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1 Introduction 

The purpose of this bachelor’s thesis is to research and develop an automated solu-

tion for installing Domain Name System (DNS) services for production environments. 

This bachelor’s thesis was assigned by Qvantel Finland Oy.  

The DNS is installed and configured by using Ansible, which is an automation soft-

ware for deployment and configuration management. DNS services used are Consul 

by HashiCorp and Dnsmasq. Consul and Dnsmasq are to be used as a part of a larger 

environment that has multiple different services registered and connected through 

the Consul service. Other services used to demonstrate the use of Consul are Apache 

Mesos, Apache Marathon, Apache Zookeeper and Registrator. These can be used to 

run and manage applications in containers; Registrator is used as an automatic regis-

tering tool for Consul. Consul acts as a DNS for these services and also works as a 

simple monitoring tool with health checks and key/value storage. During the devel-

opment of Consul both the Marathon and Zookeeper were also containerized and 

new roles were created. As Marathon and Zookeeper require java to work and by 

having them in containers removes the java requirement from hosts, improving secu-

rity. All but Mesos and Dnsmasq will be running in Docker containers. Dnsmasq is 

used to forward Consul ports. Ansible playbooks and settings were built according to 

already existing Ansible Qvantel-made installations that the playbooks and settings 

of this thesis are modeled from. 

The theory section discusses all the components and explains how they work. The 

main focus is on Consul, Ansible and Docker CE. The development plan includes a 

plan on how to create a working environment using the given components. The en-

tire system should contain an automated installation and configuration. In practice, 

this system will be installed by using Ansible on an empty environment.   

The project results in an automated Consul and Dnsmasq installation with a configu-

ration that works and can be used in real customer deployments.  
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2 Research methodology and requirements  

2.1 Method 

This thesis was planned and created by using constructive research, which is practical 

and where the end result is known; however, how to implement it is not. It is com-

mon in constructive research to use existing information to build something new. 

With constructive research, it needs to be decided on what to build and how to build 

it. Constructive research was selected because the thesis is about building from exist-

ing components something new and improved. Research question is how to create 

an automated DNS service installation and how to implement it to the platform. (Pa-

sian 2018, 8) 

2.2 Requirements and goals set by Qvantel 

This thesis is carried out as a part of Qvantel’s platform development. The compo-

nents and the overarching plan are guided by the company’s specific needs. Ad-

dresses, names and testing are created for this thesis only, and they are not meant to 

be translated directly to Qvantel’s use.  

The requirement for the Consul is to work modularly and not be affected by a differ-

ent number of servers or datacenters. The main purpose of Consul is to work as a 

name service for different applications and a simple monitoring tool. Consul is also 

meant to work as a key/value storage for applications. Dnsmasq is used as a port for-

warder for Consul. All possible components should be running in Docker containers. 

All Internet Protocol (IP) addresses and possible data paths should be easily configu-

rable.  
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3 Why automate 

3.1 Easy to install – Easy to update 

In year 2016, around 47 percent of the world’s population used the internet. The 

highest percentage of users concerning population is in Europe, especially in north-

ern Europe. In addition, Americas and the former Soviet Republics have more than 

fifty percent of their population using the internet. The annual growth from 2015 to 

2016 had an increase of 4 percent. (Taylor 2016)  

As cloud computing has become more popular, cloud computing services such as 

Amazon Web Services (AWS) have more than one million users worldwide and make 

a large profit by providing platforms for companies and private users (Amazon letter 

to shareowners 2015, 5).  

Even if cloud computing and regular bare metal servers are competing for customers, 

it does not change the fact that every service still needs to be installed and config-

ured. Even if creating a server has become as easy as pressing a button, the rest of 

the system still requires a heavy load of work in installing and configuring the wanted 

services. (Ansible – Overview n.d.)  

It is important for companies to have services installed, configured and running as 

fast as possible. Downtime from server maintenance and updating can quickly in-

crease if the process is not consistent. For these reasons automating deployment and 

configuration cannot only help employees but also reduces the cost of long down-

times. Especially in larger companies with thousands of servers it would normally 

take weeks to update something as normal bash scripting is no longer possible. Re-

ducing the cost of downtimes and making updating, installing and configuring more 

consistent has made automation popular with all large companies. (Benson, Prevost 

& Rad 2016, 1) 

The purpose of automation is to reduce the amount of time and effort in deploy-

ments and decrease the possibility of user failure. In practise, it means that most of 

the time spent on a service that is being built is front-loaded. After the development, 

the component is meant to be easy to install by anyone. Automation can be used for 
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many different purposes. In this case, Ansible can be used for cloud provisioning, 

configuration management, application deployment, intra-service orchestration and 

for many other uses. (Ansible introduction n.d.)  

The other major purpose of automation is to simplify updating systems and software, 

as upgrading a service only needs one number change and a rerun with the installa-

tion. Of course, breaking changes in services might need some configuration 

changes; however, in theory updating should be quick to test, change and deploy. 

(Ansible introduction n.d.) 

3.2 Ansible – Simple IT Automation 

Ansible is a simple automation engine. It was released in 2012 by Michael DeHaan. 

Ansible has since become very popular. YAML files are used by Ansible to operate 

and also as source of information. Ansible uses Python as its language. The com-

mands used by Ansible are run via SSH to either the local machine or distant server. 

(Heap 2016.)  

Ansible connects to the machines defined in its inventory file by using SSH as default. 

This file can be used to place different machines to different groups, hereby telling 

Ansible which machines belong together. After the connection Ansible will send out 

small programs called Ansible Modules to specified hosts. Modules are resource 

models for the system and define the desired state of the system. After executing 

these modules in the node, Ansible will remove them. (Ansible introduction n.d.)  

Just like the target hosts, also variables can be defined. In group_vars/ or host_vars/ 

user can set up variables. These variables can be then used with all the configuration 

under this upper level of Ansible. For example, user can define what file path to use 

with all the services and make it a variable data_path. Then the user can use 

data_path in configurations and Ansible will change it to the defined path. Variables 

can also be defined in an inventory file just for one specific server or directly in the 

role of the service. (Heap 2016, 5)  

Roles include the services that are run with Ansible. There can be only one role or 

multiple ones. The roles can include variables for that specific role, installation 
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scripts, configuration and firewall rules. Installation scripts are usually called play-

books. If there is only one role in question, then its playbook can be used to install 

that specific role with ansible-playbook command by defining a target host in the 

same command. With multiple roles, a collected playbook can be created that de-

fines what roles to use, what hosts to install and what upper level variables to in-

clude in those roles. (Heap 2016, 4)  

Ansible playbooks are built upon tasks that are executed from top to bottom. The 

tasks can do anything from installing with package managers to insert text to a file. 

Playbook can be configured to do certain tasks only when conditions are met. Ways 

to configure playbooks depend on the one who makes it. Ansible offers a large docu-

mentation of all possible commands to use with playbooks. (Ansible documentation - 

Playbooks n.d.)  

4 Domain Name System 

4.1 DNS theory 

IP addresses are used to identify machines operating in the internet. IP addresses are 

difficult to remember, so usually name of the network interface is used instead. 

Every IP address has a network interface. These are commonly known as domain 

names. An IP address can have multiple domain names attached to it. IP addresses 

and the domain names are stored in the Domain Name System (DNS) database. 

(Dostalek & Kabelova 2006, 1)  

Internet has different domains that are logically grouped together. Domains specify 

where the names belong. These can be countries, companies or generic domains. 

Subdomains are domains inside Top Level Domains (TLD). For example  

 example.thesis.com 

has the subdomain called thesis that is a subdomain of the domain com. TLD consists 

of two TLDs, Generic (gTLD) and Country Code (ccTLD). Commonly known gTLDs are 
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for example com and net. According to ISO 3166 there are two letter ccTLD for indi-

vidual countries. For example, fi is affiliated with Finland. (Dostalek & Kabelova 2006, 

1.1) 

DNS is structured in a hierarchy using different areas. On the top is the root server. 

An uncached DNS query triggers a DNS lookup that starts from the root server. From 

there it will travel down to the TLD servers and forward to the specific domains or 

subdomains. When the query hits the name server of the correct domain, the IP is 

sent to the client. (Figure 1) (DNS root server n.d.) 

 

Figure 1. DNS hierarchy 

 

DNS protocol can work with many different types of operations. The most common 

of them being DNS QUERY. The query makes it possible to obtain records from DNS 

database. New modifications have brought new operations, such as NOTIFY and 

UPDATE. DNS protocol works on query and answer basis, meaning that usually a cli-

ent sends a query to the server and the server answers it with the needed infor-

mation. DNS protocol can also use compression to make packets as small as possible. 

DNS protocol cannot transfer packages by itself, it being application-layer protocol. 

This why transferring packages is delegated to transport protocols. DNS protocol 

uses both User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) for 

sending information and default DNS ports are on 53/UDP and 53/TCP ports. 

(Dostalek & Kabelova 2006, 2.2)   

DNS client settings on Linux operating systems are located in resolv.conf file under 

/etc/ directory. First line in the resolv.conf usually contains the domain or search key-
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word. If domain is defined, the domain is added to unqualified domain names auto-

matically. Search keyword is used to specify domains to be added to unqualified 

names. Keyword can be used to define up to six domains. Only domain or keyword 

can be used. Resolv.conf usually contains a list of DNS servers also. These can be de-

fined by using name servers keyword and IP address. First server on the list is used 

first. (Rampling, Blair & Dalan 2003, 5.4) 

4.2 Consul by HashiCorp 

Consul is a service mesh solution, providing configuration, service discovery and 

other functionalities. All these features can be used together or separately. Consul’s 

service discovery enables clients to register a service and other services can thereby 

discover providers of the given service. Consul can use DNS or HTTP to easily find ser-

vices. Consul also provides health checking, key/value storage for dynamic configura-

tion, TLS readiness and multi datacenter support. (Introduction to Consul n.d.)  

Consul agents or clients are installed on every host that provides services to Consul. 

Agent is responsible for making health checks on the node it is installed on. Agents 

then talk to Consul servers where the data is stored and replicated. Servers elect a 

leader by themselves using bootstrapping. Services that need to discover other ser-

vices can query any server or agent to discover the needed services. Consul is built 

on Serf that provides a full gossip protocol with membership, failure detection and 

event broadcast. Consul also supports multiple datacenters. (Consul Documentation 

– Architecture n.d.)  

Consul uses Remote Procedure Call (RPC) to allow client to make requests to server. 

Consul uses different gossip pools for Local Area Network (LAN) and Wide Area Net-

work (WAN). LAN contains all the nodes located in the same local area network or 

datacenter. WAN contains only servers, usually from all datacenters that are con-

nected. (Consul Documentation – Architecture n.d.)  

