

Tehetena Masresha

Changing Desktop Application to Real Time Web

 Application

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme

Thesis

10 August 2018

 Abstract

Author
Title

Number of Pages
Date

Tehetena Masresha
Changing Desktop application to Web application

35 pages
10 August 2018

Degree Bachelor of Engineering

Degree Program Information Technology

Professional Major Mobile Solutions

Instructors

Pasi Siitonen, IT Solution Architect
Ilka Kylmäinen, Principal Lecturer

Desktop applications are applications that run on several platforms of a desktop environ-
ment. These standalone applications are powerful tools that have been in use for several
years.

The thesis is done for a company named Semel Oy. The aim of this thesis project is
to produce a Realtime web application that can replace a desktop application. The case
company has developed a Windows form desktop application around ten years ago. Since
the technologies in the desktop application are outdated, the case company has demanded
a new fast and efficient Realtime web application that can be used instead of the desktop
application.

This thesis project has produced a Realtime web application built with angular JS and boot-
strap frameworks. The web application has taken expectations of the old desktop application
users and new users in consideration. The user interface is designed by compromising both
user group expectations. To enhance the performance and the effectiveness of the web
application, recent libraries and software have been used. These libraries are used in a way
that the interface and behavior of the application will not deviate from the desktop application
and create confusion for users. SignalR and Kendo UI grid are among the libraries used in
this web application. Their collaboration in making a Realtime application are explained.

Keywords SignalR, UI, Kendo UI

Contents

Introduction 1

2 Desktop application and web application 3

2.1 Pros and cons of Desktop and web application 4

2.2 Windows Forms Application 6

3 Realtime web application development and tools 8

3.1 Designing 9

3.2 Development 10

3.3 Deployment 13

4 Semel Oy Contacts web application Development 14

4.1 Overview 15

4.2 Requierment 18

4.3 Process 20

5 Implementation 21

5.1 Early phase 21

5.2 Process 23

5.3 CSA 25

6 Problems and Proposed solution 27

6.1 Design 28

6.2 functionality 31

7 Conclusion 32

References 34

List of Abbreviations

VSO Visual Studio Online Git

UI User Interface

GUI Graphic User Interface

WWW World Wide Web

CERN "Conseil Européen pour la Recherche Nucléaire"

CGI Common Gateway Interface

C# C Sharp

SPA Single Page Application

JS JavaScript

npm Node Package Manager

ADB2C Active Directory Business to Consumer

API Application Programming Interface

CRUD Create Read Update and Delete

1

Introduction

In the last few years we have witnessed rapid development of web applications. Since

web technologies are being adopted from big and complex companies to startup com-

panies, there are several opportunities and potential career paths for web developers all

around the globe.

The purpose of this thesis is to produce a web application. It is commissioned by Semel

Oy. The case company is a private held mobile information systems and software pro-

vider. It also works with mobile system ventures demanding system and software inte-

gration services.

The thesis project is done by taking part in making a web application based on an old

Windows Forms application developed by Semel about 10 years ago. The project is de-

veloped by a team of two. One is developing the backend of the new web application

and the author will be working on the front end. A GitHub and VSO Git (Visual Studio

Online Git) repository is created and in use to manage the project and develop in the

team.

The purpose of this thesis is to produce a web application by joining a team of developers

in the Semel Oy. The thesis will be based on this web application project. It will discuss

the technical and theoretical details related to Web development and design based on a

preexisting Windows Forms application that has been in use for quite a long time.

The web application is developed in visual studio code development environment for the

frontend. Angular JS is used as the development framework. Other than Angular JS,

jQuery and JavaScript are also the development languages used. The backend is devel-

oped in visual studio pro 2017. Asp.net Core was planned to be the development lan-

guage for the backend but due to problems that occurred in the problem .NET console

application was needed to be developed. Both backend applications are being used for

the server-side data manipulation and interaction.

The thesis will discuss the process of the web development and briefly the tools that are

used in the practical work. These are AngularJS, SignalR, Kendo UI, VSO and GitHub.

2

The process of the development mainly includes designing, Angular JS programming,

testing and deploying the web application to Semel’s test environment.

There are two main difficulties in this process. The first challenge is part of the designing

process, which is going to be done in Bootstrap. How to keep the web application good

looking and at the same time not extremely different from its older version for the target

group and how to balance the web application for both old users and new users interest-

ing? In other words, for the website to neither be so different and confusing, nor bad

looking and boring.

The second difficulty is more technical. The existing Windows Forms application has

event driven features. The web application is planned to be Realtime application when

needed. Integrating the latest Realtime technologies and libraries to this website has led

to several incompatibilities with the older database. Furthermore, this process may also

cause the web application to lose a resemblance to the older design.

By referring to the technical documentations, advice from the project manager and other

references, the author believes to have found solutions for these problems and briefly

discuss and present them in the thesis for others to refer to and learn from it.

