
Bachelor’s thesis

Information Technology

NINFOS14

2018

Hongyu Zhao

WEB DEVELOPMENT BASED
ON ADOBE EXPERIENCE
MANAGER(AEM) IN A WEB
PROJECT

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

2018 | 46 pages

Hongyu Zhao

WEB DEVELOPMENT BASE ADOBE EXPERIENCE
MANAGER(AEM) IN A WEB PROJECT
This thesis represents a documentation for web developers and content managers who work
with web projects based on the Adobe Experience Manager (AEM).

The objective of this thesis was to guide beginner developers and content managers to improve
their productivity and increase their knowledge about AEM.

Experience was gained by daily work with front-end development with AEM. Technical materials
were collected from AEM official documentation.

KEYWORDS:

Adobe Experience Manager, JavaScript, CSS, web development, documentation

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 1

2 GOALS & AUDIENCE 2

3 TECHNOLOGIES 3
3.1 HTML & HTML5 3

3.2 CSS & CSS 3 3

3.3 JS & ES6 3

3.4 XML 3
3.5 jQuery 4

3.6 Bootstrap 4
3.7 AEM 4

3.8 Handlebars 4

4 PROJECT STRUCTURE AND WORKING PROCESS 5

5 WEB DEVELOPMENT BASED ON AEM COMPONENTS 6
5.1 Why choose AEM for the company project’s CMS? 6
5.2 AEM development environment set up 6

5.3 AEM component 9
5.3.1 AEM dialog 9

5.3.2 Column control 10

5.3.3 Title Text Image V2 11
5.3.4 Multi Image V2 12

5.3.5 Raw HTML 13

5.4 Building event pages 14
5.4.1 Install Handlebars by NPM 14

5.4.2 Basic usage of handlebars 14

5.4.3 Using helpers in handlebars 15

6 FRONT-END DEVELOPMENT IN AEM 19
6.1 RawHTML 19

6.2 Web storage 19

6.2.1 local storage 20
6.2.2 Session storage 21

6.2.3 indexDB storage 22

6.3 HTML5 drag and drop 33

6.4 Canvas 37

7 CONCLUSION 40

REFERENCES 41

FIGURES

Figure 1. Project structure 5
Figure 2. VMware network connection. 7
Figure 3. Enable the share folder. 8
Figure 4. AEM login interface. 8
Figure 5. Page properties. 10
Figure 6. AEM component - column control. 11
Figure 7. Column control with 4 columns. 11
Figure 8. AEM component - Title Text Image V2. 12
Figure 9. AEM component - 5.3.3 Title Text Image V2 Demo. 12
Figure 10. AEM component - Multi Image V2. 13
Figure 11. Handlebars basic usage output. 15
Figure 12. Example result of lookup expression code example. 17
Figure 13. Before drag. 34
Figure 14. After drag to right side. 34
Figure 15. canvas traignle example result. 38
Figure 16. drawing normal text by canvas example result. 38

LIST OF ABBREVIATIONS (OR) SYMBOLS

HTML Hypertext Markup Language
CSS Cascade Style Sheet
XML eXtensuble Markup Language
SVG Scalable Vector Grapgichs
API Application programming interface
AEM Adobe Experience Management
Doctype Document type declaration

1

1 INTRODUCTION

The content of the thesis represents a documentation of technologies, work flow, and
content management for front-end developers and content managers who work with a
web project based on Adobe Experience Manager(AEM). One of the company’s project
is used as an example, for describing the processing of managing AEM projects.
The documentation covers the following topics: building web pages in AEM with
multiple levels, basic modern front-end development and a web page template engine.

2

2 GOALS & AUDIENCE

 The purpose of the thesis is to document a knowledge of AEM web management for
front-end developer and content managers. The documentation will help to
standardise work process related to projects development in AEM and help front-end
developers and content managers to familiarise with AEM technologies.

3

3 TECHNOLOGIES

This chapter introduces the main technologies used in this thesis project. The main
technologies are: HTML 5, CSS 3 JavaScript, XML, jQuery, Bootstrap, AEM and
Handlebars.

3.1 HTML & HTML5

Hypertext Markup Language (HTML) [1] is used to define the content of web pages.
HTML text is a descriptive text made up of HTML commands that describe text,
graphics, animations, sounds, tables, links, and more. The structure of HTML includes
the head and the body. The head describes the information required by the browser,
and the body contains the specific content to be described.
According to the MDN Web Docs [1], HTML5 is a latest version of the HTML, and it is
supported in all modern browsers. The following sections focus on explaining the new
issues in HTML5, the elements have been deleted or redefined in HTML5.

3.2 CSS & CSS 3

Cascading Styles Sheets(CSS) [2] is a particular web development style sheets which is
used to specify the layout of web pages. In CSS, It can be defineed in the document by
a number of the style statements, that is merged into a single rule in a definite way.
Nowadays, There is the CSS3 already, which has more features than the previews
versions, such as: animation, translating the elements, font stretching, and so on.

3.3 JS & ES6

JavaScript [3] is the programming language to program the behavior of web pages.
The most important application in JavaScript is the ability to add dynamic functionality
to web pages. It is most often used as part of a Web browser, which allows the
implementation of client- side script to interact with the user's browser for limited
management, asynchronous communication, editing, and document content for
display to the user.