Figure 2 tells how Consul service works between two datacenters. Clients use LAN 

gossip between reach other and RPC for server. WAN gossip is used between differ-

ent datacenters. Servers decide on the leader, that handles replication to other serv-

ers. The ports used between different tasks are different. 
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Figure 2. Consul protocols and architecture 

 

Consul container needs to be configured with the correct cluster address or bind ad-

dress. This is the address that other agents use to contact the agent. Client address is 

for processes on the host to contact Consul. Retry join allows Consul to try and join a 

cluster. Retry option allows Consul to retry joining if the first time fails. Consul can 

forward DNS on port 53, however, in most systems running Consul as root is not a 

safe choice. In this case, Consul can work with different DNS servers to forward que-

ries to Consul. Services like BIND and Dnsmasq work well in this setup. With contain-

erized Consul, its data directory needs to be available after restarting, which means it 

has to be mounted. (Consul Documentation – Consul Containers n.d.)   
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4.3 Dnsmasq 

Dnsmasq is meant to provide infrastructure for networks. It provides a local DNS 

server for the network and forwards queries to upstream DNS servers. Dnsmasq is 

lightweight, designed not to take many resources for the system. (Dnsmasq docu-

mentation n.d.)  

Dnsmasq is configured in /etc/dnsmasq.conf. By default, Dnsmasq reads /etc/hosts. 

Hosts can be added to the hosts file for Dnsmasq to pick them up. Dnsmasq can be 

also used with /etc/resolv.conf. One way is to use local address in resolv.conf and en-

ter all upstream nameservers in dnsmasq.conf (Schroder 2018). 

5 Other components 

5.1 Oracle Linux 

Oracle Linux (OL) is developed by Orcale Corporation that has multiple products such 

as databases, OpenJDK and VirtualBox. The newest version of OL is currently 7.5. It 

uses Yum as its package updater. Oracle Linux is compatible with Red Hat Linux and is 

able to run same applications. (Oracle – Linux n.d.) 

5.2 Docker 

Docker is meant to be a platform for developing, packaging and running applications. 

It is possible to build, ship and run applications on any platform as long as Docker can 

be installed and is working there. Docker images use the same Operating System (OS) 

kernel as the host machine, making it different from virtual appliances. Docker soft-

ware runs in an environment called container. Each container includes their own file 

system and environment variables. These containers are isolated from each other 

and from the OS running on host. Figure 3 describes how Docker engine is structure 

and what it controls. (Vohra 2016, 1) 
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Figure 3. Docker engine structure (Docker documentation – Docker architecture n.d.) 

 

Container contains everything a software would need to run. Files can be copied 

from host into the container if needed by mounting files from host to container. Con-

tainers can also be linked together so that they can communicate with each other if 

needed. (Vohra 2016, 1) 

To build a container Docker uses dockerfile to build an image. Dockerfile consists of 

instructions on what to download, commands, networking, directories and variables. 

By running dockerfile, the base image is automatically configured depending on what 

the commands are in the dockerfile. Docker will then create a new image with all the 

configurations defined in the dockerfile. (Bernstein 2014, 83) 

Many images are already made and are available in the official Docker Hub. Docker 

can be downloaded from the most common repositories. Command “docker” can be 

used to perform different tasks for Docker. Table 1 describes most common options 

for docker - command.  

 



18 
 

 

Table 1. Common Docker - command options 

Docker command option Result 

ps Prints out containers that are running. 

start Starts specified container. 

stop Stops specified container. 

rm Removes specified stopped container. 

rmi Removes specified image. 

exec Runs commands in running container. 

export Exports containers filesystem as a tar. 

import Imports containers filesystem to a im-

age. 

save Saves images to a tar archive. 

logs Fetches logs generated by a container. 

images Shows images. 

pull Pulls a Docker image. 

network Commands Dockers networks. 

 

 

Docker Engine is a client-server application with three major components. A server is 

a program called daemon process which does the building and running containers. 

The daemon creates and manages images, containers, networks and volumes.  A 

REST API tells programs what interfaces to use to contact daemon. REST API also in-

structs daemon on what to do. A CLI is used with command docker. CLI uses REST API 

to control Docker daemon. REST API is used between client and daemon to com-

municate over UNIX sockets or by a network interface. Figure 4 describes how con-

tainers are built by client using daemon to pull images and running them. (Docker 

documentation – Docker architecture n.d.)  
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Figure 4. Docker architecture (Docker documentation – Docker architecture n.d.) 

 

5.3 Registrator 

Registrator is used to automatically register Docker containers. This happens by Reg-

istrator inspecting containers when they start. Registrator is developed by Gliderlabs. 

Registrator supports different service registries such as Consul. Registrator can be 

downloaded from Docker Hub by pulling its image with docker pull. Figure 5 de-

scribes Registrators Dockerfile. (Registrator ReadMe n.d.) 

 

Figure 5. Registrator dockerfile (Registrator ReadMe – GitHub) 
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5.4 Apache Mesos 

Apache Mesos is a system kernel that abstracts all given resources into a single pool 

of computing resources, which makes distributing resources such as CPU and 

memory easier in a larger scale. Mesos began as a research project at UC Berkeley, 

and its goal was to create a kernel that makes building and running applications eas-

ier. Mesos treats a datacenter like one large computer. (Mesos – Why mesos n.d.)  

Mesos architecture focuses on a two-level scheduler, which makes it easy to operate, 

scale and extend. Mesos is used to handle infrastructure level scheduling operations, 

while framework handles application specific operations. This allows organizations to 

build their own operations’ logic in their applications. Mesos can support different 

workloads, such as Docker containers, analytics, Big Data and even operating sys-

tems. Mesos can scale to tens of thousands of nodes while still having a simple archi-

tecture. Figure 6 describes how Mesos combines hardware resources and deploying 

applications with those resources. (Mesos – Why mesos n.d) 

 

Figure 6. Mesos infrastructure (Mesos – Why mesos n.d.) 
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Mesos consists of masters and slaves. Masters manage slaves that run on different 

nodes in the cluster. Framework that is used with Mesos runs tasks on these slaves. 

Master enables sharing of resources by sending slaves resource offers through the 

framework. The framework that runs on top of Mesos consists of two different com-

ponents, scheduler and executor. Scheduler registers with the Master so that it can 

be offered resources. Executor is connected to different slaves and it launches tasks 

on those nodes. Mesos uses Zookeeper for electing a leading master. Figure 7 de-

scribes how mesos architecture works. Leading master node is chosen by zookeeper 

quorum and agents are connected to that master. Hadoop and MPI are described 

here as frameworks.  (Mesos Documentation – Architecture n.d.) 

 

Figure 7. Mesos architecture (Mesos Documentation – Architecture n.d.) 

 

5.5 Apache Marathon 

Apache Marathon is a container orchestration platform for Mesos. Marathon orches-

trates both the applications and frameworks. For Marathon to work it needs to have 

Mesos already installed. Marathon is also available in an official Docker container. 
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Marathon also uses Zookeeper to store state. Marathon provides REST API for start-

ing, stopping and scaling applications. It is also able to run in high-availability mode 

by running many copies of itself. Marathon runs in HA mode by default. The state of 

running tasks is stored in Mesos. (Mesosphere – Marathon documentation n.d.)  

Marathon can use command-line flags to set environment variables that start with 

MARATHON_ line. For example, MARATHON_MASTER will set an option for master 

node. The only flag required is the master flag. Master flag will set the URL of the 

Mesos master. If Zookeeper is in use, those addresses should be used. These environ-

ment variables are usually stored in /etc/default/marathon. Figure 8 describes a run-

ning application container on Marathon UI. (Mesosphere – Marathon documentation 

n.d.)  

 

Figure 8. Mesos UI 

 

5.6 Apache Zookeeper 

Apache Zookeeper is a coordination service for applications. It uses a set of primi-

tives that applications can build upon to implement services. Zookeeper is used for 

synchronization, configuration management, groups and naming in different distrib-

uted systems. Zookeeper allows processes to coordinate through namespace that is 

similar to standard file systems. Zookeeper data is kept in-memory, which provides 

high throughput and low latency. Zookeeper is meant to be replicated over different 

hosts to prevent failure if one node goes down. Figure 9 describes Zookeeper archi-

tecture with servers and clients connecting between each other. (Zookeeper – Over-

look n.d.)  
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Figure 9. Zookeeper architecture 

 

Zookeeper servers must know of each other for Zookeeper service to work. They 

maintain an in-memory image of state with transaction logs and snapshots in a per-

sistent store. All Zookeeper servers maintain an image of state in in-memory, that 

also has logs and snapshots in a persistent store. This makes Zookeeper service avail-

able as long as majority of servers are available. Clients connect to a Zookeeper 

server to which it maintains TCP connection. This connection is used for sending re-

quests, receiving responses, events and heart beats. If the connection to that specific 

server fails, the client will connect to a different Zookeeper server (Zookeeper – 

Overlook n.d.)  

Zookeeper’s configurations should contain a path for data directory and client port. If 

using replicated servers, Zookeeper servers need to be specified with their own ID 

and all the servers added to each one’s configuration. It is also good to have initLimit 

and syncLimit when running replicated Zookeeper. Init will set a timeout for the 

length of the time the servers in quorum have to connect to a leader. Sync limits how 

out of date a server can be from the leader. (Zookeeper Documentation – Getting 

started n.d)  

6 Development plan 

6.1 Overview 

The plan was to develop a working Consul and Dnsmasq Ansible roles that are highly 

modular and can scale to any environment size. As requested, all possible platform 
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services should be official Docker containers to ease their eventual upgrading. The 

rest of the services used in this thesis is also a part of the platform; however, as they 

are only to support the testing of Consul, their roles are explained briefly. Marathon 

and Zookeeper are also containerized at the same time as Consul but are given less 

attention. Docker, Mesos and Registrator roles are ready-made roles that have al-

ready existed before. Consul and Dnsmasq are to be included in the same role and 

Consul is to be containerized from the old host version. Dnsmasq will remain almost 

the same as before but it needs to be integrated with Consul and tested. The envi-

ronment used for testing was a blade server running a total of eight virtual machines, 

three of which are master nodes and five agent nodes. Figure 10 describes the topol-

ogy of the planned environment. 

 

Figure 10. Environment topology 
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6.2 Services plan 

The development started by creating each role that has a playbook to create needed 

directories and moves the configurations to those directories. Playbook also included 

Docker container installation and if needed, other setups. Roles configuration was in-

cluded as a template that was moved during installation to a correct directory. In ad-

dition, all the possible variables needed to be placed inside the roles and to 

group_vars/ and extra_vars. The versions were to be defined on higher level, in 

var/versions.yml. Repositories used were Qvantel’s own private repository that has 

all the packages needed included. This was included as a role to create a repository 

path to /etc/yum.repo.d/. Ansible playbooks can be built in many different ways and 

are also very forgiving with the placement of options. 