3

2 Desktop application and web application

A Desktop application is a software that runs on a desktop environment. Desktop envi-

ronments can be of different platforms. Among these platforms Windows/Linux and the

Mac platforms can be good examples. The Development of desktop application has been

introduced to the world before web applications emerged. Among many reasons, GUI

(Graphical User Interface) developed by Apple in the 1980th, made desktop applications

far easier and cleaner to develop. Programmers were able to develop a desktop appli-

cation with about 95% of the programming with built in graphical elements and without

writing or bothering to recall the codes and programming language commands. [1]

Desktop applications are also named Standalone applications since both the client ren-

dering commands and the data processing codes can be executed on a single desktop

application. [1]

After the invention of the internet and especially after the WWW (World Wide Web), pro-

grams and software started being developed it to web applications. As demands for func-

tionalities and supports became numerous that desktop application production started

becoming complex. It also leads desktop applications to be dependent on third party

customs and libraries which is costly and heavy on the environment it is running. This

and several other reasons have led the concept of web applications and thin client archi-

tecture to be more adoptable and famous. [2]

The WWW was invented by Tim Berners-Lee who was working for CERN, a science

laboratory located in Geneva Switzerland. The main reason for the invention of WWW

was the need of transporting files and graphics using the internet by CERN. [4]

4

The introduction of the concepts of hyperlinks and a common UI (User Interface) through-

out an application triggered the development of CGI (Common Gateway Interface). The

CGI was a way of enabling browsers run components and resources on a web server.

From here on programmers keep on finding ways and invented new designs and archi-

tecture for data processing and manipulation. Making a smooth connection and dataflow

with a database all around the globe was also possible. This made websites step several

steps forward towards what the present-day advancement. One big drawback on the

websites at this point was that web servers were only capable of delivering static web

pages. When a query for a static page was made by the client side, the server will then

read the query and look for the correct web page and delivers the requested page to the

client browser. [1,3]

The static web pages were replaced by dynamic webpages through time and this leads

to the invention of Application Servers. Application servers are frameworks through

which request and respond from a webserver are processed back and forth. When a

request for a dynamic web page from the web server is received the requested page will

be first delivered to the application server. So that it would read and loads it on the web

server as a static page. After receiving this static web page, the web server will then

render it accordingly on to the browsers window. [3, p.111]

The application server also functions as a layer while using server resources. Mainly the

database. Communication with the database and the application layer is done via data-

base drivers such as APIs that are serving as translators to the data and requests sent

back and forth. [3]

2.1 Pros and cons of Desktop and web application

Before starting any programming development several factors have to be taken in to

consideration in order to decide what would work better to the developer’s advantage

and offer effective, easy and smooth functionality architecture. Both web and desktop

applications have their own advantages and downsides depending on the kind of func-

tionalities and products a developer would want to achieve. This chapter of the thesis

discusses common and basic pros and cons of desktop applications and web applica-

tions concerning the concepts of designing, centralization performance and portability

respectively.

5

Desktop applications provides a powerful control when designing the UI. A programmer

can build a UI exactly as intended with less coding and more graphic and visual supports.

This being strongest sides of desktop application it can also be too much especially if

the numerous third-party controls are considered. A time and money costing trainings

and researches will have to be done to be more effective. On the other hand, web appli-

cations allow programmers to use UI elements that are familiar to most of the target

users. Desktop applications can be complicated and less intuitive for most of the users.

[5]

As downsides to HTML UI elements in web application, it’s browser dependent behaviors

are worth mentioning. UI elements in web application may appear differently depending

on the browser it is running on. Besides the UI, certain functionalities are not supported

in all browsers. Another big problem concerning the web UI is that absolute positioning

of elements is not supported, which makes designing look less elegant. when Desktop

applications grant rich UI set up controls. [5]

Regarding centralization of application deployment and updates web applications are far

more convenient and effective. If a certain web application is deployed only to on central

server, it would be possible to allow users all around the globe to access the web appli-

cation via protocols and networking setups. Updating too is done easily by just updating

the web application that is located at the central server and users would get the updates

automatically or on demand depending on the way it is designed. On the contrary, de-

ployment in desktop application is done by burning CDs or setting up a push server to

every single user all around the world. The same applies for updating a desktop applica-

tion; the same deployment process will be done all over again. [5]

Desktop applications have higher performance speed than web applications in general,

because UI components are drawn just one time when the application is fired. In web

application every time the client requests a page the page UI will be requested from the

server and fetched and will be redrawn for the user to see. Desktop applications can

interact and integrating with other products and hardware devices more easily and effec-

tively that web applications. In web applications the programming is long and complex to

achieve this functionality. Working with excel word and similar other documents is strait

forward with desktop application while it is not in web applications. Also, web application

development is highly dependent on web browsers. Therefore, clients are forced to use

specific browsers against their will. [5]

6

The final aspect to be discussed is portability. For a certain application to be used by

remote users, web applications are the way to go. This is mainly because of the secure

and effective potential of the http protocol in transferring file and data to and from any

part of the world. While desktop application could be a bit hard for remote users. There

needs to be a connection established to the main network to get the application working.