3.4 XML

Extensible Markup Language (XML) [4], meaning Extensible Markup Language. XML
syntax is similar to HTML, but elements in HTML are fixed, and XML tags can be user-
defined.

4

3.5 jQuery

jQuery [5] is a JavaScript library, which is fast, small and feature-rich. It does things like
the travel and manipulation of HTML documents, event handling, animation and Ajax
much simpler. It has an easy to use API that works in several browsers. Combining
versatility and extensibility, jQuery has changed the way millions of people write
JavaScript.

3.6 Bootstrap

Bootstrap [7], from Twitter, is a popular front-end framework. Bootstrap is based on
HTML, CSS, JavaScript, it is simple and flexible, making Web development faster.
Bootstrap provides a basic structure with grid system, link style, and background. The
stylesheet part of Bootstrap, it has global CSS setting, defining basic HTML element
styles, extensible classes, and an advanced grid system. Bootstrap contains a dozen
reusable components for creating images, drop-down menus, navigation, warning
boxes, pop-up boxes, and so on. It contains a dozen custom jQuery plug-ins. You can
include all of the plug-ins directly, or you can include them individually. As well as, in
the Bootstrap, you can customize Bootstrap components, LESS variables, and jQuery
plug-ins to get your own version.

3.7 AEM

Adobe Experience Manager (AEM) [8] is a comprehensive content management
solution for building websites, mobile applications, and forms. This makes it easy to
manage marketing content and assets.

3.8 Handlebars

Handlebars [10] is a largely compatiable with Mustache templates. The Mustache is a
sample web system with implementations aviable for many morden web development
languages, like CoffeScript, JavaScript, PHP and so on. In most cases, Handlebars is
used to replace Mustache and continue to use the current template. It provides the
power nessecary to build a semantic templates with no frustration.

5

4 PROJECT STRUCTURE AND WORKING PROCESS

The company’s project is divided into 3 different levels: level 1, level 2 and level 3.
Each level has the different working tasks and purposes. The prioject’s structure is
described in Figure 1.

Figure 1. Project structure

For each country and language different levels could be applied. Level 1 is being used
only for English speaking countries and is representead as code “/en/”. Level 2 is being
used for localized countries, codes are as following: Russia is “/ru/”, Finland is “/fi/”,
France is “/fr/” and so on. Level 3 has country code combined with language codes,
such as Russia-Russian is /ru-ru/, Finland-Finnish is /fi-fi/, France-French is /fr-fr/, etc.
First of all, every case for this project should be impelemented in AEM based on the
AEM components.
In this project, the cases are divided by the global cases and local cases. In global cases,
all the pages have the same page layout with English version and they are built on
Level 1. After the pages on Level 1 are buit, they are being exported to Level 2. At that
moment, pages on Level 2 are identical with pages on Level 1, however, the page
contents, hyperllinks and assets’ URLs should be changed according to the localized
versions. After pages on Level 2 have been changed according to the localized versions,
the Quality Assurance (QA) has to be applied because the related to the bugs which
could be caused by locales being different from the English version. The purpose of t
Level 3 is to develop client-specific features and events.

6

5 WEB DEVELOPMENT BASED ON AEM COMPONENTS

Adobe Experience Manager(AEM) is used as the main technology in this project. In the
AEM, it has a lot of AEM components can be used to building the web pages. They are
reuable, reliable and faster.

5.1 Why choose AEM for the company project’s CMS?

Content Management System(CMS) is a computer application that supports the
creation and modification of digital content. It usually supports multiple users in a
collaborative environment.
This project objectives are to build the client’s business,attract new customers, retain
existing customers of the main source of income, recruit staff, tell the media and
investors, maintain relationships with partners and suppliers valuable tool. This needs
to be in the form of digital content such as: images, video, documents, applications,
and lists. AEM (Adobe Experience Manager) is an enterprise web content
management system. It is one of the fastest growing web platforms in the world,
mainly used by large companies.
AEM sites provide the following functions:

• Can build and manage mobile sites and responsive design on the platform.
• The site built by AEM has tools to optimize the shopping cart, synchronize

product information from other systems such as: ERP or product inventory
management (PIM) systems, an e-commerce platform and generate pages from
the catalog data.

• This is especially useful for organizations that need to manage many areas and
languages. With websites, they can be controlled from a centralized location.

• The unified digital experience of different devices (such as desktops, tablets,
smartphones and location screens) is sent to users.

• The ability to manage and launch marketing activities from a central location.
Organizing and storing assets on the site, So the assets can be easily accessed
and using for all of the activities.

5.2 AEM development environment set up

The working evenironment is in the VMware Fusion, with enables to the Windows
applications abd PC-only devices. It allows users to run multiples operating system(OS)
and applications at same time.
Inside of the VMware, connect to the VPN by a security token with the project’s
username.

7

Figure 2. VMware network connection.

After the network is connected, the next step is to enable a shared folder for the
virtual machine. The shared folder is being used for uploading assets from local device
to the virtual machine. At the same time, “Read & Write” permissions should be set
to a shared folder (Figure 3).

8

Figure 3. Enable the share folder.