 

6.2.1 Docker CE 

Docker works as a platform for all the services. It was to be installed with yum, just 

like Dnsmasq and Mesos. Docker was already working Ansible role that did not need 

any configuration and could be added directly to roles. The version used was the lat-

est stable one, 18.03.0 in this case.  Docker was installed with the Ansible playbook 

first so that other services could run on top of it.   

6.2.2 Consul 

Consul was to be updated to containerized Consul. New playbook was to be created 

to install the container, set up directories and templates, all possible addresses and 

paths changed to work as variables. Firewall rules were included in the role. Consul 

was to be able to install from two choices, server and agent. The servers have boot-

strap setting included that would change depending on how many master nodes 

there are. Agents were to be similar to servers without bootstrapping. They were 

also to connect themselves to server nodes to register services running on those 

nodes. Consul playbook would also add its address to resolv.conf to work as a DNS 

for the node. The newest stable version of Consul was to be used, which at the time 

of writing the thesis was 1.1.0. 
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6.2.3 Dnsmasq 

Dnsmasq installation was to be included to Consul’s playbook as it is always installed 

with Consul. As Dnsmasq is installed on a host, it uses yum to install the service. In 

this case, Dnsmasq was to be left mostly untouched from the previous versions and 

only have its connectivity with the container checked and changed if needed. The 

newest stable version of Dnsmasq was to be used. 

6.2.4 Registrator 

Registrator was to register containers running on top of Docker to Consul, which was 

to be made so that containers do not need to register by themselves. Registrator was 

already working Ansible role and did not need any configuration. The version used 

was an old one; however, still the latest official release from master branch. 

6.2.5 Mesos 

Mesos, like Dnsmasq, was to be installed on host machine. Newest stable version, 

1.5.0, was to be used. It was possible to install Mesos as either master or slave. Mas-

ters were installed to master nodes and slaves to slave nodes. Master nodes were to 

work with Marathon and Zookeeper to allocate applications running on top of Mara-

thon to different slave nodes. In slave nodes Mesos, after receiving tasks from Mas-

ter, was to create a container running the application deployed through Marathon. In 

this case, as there are three masters, their quorum was to be 2. Should one node fail 

or break, the other two would continue to run as normal. Quorum setting was to be 

installed with Mesos masters. Mesos also needed to be registered to Consul with a 

separate consul.yml file.  

6.2.6 Marathon 

Marathon was to be containerized as the latest stable version, 1.5.8 and installed on 

master nodes with Mesos and Zookeeper. Marathon was to have its addresses and 

paths changed to variables and playbook created for installation and creating direc-

tories for configuration. The configuration had to include settings for Mesos master 

and Zookeeper connectivity. Firewall rules needed to be added to the role.    
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6.2.7 Zookeeper 

Zookeeper was to be containerized as the latest stable version, 3.4.12. Zookeeper 

was to be installed on master nodes and it would take care of choosing a leading 

master for Mesos and guide Marathon to find Mesos masters. Zookeeper was to 

have its playbook created for installation and creating directories with configuration. 

Firewall rules were also to be added to the role. All the possible settings were to be 

changed into variables and defined on a higher level. Zookeeper ID for replication 

was to be described in hosts file with addresses. 

6.3 Plan for environment and testing 

The plan was to have an environment with eight virtual machines, all of them with 

similar specifications. Three of the machines were to be selected as master nodes 

with Consul masters, Mesos masters, Marathon, Zookeeper and Registrator. The 

other five were to act as slave machines with Consul agents, Mesos slaves and Regis-

trators. It is good to have more slave nodes than masters as slaves are actually doing 

the hard work after Marathon would have all its applications running on top of it. In 

this case, it really did not matter; however, it is good to have a realistic scenario. Ta-

ble 2 describes domain names, addresses and purposes of virtual machines used in 

testing environment. 

Table 2. Names, addresses and purposes for virtual machines 

Server name Server address Server purpose 

cp00.lab.qvantel.net 192.168.81.60 Master 

cp02.lab.qvantel.net 192.168.81.62 Master 

cp04.lab.qvantel.net 192.168.81.64 Master 

cp06.lab.qvantel.net 192.168.81.66 Agent 

cp08.lab.qvantel.net 192.168.81.68 Agent 

cp10.lab.qvantel.net 192.168.81.70 Agent 

cp12.lab.qvantel.net 192.168.81.74 Agent 

cp14.lab.qvantel.net 192.168.81.76 Agent 
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After running the playbooks and everything was installed properly, testing could 

begin. The testing took place by trying to find out if the Consul nameserver works 

with nslookup, ping and traceroute. Consul’s own commands to check on members 

were to be used inside the container. Different logs from all the services were given a 

look to make sure nothing was giving an error. In addition, the Consul’s UI was to be 

monitored and explored. Marathon was to be used to deploy a mockup service to 

demonstrate its use and that it works as intended. These services would then be reg-

istered to Consul after they were created on one of the slave nodes.  

7 Development 

7.1 Environment setup  

The environment was to be created on a single blade server that ends up having 

eight Oracle Linux virtual machines. These machines were to be the latest possible 

version of 7.5. Machines were to be created with KVM and managed with Virsh. To 

create the machines, a readymade script was to be used and they would be deployed 

with the needed information about the machines. The server needed to have a disk 

allocated for KVM to use. In this case, the pool used was a 930 GiB disk (Figure 11).  

 

Figure 11. KVM pool info 

 

Virtual machines were to be created by running the create-cpvm script. These com-

mands would be then collected into a .sh file that can be used to install all of them at 

once. Figure 12 shows all the combined create-cpvm commands with addresses, 

hostnames and resource allocations. 



29 
 

 

 

Figure 12. KVM creation commands in .sh file 

 

To install the virtual machines, the file is to be run as a command 

 [root@c02h001h lab-tools]# ./c02h001h.sh 
 

This installs the machines with the correct number of cores, RAM, disk, IPs and with a 

hostname. After installation, the created virtual machines can be seen and managed 

with Virsh. Figure 13 shows the result of virsh list –all command after installing VMs. 

 

Figure 13. Created virtual machines 

 

The most basic command includes list, shutdown, reboot and start. These can be 

listed with  

 [root@c02h001h lab-tools]# virsh –help 
 

Machines take a moment to install and update and then they automatically turn off. 

After that, they need to be restarted. By then, the virtual machines can be accessed 

with SSH (Figure 14).  
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Figure 14. SSH connection to cp00 virtual machine 

 

Script automatically installs important packages to the machine. For example, Py-

thon, yum-utils and NetworkManager. In addition, networks are configured to eth0 

so that the machines are ready out of the box. Figure 15 displays some of the pack-

ages installed to virtual machines.  

 

Figure 15. Included services for virtual machines 

 

The only thing missing from the host used to run Ansible is Ansible itself. Ansible can 

be easily downloaded with the command 

 root@cp00 avalkeinen]# yum install ansible 
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This installs Ansible to the machine, so it can be used to run playbooks. Ansible is in-

cluded in the most common repositories, so for example, epel repositories already 

contain it. If the repository is missing, it can be easily added with the commands 

[root@cp00 avalkeinen]# wget http://dl.fedoraproject.org/pub/epel/epel-release-
latest-7.noarch.rpm 
[root@cp00 avalkeinen]# rpm -ivh epel-release-latest-7.noarch.rpm 

 

What is also needed is an SSH key. It can be created with ssh-keygen command. In 

real use the SSH key would be created for the user and user credentials would be 

used to create it. In this case, these are not needed for this thesis. Figure 16 shows 

the creation of SSH key. 

 

Figure 16. SSH key creation 

 

Login to these servers works with Kerberos and is managed by Qvantel. After login in, 

the environment is ready for installation.  
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7.2 Docker role 

Docker is a ready role that has been used before. It does not require any configura-

tion for this development work. Docker role is like all the other roles, as they all will 

build the same way. The role consists of defaults, handlers, meta, tasks, templates 

and tests (Figure 17).  

 

Figure 17. Docker role directories 

 

In the tasks directory one can see different playbooks all combined in the main.yml. 

Docker roles tasks are docker_ce.yml, docker_engine.yml, main.yml, networks.yml 

and overrides.yml (Figure 18). 

 

Figure 18. Playbooks in tasks 

 

The main.yml includes all the playbooks that are tagged with either configure or in-

stall. Tags can be used with ansible-playbook command to only run tagged tasks from 

the playbook. It also handles installing docker-py and starting Docker (Figure 19). 
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Figure 19. Main.yml playbook 

 

In docker_ce.yml docker itself is installed (Figure 20). 
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Figure 20. Docker_ce.yml playbook 

 

This role can be included in the Ansible installation as it is. It is to be included in the 
roles directory in Ansible’s own directory.  

7.3 Consul role 

To start with the Consul role a directory needs to be created. The role is to be called 

docker-consul. In docker-consul, there will be four directories, defaults, tasks, tem-

plates and vars as well as ReadMe.md for documentation (Figure 21).  

 

Figure 21. Consul role directories 
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The first things to create are the configurations. Configurations are needed for serv-

ers, agents, client ip and firewalls. These are created as .j2 files to templates direc-

tory (Figure 22). 

 

Figure 22. Consul configuration files in templates 

 

The old server configuration was used as a template for the newer configuration. In 

the configuration, datacenters were defined first. This could be included with “data-

center” option while using variable “{{ consul_datacenter }}”. 

“datacenter”: “{{ consul_datacenter }}” 
 

 In addition, the rack that Consul is in can be defined with node_meta and con-

sul_node_rack. 

“node_meta”: { “Rack”:  “ {{ consul_node_rack )}” }  
 

Both datacenter and rack have variables that are to be defined later in the default di-

rectory. Consul will also need its bind address, client address, retry join address and 

recursors defined which can be set up with lines. 

 “bind_addr”: 
 “client_addr”: 
 “retry_join”: 
 “recursors”: 
 

These are also given variables to set the address in default directory. For bind and cli-

ent address, the same address can be used. Retry uses variables defined in con-

sul_serverlist, which adds all the master servers’ addresses to the retry_join. Recur-

sors use addresses from resolv.conf and are compared to Dnsmasq’s listen address, 

listing correct ones after recursors command. In the configuration the server is de-

fined with: 

 if consul_role == ‘server’ 
 “server”: true 
 



36 
 

 

It is to be included in the configuration if Consul is marked as server in the primary 

playbook. In this case, server option becomes true, making it a server and also ena-

bling bootstrapping. Bootstrapping has its variable coming from the server list and 

transformed into a number; therefore, the number of Consul masters is to be placed 

there. 