And this connection would require extra setups and security risks as well. In addition to

connection if users must work on a different workstation, the desktop application has to

be installed and all the saved changes preferences and histories of the previous work-

stations will not be accessed form the new work station. [6]

To sum up both desktop and web applications have their own drawbacks and ad-

vantages as discussed above. But this doesn’t mean that one is better and the other is

less effective. It is up to the developer to make use of the advantages provided by both

application types in accordance with the type of product being is built, the size of the data

being used, the target clients to whom the application is built for and so many other

reasons. [5]

2.2 Windows Forms Application

As elaborated in the introduction the project on which this thesis based on, is a desktop

application built with Windows Forms. It was built about ten years ago with the advance-

ment of Windows Forms available at that time. Pasi Siitonen is the developer who cre-

ated this desktop application from start to finish. A detailed overview about this desktop

application will be given in later chapters. In this chapter Windows Forms will be dis-

cussed.

7

Windows Forms application is an object included in the System namespace. To elabo-

rate this a bit more, all components and objects in C# (C Sharp) are arranged and sys-

temizes in to namespaces. These namespaces contain objects that will also include

other sub objects inside of them. The namespace organization helps components of the

same features, functionalities or even names to be unmistakable. An input field can be

a good example to justify this. Both the System.Web.UI.WebControls and System.Win-

dows.Forms namespaces have input field components. An input field in Sys-

tem.Web.UI.WebControls stands for an input field inside of a web page while input field

in System.Windows.Forms represents an input field on a windows form UI. The Forms

component is nested in windows which represents the framework. Again, the Windows

in included in the System namespace. Therefore the forms can be accessed in a C#

project using the call method System.Windows.Forms. [3, p. 12]

The System.Windows.Forms also referred simply as the Windows Forms is a graphical

library class that enables programmers to build the user interface components and func-

tionalities of windows applications. As it is a part of the windows namespace, it is exe-

cutable on the windows operating system. The Windows Forms has a forms class em-

bedded in to it. The forms class supplies Form Methods, Form properties and Form event

classes. These three main classes include numerous methods that will govern almost all

the behaviors of the windows forms UI. [6]

8

3 Realtime web application development and tools

Web application development can be grouped in two kinds to get a clear understanding

on how it works and how developers design and develop a web application. The first one

is the traditional web application and the second one is SPA (Single Page Application).

The coming paragraphs will briefly discuss these web application development technique

types.

The traditional web application development is mainly done with server-side scripting

languages. Java, .NET, Ruby, Perl and PHP and be mentioned as examples of these

languages. The development architecture behind the traditional web development is sim-

ilar in all the scripting languages. When a web page is requested by a client on a browser

the web server will receive the request and send the request to the database. The web

server will get the resulting page from the database and build the page template and

dynamically render the page on to the client browser screen. The web server has to take

care of the request response process and again loading and rendering the requested

page on every request made by the client. This will lead to a need for several web servers

sharing this task since most of the job is done by the web servers. [8, p. 33]

Single page application uses a different code flow in rendering web pages and handling

request and responses than the traditional way. When An application is fired in SPAs all

templates including the HTML, JS (JavaScript) and the CSS files are loaded on the client

browser. Therefore, the web server does not have to render templates as in the tradi-

tional development. When a page query is made to the web server it only must fetch

contents of the web page form the database. The contents then will be built and rendered

on the browser. Even though the browser would be handling the heavier tasks, the web

servers would not be overloaded and bottlenecked as they might be in traditional web

architectures. [8, p. 31-32]

Realtime web is a way of letting users get all updates and changes of the data in the

application whenever it happens. Users will not have to do anything to acquire these

changes instead they will be integrated without the user’s knowledge and change on the

UI. [9, p. 26]

9

Realtime updates and changes can be integrated to a web application through several

ways. The recent and advised way of doing it is using Web Sockets. This is done through

a connection initially made between the client and the server. This connection channel

is a socket connection. For the security this connection also supports protocol. If this

connection is sustained updates will be sent via this connection if needed with a fre-

quency set. [9, p.30]

The coming subsections of this chapter are sorted depending on the authors experience

and approach in developing this web application. The three sub sections will give a short

briefing about the major parts of web development.

3.1 Designing

The concept of web designing has not been consistent since it arises. Depending on the

times technologies and programming architecture its definition well changes accordingly.

In the older times web pages were developer through static HTML whose functionalities

and logics were hard codded in the HTML page. At this point web designing was defined

as building the backend functionality of a web page. [10, p. 2]

At this point the previous definition for web designing would be ambiguous. Hence a

better definition needs to be made because the advancement of web application devel-

opment process and development tools. A suitable definition for web designing at this

point of time can be the making of the user interface looks and the detailed artistic feels

of a website so that it would reflect the sense of the purpose it was built for. [11, p.203]

To design effective and attractive websites one has to master both the technical aspects

and the artistic implementation of these technicalities on to a certain website. To make

websites reach the current standards websites have to work effectively and smoothly

with a database. The data sent and received to and from the database should be dis-

played in a format that is intuitive good looking and attractive. So that users can feel

comfortable with the website. Therefore, the best websites are constructed by fulfilling

both the technical requirements and the artistic feels. [8, p. 2-3]

10

In this thesis project designing the UI looks and feels was a little out of the norm. This is

because the design of the web application was based on the former desktop application.