After all set up ready, login to the AEM.

Figure 4. AEM login interface.

9

5.3 AEM component

AEM components [9] are used to hold, format, and render the content made available
on the webpages. The AEM component is a modular unit that implements specific
functionality to present page content web site. It is reusable and has configurable
editing behavior.
Each AEM component can has the vaiours functionalities, in the following sections will
introduce the frequently-used AEM components in this company project.

5.3.1 AEM dialog

AEM dialog is the the defaulted component in AEM. It has 5 sections which provide
various features, and the 3 sections used often.
The first one is the page section, it has one tab which called page properties, it is using
for default settings for the morden web development in the page properties section,
which save a lot of time for developers. It sets the default doctype for all pages as
html, dir as ltr, data-local as the localized code for level 3, the data-lang
as the language code of level 2, and the charset as UTF-8 (Code snippet 1). shows
an example for Italy – Italian language.

As well as, the page properties tab provides the custom settings for the web pages,
such as, page title, browser title, page keywords, pages launch or expire time, the
redirect vanity URLs, ans so on. The Figure 5 shows more details below.

<!DOCTYPE html>
<html dir="ltr" data-locale="it-it" data-lang="it">
<head>
 <meta charset="UTF-8">

Code snippet 1. Default page properties.

10

Figure 5. Page properties.

Inside of the page section, deleopers are supposed to activate/deactiveate page, lock
page, and rollout the page form higher level to the lower level, for example rollout one
page from Level 2 to Level 3.
The second section is a list for all custom AEM components which is developed by
HTML Template Language (HTL) and some important custom AEM components will be
introduced more in sections 5.3.2 – 5.3.#.
The third component is using for create the backup version for the web pages. In this
section, the developers allowed to create the page’s version before update the page,
and loading diffirence between versions.

5.3.2 Column control

This is the main container for all the child components on the we page.

11

Figure 6. AEM component - column control.

This component divide the column layout on each raw from 1 column to 4 cloumns,
100% width, 50% width, 30% width and 20% width, respectively. The different column
layout versions have a different margin and padding space.
The Figure 8 shows an example of how one raw is divided by 4 cloumns.

Figure 7. Column control with 4 columns.

5.3.3 Title Text Image V2

This is a component which can contain the image, texts and buttons inside of one
block, as well as other various layout options. It also can be used for setting the URLs,
such as open the assets on the tab or as an overlaybox on the current page, by setting
the CTA target option.

12

Figure 8. AEM component - Title Text Image V2.

Figure 9 shows an example for a carousel which is built by AEM component Title Text
Image V2.

Figure 9. AEM component - 5.3.3 Title Text Image V2 Demo.

5.3.4 Multi Image V2

This component can be using for the multi images displayed design. Such as image
sliders.

13

Figure 10. AEM component - Multi Image V2.

As Figure 10 shows, this component can display many images with the the image title,
texts and image hyperlinks. In addition clicking the green up/down arrow can changeg
the image’s ordering sequence.

5.3.5 Raw HTML

Since the AEM components can not cover all the special requests from clients, so there
has to be one AEM component which is called Raw HTML. This component has the
100% width as a default, and it allows to add the full HTML code to complete the
special requests. When the custome JavaScript and CSS needed, the JavaScript codes
should be contained inside of the <script
type=”text/javascript”></script> HTML tag, and CSS code should be
contained with <style type=”text/css”></style> HTML tag.

14

5.4 Building event pages

The client has the products release events every year from September to December,
and each event page is built by the template engines. The template engine is like a
parsing generator for HTML, which generates static HTML pages after the
corresponding template is populated with the data. It can also be executed both server
and client side.
In this project, the Handlebars is used as a template engine for building event pages.

5.4.1 Install Handlebars by NPM

Node Package Manager (NPM) [13] is a package manager for JavaScript.
Handlebar's NPM package contains two libraries that are both suitable for the
CommonJS awareness system and build a browser library that can directly use the
browser mechanism.
The browser is built in node_modules/handlebars/dist/ directory. Getting a browser to
access the broswer’s content depends on the build of the system, but it may be as
simple as copying files to a usable place. This is the preferred installation method when
using the precompiler, because it ensures the precompiled template is always running
with the same version of the runtime. The following command installs Handlebars by
using npm

5.4.2 Basic usage of handlebars

A file extension of the Handlebars is .hbs, the data contains objects.

Calling data by the HTML template inside of the HTML tag, as well as adding a
className, idName and inline CSS stylesheet inside of the HTML tag
Punctuate the Code snippet heading as I have the previous one

npm install --save handlebars

{
 title: 'handlebars demo',
 obj: {
 id: '1',
 category: 'node.js',
 "date": '2018'
 }
}

15

Figure 12 shows the output on HTML page by code snippet 1 & 2.

Figure 11. Handlebars basic usage output.

5.4.3 Using helpers in handlebars

A Helper [11] is a function injected into the template to receive parameters and to
perform logical processing. And the helpers can be divided by built-in helpers, custom
helpers and register helpers. The following sections will explain these 3 typies helpers,
respectively.
In the built-in helpers, here has several expressions, if else, unless, each,
with, lookup, and log. In the following code snippets, code snippet #, will
show the code example for each of them.

