payment with a test credit card

o Displaying the address of the customer on Google map

o Taking user information from social media account and sending to the

server when making an order

• For the admin dashboard:

o Signing in with Facebook

3.2.3 Nice-to-have requirements

• For the iOS application:

o Allowing the user to register with email, encrypting credential token

manually and verifying the user by sending an email to the given ad-

dress.

o Chat bot or contact box for communication between users and the stores.

o Showing recent search of restaurant and products.

o Responsive UI.

20

o Restaurant rating system.

o Filtering different types of cuisine.

• For the admin dashboard:

o Taking the data of orders and making a chart for business analysis.

3.3 Use Case Diagram

There are two different views for users, an admin dashboard application and an iOS

mobile application with different user case diagrams.

Figure 5. Functions for store owner.

From the user case diagram, the store owner can get a list of orders that are made by the

customers, which includes customers’ information, details of orders and changing status

of orders. The owner can also add and edit product details, get a list of all published

products on the menu, update information of the account and log out. All the features

above require signing in from a registered account.

21

Figure 6. Functions for Customer.

As shown in this user case diagram, the customer can sign in to the application with a

Facebook account, get a list of restaurants, check paid orders and their status, check cart

with saved products and log out.

From the list of restaurants, the customer can search for a specific name or choose a res-

taurant. The process leads to a list of products that allows the customer to pick a prod-

uct, change quantity and add it to the shopping cart.

In addition, the cart page shows a total price of all products that have been saved before

and allows the customer to make a payment.

3.4 Class Diagram

In this project, most of the modules and functions are written based on MVT architec-

ture. The diagram below illustrates the functions that are included in the view.py file.

22

Figure 7. Diagram for View

• The View for User Model includes the method for signing up an account with

the restaurant information, login and logout functions from default Djan-

go.contrib.auth

• The View for Meal Model includes functions for editing meal, adding meal and

getting a list of all existing meals that have been added before.

• The View for Order Model includes a function to get orders from customers.

• The View for Restaurant Model has a method to change information of the ac-

count.

For communication between two applications, an api file is written with methods for

client uses.

Figure 8. Class Diagram for API

23

• The API file includes functions for the customer to get the restaurant list, meal

list, create an order and get a list of paid orders.

In the client side, the mobile application has an API manager class to handle API URL

from the server, and afterward process the request and render data to the screen.

Figure 9. Class Diagram for APImanager

• The API manager file includes the functions: login, logout, refreshToken,

getRestaurant, getMeal, createOrder and getLatestOrder. This API manager uses

Alamofire to handle HTTP request such as GET, POST with the URL from

apis.py.

• These functions are also used for rendering data from the server to the mobile

screen.

24

3.5 Sequence Diagram

3.5.1 Admin Dashboard Registration Sequence Diagram

The following sequence diagram illustrates the involvement of steps that manage a user

to register and login to the admin dashboard.

Figure 10. Admin Registration

Firstly, the user enters the information for registering an account and hit the submit but-

ton. The information of user and restaurant should match the requirements, otherwise

the page will display an error message. The restaurant_sign_up function will be called

to check if the information is valid, the application then proceeds to the next step,

checking data in the database for an existing account. If there is not an existing user

with the same username, the process will be completed and the user is taken to the

dashboard.

3.5.2 User Login Sequence Diagram

The sequence diagram shown in Figure 11 illustrates steps that are involved in logging

the process. The registered user enters username and password, the details will be

checked in the database to identify the user. If username or password is not correct, an

error message is generated and displayed on the browser.

25

Figure 11. User Login Sequence Diagram

3.5.3 Adding meal Sequence Diagram

Figure 12. Adding meal sequence diagram

As shown in Figure 12, the user navigates to Add Meal Page, enters the information of

the meal. The function restaurant_add_meals will be called to check if the data is in the

right format, otherwise an error message is displayed. After checking the data, a meal is

created and saved to the database based on the restaurant of current user.

26

3.5.4 Editing meal Sequence Diagram

Figure 13. Editing meal sequence diagram

After choosing a meal for editing, the user can change and update information of the

selected meal. The restaurant_edit_meals function is called to check validation of the

data base on meal_id variable. After saving new data in the database, the user is redi-

rected to the Meal Page with new edited information.

27

3.5.5 Editing account sequence diagram

Figure 14. Editing account sequence diagram.

Figure 14 shows the steps involved when a user changes the account details. Similar to

editing meal, the user changes and updates data, a function named restaurant_account is

called to check if the data is valid, then the data will be saved to the database based on

the restaurant of current user.

3.5.6 Order page sequence diagram

Figure 15. Order page sequence diagram

28

The steps to get data of orders and display orders to the browser are simple. The user

navigates to the Order Page, a function restaurant_order is called to request all data of

orders to the browser and order the data by id. The database will send the data to the

Order page as a response.

3.5.7 Mobile User Login Sequence Diagram

Figure 16 below shows the steps for a user to login to the mobile application with a Fa-

cebook account.

Figure 16. Facebook Login sequence diagram

First, a Login with the Facebook button is shown. The user will click that button to log-

in to the mobile application. Facebook will validate the application ID and redirect the

user to the Facebook login page. After entering the Facebook login credentials and

submitting the data, Facebook will validate the credentials and process an access token

to the Django server. This token is generated to identify the user over the application at

that time. This access token will be destroyed once the user logs out of the application

29

and a new one will be generated when logging in. After granting an access token, the

application requests user data from Facebook and fetches it to the mobile screen.

3.5.8 Getting Restaurant List On Mobile Sequence Diagram

Figure 17 below shows the steps for a user to get restaurant data from the server to the

mobile application.