There was no UI/UX design protocols or mockups or user experience cases. This is

mainly because the old desktop application has been used for the past ten or more years

by similar users, the UI looks, and feels are familiar to users. Completely changing the

UI design would make target users feel uncomfortable and the web application might

seem strange too. For this reason, it was decided that the new web application to look

similar to the old web application so that users could find it easy to use.

To achieve the needed UI for the web application, several tools and technologies have

been brought to use. Bootstrap integrated with HTML and CSS was used to develop the

frontend framework. Since the old application includes lots of grids in most parts using

normal tables would be ineffective and time consuming. Therefore, a grid system frame-

work that suits the application well was purchased. This grid system is called Kendo UI.

All the tables in the old application are replaced by Kendo grids. which looks better and

made the programming a lot easier. Detailed explanation of the Kendo UI framework will

be provided in the upcoming chapters.

3.2 Development

The next important step in website development after the design is giving the compo-

nents of the design actual purpose and functionality. This step has several parts in it.

The basic part is structuring the web application. As mentioned above this application is

structured to be a single page application. After structuring and building a skeleton or a

frame for the web application in a suitable order giving functionality for all UI components

follows. Finally, after everything is in place making data on the UI change every time

there is an update in the server-side data in Realtime. This part is a basic and important

part since the rest of the components are developed on top of it.

As mentioned in previous chapters this thesis project is a single page web application.

To make this application, the JavaScript framework used is AngularJS. The main reason

for this framework to be chosen was the authors personal interest and prior experience

on this area. AngularJS by its nature a simple to use framework supporting CRUD

11

operations. since this project itself requires CRUD operations angular has worked nicely

with it.

Angular JS or angular 1 is the first version of the angular families. It is a JavaScript based

framework that was developed in 2009. It provides an MVC (model view controller), also

addressed as MVW (model view whatever) development architecture. It's components

as scope, controllers, rotoscope and so on enable two-way data binding in development.

Which is quite helpful in changing data in both the UI and the script. Development is

simplified and modularised in angular JS mainly because of the ability to reuse codes in

a precise and clean way. This is due to Angular JS has a introduced the concept of

directives. Directives made it possible to write a more elegant and divided code. [7, p.

69-77]

Throughout the development process there are several functionalities requested by the

application. Amongst them was real-time data update. In this project most of the data

coming from the database are changing constantly. Also, those changes are mandatory

for the clients in making the decisions and provide the service. In the old desktop appli-

cation clients had to request updates whenever a latest data was needed. Furthermore,

in some parts the application was forced to fetch updates from the database in a given

range of time. The same approach could have been used in the web application. since

this would give the web servers a lot to work, an alternative and better approach has to

be used. This approach was using SignalR to handle the Realtime updates and data

flow.

SignalR is an open source library that takes care of real-time data flow between web

servers and Clients. The SignalR makes things a lot easier since it uses WebSocket to

establish a persistent connection in the beginning. The connection is very useful in mon-

itoring data flow. This connection management lets the server to recognize connected

users and decide which data shall be accessed or be hidden to which customer. This

improves the security of the application in general. [12]

SignalR enables a persistent real-time data transfer via a hub API. This

API is a platform that enables methods defined on the server side to be called and used

from the client side. And the reveres holds true as well. With just using key words like

server or client, methods can be defined on both sides and those methods that are public

will be accesses from both sided. The rest of the piping is taken care of by the SignalR

12

library. SignalR hub API also has methods called when a new connection is made or

when a device disconnects. Tracking connection plays a great deal of role in data han-

dling, authorising and dealing with errors. [13]

Another essential development process in this thesis project was localisation. The clients

using this application are based in three different countries with three different languages

and date and time format. Therefore, to satisfy the needs of all those clients the applica-

tion has to support all three language systems. These languages are Finnish Swedish

and English.

To implement localization the tool used in this project is the Angular-Translate module.

Angular-Translate is an angular module that can be installed via bower or npm (Node

Package Manager) and injected as a dependency. This module enables programmers

to modify parts of it in a way that suits the application better. The functionalities are flex-

ible when it comes to error handling, Storage providing and loaders. translations can be

made via filters or directives depending on the code structure or programmer’s personal

choice. It also loads the i18n data asynchronously which makes it work faster and effi-

cient to work with. [14]

The last development feature that also has a significant role for this thesis project is

authentication. In this thesis project clients should be authorized to get access to the

application. There were no authentication systems on the old desktop application since

the application was manually installed to authorised computers on every possible loca-

tion. But for web applications anyone with the correct URL can access the application

without authorization system enabled.

Even though handling user directories and identification is possible to be handled on the

database, it adds load to the database and server. It increases the amount of time and

work in the development process. To help ease this process tools are available from

several sources that can handle user authentication in a secure and reliable manner.

The tool chosen for this thesis project is developed by Microsoft. It is called the Microsoft

Azure ADB2C (Active Directory Business to Consumer) authentication system.