Code snippet 2 - Handlebars - call data by HTML template

<h2 style=”color: red;”>{{ title }}</h2>
<p>{{ obj.id }}</p>
<p style=”color: green;”>{{obj.category }}</p>
<p>{{ obj.date~ }}</p>

16

Same with the general programming language, such as JavaScript, but since special
chracters are used in handlebars, the if condition is not logical expression, only
variables or values.

Same reason for the if-else expression, handlebars does not support logical non-
("!"), this is another helpers’ expression which is opposite of the if condition.
This Helper is called unless.
The expression each can be used as a relative path to get the context of the previous
layer. The context concept is similar to the contet in JS, for example, in each passage
code block, once every loop context is passage[0], passage[1], and so on. Some
default variables of each expression, @first/@last, return a true value when the
object is the first or the last element in the array. If the element of the array is a value
rather than an object, the @index represents the current index value, which can be
used to obtain the current value with @key or this.
The expression with is used with paging and scoped.

{{ #if uesrs }}
<h1>{{ firstName }} {{ lastName }}</h1>
{{ else }}
<h1>Unknown user</h1>
{{ /if }}

Code snippet 3 - Handlebars - if-else expression code example

Code snippet 4 - Handlebars - unless expression code example

{{ #unless demoIndex }}
 <h1>This is the helpers- unless code example</h1>
{{ /unless }}

Code snippet 5 - Handlebars, each expression ciode example

{{ #with users as |myUsers| }}
 <h2>{{ myUsers.firstName }}
{{ myUsers.lastName }}</h2>
{{ else }}
 <p class="none">No contents here</p>
{{ /with }}

17

The loopup expression [10] allows dynamic parameter analysis using the handlebar
variable. This is useful for decompressing the indexs’ value of array.

The Figure # show the output result of the code snippet 8.

Figure 12. Example result of lookup expression code example.

{{ #each passage }}
 {{ #each paragraphs }}
 {{ @../index }}:{{ @index }}:{{ this }}</p>
 {{ else }}
 <p class="none">None</p>
 {{ /each }}
{{ /each }}

Code snippet 6 - Handlebars, with expression code example

//The code in .hbs (handlebars type document)
{
 team: [
 {id: 1, title: "team1"},
 {id: 2, title: "team2"},
],
 members: [
 {id: 1, login: "member1", teamId: 1},
 {id: 2, login: "member2", teamId: 2},
 {id: 3, login: "member3", teamId: 1}
],
 infos: [
 'a', 'b', 'c'
]
};
//In .html (HTML type document)
<table>
 {{ #each memberss }}
 <tr data-id="{{ id }}">
 <td>{{ login }}</td>
 <td data-id="{{ teamId }}">{{ lookup ../infos
@index }}</td>
 </tr>
 {{ /each }}
</table>

Code snippet 7 - Handlebars, loopup expression ciode example

18

Sometimes if default helpers is not enough forall the requests, so the custom helpers
can finish the special requests written by JS.
The data type, like Number, string, Boolean, can be directly introduced into, at the
same time also can pass a JSON object (but only one), with key=value, finally can be
visited by parameter hash attributes [12].
The pointer this can be used to refer to the object when passing the variable, and
returned as an HTML code after a logical decision. But considering the maintainability
of HTML code and js code is not reusable, and it is better to use pagination in the
abstract layer.
In this case, the template can be written as, for example, {{ agree_button
person }}. And by using the register helper to build a custom block helper in JS.

hbs.registerHelper('agree_button', function (p) {
 console.log(p === this);//==> true
 var blog =
hbs.handlebars.escapeExpression(this.person.blog),
 name =
hbs.handlebars.escapeExpression(this.person.name);

 return new hbs.handlebars.SafeString(
 "" + name + "</button>"
);
});
//data
var context = {
 person:
 {
 name: "Zhao Hongyu",
 blog: "https://example.com"}
 }
};

Code snippet 8 - Handlebars, register helper in custom block helper

19

6 FRONT-END DEVELOPMENT IN AEM

In some cases, design requires the custom layout which can't be impletemented by
using an existing AEM component, pure code will be the last option.Therefore, there is
one AEM component, RAWHTML, which is an empty HTML block, with some defaulte
CSS style settings.

For the localhost development, some front-end development knowledge and skills are
nessecary. The following sections will introduce the comman project requests which
can not be done by AEM components.

6.1 RawHTML

RawHTML is an AEM component which allows an insertion of a code snnipet into an
empty HTML block. The empty HTML block contains default CSS style settings:
wdith, height, display and className.

6.2 Web storage

The design and idea of HTML5 Web storage is a better mechanism for storing client
network data. It is implemented as a client-side database through a web browser,
which allows web pages to store data in the form of key-value pairs.
It has the following properties:

• Each original site/domain can store up to 5MB of data.
• You can use JavaScript to manipulate data in web storage by using attributes

and methods.
• Like cookies, you can choose to keep the data (maintain), even if you've left the

site, close the browser TAB, exit the browser or shut down the computer.
• Unlike cookies, which are created by server-side scripts, web storage is created

by client-side scripts such as JavaScript.
• Unlike cookies, data in a web store does not automatically accompany each

HTTP request on the server side.
• Web storage is native support in mainstream Web browsers, such as Chrome,

Opera, Firefox, Safari, and IE8 +. In other words, no third-party plug-ins are
required

HTML5 Web storage provides 2 different storage objects,
window.localStorage() and window.sesstionStorage().