Figure 17. Getting Restaurant List on Mobile Sequence Diagram

The logged in user can navigate to the restaurant page, this page is managed by Restau-

rantVoewController class. The loadRestaurant function is automatically called to load

all the restaurant data to the screen. This data is taken from APImanager.

The APImanager sends a get request to the server, data of restaurants are sent back as a

response and processed to display on the mobile screen.

3.5.9 Creating Order Sequence Diagram

Figure 18 below illustrates the steps that are involved in creating a new order process.

30

Figure 18. Creating Order Sequence Diagram

First, the user uses the payment button to make a payment for all the items in the shop-

ping cart. The Payment View Controller will check if the payment has succeeded. If the

payment fails, an error message will be displayed. After making the payment, the data

of the user such as name, address and order details will be sent to the APImanager class.

This data is converted to JSON type and sent to the server as a POST request. The user

will be redirected to the Order Page to see status of the order that has been made.

3.5.10 Meal Page Sequence Diagram

Figure 19. Meal and Meal details Sequence Diagram

31

First, the user needs to choose a restaurant and a meal of the selected restaurant. A func-

tion loadMeal() will be called to take data from APImanager. The data is requested by

getMeals() function from APImanager to the server and JSON data will be sent back as

a response. This JSON data is taken and fetched to the mobile screen afterwards.

3.6 Component Diagram

The component diagram below describes how components in the whole system are con-

nected.

Figure 20. Component Diagram.

The application includes four major components, which are Django Server, Admin

Dashboard Interface, Database and Mobile Application.

The user interfaces of the dashboard are HTML template files, which will be displayed

on the web browser. Every interaction of the user with the interface on the web browser

will go through URL, which locates functions that are connected between Template and

32

View. The function that the user interacted with will be called and then processed to

Model and Database. From there data are rendered on the web browser by the reversed

way.

The mobile application communicates with the server by Restful API which connected

to API manager class, allows the application to render data from the database and send

an HTTP request.

33

4 DATABASE AND GUI DESIGN

This section illustrates the design of database and GUI.

4.1 Database Design

This application used SQLite for the database, which is the default database of Django

framework. As described, SQLite is a lightweight relational database management sys-

tem and is the best choice for an application with light weight data.

The database includes six tables, which are User, Restaurant, Customer, Order, Meal,

OrderDetails. Each table has attributes with value types and relation between the tables.

The User table is default from Django. In practice, it is not necessary to write a model

of the user unless of modifying.

Figure 21. ER diagram.

34

• As shown on the ER diagram, the User table has a primary key which connects

to Customer table and Restaurant table34 with a one-to-one relationship. This

relationship is designed based on the idea that one user can have only one res-

taurant registered, and also one user can only be one customer at a time.

• The customer table has a one-to-many relationship with Order table, which

means one customer can have many orders, but one order can only have one cus-

tomer.

• The OrderDetails table has two foreign keys: order and meals. This table has a

one-to-one relationship with the Order table and a many-to-many relationship

with the Meals table.

• The Meal table consists of 5 attributes: restaurant, name, description, image and

price. The restaurant attribute is a foreign key linked from the Restaurant table

and a primary key “name” linked to the OrderDetails table.

• The Restaurant table consists of 5 attributes: user_name, name, phone, address

and logo. The “name” attribute is the primary key, linked to Order table and

Meals table with a one-to-many relationship. It means that one restaurant can

have many orders and meals, but one order or one meal can only be in one res-

taurant.

Beside the tables that created the database system, there are also models from the social

authentication toolkit of Django, which is automatically generated when installing the

toolkit. These databases are for storing access tokens and refresh tokens sent from the

client side, which is using the Facebook token for logging in.

4.2 GUI Design

This project has two separate applications, the web based application and mobile appli-

cation. The graphic user interface of the admin site is implemented with HTML, CSS,

Javascript and Bootstrap for better front-end.

35

4.2.1 Admin Dashboard web base application

Figure 22. Sign in page for web application.

Figure 23. Sign up page.

These figures above show the “sign in” and “sign up” page for use. The design for these

pages is simple. The “sign in” page has 2 input fields for user name and password and a

submit button. If the user does not have any account yet, there is a link to redirect to the

“sign up” page.

36

The “sign up” page has fields for users to input their information such as name, pass-

word, email and details of the restaurant with its logo. There are some required regular

expressions, if the user’s inputs do not match the requirements, the page will display

error messages. The email should be in the right format and all inputs should be filled.

Figure 24. Order page.

After signing in to the application, the user will automatically be redirected to the Order

page, where all the orders from the client to the user’s restaurant are shown. The table

that shows details of an order has fields such as ID, name and quantity, customer’s

name, address and so on. The total price is calculated by the system. There is also an

action button for the operator to change the status of orders, this status can be notified

on the client screen.

Figure 25. Meal page.

37

Figure 25 shows the meal page, where a list of all the meals on the menu are displayed.

Each name of a meal is a link to an edit page, the user can select a meal that needs to be

edited and click on the name, it will then redirect the user to an edit page. There is also a

blue button for adding a new meal to the menu.

The table includes the ID of the meal, name, short description, price and picture of the

meal. This information is shown on the mobile application as well.

Figure 26. Add meal page.

Figure 27. Edit meal page.

The “Add meal page” and “Edit meal page” are similar to each other. Both pages have

the same input fields such as Name, Description, Image and price of the meal, but “Edit

page” has information already for editing while “Add page” has only blank fields.

38

Figure 28. Account page.

Figure 28 shows the account page, where the user can select to modify the account in-

formation. The form is filled with information when signing up, the user can modify it

and click the update button to save the changes.