Microsoft Azure ADB2C is a customer identity service for several categories of applica-

tion types. Web application or JavaScript clients are in this category. ADB2C allows cus-

tomer identification service and access management as well. Login system can be done

13

via company or personal email and any social accounts. It allows users to set a policy

that is unique for a certain organisation and reuse it for several applications developed

under the company. [15]

3.3 Deployment

Websites are deployed to a web server so that they can be assessable for users who

are authorized. Before the deployment in this project the web application was tested by

serving it from the local machine. To do this a simple node server called HTTP Server

was used. HTTP Server is available as a npm package and it runs from the command

prompt. The HTTP Server has worked as needed without any difficulties throughout the

project. After making sure there are no bugs or errors on the code the project was de-

ployed to the case company’s test server. The case company uses windows iis (internet

information services) server. [16]

14

4 Semel Oy Contacts web application Development

As mentioned in the introduction this thesis project is done for a company named Semel

Oy. The case company is involved in development, maintenance and serving large scale

user software. There are several software products developed in the case company that

are used in so many countries in Europe. There is a large scale of users covered in all

services given by the software that are produced by Semel. The case company has sev-

eral offices in all the countries it is giving services. The headquarter of based in Helsinki,

Finland. This is where the IT department is also found. [17]

The web application produced on this thesis project is currently named Contacts. The

Contacts web application is developed based on an old desktop application also named

Contacts. The old desktop application serves the same purpose the web application is

intended to provide. Before stepping to the Contacts web application development pro-

cess, a brief overview of the old Contacts desktop application is necessary.

Contacts is a desktop application among several software produced by the case com-

pany. It has been in use for the past ten years and still being used. Contacts is developed

by Pasi Siitonen the case company’s Software architect and the project manager of this

thesis project is. The Contacts application is entirely written in C#. To be more specific it

is a windows forms application. Where the UI is made with just one windows form.

SQL database is used for handling the company’s data. The application has several ta-

bles in the database. A huge amount of data is stored in these tables. These tables

handle data needed for several purposes. Among these purposes few are mentioned as

follows. Data of cars information, zones of every car and necessary data concerning

every zone, shifts of every drivers and cars, messages sent and received to drivers,

routes of the cars, payments made and invoices, status of every car drivers and zones,

bookings made and details about every bookings are few of these data processes han-

dled by the database.

The source code of the Contacts application has several files that take parts in building

the software's logic and looks. The source code contains few folders which are organised

15

in a manner that the author can understand it. In other words, the setup of the code does

not follow any guidelines by the case company or any other. For example, one folder

contains fractions of UI elements that are added on top of the applications parent UI to

make the complete look of the application. Another folder includes the configuration files.

Also, commonly known as config files. The config files handle security and authentication

for the database connection. This folder also contains other start up configurations for

the application to follow certain preferences.

There are also translation files placed in one folder. The files are used in localization of

the application. Images and logos are also placed in another folder. The rest of the fold-

ers include files that are planned to be implements in the future for further functionalities

and modifications. But most are not implemented, and some are not completely devel-

oped. They contain codes that are not complete, personal comments reminders and

TODO lists.

The entire logic of the contacts application rests in one C# file named Form1.cs. In this

file the application is controlled from start to finish. The code entirely is 6703 lines long.

The application is not separated in to parts or modularized. The whole functionalities,

input output controls, UI implimentations are handled with in this one big C# file. Further

insights will be briefly discussed in the chapters to come.

4.1 Overview

Before starting the actual designing and development of the new web application a thor-

ough understanding of the old application was indeed essential. Knowing the demanded

functionalities, types of data transported, tools used, outcomes needed, and nature of

user groups helped a great deal in taking the development process several steps ahead.

All this information and even more helpful knowledge about the old desktop application

are without doubt gained through testing and using the old desktop application.

The old desktop application was a bit complicated to understand in the beginning. Since

it is designed for a specific purpose and only used by authorized users, the application

was not straightforward for users who does not have prior briefing and understanding of

the purpose of the application.

16

The general look and feel of the desktop application tell that the application was devel-

oped a while ago. There are certain decorative and technical advancements missing

from it. These defects can be seen in Figures 1 and 2.

Figure 1 Contacts desktop application UI

Figure 2 illustrates the responsiveness of the desktop application when a page is mini-

mized or opened on small screen devices.

17

Figure 2 Non-responsive UI Contacts desktop application

As illustrated in Figure 1 the desktop application's design looks quite old. Besides the

look the application is not intuitive in some respects too. To mention few as examples, it

seems hard to tell on which navigation tab the current interface is on, unless users are

familiar with the application or unless the application has not been used couple of times.

The desktop application also has features that are complicated than they should be. As

shown in Figure 1 deleting a row is implemented in a complicated way where users must

press the delete button on the keyboard after selecting a row on the table. This whole

process could have been avoided with just a single delete button.

Figure 2 demonstrates the non-responsive property of the application. If the screen size

of the desktop window gets smaller elements on the view will also start to overlap on

each other. This will disrupt the entire functionalities and look of the application.