20

First of all, before using the web storage, we have to check if browser support for
localStorage and session Storage, which using following codes:

6.2.1 local storage

Local storage, the data is stored as a string and will continue (unless you explicitly
delete it). Even if the browser window closes, the data will always be there, and if the
next access to the same origin USES the same browser, then the data is available. Local
storage is the data that is specifically designed to store over multiple browser
Windows and persist over the current session.
Unlike desktop systems, Web applications have always lacked the ability to work
offline. Now, the emergence of HTML5 local storage has made offline work possible.
Imagine you're filling out a multi-page Web form, or writing an article, and the
deadline is looming, and there's a sudden outage. You will lose all the data you have
carefully created. Because of the local storage, you can continue to work offline, while
the Web application USES client-side scripts such as JavaScript to periodically store
your work locally.
A web site allows users to customize the theme and layout of a web page and save
these Settings in a local store. In this way, users can see their own web pages in
subsequent visits.

// Check browser support
if (typeof(Storage) !== "undefined") {
 //doing something here
} else {
 //not support message here
}

Code snippet 9

21

6.2.2 Session storage

The data is stored as a string and will only persist in the current session. When the
browser window closes, the data will be deleted. Session storage is a case where the
same user USES the same web site for multiple transactions in different browsers.
Transactions in each browser window get a backup of their own session storage, which
is different from another transaction in another browser window. When the user
closes the browser window, the session store data that belongs to this window will
continue to exist. In this way, transaction data does not leak from one browser window
to another.

<script type="text/javascript">
 // Check browser support
 if (typeof(Storage) !== "undefined") {
 localStorage.lastname="Tony";
 document.write(localStorage.lastname);
 } else {
 document.getElementById("result").innerHTML =
"Sorry, your browser does not support web storage...";
 }
</script>

Code snippet 10

22

6.2.3 indexDB storage

In HTML5's local storage, there is a database called indexedDB [6], a NoSQL database
stored locally on the client side that can store a large amount of data.
A web site can have multiple indexedDB databases, but the name of each database is
unique. We need to connect to a specific database through the database name.

<script type="text/javascript">
 // Check browser support
 if (typeof(Storage) !== "undefined") {
 sessionStorage.lastname="Tony";
 document.write(sessionStorage.lastname);
 } else {
 document.getElementById("result").innerHTML =
"Sorry, your browser does not support Web Storage...";
 }
</script>

Code snippet 11

<script type="text/javascript">
 // Open dbName database
 var request = indexedDB.open('dbName', 1);
 //do it when connecting the database failed
 request.onerror = function(e){
 console.log('connecting the database failed');
 }
 //do it when connecting the database success
 request.onsuccess = function(e){
 console.log('connecting the database successed');
 }
</script>

Code snippet 12

23

We use the indexeddb.open method to connect to the database, which takes two
parameters, the first is the database name, and the second is the database version
number. This method returns an IDBOpenDBRequest object representing a request
object that requests a connection to the database. We can define the methods for
connection success or failure by listening to the onsuccess and onerror events of the
request object. And each database version number should be different and must be an
integer, for avoiding the duplicated database versions.

After indexedDB.open() connected, we can return an IDBOpenDBRequest
object and by calling the close() method to close the database.
According to the delete database, by calling deleteDatabase() method:

<script type="text/javascript">
 //updating the database version, and open it as the
name: 2
 var request = indexedDB.open('dbName', 2);
 request.onupgradeneeded =
function(e){ console.log('new database name is' +
e.newVersion); }
</script>

Code snippet 13

var request = indexedDB.open('dbName', 2);
request.onsuccess = function(e){
 console.log('connected');
 var db = e.target.result;
 db.close();
 console.log('database closed');
}

Code snippet 14

indexedDB.deleteDatabase('dbName');
console.log('database deleted');

Code snippet 15

24

The indexedDB based on the object store, which like the database table of indexedDB.
For creating the object store by using createObjectStore()method, which has 2
parameters, the first is name of the object store, and second is an optional parameter,
which should be a JS object. In this JS object, the keyPath is the primary key, same
as the id key in the database table. The attribute of autoIncrement is false,
which indicates that the primary key value is not self-increasing, and the primary key
value must be specified when adding data.

After connect to the database, using the transaction method of the

IDBOpenDBRequest object to open a read-only transaction or read and write
transaction. The JS method using here, transaction(), has 2 parameters. The first
one can be an array or string, when using the string as the first parameter, and the
array should be built by the name of object store. According to the second parameter,
it is the transaction mode, readonly and readwrite.