Figure 29. Navigation Bar

The navigation is designed to easily detect which page the user is using. It has three

pages to navigate, an active page has a hover color that is different to others. On the

right side, there are username, logo of restaurant and log out button. The brand name

“Order system” will redirect the user to Order page when clicked on.

39

4.2.2 GUI of Mobile Application

Figure 30. Log in page.

The log in page of the mobile application is designed with two buttons with a large

background image. The blue button allows the user to login with their Facebook ac-

count, the application will receive their information and forward it to the server when

user makes any order. The “Sign in with Google” button is not having any function at

the moment and will be implemented in the future development.

Figure 31, Figure 32. Restaurant list and Meal list.

40

After signing in, the application will show a list of restaurants for the user to select as

shown in Figure 31. This page has two buttons on the navigation bar. On the left is a

side bar (Figure 33) and on the right is a search button for search a specific name of a

restaurant.

When one restaurant has been chosen, the application will segue to a Meal list. This

meal list shows all the products on the menu of chosen restaurant with details such as

name, description and price.

Figure 33. Side bar.

The side bar will appear when the user clicks on the right button on navigation bar. This

side bar includes the profile image and user name taken from the user’s Facebook ac-

count. There are four buttons: Restaurant, Saved Meals, Order and Log out. The restau-

rant button will redirect the user to to restaurant list page. “Saved meal” is linked to the

shopping cart, where the user can see which meals they have added to the cart. “Order”

is linked to a history page where it shows the order that has been paid and its status.

41

Figure 34. Meal details page.

After choosing a meal, the meal details page will appear. This page includes a closer

look at the meal, name, description and price. There is a button for the user to modify

the quantity. The system will calculate a total price and show it on the bottom area.

There is also a red button to add the meal to the cart.

Figure 35, Figure 36. Shopping cart, Empty cart.

42

The shopping cart page shows all the products that the user has added to the cart on a

list. Each item on the list has a number of quantity, name of meal and price for that

item. The “total” label is the total price for all items after calculated and an input field

for the address. The location of user can be tracked after filling in the fields if user

wants the order to be delivered. A red button on the button will segue the user to the

payment page.

In Figure 36, the app displays a message that tells the user that the shopping cart is emp-

ty.

Figure 37, Figure 38. Order page and Payment page.

The order page displays a list of all the orders that the user just made and their status.

This status can be changed on the admin dashboard side to notify the client when the

order is ready.

Figure 38 shows the payment page, this design is taken from Stripe SDK. For the result,

this page is very simple and working perfectly.

43

5 IMPLEMENTATION

In this section, the implementation steps of the project are discussed.

The structure of the application is described and primary methods, modules are ex-

plained afterward.

5.1 General description of implementation

Figure 39. Structure of the admin dashboard application.

Figure 39 shows the structure diagram of the admin dashboard application. “Ordersys-

tem” is the name of the main directory, which consists of three other child directories:

“media”, “order_system_app” and “ordersystem”. The “ordersystem” is generated au-

tomatically when creating a Django project, this directory includes a settings file to

handle all the applications in the project. “order_system_app” is an application where

44

functions and templates are written. “media” directory is for storing files such as imag-

es.

Figure 40. Structure of the mobile application.

The structure of the mobile application has three child folders: Model, View, Controller

and application setting swift files. There is also an assets directory to store images.

5.2 Implementation of different parts

The implementation is divided into two parts for two different application.

5.2.1 Implementation of Admin Dashboard web based application

There are three main files that includes the all primary functions and connections for the

application: views.py, apis.py and urls.py. These files are explained in this section.

• Urls.py

urlpatterns = [
 url(r'^admin/', admin.site.urls),
 url(r'^$', views.home, name='home'),

 #restaurant urls

45

 url(r'^restaurant/sign-in/$',auth_views.login,
{'template_name':'restaurant/sign_in.html'},name='restaurant-sign-in'),
 url(r'^restaurant/sign-out/$',auth_views.logout,{'next_page':"/"},name='restaurant-sign-
out'),
 #Sign in takes the function named login in views.py and redirect the page to sign_in.html
which called restaurant-sign-in
 #for signing out it goes to the home page so it has only /
 #name of url for calling it in put in <a> tag, example <a href = url 'restaurant-sign-out'
 url(r'^restaurant/sign-up/$',views.restaurant_sign_up,name='restaurant-sign-up'),
 url(r'^restaurant/$', views.restaurant_home,name='restaurant-home'),

 url(r'^restaurant/account/$', views.restaurant_account,name='restaurant-account'),
 url(r'^restaurant/meals/$', views.restaurant_meals,name='restaurant-meals'),
 url(r'^restaurant/meals/add$', views.restaurant_add_meals,name='restaurant-add-meals'),
 url(r'^restaurant/meals/edit/(?P<meal_id>\d+)/$',
views.restaurant_edit_meals,name='restaurant-edit-meals'),
 url(r'^restaurant/order/$', views.restaurant_order,name='restaurant-order'),

 #sign in sign out sign up with rest api
 url(r'^auth_fb/', include('rest_framework_social_oauth2.urls')),

 #/convert-token (sign in/sign up)
 #/revoke-token(sign-out)

 #api urls
 url(r'^api/customer/restaurants/$',apis.customer_get_restaurants),
 url(r'^api/customer/meals/(?P<restaurant_id>\d+)/$',apis.customer_get_meals), #\d is for
number
 url(r'^api/customer/order/add/$',apis.customer_add_order),
 url(r'^api/customer/order/latest/$',apis.customer_get_latest_order),
] + static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)

#for uploading the images need to use static

Code Snippet 1. Setting up urls for functions.