It is also visible that the size of the fonts and the elements are not flexible at all. A better

approach would be to make these elements change their size as it would fit the screen

size.

18

There are also other features which could not be captured in an image but where im-

provements should be done. For example, if users click a cell in the grid the cell auto-

matically become editable. Users can then change the data recorded on the cells. But

the problem is editing and changing data is not implemented on the server

therefore, the changes will not be saved in the database. Although the data on the grid

changes, there is no way users would know the changes are temporary unless the ap-

plication is fired again, or users navigates to another view page and loads the grid back

again. This is misleading and confusing for users. These and other defects are ad-

dressed and tried to be done in a better way in the web application.

4.2 Requirement

The production of this thesis project required several tools for certain purposes. The first

and most needed tools for communication and code sharing are Git and VSO. The

backend code is saved in VSO so that new changes can be pulled and used while de-

veloping the frontend. the front-end code is saved to a git repository. But at some point,

all the codes were deployed to the test server and were served from there.

Since the nature of the application requires number of data to be formatted in to a table

Kendo UI suits this project better than other grid systems. This is because the Kendo ui

has built in support for SignalR. The connection and data transfer including CRUD oper-

ations are taken care of within the kendo without writing extra commands to do it.

The code snippet below shows how a signalR connection is stablished in Kendo ui and

how changes and updates will be integrated in the grid.

var hubUrl = "hub url goes here ...";

var connection = $.hubConnection(hubUrl);

var hubStart = connection.start();

var hub = $.connection.textMessageDetailTickerHub;

$("#grid").kendoGrid({

 height: 550,

 editable: true,

 sortable: true,

 columns: [],

 toolbar: ["create"],

 dataSource: {

 type: "signalr",

19

 autoSync: true,

 schema: {},

 transport: {

 signalr: {

 promise: hubStart,

 hub: hub,

 server: {

 read: "read",

 update: "update",

 destroy: "destroy",

 create: "create"

 },

 client: {

 read: "read",

 update: "update",

 destroy: "destroy",

 create: "create"

 }

 }

 }

 }

});

As stated in the introductory chapters signalR uses a web socket connection to stream

data through Kendo grid would also first establish a socket connection then the hubStart

promise is fulfilled.

If the connection is made the kendo will start to listen to the hub assigned to tat specific

update signalling. Since by rule the structure of the updates and the structure of a kendo

grid row are similar whichever row has been updated will be traced with its id and its

updated properties will be bounded t the grid table and the UI will be redrawn without

even the user noticing anything on the grid. [18]

As long as the grid is being displayed and as and as the connection is still on the updates

will keep being posted to the grid even is the updates are coming from the user’s grid or

other users working on the same data. [18]

This code snippet also shows how straightforward and easy Kendo UI makes making a

WebSocket connection. Not only the connection but also making grid is a lot easier in

Kendo UI grid. Array of fields and their titles are the only required data to be provided for

Kendo to generate a table.

20

The database and server are also tools needed in making of this application. The same

database is used as the one used in the old desktop application so that exact data can

be displayed and to reduce errors.

4.3 Process

This thesis project took several steps to get to the development stage it is at now. Since

there are no guidelines to follow during development phases or even on how cods should

be formatted and written in the case company, developers have to decide what to do and

how to do it based on their personal knowledge and standards.

This helped the programmers taking part in this thesis project experiment and test with-

out any restrictions. This freedom let developers learn a lot from all the trials and errors.

But at the same time general process can be a bit time consuming at points. Also, codes

written with kind of freedom are not easily understandable for a programmer who did not

take part in the development.

Generally, the development process of this web application was accelerated due to sev-

eral reasons. One and most important reason was that there was a complete project to

base the thesis project on. Several parts of the development were easily implemented

so developers do not have to start development from scratch. Since there is a functional

application most functionality development processes were just duplicating the function-

alities in a more effective and faster way. As an example, translation is among processes

that were easily implemented. The old application was designed to be used by three

language user group. The new desktop application will also be used by the same user

group. Therefore, the old translations are directly used for the new application too.

There were no mockups or user experience-based designs implemented. The old desk-

top application’s looks and feels are highly viewed in the web application as well. The

elements of the UI are also used in the new application. The major changes made in the

UI development is to change the colors to a web safe contrast. More components were

added in order to make the functionalities more logical and straightforward. Detailed in-

sight about the entire process of the development and the current status of the applica-

tion will briefly be discussed in the next chapter.

21

5 Implementation

To As stated in the previous chapters the case company does not have or follow any

development process guidelines. Therefore, it was decided by all developers including

the project manager that the First thing to be done was test and try understanding the

desktop application without any guidance after a short verbal introduction of the applica-

tion. It was difficult to understand the application without any help. But at the same time,

it helped the developers get good in site of the defects and ideas for improvements.

After this it took numerous meetings with the project manager and briefings to be able to

use the desktop application and use in independently. After understanding the applica-

tion and before the development started the project manager suggested that among the

eight components of the desktop view pages the Messages tab has to be implemented

first. This was because most of technologies and development components used

throughout the desktop application, are also implemented in the Messages tab. There-

fore, completing this functionality will let developers build the rest of the application com-

ponents based on it.