Table 1. indexedDB methods

Methods	 Description		
add() Add data. Takes a parameter that is saved to the object in the

object store.
put() Add or modify data. Takes a parameter that is saved to the object in

the object store.
get() Get the data. Takes a parameter to fetch the primary key value of

the data.

var request = indexedDB.open('dbName', 3);
request.onupgradeneeded = function (e) {
 var db = e.target.result;
 var userInfo = db.createObjectStore('person',
{keyPath: 'perID', autoIncrement: false});
 console.log('object store created');
}

Code snippet 16

var request = indexedDB.open('dbName', 5);
request.onupgradeneeded = function(e){
 var db = e.target.result;
 var demo = db.transaction('person','readonly');
 tx.oncomplete = function(e){
 console.log('transaction ends');
 }
 tx.onabort = function(e){
 console.log('transaction abort');
 }
}

Code snippet 17

25

delete() Delete data. Takes a parameter to fetch the primary key value of
the data.

If we want to get a range of data, we can use cursors. The cursor is created and
opened through the openCursor() method of the object store.
The openCursor() method takes two parameters, the first is IDBKeyRange
object, which is created by the following methods:

1. boundRange, represents a collection of primary key values from 1 to
10(including 1 and 10). If the third parameter is true, it indicates that the
minimum key value of 1 is not included, and if the fourth parameter is true, it
means that the maximum key value is not included, and the default value is
false.

2. onlyRange, represents a collection of primary key values. The only()
parameter is the primary key value, integer type.

3. Lowerrange, represents a set of primary key values greater than or equal to
1. The second parameter is optional, and true indicates that the minimum
primary key 1, or false, is included, and the default value is false.

4. upperRange, represents a collection of primary key values less than or equal
to 10. The second parameter is optional, and true indicates that it does not

contain the maximum primary key 10, or false, and the default value is false.

The second parameter of the openCursor method represents the reading direction of
the cursor, which mainly includes the following:

1. next: the data in the cursor is in ascending order of primary key value, and the
data with equal primary key value is read.

2. nextunique: the data in the cursor is in ascending order in the primary key
value, and the primary key value reads only the first data.

3. prev: the data in the cursor is arranged in descending order of primary key
values, and the data with the same primary key value is read.

var boundRange = IDBKeyRange.bound(1, 50, false,
false);

var onlyRange = IDBKeyRange.only(1);

var lowerRange = IDBKeyRange.lowerBound(17, false);

var upperRange = IDBKeyRange.upperBound(90, false);

26

4. prevunique: the data in the cursor is arranged in descending order of the
primary key value. The primary key value is equal to the first data.

From the connection database, create object warehouse, index, to operation, retrieve
data, complete the complete process of indexedDB access data. A complete example is
given below to better understand the indexedDB database.

Figure 2 - empty indexedDB database

Figure 3 - insertb new data into indexedDB

var request = indexedDB.open('dbName', 10);
request.onsuccess = function(e){
 var db = e.target.result;
 var tx = db.transaction('person','readonly');
 var dbstore = tx.objectStore('person');
 var range = IDBKeyRange.bound(1,10);
 var re = dbstore.openCursor(range, 'up');
 re.onsuccess = function(){
 var cursors = this.result;
 if(cursors){
 console.log(cursors.value.personName);
 cursors.continue();
 }else{
 console.log('ends');
 }
 }
}

Code snippet 18

27

Figure 4 - update the single database value

Figure 5 - the indexedDB after updated

28

The code of the example shown below.

(continue)

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1.0, user-scalable=no">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title>indexedDB example</title>
 <style type="text/css">
 *{
 margin: 0;
 padding: 0;
 }
 .main{
 width: 1150px;
 margin: auto;
 }
 .main .v-form{
 position: fixed;
 top: 0;
 width: 1150px;
 padding: 20px 0;
 background: #fff;
 }
 .main .v-form .v-input{
 float: left;
 border: 1px solid #ddd;
 height: 40px;
 width: 335px;
 padding:0 10px;;
 border-radius: 3px;
 margin:0 20px 0 0;
 box-sizing: border-box;
 font-size: 16px;
 }

Code snippet 19 - compelete indexedDB example code

29

(continue)

.main .table button{
 width: 40px;
 height: 24px;
 border: 1px solid #08aae5;
 border-radius: 3px;
 background: #08aae5;
 color: #fff;
 cursor: pointer;
 }
 .main .table button.del{
 border: 1px solid #F44336;
 background: #F44336;
 }
 </style>
</head>
<body>
 <div id="app">
 <div class="main">
 <div class="v-form">
 <input type="text" class="v-input"
placeholder="Type name here" name="username" v-model="username">
 <input type="text" class="v-input"
placeholder="Type age here" name="age" v-model="age">
 <input type="text" class="v-input"
placeholder="Type email address here" name="email" v-
model="email">
 <button type="text" class="v-btn"
@click="submit">submit</button>
 </div>
 <table class="table">
 <thead>
 <th>#</th>
 <th>User Name</th>
 <th>Ago</th>
 <th>email</th>
 <th>Operation</th>

Code snippet 19 - compelete indexedDB example code (continue)

30

(continue)