 “bootstrap_expect”: {{ bootstrap_expect }} 
 

Consul also has its data directory defined with data_dir and UI enabled. These also 

have variables defined to change them or turn them off. Figure 23 describes settings 

used in server.yml. 

 

Figure 23. Server configuration 

 

The agent’s configuration is much more simplified as it has no need for many of the 

options. The only things that it needs to work are bind address, client address and re-

try join address. In addition, datacenter and rack need to be defined (Figure 24).  

 

Figure 24. Agent configuration 

 

In client.ip.j2 an address for clients to connect to needs to be defined, which is done 

by having Consul’s HTTP address in the file. 



37 
 

 

 http://{{ consul_client_address }}:8500 
 

The firewall service is to be copied from already made configuration that takes the 

service name, its ports and protocols and adds them to firewall services as an XML 

file. Ports and protocols are to be defined in the roles vars directory. Figure 25 de-

scribes firewalld configuration template.  

 

Figure 25. Firewall configuration template 

 

Next, the tasks directory is to be created including the playbooks for server.yml, 

agent.yml, firewalld.yml and combining them in the main.yml. In server.yml, a task is 

to be created to install and create a Consul container. Container is then created by 

invoking docker_container – command. Under docker_container command, con-

tainer variables and settings for the service can be defined. Because Consul can have 

many settings, it is smarter to use env file to import these. These environment set-

tings are defined in the default directory.  

name: start consul server 
docker_container: 
     env: “{{ consul_env.server }}” 

 

Next are the name of the container, where the image is being installed from and 

what version to use.  

image: “{{ dockerregistry_url |default(none) }}cp-consul:{{consul_version}} 
 

Docker registry is defined in group_vars while the name of the image is always the 

same but the version is left as a variable consul_version. 

Logging options and mount points to the host machine are also included. Mount 

points are meant to share files and directories between the host and the container. 
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In this case consul_data_dir is to be a directory on the host machine and it always 

ends in /data. Mounts can be added with the task volumes. 

 volumes: 
“{{ consul_data_dir }}/data:/consul/data” 

 

Files can always be found inside the container in /consul/data. In addition, ports, net-

work mode, restart policy and state are defined. Both the environment settings, ver-

sion to use, mount points and ports are placed as variables and defined in default di-

rectory. Figure 26 displays server.yml settings. 

 

Figure 26. Server playbook 

 

Agent playbook is similar to the server playbook. It uses the same environment file as 

the server but with its own settings. In agents playbook there is also the client.ip.j2 

file moved to agents data directory. Files can be moved with source and destination 

commands.  

 template: 
      scr: template/client.ip.j2 
        dest: “{{ consul_data_dir }}/client.ip” 
 

Figure 27 describes agent.yml settings. 
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Figure 27. Agent playbook 

 

In firewalld.yml the readymade template is moved to firewalld services directory in 

/etc/firewalld/services and its variables are filled with items from firewalld_services. 

The playbook also reloads the firewall and enable those rules. Commands can be en-

tered in playbooks with command. 

 name: Reload firewalld 
 command: “firewall-cmd –reload” 
 

Figure 28 describes firewalld.yml settings. 

 

Figure 28. Firewalld playbook 
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The main.yml file includes all the required paths for Consul. With state setting the 

path can be set as directory. 

 file: 
    path: “{{ consul_data_dir }}/config” 
    state: directory 
 

Reason to set paths in main.yml is that same paths would need to be specified in 

both server and agent playbooks. Main.yml creates both data and config paths for 

Consul and move configurations from templates there. Because the container has 

been mounted to the host machine, it replicates those folders and what is in them, 

so configurations can be left to the host machine and the container picks them up. 

The main playbook also installs python-consul. State can be used to define which ver-

sion to use. 

 pip: 
     name: python-consul 
     state: latest 
 

Main.yml also sets the container as a server or agent, depending on which one has 

been defined on a higher level. Playbook also adds Consul to resolv.conf by inserting 

text to the already existing file with blockinfile.  

 blockinfile: 
     dest: /etc/resolv.conf 
     block: | 
          nameserver {{consul_bind_address }} 
            search node.consul 
     insertbefore: BOF 
     marker: ‘# consul dns 
 

Main.yml also includes all the playbooks created before (Figure 29).  
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Figure 29. Main playbook 

 

Main.yml exists in the default directory including consul_env for both servers and 

agents, consul ports and all the variables mentioned earlier. Consul env can be cre-

ated by using consul_env variable. After starting env file server and agent is defined. 

This way docker_container knows which to use. 

 consul_env: 
     server: 
          SERVICE_NAME: cp-consulserver 
 

Consul_serverlist contains a list of all the servers created from higher level variables. 

With consul server’s addresses extracted from the consul_servers group with con-

sul_client_addresses, it gives it a list of Consul servers. Hostvars is used to include all 

the known hosts from hosts file. With map and extract, addresses can be chosen 
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from the pool. Bootstrap uses the serverlist to get the length of the list, returning a 

number that tells the servers how many masters to expect. Consul bind address is 

the same as consul client address, and client address is the default IPv4 address de-

fined higher up. Datacenter, rack, data directory and UI are given values in this file 

(Figure 30).  

 

Figure 30. Default variables 

  

The only thing left for Consul is to get a definition of its firewall ports and protocols. 

This takes place in the vars directory that has a file main.yml created inside it. In this 

file, firewalld_services are defined with the name of the service, ports and protocols 

(Figure 31).  

firewalld_services: 
     - name: consul 
          ports: 
               - port: 
                  - protocol: 
 

Ports used are standard Consul ports.  
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Figure 31. Firewall ports 

 

After all playbooks are done and configurations set, the Consul role is ready. It can 

now be added to roles with Docker.  

7.4 Dnsmasq configuration 

Dnsmasq is included in the docker-consul role. This is because Dnsmasq is always in-

stalled and configured with Consul. First, a configuration file is to be created with the 

name of 10-consul.j2. This file enables forward lookup of the Consul domain. The 

server is to be defined as consul and the address listed as dnsmasq_listen_address 

while the default is client address (Figure 32). 

 

Figure 32. Dnsmasq configuration 

 

In tasks, Dnsmasq has its own playbook, which installs Dnsmasq with yum, sets the 

Consul configuration in place, adds Consul to resolv.conf and adds node.consul to 
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search domains. Yum install works like other roles. Adding a line to a file works with 

lineinfile – command. Insertinbefore is used to insert before regular expression. Re-

gexp is used to look in every line and replace the last line found. Line is for the line to 

insert. 

- install dnsmasq 
yum: 
    name: dnsmasq 
    state: latest 
tags: install 
notify: restart dnsmasq 

 

- name: Add node.consul to search domains 
lineinfile: 
   dest: /etc/resolv.conf 
   state: present 
   insertbefore:  
   regexp: 
   line: 
tags: configure 

 

With this measure, Consul can be seen as a nameservice by services. Playbook also 

starts and enables Dnsmasq (Figure 33). 

 

Figure 33. Dnsmasq playbook 
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Firewall rules are also added to vars/main.yml. Default ports are used for Dnsmasq 

(Figure 34). 

 

Figure 34. Dnsmasq and Consul ports 

 

After that dnsmasq.yml is included into main.yml in tasks so it can be installed with 

any Consul. 

7.5 Registrator configuration 

Docker-registrator is a readymade role by Qvantel that has been used with the ear-

lier versions of Consul. As there are now newer versions of Registrator available, this 

role has been left untouched. The role is still built the same way as the rest of them 

including all the same directories and playbooks.  
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7.6 Mesos configuration 

Mesos role is a readymade role by Qvantel. It is included because it is needed for 

testing and; it also works well to demonstrate how Ansible works with host installa-

tions. Mesos’s role is built in the same way as most of the roles, with defaults, han-

dlers, meta, tasks, templates, tests and vars directories in the role. Installing with 

yum or any other package management tool with Ansible is simple. A task is created 

for installing Mesos that is executed by giving it a package name and version and the 

state it is in. In this case present as it is wanted to be present on the machine and if 

not Ansible should install it. Mesos has two roles to fill: master and slave. The idea is 

the same as with Consul. Playbook gets the variables for both master and slave serv-

ers and chooses from them depending on the target host. Consul.yml handels regis-

tering Mesos service to Consul (Figure 35).  

 

Figure 35. Mesos main.yml playbook 
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7.7 Marathon configuration 

Marathon’s configuration is located in the template directory. Firewalld_service.j2 is 

located there also and it is the same as Consul’s firewall configuration. In the configu-

ration, Marathon will have Zookeeper servers defined, so that it can connect to 

Mesos by them. Marathon will also use Zookeeper to choose a leading master when 

there are more than one Marathon.  

MARATHON_MASTER=zk:// zookeeper_serverlist /2181/mesos 

MARATHON_ZK=zk:// zookeeper_serverlist /2181/mesos 

MARATHON_HTTP_ADDRESS= listen address 

MARATHON ADDRESS= listen address 

This leading master has its framework used by Mesos.  In addition, addresses are de-

fined with variables in the configuration except for libprocess port (Figure 36).  

 

Figure 36. Marathon configuration 

 

The tasks have three playbooks, marathon.yml, firewalld.yml and main.yml. In mara-

thon.yml Marathon is installed and its configuration is moved to a correct directory. 

The installation task is almost the same as Consul’s. Figure 37 displays marathon.yml 

playbook and tasks in it. 

 

Figure 37. Marathon installation playbook 
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The main.yml includes both marathon.yml and firewalld.yml. The defaults have 

main.yml file to be used for defining variables. Listen address, log level and configu-

ration path are both defined here (Figure 38). 

 

Figure 38. Default settings 

 

Vars includes firewall service name, ports and protocols (Figure 39).  

 

Figure 39. Firewall service for Marathon. 

 

7.8 Zookeeper configuration 

Zookeeper’ configuration is located in templates directory. The directory has both 

firewalld.yml and zoo.cfg.j2. Firewall configuration is the same as in other roles. In 

zoo.cfg.j2 Zookeeper has its client limit, tick time, init limit and sync limit specified. 

Data directory, client port, and port address are also defined. The configuration also 

has a setting for Zookeeper hosts that set the Zookeeper server id with the correct 

address (Figure 40).   

server.1=192.168.81.60 

server.2=192.168.81.62 

server.3=192.168.81.64 
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Figure 40. Zookeeper configuration 

 

In tasks, zookeeper.yml playbook creates the correct data paths with zookeeper us-

ers, adds the configurations there, creates a myid file from zookeeper_id that is later 

specified and also creates the container. Zookeeper container is created like Consul 

and Marathon (Figure 41). 

 

Figure 41. Zookeeper playbook 

 

Firewalls playbook is the same as previously, using 2181 as service port and 

main.yml, combining those two playbooks with include.  