In general, the implementation was a bit disorganized and messy in the beginning. Mainly

because of the lack of guidelines and the time spent on understanding the desktop was

long. But as the project progressed, steps were taken according to what is best and

effective for the development.

This chapter discusses the entire project implementation process in depth. The pro-

cesses are classified in three sections as the Early phase, Process and Current status

of the application. The whole development process following the above decision will be

discussed in these sections according to their orders.

5.1 Early phase

 After Understanding the desktop application and knowing where to start, the first part of

the development was to decide what framework language to use. As a result, it was

decided to be Angular JS with bootstrap. This decision was made by the author based

on the application type and personal preferences.

22

After this the first few weeks of the development were focused on building the modular-

ized application skeleton. A web application with dummy components or just descriptive

texts as placeholders with all the eight navigation view pages and the index page was

developed. This web application was used to develop the rest of the components and

the functionality on top of it. The web application is structured in a way all eight of the

components are modularized separately with their own respective controllers using an-

gular JS. After this all the routing sequences were implemented to look similar to the

desktop application.

The next step was to design the UI. The UI of this application is made with the Bootstrap

framework. Since the new application has to look familiar for users the UI was developed

based on the old desktop application. There were two top navigation bars. One for nav-

igation through the eight view pages and the other for filtering the grids found on three

of the view pages. The filter bar also includes four colored text boxes where real time

count of four car groups is shown. Each color representing specific car groups.

When the navbars were completed as discussed in the previous chapters the first view

page to be developed was the Messages. This page is basically used to send individual

or broadcast messages for the devices in the network. Also, there is a portion of this

page where all messages sent by the current user and other users, are displayed in a

grid and updated in Realtime.

The first part of the messages page functionality implemented was the message sender

form. In the desktop application the labels of the form inputs are confusing and packed

in a small space. Therefore, to avoid this the form on the web application is designed to

be spacious, with descriptive labels on top of every input fields.

By the time the UI for the message sending form was completed the API (Application

programming interface) for sending messages was ready. Therefore, this API was used

to send the user inputs from the form to the database where it would be processed and

sent to the devices as requested by the user in the form.

After completing this part of the messages, the next was to get the Realtime updates of

the messages displayed in a grid. Therefore, Kendo grid was brought to use to make this

happen on the web application. This process and the rest of the processes are discussed

in the next sections of this chapter.

23

5.2 Process

Once the message sending form was functional, logging the message exchanged on to

the user screen was following step. The messages have several attributes that define

them, and all those attributes are important to be seen by users. Therefore, using a grid

was the preferred way to display the messages. In the web application the grid was made

using the Kendo UI tool. This tool not only makes the grids look nice but also responsive

and flexible.

Most importantly developers do not have to listen to events, collect form data, and write

the code for processing the data to perform the CRUD (Create Read Update and Delete)

operations. To enable a kendo grid, possess the CRUD functionalities and integrate then

to the table is easily achieved by setting a certain property to be true of false. The code

snippet below clearly shows how easy and strait it is in kendo. [20]

var grid = $("#grid").kendoGrid({

 dataSource: {

 transport: {

 read: {

 url: root,

 data: { format: "json" },

 dataType: "json"

 }

 }

 },

 toolbar: ["create"],

 filterable: true,

 resizable: true,

 sortable: true,

 pageable: true,

 columns: [

 { field: "ismanual", title: "ismanual", hidden: true },

 { field: "workShiftState", title: "Workshift State" },

 { command: ["edit", "destroy"] }

],

 editable: "popup"

 });

24

Just by setting certain keywords to true or adding a certain key word to the code will

automatically enable these operations on the grid. This is demonstrated in the following

code snippet and Figure 3 shown below.

Figure 3 CRUD operations on Kendo grid

As shown in the snippet filtering sorting paging and resizing the data and the table is

done very easily just by setting the key words for the respective functionality to true. And

Figure 3 demonstrates it how smoothly the paging and sorting are performed on the grid

without any further programming. And for the CRUD operations if the command strings

create, edit and destroy are included in the program as showed in the snippet, then the

grid will have “add new record”, “edit” and “delete” buttons that would send the relevant

data when clicked. Figure 3 shows how these three buttons will look on the grid. The edit

button will also make the grid row editable for users also a cancel option as demon-

strated.

When the messages grid was done the development of the SignalR hub and the stream-

ing functions from the backend were also complete. After this, integrating the SignalR

hub to the kendo grid was done simply as shown in the previous chapter. This enabled

the grid to keep listening to changed row signals and update the changes on to the grid

without refreshing or reloading the state of the grid.

Once the message view page was developed since, the other view pages contain only

a grid, the rest of the development was very swift and smooth. After all the view page

25

grids were developed, localization of the application was done next. For some of the web

components Angular Translate was used as mentioned above. Since this translation tool

is developed specifically for angular JS applications, it worked nicely with this web appli-

cation. Localization of all the Kendo grids is done with a built-in feature for Kendo. Based

on the chosen language by the user, Kendo enables the grid to change the language

and formats of the grid accordingly.