</thead>
 <tr v-for="(item,i) in dbData" :key="item.id">
 <td v-html="i+1"></td>
 <td v-html="item.username"></td>
 <td v-html="item.age"></td>
 <td v-html="item.email"></td>
 <td>
 <button class="edit"
@click="edit(i)">Edit</button>
 <button class="del"
@click="deleteOneData(item.id)">Delete</button>
 </td>
 </tr>
 </table>
 </div>
 </div>
 <script
src="https://cdn.bootcss.com/vue/2.2.6/vue.min.js"></script>
 <script>
 var dbName = 'usersDB',
 daVer = 1,
 db = '',
 dbData = [];
 // connect database
 function openDB(){
 var request = indexedDB.open(dbName, daVer);
 request.onsuccess = function(e){
 db = e.target.result;
 console.log('database connected');
 vm.getData();
 }
 request.onerror = function(){
 console.log('connect failed');
 }
 request.onupgradeneeded = function(e){
 db = e.target.result;

Code snippet 19 - compelete indexedDB example code (continue)

31

(continue)

 if(!db.objectStoreNames.contains('Users')){
 var store =
db.createObjectStore('Users',{keyPath: 'id', autoIncrement:
true});
 var idx =
store.createIndex('index','username',{unique: false})
 }
 }
 }

 //save data
 function saveData(data){
 var tx = db.transaction('Users','readwrite');
 var store = tx.objectStore('Users');
 var req = store.put(data);
 req.onsuccess = function(){
 console.log('Saved ID name as'+this.result);
 }
 }

 //delete the single data
 function deleteOneData(id){
 var tx = db.transaction('Users','readwrite');
 var store = tx.objectStore('Users');
 var req = store.delete(id);
 req.onsuccess = function(){
 vm.getData();
 }
 }

 //retrieve all data
 function searchData(callback){
 var tx = db.transaction('Users','readonly');
 var store = tx.objectStore('Users');
 var range = IDBKeyRange.lowerBound(1);
 var req = store.openCursor(range,'next');

Code snippet 19 - compelete indexedDB example code (continue)

32

(continue)

 if(cursor){
 // push the retrieved value into the array.
 dbData.push(cursor.value);
 cursor.continue();
 }else{
 // callBack
 callback && callback();
 }
 }
 }

 var vm = new Vue({
 el: '#app',
 data: {
 edit_id: 0,
 username: '',
 age: '',
 email: '',
 dbData: []
 },
 mounted: function(){
 openDB();
 // indexedDB.deleteDatabase('usersDB');
 },
 methods: {
 submit: function(){
 if(this.username && this.age && this.email){
 var param = {
 username: this.username,
 age: this.age,
 email: this.email
 }
 if(this.edit_id > 0){
 param.id = this.edit_id
 }
 saveData(param);
 this.getData();
 this.username = this.age = this.email =
'';
 }
 },

Code snippet 19 - compelete indexedDB example code (continue)

33

6.3 HTML5 drag and drop

Drag and drop is a powerful and logical user interaction that any desktop application
has. Use a pointer device like the mouse to implement a copy by dragging and
dropping, inserting and deleting files and objects on any computer desktop.
The HTML5 Drag and Drop API provides native support for browser drag-and-drop
operations, making it easier to Drag and Drop code.
First of all, setting an element as draggable, to set the draggable attribute to true:

Then clarify what need to happen when the HTML element is dragged. So here we
need to know one more attribute of HTML5, ondragstart, which can call a function
what specifies what data to be dragged. And then using one JS method to set the
dragged element’s data type and value,

After specified the dragged element, using another method specifies that where it to
be dragged. By default setting, the data or element cannot to be dropped in other

function drag(ev) {
 ev.dataTransfer.setData("text", ev.target.id);
}

 this.getData();
 this.username = this.age = this.email =
'';
 }
 },
 getData: function(){
 var self = this;
 searchData(function(){
 self.dbData = dbData;
 });
 },
 edit: function(index){
 this.username = dbData[index].username;
 this.age = dbData[index].age;
 this.email = dbData[index].email;
 this.edit_id = dbData[index].id;
 }
 }
 })
 </script>
</body>
</html>

Code snippet 19 - compelete indexedDB example code (continue)

Code snippet 20

34

element. Therefore, we have to use one JS method, event.preventDefault(),
to prevent the default setting.
Generally, the following code snippet is a demo for explain how the HTML5 drag/drop
works.

Figure 13. Before drag.

Figure 14. After drag to right side.

The code of the example shown above.

35

<!DOCTYPE HTML>
<html>
<head>
 <style>
 * {
 cursor: pointer;
 }
 #left,
 #right {
 float: left;
 width: 200px;
 height: 50px;
 margin: 20px;
 padding: 10px;
 border: 2px solid black;
 }

Code snippet 21 - compelete code of HTML5 drag/drop

36

 .box {
 display: block;
 width: 200px;
 height: 50px;
 background: blue;
 }
 </style>

</head>
<body>
<div id="left" ondrop="drop(event)" ondragover="drag_start(event)">
 <div class="box box-blue" draggable="true"
ondragstart="drag(event)" id="drag1"></div>
</div>

<div id="right" ondrop="drop(event)"
ondragover="drag_start(event)"></div>

<script>
 function drag_start(ev) {
 ev.preventDefault();
 }

 function drag(ev) {
 ev.dataTransfer.setData("text", ev.target.id);
 }

 function drop(ev) {
 ev.preventDefault();
 var data = ev.dataTransfer.getData("text");
 ev.target.appendChild(document.getElementById(data));
 }
</script>
</body>

Code snippet 21 - compelete code of HTML5 drag/drop (continue)

37

6.4 Canvas

In the HTML5, Canvas element can be drawing the pictures on the web page by using
JS. Canvas is a rectangular area where you can control each pixel. Canvas has many
ways to draw paths, rectangles, circles, characters, and add images.
Create a Canvas element, by setting element’s id, width and height in the canvas tag,
<canvas id="demo" width="300" height="200"></canvas>

Drawing by JavaScript

Table 2. JavaScript methods for drawing canvas
Method	
name	

Description		

moveTo() Using X and Y as parameters to set the starting point of the line
specified on the Canvas.

lineTo() Using X and Y as parameters to create a path from the last point to
the specified point on the Canvas.