The main purpose of this module is mapping url path expressions to the project func-

tions in views.py and apis.py. There are different parts in an url when declaring, url for

the link and the location of functions.

For example an url: url(r'^api/customer/restaurants/$',apis.customer_get_restaurants)

.A request to api/customer/restaurants/ would call the function that has been mapped to

the url, in this case is customer_get_restaurants in apis.py. Some regular expression is

utilized in some url for converting syntax such as (?P<meal_id>\d+) to take integer val-

ue.

• Forms.py

class UserForm(forms.ModelForm):
 email = forms.CharField(max_length=100, required = True)
 password = forms.CharField(widget=forms.PasswordInput())
 class Meta:
 model = User
 fields = ("username","password","first_name","last_name","email")

46

class RestaurantForm(forms.ModelForm):
 class Meta:
 model = Restaurant
 fields = ("name","phone","address","logo")

class UserFormEdit(forms.ModelForm):
 email = forms.CharField(max_length=100, required = True)
 class Meta:
 model = User
 fields = ("first_name","last_name","email")

class MealsForm(forms.ModelForm):
 class Meta:
 model = Meals
 exclude = ("restaurant",) #except for restaurant, no need to add

Code Snippet 2. Creating model forms.

The main purpose of model forms is for the database-driven application, so the infor-

mation that submitted by these forms will be taken to the models and will then be sent

to the database. These model forms are written in a separated module for clarity and will

be used in further development.

• Sign up function

def restaurant_sign_up(request):
 user_form = UserForm()
 restaurant_form = RestaurantForm()

 #after user click sign up button, run these function:
 if request.method == "POST":

 #get data from forms
 user_form = UserForm(request.POST)
 restaurant_form = RestaurantForm(request.POST,request.FILES)

 #check if information is valid
 if user_form.is_valid() and restaurant_form.is_valid():
 new_user = User.objects.create_user(**user_form.cleaned_data) #create new user
object
 new_restaurant = restaurant_form.save(commit=False) #create new
restaurant, just memory not data yet
 new_restaurant.user = new_user #assign user to
restaurant
 new_restaurant.save() #save to database

 login(request,authenticate(
 username = user_form.cleaned_data["username"], #login
 password = user_form.cleaned_data["password"]
))

 return redirect(restaurant_home)

 return render(request, 'restaurant/sign_up.html',{
 "user_form": user_form,
 "restaurant_form": restaurant_form

47

 })

Code Snippet 3. Sign up function.

The login and logout functions are handled by Django, so only the sign up function is

written manually. Firstly, user_form and restaurant_form are initialized from model

forms. After the user has filled all the information and hit the sign up button, the func-

tion will be called with a POST request and take the data from the forms. If the infor-

mation is valid, a user object and a restaurant object will be created and saved to the da-

tabase. Lastly, the function will process logging in with the submitted data.

• Modify user’s account

@login_required(login_url='/restaurant/sign-in/')
def restaurant_account(request):
 user_form = UserFormEdit(instance = request.user)
 restaurant_form =RestaurantForm(instance =request.user.restaurant)

 if request.method == 'POST':
 user_form = UserFormEdit(request.POST, instance = request.user)
 restaurant_form =RestaurantForm(request.POST,request.FILES, instance =
request.user.restaurant)

 if user_form.is_valid() and restaurant_form.is_valid():
 user_form.save()
 restaurant_form.save()

 return render(request, 'restaurant/account.html',{
 "user_form": user_form,
 "restaurant_form": restaurant_form
 })

Code Snippet 4. Modify function for user’s account.

At first, the user_form and restaurant_form are initialized with data that is already saved

in the database. If a POST request is sent from the user, the data will be modified and

saved into the database again.

• Getting list of orders and meals.

@login_required(login_url='/restaurant/sign-in/')
def restaurant_meals(request):
 meals = Meals.objects.filter(restaurant = request.user.restaurant).order_by("id") #-id to
revert order
 return render(request, 'restaurant/meals.html',{"meals":meals})
#to display list of meal on meal page

@login_required(login_url='/restaurant/sign-in/')
def restaurant_order(request):

48

 orders = Order.objects.filter(restaurant = request.user.restaurant).order_by("id") #select
restaurent of current user

 if request.method == "POST":
 order = Order.objects.get(id = request.POST["id"],restaurant = request.user.restaurant)
 if order.status == Order.COOKING:
 order.status = Order.READY
 order.save()

 return render(request, 'restaurant/order.html',{"orders":orders})

Code Snippet 5. Function for getting data of orders and meals.

Getting orders function and getting meals function are quite similar and simple, it is on-

ly necessary to request the order object and meal object from the models and sorting

with an order by id. The “restaurant_order” function has also a method to change status

of the order. If the user click a button to change the status, a POST request will be

made, the system will process an order with a specific id and change its status from

COOKING to READY.

• Adding new item to menu.

def restaurant_add_meals(request):
 meals_form = MealsForm()

 if request.method == "POST":
 meals_form = MealsForm(request.POST,request.FILES)
 if meals_form.is_valid:
 meals = meals_form.save(commit=False)
 meals.restaurant = request.user.restaurant
 meals.save()
 return redirect(restaurant_meals)

 return render(request, 'restaurant/add_meals.html',{
 "meals_form" : meals_form
 })

Code Snippet 6. Function for adding new meal.

For this function, first the model form for meals will be called. Then the function will

process with a POST request, taking the data submitted by user, checking if it is valid

then saving it to the database. The meal has “restaurant” variable as a foreign key, so the

system can determine which restaurant the meal belongs to.

After creating a new meal successfully, the user will be redirected to the meal list page.