7.9 QVCP role 

QVCP is also a readymade role by Qvantel that sets all the needed repositories and 

keys to the host. This is always done as a pre-task when installing services to a new 

host. Figure 42 displays some of the used repositories. 
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Figure 42. Repositories included in QVCP role 

 

7.10 Ansible setup for installation 

Ansible is meant to do all the installations and configuration which means Ansible 

must have playbooks for both master and slave nodes. These playbooks must install 

all roles and make sure the hosts have all needed repositories, packages and infor-

mation needed by the roles.  

7.10.1 Roles 

Roles include all the roles created or discussed earlier. These roles are located inside 

a directory called roles (Figure 43). 

 

Figure 43. Roles in directory roles 
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7.10.2 Variables 

Variables are located in three different locations. Inventory/hosts, group_vars/all and 

extra_vars/env_variables. Hosts file has master and agent servers specified under 

their names. Master servers also have their zookeeper_id variables placed after their 

address (Figure 44).  

 

Figure 44. Hosts file 

 

Group_vars has addresses, docker registry, consul scheme and server lists specified. 

Docker registry points where the docker images are located, in this case, Qvantel’s 

own registry. Listen addresses use Ansible’s default address. Server lists creates a list 

out of Zookeeper servers and their addresses. 

Zookeeper_serverlist: “{{ groups[‘zookeeper_servers’] | map(‘extract’, host-

vars, ‘zookeeper_listen_address’) |list }}’ 

It uses zookeeper_servers with groups and then extracts addresses used to form 

hosts with hostvars and creates a list. The same is done with Mesos. Package install is 

a variable for offline installation but is not used in this environment. Figure 45 dis-

plays settings in group_vars. 

 

Figure 45. Group_vars settings 
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Extra_vars contains extra variables, including default path for directories and logging 

level for mesos-master and marathon (Figure 46).  

 

Figure 46. Extra_vars 

 

For containers to work, users are created with playbooks in users directory. These 

create a group for services and add users to those groups. There are two separate 

playbooks, one for master and one for agent hosts. These can be found in Appen-

dices 1 and 2. 

7.10.3 Other settings 

Package versions are  described in vars/versions.yml (Figure 47).  

 

Figure 47. Package versions 

 

Ansible.cfg is the main Ansible configuration file. This file can be used to set different 

paths, user and host settings. In this case, the settings are basic. Host key checking is 

set to false for SSH. Callback_whitelist helps to make playbook runs more informative 

with date and time. Roles_path tells Ansible which roles to use and hostfile where to 

find host addresses. In this case, tty is not required by sudo so pipelining is true. Fig-

ure 48 displays used Ansible configuration. 
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Figure 48. Ansible configuration 

 

7.10.4 Playbook 

Playbooks are created for both master and agent. Both playbooks are the same ex-

cept for their names and roles. Masters playbook first sets up hosts. Here it will take 

master nodes from inventory/hosts file and role versions from vars/versions.yml. 

With become: yes means it will become sudo as it is the default option. Pre-tasks in-

clude tasks done before roles. These include adding extra_vars variables to be used, 

adding hosts to Zookeeper servers, Consul masters and Mesos masters. This will oc-

cur if it is not currently so, defined by changed_when. Playbook ensures firewalld is 

installed and includes roles qvcp-common, docker and master_users.yml. This is simi-

lar in agent playbook as well. After pre-tasks, Ansible installs the specified roles. The 

roles include Consul, Registrator, Zookeeper, Mesos and Marathon. Consul and 

Mesos have additional settings of consul_role and mesos_role for what role to in-

stall, master or agent/slave (Figure 49). Their own playbooks use this setting to install 

the wanted version. Master playbook can be found in Appendix 3. 

 

Figure 49. Included roles 
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Agents playbook is similar with only names changing and agent getting facts from 

master nodes. This will make it so that agent playbook if accessible to master ad-

dresses from the inventory/hosts. In addition, there are only three roles, Consul, 

Mesos and Registrator with Consul and Mesos roles being agent/slave.  

Slave playbook can be found in Appendix 4. 

As playbooks are ready and roles are set, the installation can start.  

8 Installation  

Installation is performed by entering command 

[root@cp00 consul-thesis]# ansible-playbook -u avalkeinen -k mas-

ter.yml 

in consul-thesis/ directory. Under this directory lie all the Ansible playbooks, varia-

bles and roles. Ansible asks for password because of the -k option. After entering 

password, the master.yml playbook runs (Figure 50).  

 

Figure 50. Playbook run 

 



55 
 

 

After running the master playbook, Ansible shows play recap and information on 

how long it took (Figure 51). 

 

Figure 51. Playbook installation recap 

 

At this point, Consul can be accessed with its hostname or IP and using its port 8500. 

Figure 52 displays default Consul UI with registered services.  

 

Figure 52. Registered services 

 

With this, it can be seen that the services are healthy and installed. Running the 

agent playbook works with the same command. 
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 [root@cp00 consul-thesis]# ansible-playbook -u avalkeinen agent.yml -k 

After installation, it can be seen in the Ansible recap that everything was installed 

properly (Figure 53). 

 

Figure 53. Play recap 

 

Master nodes are included because agent.yml gets facts from them. In Consul’s UI 

can be seen that everything was installed and is answering to the healthchecks (Fig-

ure 54).  

 

Figure 54. Consul UI and running services 
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In addition, Mesos UI can be accessed from one of its server’s IPs and in port 5050. 

Figure 55 displays Mesos UI with connected slaves. 

 

Figure 55. Mesos UI 

 

Marathon UI can be accessed on port 8080. With this, it can be confirmed that at 

least UIs are working. 

9 Testing  

Creating a container with Marathon can be done either manually or with a ready 

container. In this case, a ready container was used. The container sends randomly 

created “tweets” from a certain President as its stdout messages. The container is 

created by going to Marathon’s UI and selecting create application. There the con-

tainer is named Thesis in general options and the image path is entered in Docker 

container options. Figure 56 shows the creation of a Marathon application with a 

ready image. 
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Figure 56. Marathon using a ready image from a repository 

 

The image is pulled from Qvantel’s own Docker registry. After creating the applica-

tion, Consul’s connectivity is tested in agent server cp10. Here consul.service.consul 

address is used to ping, traceroute and nslookup within the Thesis container running 

on top of Marathon. After deploying, it can be seen in the Marathon’s application 

list. If status shows running, it means it is up and running (Figure 57).  

 

Figure 57. Running container in Marathon UI 

 

In addition, in Mesos’s UI can be seen that the stdouts is sending data (Figure 58).  

 

Figure 58. Application stdout 

 

In Consul’s UI it can be seen that the container has been registered to Consul with 

Registrator (Figure 59).  



59 
 

 

 

Figure 59. Automatically registered tweet container 

 

In Mesos it can also be seen on which machine it is running. In this case, 

192.168.81.70 that is cp10 (Figure 60).  

 

Figure 60. Active tasks 

 

With the command 

 [root@cp10 avalkeinen]# docker ps 

it can be seen that the container is running there (Figure 61).  

 

Figure 61. Docker ps on cp10 

 

With the command  

 [root@cp10 avalkeinen]# docker exec -it 1bf sh 

container can be accessed. The connectivity can be tested in Consul first with ping 

command. Figure 62 displays both docker exec command and ping to Consul. 
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Figure 62. Exec and ping 

 

It can be seen that the server it connects to is 192.168.81.64, the current leading 

master. This can be seen in Docker’s Consul logs (Figure 63).  

 

Figure 63. Docker logs 

 

After ping, traceroute command is used inside the container (Figure 64).  

 

Figure 64. Traceroute from the container 

 

Nothing much there. With nslookup, the servers with that name can be seen (Figure 

65).  

 

Figure 65. Nslookup from the container 

Consul has its own commands that can be used within the container. Consul con-

tainer is accessed as the thesis container. From inside the container, the command 

 / # consul members --http-addr=http://192.168.81.60:8500 
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can be used. The members command shows all Consuls connected to master servers. 

HTTP command makes the command to use this specific server to query the infor-

mation. With the command, Consul prints its members (Figure 66).  

 

Figure 66. Consul members 

 

Docker containers can also be inspected with the command: 

 [root@cp00 consul-thesis]# docker inspect consul-server 

This prints out the configuration, name, mount paths, networking and other infor-

mation about the container. Consul, Marathon and Zookeeper inspects can be found 

from Appendices 5, 6 and 7. 

Consul can also be used as a key/value store. This can hold for example dynamic con-

figurations. When application starts it will fetch configuration from Consul’s KV stor-

age. Because configuration is copied from Consul it can be changed in Consul UI and 

this will be updated to the running application. This is the primary reason for Consul 

in addition of service discovery and health checking. Figure 67 presents Consul KV 

with simple configuration for Nginx.  

 

Figure 67. KV storage in Consul 
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Consul configuration is supposed to use /usr/share/consul/ datapath to store config-

urations and data. Figure 68 displays path, directories in /usr/share/consul/ and con-

figuration set by Ansible Consul template.  

 

Figure 68. Consul configuration set by Ansible 

With mounting /usr/share/consul/ with the Consul container, same files can be 

found inside the Consul container (FIngure 69). 

 

Figure 69. Mounted configuration in Consul container 
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10 Results 

The goal of the thesis was to create an automated DNS service installation and imple-

ment it to the platform. This was achieved by creating new roles for Consul and in-

cluding Dnsmasq to that role. Additionally, Marathon and Zookeeper were moved to 

containers and given new roles. A new Ansible installation was created to install new 

services to testing environment. The testing environment was used to see if new con-

tainers worked as intended, alone and together as a platform. Consul was tested by 

using common networking commands to see if the name service was working cor-

rectly. New services were registered by creating an application container on top of 

Marathon and seeing if Consul would register new containers with the help of Regis-

trator, which also tests if Marathon and Zookeeper containers work properly. All 

tests worked as intended. Hence, it can be concluded that Consul and other roles are 

working and can be delivered to be as part of the Qvantel’s platform.  

11 Conclusons 

The research question was to create an automated DNS service installation and im-

plement it to the platform. This was achieved by successfully creating a new Ansible 

role for Consul that could be integrated to Qvantel’s platform services. Consul’s role 

was first theorized, planned and then implemented in practice. During the creation 

of Consul role, also Marathon and Zookeeper were developed; however, the thesis 

did not focus on them. Dnsmasq was integrated into the same role as Consul as it is 

always installed on same host as Consul.  

Constructive research was chosen as the method of research for this thesis. Con-

structive research was chosen because the required results were known; however, 

the practice was not. Research methodology was chosen correctly, as the thesis fo-

cused on developing something new from something that was already known and ex-

isted in a different form.  