Stroke() draws the path line of the specified point to the lineTo() specified
by moveTo() on the Canvas. The stroke() method has no
parameters.

beginPath() Used to start a new path or reset the current path without
parameters.

closePath() used to create a path from the starting point to the endpoint,
effectively closing and forming the shape of the path, without
parameters.

fill() Filling the style for the current path

2 complete examples of canvas are goven below, which covering how to draw the
traignle and text by canvas.

Example 1: Drawing a triangle, and filled with solid color.

var c=document.getElementById("demo");
var cxt=c.getContext("2d");
cxt.fillStyle="#000";
cxt.fillRect(0,0,150,75);

Code snippet 22 - drawing canvas in JavaScript

38

Figure 15. canvas traignle example result.

Example 2: drawing normal text

Figure 16. drawing normal text by canvas example result.

<!DOCTYPE html>
<html>
<body>
<canvas id="demo" width="400" height="200"></canvas>
<script type="text/javascript">
 var canvas = document.getElementById("demo");
 var context = canvas.getContext("2d");
 context.moveTo(50,150);
 context.lineTo(150,100);
 context.lineTo(250,150);
 context.closePath();
 context.stroke();
 context.fill();
</script>
</body>
</html>

Code snippet 23 - the compelete code of canvas traignle

39

<!DOCTYPE html>
<html>
<body>

<canvas id="demo" width="400" height="200"></canvas>

<script type="text/javascript">
 var canvas = document.getElementById("demo");
 var context = canvas.getContext("2d");
 context.font = "30px Arial";
 context.fillText("canvas", 20, 50);
</script>

</body>
</html>

Code snippet 24 - the compelete code of drawing normal text by canvas

40

7 CONCLUSION

The goal of the thesis was achieved by completing the documentation. Software
developers and content managers are now able to access the documentation within
company's network and use it for working purposes.

The project which is used as an example in the thesis will keep updating in the future
and , this documentation will be shared with the team workers who are working in the
project.

The main challenges of the thesis were 0to understand the general thery of AEM, how
it control the data flow between diferrent Levels.

41

REFERENCES

1. MichaelDono, chrisdavidmills and others. (2018). HTML5 – Developer guide | MDN [online]
developer.mozilla.org. Available at: https://developer.mozilla.org/en-
US/docs/Web/Guide/HTML/HTML5

2. Uemmra3, Kberov and others. (2017). CSS - Glossary | MDN [online] developer.mozilla.org.
Available at: https://developer.mozilla.org/en-US/docs/Glossary/CSS

3. Zfjames, _serendipity and others. (2018). JavaScript - Glossary | MDN [online]
developer.mozilla.org. Available at: https://developer.mozilla.org/en-
US/docs/Glossary/javascript

4. Dria, pluwen and others. (2018). XML introduction | MDN [online] developer.mozilla.org.
Available at: https://developer.mozilla.org/en-US/docs/XML_introduction

5. xfq, iigmir and others. (2017). jQuery - Glossary | MDN [online] developer.mozilla.org.
Available at: https://developer.mozilla.org/en-US/docs/Glossary/jquery

6. daleharvey, leoo and others. (2018). IndexedDB API – Web APIs | MDN [online]
developer.mozilla.org. Available at: https://developer.mozilla.org/en-
US/docs/Web/API/IndexedDB_API

7. Bootsrap Core Team. (2018). Introduction · Bootstrap [online] getbootstrap.com. Available
at: https://getbootstrap.com/docs/4.1/getting-started/introduction/

8. Adobe. (2018). The basics [online] helpx.adobe.com . Available at:
https://helpx.adobe.com/experience-manager/6-2/sites/developing/using/the-basics.html

9. Adobe. (2018). AEM Components – the Basics [online] helpx.adobe.com . Available at:
https://helpx.adobe.com/experience-manager/6-2/sites/developing/using/components-
basics.html

10. Yehuda Katz. (2017). Handlebars.js : Minimal Templating on Steroids[online]
handlebarsjs.com. Available at: http://handlebarsjs.com/expressions.htm l

11. Yehuda Katz. (2017). Handlebars.js : Minimal Templating on Steroids[online]
handlebarsjs.com. Available at: http://handlebarsjs.com/#helpers

12. Yehuda Katz. (2017). Handlebars.js : Minimal Templating on Steroids[online]
handlebarsjs.com. Available at: http://handlebarsjs.com/reference.html

13. npm. (1985). Scripts |npm Documentation [online] npmjs.com. Available at:
https://docs.npmjs.com/misc/scripts