49

• Editing meal on the menu

@login_required(login_url='/restaurant/sign-in/')
def restaurant_edit_meals(request,meal_id):
 meals_form = MealsForm(instance=Meals.objects.get(id=meal_id)) # edit the meal based on id

 if request.method == "POST":
 meals_form =
MealsForm(request.POST,request.FILES,instance=Meals.objects.get(id=meal_id))
 if meals_form.is_valid:
 meals_form.save()
 return redirect(restaurant_meals)

 return render(request, 'restaurant/edit_meals.html',{
 "meals_form" : meals_form
 })

Code Snippet 7. Function for editing meal.

The function first initiated a model form with data from the database, based on the id of

the chosen meal. After the user hit “Edit” button, a POST request will be sent, the func-

tion then processes to modify the data with a new one and saves it to the database if the

form is valid.

• Serializer.py

class RestaurantSerializer(serializers.ModelSerializer):
 logo = serializers.SerializerMethodField()
 def get_logo(self,restaurant): #this function for displaying the url of logo, which
 request = self.context.get('request') #include also the domain not just the path
 logo_url = restaurant.logo.url

 return request.build_absolute_uri(logo_url)

 class Meta:
 model =Restaurant
 fields = ("id","name","phone","address","logo")

class MealsSerializer(serializers.ModelSerializer):
 image = serializers.SerializerMethodField()
 def get_image(self,meals): #this function for displaying the url of logo, which
 request = self.context.get('request') #include also the domain not just the path
 image_url = meals.image.url

 return request.build_absolute_uri(image_url)

 class Meta:
 model = Meals
 fields = ("id","name","description","image","price")

ORDER SERIALIZER, need to transfer info from the database to json and pass it to the customer
need to create so many Serializer to create JSON for each variable and pass it to
OrderSerializer
otherwise it wont work
class OrderCustomerSerializer(serializers.ModelSerializer):
 name = serializers.ReadOnlyField(source = "user.get_full_name")

 class Meta:
 model = Customer
 fields = ("id","name","avatar","phone","address")

50

class OrderRestaurantSerializer(serializers.ModelSerializer):

 class Meta:
 model = Restaurant
 fields = ("id","name","phone","address")

class OrderMealsSerializer(serializers.ModelSerializer):
 class Meta:
 model = Meals
 fields = ("id","name","price")

class OrderDetailsSerializer(serializers.ModelSerializer):
 meal = OrderMealsSerializer()
 class Meta:
 model = OrderDetails
 fields = ("id","meal","quantity","sub_total")

class OrderSerializer(serializers.ModelSerializer):
 customer = OrderCustomerSerializer()
 restaurant = OrderRestaurantSerializer()
 order_details = OrderDetailsSerializer(many = True)
 status = serializers.ReadOnlyField(source="get_status_display")

 class Meta:
 model = Order
 fields= ("id","customer","restaurant","order_details","total","status","address")

Code Snippet 8. Serializer.

These serializers are declared to provide a useful shortcut that deals with model instanc-

es and querysets, so complex data from the database can be easily rendered into JSON.

For this step, serializers are only created to map with the data in the database, the serial-

izing objects step will be initiated.

• APIS

@csrf_exempt
def customer_add_order(request):
if request.method == "POST":
 #the access_token needed to create order based on user
 access_token = AccessToken.objects.get(token = request.POST.get("access_token"),
 expires__gt = timezone.now())

 #defining user
 customer = access_token.user.customer

 #token for stripe
 stripe_token =request.POST["stripe_token"]

 #check address, but not necessary, if user doesnt give address ~> it means it will be
picked up

 #load orderdetails from json

 order_details = json.loads(request.POST["order_details"])

 order_total = 0
 for meal in order_details:
 order_total += Meals.objects.get(id = meal["meal_id"]).price*meal["quantity"]

 if len(order_details) > 0:

51

 #Create a charge: this will charge customer card
 charge = stripe.Charge.create(
 amount = order_total * 100, #amount in cents
 currency = "EUR",
 source = stripe_token,
 description = "Order system"
)
 if charge.status != "failed":

 order = Order.objects.create(
 customer = customer,
 restaurant_id = request.POST["restaurant_id"],
 total = order_total,
 status= Order.COOKING,
 address = request.POST["address"]
)

 for meal in order_details:
 OrderDetails.objects.create(
 order = order,
 meal_id = meal["meal_id"],
 quantity = meal["quantity"],

)
 return JsonResponse({"status":"success"})
 else:
 return JsonResponse({"status":"failed","error":"Could not complete payment."})

def customer_get_restaurants(request):
 restaurants = RestaurantSerializer(
 Restaurant.objects.all().order_by("id"),
 many=True,
 context = {"request": request}
).data
 return JsonResponse({"restaurants":restaurants})

def customer_get_meals(request,restaurant_id): #restaurant_id from the url
 meals = MealsSerializer(
 Meals.objects.filter(restaurant_id = restaurant_id).order_by("id"),
 many=True,
 context = {"request": request}
).data
 return JsonResponse({"meals":meals})
def customer_get_latest_order(request):
 access_token = AccessToken.objects.get(token = request.GET.get("access_token"),
 expires__gt = timezone.now())
 customer = access_token.user.customer
 order = OrderSerializer(Order.objects.filter(customer = customer).last()).data
 return JsonResponse({"order":order})

Code Snippet 9. Creating API.

These functions used the serializers from Serializer.py to convert data to JSON type.

The JSON data will be used in the client side for taking data from the server and fetch-

ing it to the mobile screen.

After the user on the client side has made an order, the mobile application will send a

POST request to the server, as shown in “customer_add_order” function. This function

will get access_token, restaurant_id, address, order_details, stripe_token and status from

the mobile client as parameters, then send it to the server with a POST request.