The thesis turned out to be fairly comprehensive look into Consul, Ansible, Docker 

and Mesos. The study could have been completed more straightforwardly, skipping 

extra components and focusing solely on Consul and Ansible. Nevertheless, as Consul 
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is wanted as a part of a larger system, this was still a good way to see how it would 

work with multiple components and in a real environment. Multiple datacenter con-

nectivity was left out of Consul as there was no time to test it properly. This was one 

feature that was left out and will be added at a later date, when Consul is integrated 

into Qvantel’s systems. For now, Consul datacenters can be connected manually with 

one command.  

It was easy to find theory on different components; however, the planning and de-

velopment was mostly carried out using official documentation for each component. 

As books usually focus on a specific way of implementing a service, they do not pro-

vide much help. Every company has their own way of doing things, and something 

written can never be implemented easily. While making different roles, the support 

on how to do them, how they work and what is needed was mostly gained orally 

from colleagues. This was not documented as there are no interviews or physical 

documentation of this knowledge.  

Creating simple Ansible roles teaches not only how to configure and use Ansible but 

how to configure different services and how to troubleshoot them. As installation is 

trivialized, most issues come after installing or upgrading those services. This thesis 

and the rest of the development work done outside of this research has increased 

my personal knowledge of open source software. Even if Consul role will go through 

some changes after being integrated with rest of the roles, this thesis has still helped 

Qvantel to reach their goal of creating an automated platform installation.  
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Appendices 

Appendix 1. Master groups and users 
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Appendix 2. Agent groups and users 
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Appendix 3. Master playbook 
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Appendix 4. Agent playbook 
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Appendix 5. Docker inspect for Consul in cp00 

[ 

    { 

        "Id": 
"068ee6ff8b9f1d26df668e4ca0e999ebf69f9210db0443a782bf40141d4aad4a", 

        "Created": "2018-08-04T23:21:12.948452844Z", 

        "Path": "docker-entrypoint.sh", 

        "Args": [ 

            "agent", 

            "-dev", 

            "-client", 

            "0.0.0.0" 

        ], 

        "State": { 

            "Status": "running", 

            "Running": true, 

            "Paused": false, 

            "Restarting": false, 

            "OOMKilled": false, 

            "Dead": false, 

            "Pid": 4756, 

            "ExitCode": 0, 

            "Error": "", 

            "StartedAt": "2018-08-05T04:06:13.812145588Z", 

            "FinishedAt": "2018-08-05T04:02:31.322212458Z" 

        }, 

        "Image": 
"sha256:e5193fe01bbc3f497319898abdb121be690b403beef8e388a0fc43616e1b418
9", 

        "ResolvConfPath": "/var/lib/docker/contain-
ers/068ee6ff8b9f1d26df668e4ca0e999ebf69f9210db0443a782bf40141d4aad4a/re-
solv.conf", 
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        "HostnamePath": "/var/lib/docker/contain-
ers/068ee6ff8b9f1d26df668e4ca0e999ebf69f9210db0443a782bf40141d4aad4a/host
name", 

        "HostsPath": "/var/lib/docker/contain-
ers/068ee6ff8b9f1d26df668e4ca0e999ebf69f9210db0443a782bf40141d4aad4a/host
s", 

        "LogPath": "/var/lib/docker/contain-
ers/068ee6ff8b9f1d26df668e4ca0e999ebf69f9210db0443a782bf40141d4aad4a/068
ee6ff8b9f1d26df668e4ca0e999ebf69f9210db0443a782bf40141d4aad4a-json.log", 

        "Name": "/consul-server", 

        "RestartCount": 0, 

        "Driver": "overlay2", 

        "Platform": "linux", 

        "MountLabel": "", 

        "ProcessLabel": "", 

        "AppArmorProfile": "", 

        "ExecIDs": null, 

        "HostConfig": { 

            "Binds": [ 

                "/usr/share/consul/config:/etc/consul/config:rw", 

                "/usr/share/consul/data:/consul/data:rw" 

            ], 

            "ContainerIDFile": "", 

            "LogConfig": { 

                "Type": "json-file", 

                "Config": { 

                    "max-file": "3", 

                    "max-size": "25m" 

                } 

            }, 

            "NetworkMode": "host", 

            "PortBindings": { 

                "3233/tcp": [ 

                    { 
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                        "HostIp": "0.0.0.0", 

                        "HostPort": "" 

                    } 

                ], 

                "8300/tcp": [ 

                    { 

                        "HostIp": "0.0.0.0", 

                        "HostPort": "8300" 

                    }, 

                    { 

                        "HostIp": "0.0.0.0", 

                        "HostPort": "8300" 

                    } 

                ], 

                "8301/tcp": [ 

                    { 

                        "HostIp": "0.0.0.0", 

                        "HostPort": "8301" 

                    } 

                ], 

                "8302/tcp": [ 

                    { 

                        "HostIp": "0.0.0.0", 

                        "HostPort": "8302" 

                    } 

                ], 

                "8500/tcp": [ 

                    { 

                        "HostIp": "0.0.0.0", 

                        "HostPort": "8500" 

                    } 

                ], 
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                "8543/tcp": [ 

                    { 

                        "HostIp": "0.0.0.0", 

                        "HostPort": "8543" 

                    } 

                ] 

            }, 

            "RestartPolicy": { 

                "Name": "always", 

                "MaximumRetryCount": 0 

            }, 

            "AutoRemove": false, 

            "VolumeDriver": "", 

            "VolumesFrom": null, 

            "CapAdd": null, 

            "CapDrop": null, 

            "Dns": [], 

            "DnsOptions": [], 

            "DnsSearch": [], 

            "ExtraHosts": null, 

            "GroupAdd": null, 

            "IpcMode": "shareable", 

            "Cgroup": "", 

            "Links": null, 

            "OomScoreAdj": 0, 

            "PidMode": "", 

            "Privileged": true, 

            "PublishAllPorts": false, 

            "ReadonlyRootfs": false, 

            "SecurityOpt": [ 

                "label=disable" 

            ], 
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            "UTSMode": "", 

            "UsernsMode": "", 

            "ShmSize": 67108864, 

            "Runtime": "runc", 

            "ConsoleSize": [ 

                0, 

                0 

            ], 

            "Isolation": "", 

            "CpuShares": 0, 

            "Memory": 0, 

            "NanoCpus": 0, 

            "CgroupParent": "", 

            "BlkioWeight": 0, 

            "BlkioWeightDevice": null, 

            "BlkioDeviceReadBps": null, 

            "BlkioDeviceWriteBps": null, 

            "BlkioDeviceReadIOps": null, 

            "BlkioDeviceWriteIOps": null, 

            "CpuPeriod": 0, 

            "CpuQuota": 0, 

            "CpuRealtimePeriod": 0, 

            "CpuRealtimeRuntime": 0, 

            "CpusetCpus": "", 

            "CpusetMems": "", 

            "Devices": null, 

            "DeviceCgroupRules": null, 

            "DiskQuota": 0, 

            "KernelMemory": 0, 

            "MemoryReservation": 0, 

            "MemorySwap": 0, 

            "MemorySwappiness": null, 
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            "OomKillDisable": false, 

            "PidsLimit": 0, 

            "Ulimits": null, 

            "CpuCount": 0, 

            "CpuPercent": 0, 

            "IOMaximumIOps": 0, 

            "IOMaximumBandwidth": 0 

        }, 

        "GraphDriver": { 

            "Data": { 

                "LowerDir": "/var/lib/docker/over-
lay2/a9bfb369817e1dad252be9b5b2abc317138f0f1a38e847845f684d2077a76865-
init/diff:/var/lib/docker/over-
lay2/5c4b4eef54e5220a1f9f9f9755abff35c6280379c21ed3af4bbc784f982bc28c/diff:
/var/lib/docker/over-
lay2/fff2015282b6dc7b204628bfd5a60c3206c547265d3d47921e285fff785a0d53/diff
:/var/lib/docker/over-
lay2/4b1786398ec70e53622b6f798079224b0c7b38b8a537c60e75839bab3cf4acac/di
ff:/var/lib/docker/over-
lay2/fe1fd078f730207e266ec6f0c14b68ba5e90af76fbed85d2b0d9d974c3416ff1/diff:
/var/lib/docker/over-
lay2/2a8815a10074804d9dbbf00d58632f464e0d8b673f15b6df5d9f0edfd943f4f9/dif
f", 

                "MergedDir": "/var/lib/docker/over-
lay2/a9bfb369817e1dad252be9b5b2abc317138f0f1a38e847845f684d2077a76865/
merged", 

                "UpperDir": "/var/lib/docker/over-
lay2/a9bfb369817e1dad252be9b5b2abc317138f0f1a38e847845f684d2077a76865/d
iff", 

                "WorkDir": "/var/lib/docker/over-
lay2/a9bfb369817e1dad252be9b5b2abc317138f0f1a38e847845f684d2077a76865/w
ork" 

            }, 

            "Name": "overlay2" 

        }, 

        "Mounts": [ 

            { 

                "Type": "bind", 
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                "Source": "/usr/share/consul/data", 

                "Destination": "/consul/data", 

                "Mode": "rw", 

                "RW": true, 

                "Propagation": "rprivate" 

            }, 

            { 

                "Type": "bind", 

                "Source": "/usr/share/consul/config", 

                "Destination": "/etc/consul/config", 

                "Mode": "rw", 

                "RW": true, 

                "Propagation": "rprivate" 

            } 

        ], 

        "Config": { 

            "Hostname": "cp00", 

            "Domainname": "", 

            "User": "", 

            "AttachStdin": false, 

            "AttachStdout": false, 

            "AttachStderr": false, 

            "ExposedPorts": { 

                "3233/tcp": {}, 

                "8300/tcp": {}, 

                "8301/tcp": {}, 

                "8301/udp": {}, 

                "8302/tcp": {}, 

                "8302/udp": {}, 

                "8500/tcp": {}, 

                "8543/tcp": {}, 

                "8600/tcp": {}, 
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                "8600/udp": {} 

            }, 

            "Tty": false, 

            "OpenStdin": false, 

            "StdinOnce": false, 

            "Env": [ 

                "SERVICE_53_IGNORE=True", 

                "SERVICE_NAME=cp-consulserver", 

                "SERVICE_8300_IGNORE=True", 

                "SERVICE_8302_IGNORE=True", 

                "CONSUL_ALLOW_PRIVILEGED_PORTS=True", 

                "SERVICE_IP=192.168.81.60", 

                "SERVICE_8301_IGNORE=True", 

                "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin", 

                "CONSUL_VERSION=1.1.0", 

                "HASHICORP_RELEASES=https://releases.hashicorp.com" 

            ], 

            "Cmd": [ 

                "agent", 

                "-dev", 

                "-client", 

                "0.0.0.0" 