52

The system calculates the total price, takes quantities and the id of meals for the order

details, send it to the server with the customer’s information. There is also a method to

charge money from the client’s card.

5.2.2 Mobile application

In this section, the main modules of the mobile application are described.

• Getting restaurant list

//API for restaurant list
 func getRestaurants(completionHandler: @escaping (JSON) -> Void){
 let path = "api/customer/restaurants"
 let url = baseURL?.appendingPathComponent(path)

 refreshToken{
 Alamofire.request(url!, method: .get, parameters: nil, encoding: URLEncoding(),
headers: nil).responseJSON(completionHandler: { (response) in
 switch response.result{
 case .success(let value):
 let jsonData = JSON(value)
 completionHandler(jsonData)
 break

 case .failure:
 completionHandler(nil)
 break
 }
 })
 }
 }

 func loadRestaurants(){
 APImanager.shared.getRestaurants { (json) in
 if json != nil {
 self.restaurants = []
 if let listRestaurant = json["restaurants"].array{
 for item in listRestaurant{
 let restaurant = Restaurant(json: item)
 self.restaurants.append(restaurant)
 }

 self.tableViewRestaurant.reloadData()
 }
 }
 }
 }

 func loadImage(imageView: UIImageView, urlString: String){
 let imgURL: URL = URL(string: urlString)!

 URLSession.shared.dataTask(with: imgURL){ (data,response,error) in
 guard let data = data, error == nil else { return}

 DispatchQueue.main.async(execute: {
 imageView.image = UIImage(data: data)
 })

53

 }.resume()
 }

Code Snippet 10. Getting restaurant list function.

The function “getRestaurants” takes the API url path and handles the JSON data from

the server with a GET request. The JSON data after getting from the server are put into

an arraylist and then displayed to the table list.

• Searching restaurant function

func searchBar(_ searchBar: UISearchBar, textDidChange searchText: String) {
 filterRestaurants = self.restaurants.filter({(res: Restaurant) -> Bool in
 return res.name?.lowercased().range(of: searchText.lowercased()) != nil
 })
 self.tableViewRestaurant.reloadData()

 }

func createSearchBar(){

 searchBar.showsCancelButton = false
 searchBar.delegate = self

 self.navigationItem.titleView = searchBar
 }

Code Snippet 11. Searching restaurant function.

When the search icon is clicked, the “createSearchBar” will be called and create a

search bar in a programmatically way. This search bar has a method to filter searching

text to match with the restaurant name. The list of restaurant will also be changed when

searching for a restaurant.

• Getting meal list

//api for getting list of meal
 func getMeals(restaurantId: Int, completionHandler: @escaping(JSON) -> Void){
 let path = "api/customer/meals/\(restaurantId)"
 let url = baseURL?.appendingPathComponent(path)

 refreshToken{
 Alamofire.request(url!, method: .get, parameters: nil, encoding: URLEncoding(),
headers: nil).responseJSON(completionHandler: { (response) in
 switch response.result{
 case .success(let value):
 let jsonData = JSON(value)
 completionHandler(jsonData)
 break

 case .failure:
 completionHandler(nil)
 break
 }
 })
 }

54

 }
func loadMeals(){
 if let restaurantId = restaurant?.id{
 APImanager.shared.getMeals(restaurantId: restaurantId, completionHandler: { (json)
in
 if json != nil{
 self.meals = []
 if let tempMeals = json["meals"].array{
 for item in tempMeals{
 let meal = Meal(json:item)
 self.meals.append(meal)
 }
 self.tableView.reloadData()
 }
 }})
 }
 }

Code Snippet 12. Getting meal list function.

The getting meal list function is similar to the getting restaurant list. First the JSON data

is gotten from the server by a GET request and then process to be displayed to the user

interface.

• Changing quantity of meal and add to tray button

let trayItem = TrayItem(meal: self.meal!, qty: self.counter)
 guard let trayRestaurant = Tray.currentTray.restaurant, let currentRestaurant =
self.restaurant
 else{
 Tray.currentTray.restaurant = self.restaurant
 Tray.currentTray.items.append(trayItem)
 return
 }

var counter = 1
@IBAction func plus(_ sender: AnyObject) {

 if counter < 99{
 counter += 1
 total_order.text = String(counter)
 if let meal_price = meal?.price{
 price.text = "$\(Float(counter) * meal_price)"
 }
 }

 }
 @IBAction func minus(_ sender: AnyObject) {

 if counter > 1{
 counter -= 1
 total_order.text = String(counter)
 if let meal_price = meal?.price{
 price.text = "$\(Float(counter) * meal_price)"
 }
 }
 }

Code Snippet 13. Changing quantity of meal and add to tray button function.

55

After clicking the “Add to tray” button, an object called “trayItem” will be initiated with

the detail of the meal and its quantity. This object is a child of a class of an array which

is displayed on the Cart page.

A counter variable is declared for counting quantity. When the user selects the plus and

minus button to change quantity of the meal, the price label will be changed respective-

ly by the result of counter multiply by single meal price.