            ], 

            "ArgsEscaped": true, 

            "Image": "artifactory.qvantel.net/cp-consul:1.1.0", 

            "Volumes": { 

                "/consul/data": {}, 

                "/etc/consul/config": {} 

            }, 

            "WorkingDir": "", 

            "Entrypoint": [ 

                "docker-entrypoint.sh" 
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            ], 

            "OnBuild": null, 

            "Labels": {} 

        }, 

        "NetworkSettings": { 

            "Bridge": "", 

            "SandboxID": 
"330f98b6565b8928fd77da1cea5398f0278b0bcf08a5cdd9b8def2f46e3e7cc5", 

            "HairpinMode": false, 

            "LinkLocalIPv6Address": "", 

            "LinkLocalIPv6PrefixLen": 0, 

            "Ports": {}, 

            "SandboxKey": "/var/run/docker/netns/default", 

            "SecondaryIPAddresses": null, 

            "SecondaryIPv6Addresses": null, 

            "EndpointID": "", 

            "Gateway": "", 

            "GlobalIPv6Address": "", 

            "GlobalIPv6PrefixLen": 0, 

            "IPAddress": "", 

            "IPPrefixLen": 0, 

            "IPv6Gateway": "", 

            "MacAddress": "", 

            "Networks": { 

                "host": { 

                    "IPAMConfig": null, 

                    "Links": null, 

                    "Aliases": null, 

                    "NetworkID": 
"2ef70a9501d223bd8bc11226a8b9138066ba844738c25fbe419702a88c829a57", 

                    "EndpointID": 
"10f263b1e01c505549061502f255cdc71b1d94ee370d8a639149d6269be77346", 

                    "Gateway": "", 
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                    "IPAddress": "", 

                    "IPPrefixLen": 0, 

                    "IPv6Gateway": "", 

                    "GlobalIPv6Address": "", 

                    "GlobalIPv6PrefixLen": 0, 

                    "MacAddress": "", 

                    "DriverOpts": null 

                } 

            } 

        } 

    } 

] 
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Appendix 6. Docker inspect for Marathon in cp00 

[ 

    { 

        "Id": 
"49e22cb2ccf337bc7341f489fa3f2fc45f56cd7dfab95cc6481d9092b078040c", 

        "Created": "2018-08-04T23:23:46.6371916Z", 

        "Path": "bin/marathon", 

        "Args": [], 

        "State": { 

            "Status": "running", 

            "Running": true, 

            "Paused": false, 

            "Restarting": false, 

            "OOMKilled": false, 

            "Dead": false, 

            "Pid": 4725, 

            "ExitCode": 0, 

            "Error": "", 

            "StartedAt": "2018-08-05T04:06:13.844340799Z", 

            "FinishedAt": "2018-08-05T04:02:32.171518339Z" 

        }, 

        "Image": 
"sha256:3673003f7e29b9cf50aa8ddecad6bf76bb28f37ba800e90309e783c7a337d2c
2", 

        "ResolvConfPath": "/var/lib/docker/contain-
ers/49e22cb2ccf337bc7341f489fa3f2fc45f56cd7dfab95cc6481d9092b078040c/re-
solv.conf", 

        "HostnamePath": "/var/lib/docker/contain-
ers/49e22cb2ccf337bc7341f489fa3f2fc45f56cd7dfab95cc6481d9092b078040c/host-
name", 

        "HostsPath": "/var/lib/docker/contain-
ers/49e22cb2ccf337bc7341f489fa3f2fc45f56cd7dfab95cc6481d9092b078040c/hosts
", 

        "LogPath": "/var/lib/docker/contain-
ers/49e22cb2ccf337bc7341f489fa3f2fc45f56cd7dfab95cc6481d9092b078040c/49e2
2cb2ccf337bc7341f489fa3f2fc45f56cd7dfab95cc6481d9092b078040c-json.log", 
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        "Name": "/marathon", 

        "RestartCount": 0, 

        "Driver": "overlay2", 

        "Platform": "linux", 

        "MountLabel": "", 

        "ProcessLabel": "", 

        "AppArmorProfile": "", 

        "ExecIDs": null, 

        "HostConfig": { 

            "Binds": [], 

            "ContainerIDFile": "", 

            "LogConfig": { 

                "Type": "json-file", 

                "Config": { 

                    "max-file": "3", 

                    "max-size": "25m" 

                } 

            }, 

            "NetworkMode": "host", 

            "PortBindings": null, 

            "RestartPolicy": { 

                "Name": "unless-stopped", 

                "MaximumRetryCount": 0 

            }, 

            "AutoRemove": false, 

            "VolumeDriver": "", 

            "VolumesFrom": null, 

            "CapAdd": null, 

            "CapDrop": null, 

            "Dns": [], 

            "DnsOptions": [], 

            "DnsSearch": [], 
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            "ExtraHosts": null, 

            "GroupAdd": null, 

            "IpcMode": "shareable", 

            "Cgroup": "", 

            "Links": null, 

            "OomScoreAdj": 0, 

            "PidMode": "", 

            "Privileged": false, 

            "PublishAllPorts": false, 

            "ReadonlyRootfs": false, 

            "SecurityOpt": null, 

            "UTSMode": "", 

            "UsernsMode": "", 

            "ShmSize": 67108864, 

            "Runtime": "runc", 

            "ConsoleSize": [ 

                0, 

                0 

            ], 

            "Isolation": "", 

            "CpuShares": 0, 

            "Memory": 0, 

            "NanoCpus": 0, 

            "CgroupParent": "", 

            "BlkioWeight": 0, 

            "BlkioWeightDevice": null, 

            "BlkioDeviceReadBps": null, 

            "BlkioDeviceWriteBps": null, 

            "BlkioDeviceReadIOps": null, 

            "BlkioDeviceWriteIOps": null, 

            "CpuPeriod": 0, 

            "CpuQuota": 0, 
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            "CpuRealtimePeriod": 0, 

            "CpuRealtimeRuntime": 0, 

            "CpusetCpus": "", 

            "CpusetMems": "", 

            "Devices": null, 

            "DeviceCgroupRules": null, 

            "DiskQuota": 0, 

            "KernelMemory": 0, 

            "MemoryReservation": 0, 

            "MemorySwap": 0, 

            "MemorySwappiness": null, 

            "OomKillDisable": false, 

            "PidsLimit": 0, 

            "Ulimits": null, 

            "CpuCount": 0, 

            "CpuPercent": 0, 

            "IOMaximumIOps": 0, 

            "IOMaximumBandwidth": 0 

        }, 

        "GraphDriver": { 

            "Data": { 

                "LowerDir": "/var/lib/docker/over-
lay2/cb0f3c5063ea169c98230066246eae83e71edaeee31c8dd03e9cac502ae8ad39-
init/diff:/var/lib/docker/over-
lay2/881fcda0a468001c6841a5a23911ee93248309750e69afc8027f64f42f59fff6/diff:
/var/lib/docker/over-
lay2/26cb9f498201f1d11a4324034a65413e764e9e5631e0c8ae03b2ce781d60ddd5/
diff:/var/lib/docker/over-
lay2/268483e59b8455feb42ea7f6dfd46257b2003bca7e244e06fc622335e911d13c/di
ff:/var/lib/docker/over-
lay2/5d9fc7094e143a1de1e0caa2fed72c947c60f9f0ea17da0a53f73b0660bd9ae1/dif
f:/var/lib/docker/overlay2/e7141b08ab-
abfbc7b82545f5daa1afb285721fa25c9d949c9a86d2580047aa6d/diff:/var/lib/docker
/over-
lay2/da7186b827106fb5bf008438e6288800dc0bca22be2d7885a4093abdd0174fdc/d
iff", 
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                "MergedDir": "/var/lib/docker/over-
lay2/cb0f3c5063ea169c98230066246eae83e71edaeee31c8dd03e9cac502ae8ad39/
merged", 

                "UpperDir": "/var/lib/docker/over-
lay2/cb0f3c5063ea169c98230066246eae83e71edaeee31c8dd03e9cac502ae8ad39/d
iff", 

                "WorkDir": "/var/lib/docker/over-
lay2/cb0f3c5063ea169c98230066246eae83e71edaeee31c8dd03e9cac502ae8ad39/w
ork" 

            }, 

            "Name": "overlay2" 

        }, 

        "Mounts": [], 

        "Config": { 

            "Hostname": "cp00", 

            "Domainname": "", 

            "User": "root", 

            "AttachStdin": false, 

            "AttachStdout": false, 

            "AttachStderr": false, 

            "Tty": false, 

            "OpenStdin": false, 

            "StdinOnce": false, 

            "Env": [ 

                "LIBPROCESS_PORT=8585", 

                "MARATHON_ZK=zk://192.168.81.60:2181/marathon", 

                "MARATHON_LOGGING_LEVEL=ERROR", 

                "MARATHON_HTTP_ADDRESS=192.168.81.60", 

                "MARATHON_MASTER=zk://192.168.81.60:2181/mesos", 

                "LIBPROCESS_IP=192.168.81.60", 

                "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin", 

                "JAVA_HOME=/docker-java-home" 

            ], 

            "Cmd": [], 
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            "ArgsEscaped": true, 

            "Image": "artifactory.qvantel.net/cp-marathon:v1.5.8", 

            "Volumes": null, 

            "WorkingDir": "/marathon", 

            "Entrypoint": [ 

                "bin/marathon" 

            ], 

            "OnBuild": null, 

            "Labels": {} 

        }, 

        "NetworkSettings": { 

            "Bridge": "", 

            "SandboxID": 
"96c93c01ce1953fabfd544bff0037aecad5ccc856009e90e5b83f5497e97ad2c", 

            "HairpinMode": false, 

            "LinkLocalIPv6Address": "", 

            "LinkLocalIPv6PrefixLen": 0, 

            "Ports": {}, 

            "SandboxKey": "/var/run/docker/netns/default", 

            "SecondaryIPAddresses": null, 

            "SecondaryIPv6Addresses": null, 

            "EndpointID": "", 

            "Gateway": "", 

            "GlobalIPv6Address": "", 

            "GlobalIPv6PrefixLen": 0, 

            "IPAddress": "", 

            "IPPrefixLen": 0, 

            "IPv6Gateway": "", 

            "MacAddress": "", 

            "Networks": {} 

        } 

    } 
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] 
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Appendix 7. Docker inspect for Zookeeper in cp00 

[ 

    { 

        "Id": 
"b1196ac82b1e1d97b9d8681e041fb5d266cf1bac349c32407703d5a9c363b094", 

        "Created": "2018-08-04T23:22:07.067227185Z", 

        "Path": "/docker-entrypoint.sh", 

        "Args": [ 

            "zkServer.sh", 

            "start-foreground" 

        ], 

        "State": { 

            "Status": "running", 

            "Running": true, 

            "Paused": false, 

            "Restarting": false, 

            "OOMKilled": false, 

            "Dead": false, 

            "Pid": 4706, 

            "ExitCode": 0, 

            "Error": "", 

            "StartedAt": "2018-08-05T04:06:13.824277976Z", 

            "FinishedAt": "2018-08-05T04:02:31.650611049Z" 

        }, 

        "Image": 
"sha256:bf5cbc9d5cac93b5688523961f994897e1e51d37804b50390f0247ea3537e2f
b", 

        "ResolvConfPath": "/var/lib/docker/contain-
ers/b1196ac82b1e1d97b9d8681e041fb5d266cf1bac349c32407703d5a9c363b094/re
solv.conf", 

        "HostnamePath": "/var/lib/docker/contain-
ers/b1196ac82b1e1d97b9d8681e041fb5d266cf1bac349c32407703d5a9c363b094/h
ostname", 
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        "HostsPath": "/var/lib/docker/contain-
ers/b1196ac82b1e1d97b9d8681e041fb5d266cf1bac349c32407703d5a9c363b094/h
osts", 

        "LogPath": "/var/lib/docker/contain-
ers/b1196ac82b1e1d97b9d8681e041fb5d266cf1bac349c32407703d5a9c363b094/b
1196ac82b1e1d97b9d8681e041fb5d266cf1bac349c32407703d5a9c363b094-
json.log", 

        "Name": "/zookeeper", 

        "RestartCount": 0, 

        "Driver": "overlay2", 

        "Platform": "linux", 

        "MountLabel": "", 

        "ProcessLabel": "", 

        "AppArmorProfile": "", 

        "ExecIDs": null, 

        "HostConfig": { 

            "Binds": [ 

                "/usr/share/zookeeper/conf/zoo.cfg:/conf/zoo.cfg:rw", 

                "/usr/share/zookeeper/data:/data:rw", 

                "/usr/share/zookeeper/datalog:/datalog:rw" 

            ], 

            "ContainerIDFile": "", 

            "LogConfig": { 

                "Type": "json-file", 

                "Config": { 

                    "max-file": "3", 

                    "max-size": "25m" 

                } 

            }, 

            "NetworkMode": "host", 

            "PortBindings": null, 

            "RestartPolicy": { 

                "Name": "unless-stopped", 
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                "MaximumRetryCount": 0 

            }, 

            "AutoRemove": false, 

            "VolumeDriver": "", 

            "VolumesFrom": null, 

            "CapAdd": null, 

            "CapDrop": null, 

            "Dns": [], 

            "DnsOptions": [], 

            "DnsSearch": [], 

            "ExtraHosts": null, 

            "GroupAdd": null, 

            "IpcMode": "shareable", 

            "Cgroup": "", 

            "Links": null, 

            "OomScoreAdj": 0, 

            "PidMode": "", 

            "Privileged": false, 

            "PublishAllPorts": false, 

            "ReadonlyRootfs": false, 

            "SecurityOpt": null, 

            "UTSMode": "", 

            "UsernsMode": "", 

            "ShmSize": 67108864, 

            "Runtime": "runc", 

            "ConsoleSize": [ 

                0, 

                0 

            ], 

            "Isolation": "", 

            "CpuShares": 0, 

            "Memory": 0, 
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            "NanoCpus": 0, 

            "CgroupParent": "", 

            "BlkioWeight": 0, 

            "BlkioWeightDevice": null, 

            "BlkioDeviceReadBps": null, 

            "BlkioDeviceWriteBps": null, 

            "BlkioDeviceReadIOps": null, 

            "BlkioDeviceWriteIOps": null, 

            "CpuPeriod": 0, 

            "CpuQuota": 0, 

            "CpuRealtimePeriod": 0, 

            "CpuRealtimeRuntime": 0, 

            "CpusetCpus": "", 

            "CpusetMems": "", 

            "Devices": null, 

            "DeviceCgroupRules": null, 

            "DiskQuota": 0, 

            "KernelMemory": 0, 

            "MemoryReservation": 0, 

            "MemorySwap": 0, 

            "MemorySwappiness": null, 

            "OomKillDisable": false, 

            "PidsLimit": 0, 

            "Ulimits": null, 

            "CpuCount": 0, 

            "CpuPercent": 0, 

            "IOMaximumIOps": 0, 

            "IOMaximumBandwidth": 0 

        }, 

        "GraphDriver": { 

            "Data": { 
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                "LowerDir": "/var/lib/docker/over-
lay2/3f852bb6e9d51ded1abd4040bef4a7ef0d4753bcc2674a16bdd1ae80812152b6-
init/diff:/var/lib/docker/over-
lay2/a3ce44b72b508cf7b141442d45d660fc63e6958f5d4153f6b6fded40f8325163/dif
f:/var/lib/docker/over-
lay2/55a82f18e897e952e34687f502de769f20548e0bfa187c84edfcb1597efee1dd/dif
f:/var/lib/docker/over-
lay2/ca1785fdfe5cc9ced12aa6c9c254c02562d2110e4ccf60147a39014b0a2b836f/diff
:/var/lib/docker/over-
lay2/a17f7707e0802a14af12543e3bfe59ce568c4fdcfeb43be478ff0b154d34fb8c/diff:
/var/lib/docker/over-
lay2/3cffda207948dbfd5b2e855079d3c468f7c9af9cde069a98b92dda9217ff7a88/diff
:/var/lib/docker/over-
lay2/e5abfe0371c68dd7cb39b46f7e852a554ffd5210f05e96b73cd5ec312d370204/dif
f:/var/lib/docker/over-
lay2/2a8815a10074804d9dbbf00d58632f464e0d8b673f15b6df5d9f0edfd943f4f9/dif
f", 

                "MergedDir": "/var/lib/docker/over-
lay2/3f852bb6e9d51ded1abd4040bef4a7ef0d4753bcc2674a16bdd1ae80812152b6/
merged", 

                "UpperDir": "/var/lib/docker/over-
lay2/3f852bb6e9d51ded1abd4040bef4a7ef0d4753bcc2674a16bdd1ae80812152b6/
diff", 

                "WorkDir": "/var/lib/docker/over-
lay2/3f852bb6e9d51ded1abd4040bef4a7ef0d4753bcc2674a16bdd1ae80812152b6/
work" 

            }, 

            "Name": "overlay2" 

        }, 

        "Mounts": [ 

            { 

                "Type": "bind", 

                "Source": "/usr/share/zookeeper/conf/zoo.cfg", 

                "Destination": "/conf/zoo.cfg", 

                "Mode": "rw", 

                "RW": true, 

                "Propagation": "rprivate" 

            }, 

            { 
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                "Type": "bind", 

                "Source": "/usr/share/zookeeper/data", 

                "Destination": "/data", 

                "Mode": "rw", 

                "RW": true, 

                "Propagation": "rprivate" 

            }, 

            { 

                "Type": "bind", 

                "Source": "/usr/share/zookeeper/datalog", 

                "Destination": "/datalog", 

                "Mode": "rw", 

                "RW": true, 

                "Propagation": "rprivate" 

            } 

        ], 

        "Config": { 

            "Hostname": "cp00", 

            "Domainname": "", 

            "User": "", 

            "AttachStdin": false, 

            "AttachStdout": false, 

            "AttachStderr": false, 

            "ExposedPorts": { 

                "2181/tcp": {}, 

                "2888/tcp": {}, 

                "3888/tcp": {} 

            }, 

            "Tty": false, 

            "OpenStdin": false, 

            "StdinOnce": false, 

            "Env": [ 
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"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/lib/jvm/java-
1.8-openjdk/jre/bin:/usr/lib/jvm/java-1.8-openjdk/bin:/zookeeper-3.4.12/bin", 

                "LANG=C.UTF-8", 

                "JAVA_HOME=/usr/lib/jvm/java-1.8-openjdk/jre", 

                "JAVA_VERSION=8u151", 

                "JAVA_ALPINE_VERSION=8.151.12-r0", 

                "ZOO_USER=zookeeper", 

                "ZOO_CONF_DIR=/conf", 

                "ZOO_DATA_DIR=/data", 

                "ZOO_DATA_LOG_DIR=/datalog", 

                "ZOO_PORT=2181", 

                "ZOO_TICK_TIME=2000", 

                "ZOO_INIT_LIMIT=5", 

                "ZOO_SYNC_LIMIT=2", 

                "ZOO_MAX_CLIENT_CNXNS=60", 

                "ZOOCFGDIR=/conf" 

            ], 

            "Cmd": [ 

                "zkServer.sh", 

                "start-foreground" 

            ], 

            "ArgsEscaped": true, 

            "Image": "artifactory.qvantel.net/cp-zookeeper:3.4.12", 

            "Volumes": { 

                "/conf/zoo.cfg": {}, 

                "/data": {}, 

                "/datalog": {} 

            }, 

            "WorkingDir": "/zookeeper-3.4.12", 

            "Entrypoint": [ 

                "/docker-entrypoint.sh" 
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            ], 

            "OnBuild": null, 

            "Labels": {} 

        }, 

        "NetworkSettings": { 

            "Bridge": "", 

            "SandboxID": 
"3d9f56a151b6964ab2f9708672a76c6e4f40a4dfa2f4ff478d462674cb3e2aac", 

            "HairpinMode": false, 

            "LinkLocalIPv6Address": "", 

            "LinkLocalIPv6PrefixLen": 0, 

            "Ports": {}, 

            "SandboxKey": "/var/run/docker/netns/default", 

            "SecondaryIPAddresses": null, 

            "SecondaryIPv6Addresses": null, 

            "EndpointID": "", 

            "Gateway": "", 

            "GlobalIPv6Address": "", 

            "GlobalIPv6PrefixLen": 0, 

            "IPAddress": "", 

            "IPPrefixLen": 0, 

            "IPv6Gateway": "", 

            "MacAddress": "", 

            "Networks": { 

                "host": { 

                    "IPAMConfig": null, 

                    "Links": null, 

                    "Aliases": null, 

                    "NetworkID": 
"2ef70a9501d223bd8bc11226a8b9138066ba844738c25fbe419702a88c829a57", 

                    "EndpointID": 
"67a90d1dfc276a203c7918d713610c222b19d69e5453dc0f968dcc1ef6ac8439", 

                    "Gateway": "", 



97 
 

 

                    "IPAddress": "", 

                    "IPPrefixLen": 0, 

                    "IPv6Gateway": "", 

                    "GlobalIPv6Address": "", 

                    "GlobalIPv6PrefixLen": 0, 

                    "MacAddress": "", 

                    "DriverOpts": null 

                } 

            } 

        } 

    } 

] 

 

 

 

 