• Getting user location and inputting location

//show user's location
 if CLLocationManager.locationServicesEnabled(){

 locationManager = CLLocationManager()
 locationManager.delegate = self
 locationManager.desiredAccuracy = kCLLocationAccuracyBest
 locationManager.requestAlwaysAuthorization()
 locationManager.startUpdatingLocation()

 self.map.showsUserLocation = true
 }

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 let address = textField.text
 let geocoder = CLGeocoder()
 Tray.currentTray.address = address

 geocoder.geocodeAddressString(address!) { (placemarks, error) in
 if (error != nil){
 print("error", error)

 }
 if let placemark = placemarks?.first{
 let coordinates: CLLocationCoordinate2D = placemark.location!.coordinate
 let region = MKCoordinateRegion(center: coordinates
 , span: MKCoordinateSpanMake(0.01, 0.01))

 self.map.setRegion(region, animated: true)
 self.locationManager.stopUpdatingLocation() //stop updating location of user
when input new address

 //create pin
 let annotation = MKPointAnnotation()
 annotation.coordinate = coordinates
 self.map.addAnnotation(annotation)
 }
 }
 return true
 }

Code Snippet 14. Taking location.

56

First when the user goes to the cart page and the location service is enabled, the map

will automatically take the location of the user and display it on the map.

There is a text field for inputting the address of the user, the address that will be sent to

the server is taken from this text field. The application uses Core Location library to

convert the string from the text field and find it on the map through geo coder, and plac-

es a mark on that location afterwards.

• POST request for creating order

func createOrder(stripeToken: String, completionHandler: @escaping (JSON) -> Void){
 let path = "api/customer/order/add/"
 let url = baseURL?.appendingPathComponent(path)
 let simpleArray = Tray.currentTray.items
 let jsonArray = simpleArray.map { item in
 return [
 "meal_id": item.meal.id!,
 "quantity": item.qty
]

 }

 if JSONSerialization.isValidJSONObject(jsonArray){
 do{
 let data = try JSONSerialization.data(withJSONObject: jsonArray, options: [])
 let dataString = NSString(data: data, encoding: String.Encoding.utf8.rawValue)!

 let params: [String: Any] = [
 "access_token": self.accessToken,
 "stripe_token": stripeToken,
 "restaurant_id": "\(Tray.currentTray.restaurant!.id!)",
 "order_details": dataString,
 "address": Tray.currentTray.address!
]
 refreshToken{
 Alamofire.request(url!, method: .post, parameters: params, encoding:
URLEncoding(), headers: nil).responseJSON(completionHandler: { (response) in
 switch response.result{
 case .success(let value):
 let jsonData = JSON(value)
 completionHandler(jsonData)
 break

 case .failure:
 completionHandler(nil)
 break
 }
 })
 }

 }catch{
 print("JSON serialization failed")
 }
 }
 }

Code Snippet 15. POST request for creating order.

57

Firstly, the API url is declared. The data of every item on the Tray are taken into a jso-

nArray variable. The data consist of meal id and quantity, and are converted to JSON

and String type with JSONSerialization and NSString methods, which are system de-

fault methods.

A POST request is made with parameters which include access token from Face-

bookSDK, Stripe Token which is generated when making payment, restaurant id, order

details with the data of jsonArray and address.

• Getting latest order.

//getting latest order
 func getLatestOrder(completionHandler: @escaping (JSON) -> Void) {
 let path = "api/customer/order/latest/"
 let url = baseURL?.appendingPathComponent(path)
 let params: [String: Any] = [
 "access_token": self.accessToken
]

 refreshToken{
 Alamofire.request(url!, method: .get, parameters: params, encoding: URLEncoding(),
headers: nil).responseJSON(completionHandler: { (response) in
 switch response.result{
 case .success(let value):
 let jsonData = JSON(value)
 completionHandler(jsonData)
 break

 case .failure:
 completionHandler(nil)
 break
 }
 })
 }

 }

func getOrder(){

 APImanager.shared.getLatestOrder { (json) in
 print(json)
 if let orderDetails = json["order"]["order_details"].array {

 self.statusLabel.text = json["order"]["status"].string!.uppercased()
 self.tray = orderDetails
 self.orderTableView.reloadData()
 }
 }
 }

Code Snippet 16. Getting latest order.

The application takes the path of API and processes a GET request to take data of the

latest order that has been made. This API takes the last order of a specific customer and

sends it back to the mobile application.

58

The function getOrder is called to display the latest order and its status. First, the order

details are checked if it is a valid result, then the status and a list of products will be

shown on the application.

• Getting Facebook user data

public class func getFBUserData(completionHandler: @escaping () -> Void){
 if (FBSDKAccessToken.current() != nil){
 FBSDKGraphRequest(graphPath: "me", parameters: ["fields":"name, email,
picture.type(normal)"]).start(completionHandler: { (connection, result, error) in
 if(error == nil){
 let json = JSON(result!)
 print(json)
 User.currentUser.setInfo(json: json)
 completionHandler()
 }
 })
 }
 }

Code Snippet 17. Getting user data from Facebook

This function requests from Facebook SDK and returns the fields of name, email, pic-

ture as JSON data type, which the application will use to display user name and image,

also send it to the server when making an order.

59

6 TESTING

In this section, test cases and detailed description of the results are given.

6.1 Signing up a New Restaurant

• Testing Step

Go to home page, click the link for signing up. Fill all the fields and match the

requirements. Click Sign up.

• Expected result

If the registration is done successfully, the user will be redirect to the main Or-

der page. Otherwise the sign up page will show an error message.

• Actual result

Figure 41. The page shows error message.

Figure 42. Successfully registered.

60

6.2 Editing account information

• Testing Step

Go to Account page of the website, change the current information on the form.

Click update.

• Expected result

The modified information is saved.

• Actual result

Figure 43. New information is saved.

6.3 Adding meal

• Testing Step

Go to Meals page of the website, click a blue button for adding a meal. Fill the

form and click Add to complete the process.

• Expected result.

The Meal should be added to the server and also displayed on the meal page.

• Actual result

61

Figure 44. Filling the form.

Figure 45. New meal displayed on the Meal page.

6.4 Editing Meal

• Testing Step

Click on the name of the meal that had to be edited. Change the information on

the form and click Update.

• Expected result

The meal is displayed with new information on the Meal page.

• Actual result

Figure 46. Editing form.

62

Figure 47. New description updated.

6.5 Signing with Facebook on Mobile

• Testing step

Click Sign in with the Facebook button. After signing in the information of the

user is displayed as the information from Facebook.

• Expected result

User image and name is taken from Facebook and displayed on the application.

• Actual result

Figure 48, Figure 49. Sign in button, Information of user from FB

6.6 Getting list of restaurants

• Testing step

After signing in, a list of restaurants is displayed.

63

• Expected result

A list of all restaurants in the database with the restaurant that made for testing.

• Actual result

Figure 50. List of restaurants which includes also a testing restaurant.

6.7 Getting list of meals

• Testing step

From the Restaurant list page, choose a restaurant.

• Expected result

A list of meal from the menu of selected restaurant is displayed.

• Actual result

Figure 51. meal list of testing restaurant.

64

6.8 Making an order

• Testing step

Select a meal to order, change the quantity and add to cart.

Submit the address and process payment.

For testing, input 4242 4242 4242 4242 as a credit card and make a payment.

• Expected result

In the order page, the latest order should be shown with its status. And on the

Admin side there is an order that is sent from the customer.

• Actual result

Figure 52, Figure 53. Submit address, After making payment.

Figure 54. Order is sent to the Admin dashboard.

65

6.9 Changing order status.

• Testing step

On the Order page, click the blue button to change status from Cooking to

Ready

• Expected result

The status on the mobile application should be changed.

• Actual result

Figure 55. Changing status from Admin side.

Figure 56. Status of the order is changed on the mobile application.

66

7 CONCLUSION

With the aim to develop a fully functional system with both web application and mobile

application, the project meets nearly all the requirements of the software. The applica-

tion includes also RESTful methods for communicating between server and client sides

which helps the abundance of the system. Yet, this application still has a huge space for

improvement for functionalities.

Users can use Mobile Ordering System to create their own restaurant with a creative

menu and manage orders through the web based application. On the client side, users

can easily select and make an order from many different restaurants.

Although the application seems to be simple, the implementation was not easy. There

were many challenging problems that came up during developing period. One of the

most confusing parts was creating API, making connection between two separate appli-

cations and especially creating an order from the mobile. Since the user’s information is

taken from Facebook, there are the access token and the refresh token that required to

make sure the token is not expired when doing any action on the mobile. If the token is

expired, it needs to refresh by adding time. For making payment, the Stripe token

should be created also to communicate with the third party library and make calculation

on the server. Again these API functions were really confusing for the first time imple-

menting. Thanks to the huge community of developers in many different forums, solu-

tions to solve this challenging parts were found.

Future Works

The initial goals of the project have been achieved, as mentioned there are still im-

provements for future work. The order page on the Admin Dashboard can be more de-

tailed, the actions for the orders can be developed with more statuses. Registering for a

user can also be done by social media accounts. There are numbers and data that can be

analyzed and formed to a chart that is beneficial to the business. For the mobile appli-

cation, the user can also log in with a Google account. Last but not least, The UI of both

web app and mobile app can be implemented more responsively and friendly.

67

REFERENCES

/1/ Python Prgramming language. Acessed 23.03.2018.

https://en.wikipedia.org/wiki/Python_(programming_language)

/2/ Django (webframework). Acessed 23.03.2018.

 https://en.wikipedia.org/wiki/Django_(web_framework)

/3/ Installing packages using pip and virualenv. Acessed 23.03.2018.

 https://packaging.python.org/guides/installing-using-pip-and-virtualenv/

/4/ Writing your first app with Django. Acessed 23.03.2018.

 https://docs.djangoproject.com/en/1.7/intro/tutorial01/

/5/ The different between SQLite and MySQL. Acessed 23.03.2018.

 https://www.quora.com/What-are-the-differences-between-SQLite-and-MySQL-

Are-they-both-the-same-company

/6/ OAuth. Acessed 23.03.2018.

https://en.wikipedia.org/wiki/OAuth

/7/ Bootstrap. Acessed 23.03.2018.

 https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)

/8/ Xcode. Acessed 23.03.2018.

 https://en.wikipedia.org/wiki/Xcode

/9/ Swift Programing Language. Acessed 23.03.2018.

 https://en.wikipedia.org/wiki/Swift_(programming_language)

/10/ Swift 4. Acessed 23.03.2018.

68

 https://developer.apple.com/swift/

/11/ CocoaPods. Acessed 23.03.2018.

https://stackoverflow.com/questions/22261124/what-is-cocoapods

/12/ Alamofire Tutorial: Getting Started. Acessed 23.03.2018.

https://www.raywenderlich.com/147086/alamofire-tutorial-getting-started-2

/13/ A Swift tutorial for stripe. Acessed 23.03.2018.

 https://www.appcoda.com/ios-stripe-payment-integration/

/14/ REST and RESTful differences. Acessed 23.03.2018.

https://stackoverflow.com/questions/1568834/whats-the-difference-between-

rest-restful

/15/ Web framework Wars: Django vs Ruby on Rails. Acessed 23.03.2018.

https://thegeekswatch.blogspot.com/2016/08/framework-wars-django-vs-ruby-on-

rails.html

/16/ The payment process flow on Stripe. Acessed 23.03.2018.

https://stripe.com/docs/recipes/switching-to-stripe

/17/ RESTful web service tutorial. Acessed 23.03.2018.

https://java2blog.com/restful-web-service-tutorial/