The development process proceeds to deploying the application in to the test company’s

remote server after the localization was complete. It went very smoothly following the

guidelines set by an employee in the case company. After deploying the application, the

Azure ACB2C authentication was implemented on top of the web application. This ena-

bles the application to be accessed only through login by authorised users.

After completing these steps, the application was functional but left with some detailed

fixes, additional functionalities and final touches to be implemented. These details and

fixes will be discussed in the coming chapter.

5.3 CSA

 At this point of the development the application is functional with all the grids and the

SignalR real-time updates display working as intended. There are certain functionalities

that has not been completely implemented yet and some that needs modification or im-

provements.

Currently the development team is working on the final view page which is the zones

information page. This page processes the largest data amongst all the rest. The grid

behaves slow and the updates fail to be displayed on time before a new update is re-

ceived via the SignalR listener of the grid. The team is working on avoiding this heavy

data traffic and improving the performance of this page at this point of time.

When this phase is complete the development team will continue to add detailed func-

tionalities and minor fixes. Some of this fixes and functionalities are mentioned as fol-

lows. The first one is giving messages a name so that a message can be displayed by a

short descriptive name to help users reduce time and effort wasted on identifying a mes-

sage by reading the whole text. Another Additional implementation is finding a way to

26

save standard messages in to the database so that users can save and reuse messages

that has been composed once. The final fix on the TODO list of the development team

is to make a custom login page for the application. The Azure ADB2C authentication

provides a login page by default. And all the applications developed by the case company

use the default login page provided by Azure. This has made all applications login page

to look similar with each other when users are logging in. To avoid confusions caused

due to this implementation the development team will make a custom login page specific

just for the web app with descriptive texts and logos.

The final part of the development as planned by the development team will be adding

functionalities that has not been implemented in the desktop application but were

planned to be implemented in the future. The major functionality planned to be added is

restriction of cars and drivers from the system. Also, to implement a grid showing the

restricted cars’ and drivers’ information. This requires designing the UI and planning the

grid on the frontend and a working API from the backend.

By the time all the TODOs listed in this section are completely implemented in the web

application the application will be ready for testing by another team in the case company.

After testing the web application will be published and be ready for users to use it instead

of the old desktop application.

27

6 Problems and Proposed solution

The aim of this thesis project is to build a web application that can substitute an old

Windows Forms application. The old desktop application has been in use for the past

ten years and still being used. Due to this, the users have been familiar with this appli-

cation that, using this desktop application is almost natural. Since similar users will also

be using the new web application, two main challenges arise in the development pro-

cess. These problems will be elaborated, and the solutions proposed will be discussed

in this chapter.

The first problem was keeping the old desktop applications feels and looks in the new

web application. This was a bit challenging to achieve without making the interface of

the web application boarding and unpleasant mainly because the desktop application

was developed with older design concepts and guidelines which are outdated at this

moment. Since the new web application will be used by new users who are more familiar

with modern web applications and good-looking websites the new web application has

to also satisfy the eyes of these users as well. Developing a UI for the website that can

balance these two extreme user experiences was the first challenge throughout this the-

sis.

The second and most challenging problem solved while working on this thesis project

was enabling the changing parts of the application to be displayed in real time without

stressing the performance of the web application. The application makes sure users are

informed about the status of every devices cars and drivers with minimum delay. The old

desktop application integrates both the database changes or the backend and the

frontend in one. Therefore, when an application is deployed in to a machine it would have

control over both the frontend and the backed through the programs integrated in it. This

has made real-time updated to be caught right with in the application. But in the web

application the backend which is kept in a separate server application has to broadcast

the updates and the web application will catch the updates and display then on the ap-

plication interface.

28

There are several medium and methods to make this work on the web application, but

the performance would be slowed down since there are numerous components in the

application that needs to be updated in real time. Both challenges were solved in an

effective way that the application at this moment is working as intended with a satisfying

performance and a better-looking UI. The measures taken to overcome these challenges

will be discussed thoroughly in the coming two paragraphs.

6.1 Design

As mentioned above the first challenge was deciding the looks of the application to sat-

isfy the expectation of both current and new users. After several researches and discus-

sions this was solved by keeping all the components of the old application’s interface as

similar as possible in the new web application. The colors of certain components are

completely changed while some are replaced by a web safe but similar looking colors.

Fonts and sizes of all the text components in the web application are changed to better

and bigger fonts. It was aimed to not change the look of the application but just to make

it look better and sharp.

Even though there are other elegant ways of implementing some features in the appli-

cation, some compromises had to be done on the extent to use them. This is mainly

because these implementations and tools could change the look of the web applications

to have a big difference form the desktop application. After a lot of trials and experiments

the web application has been developed to look as the improved version of the desktop

application.

The figures below demonstrate this and responsive behaviors by showing the messages

view page and one of the grids view pages, of both the desktop and the web application.

29

Figure 4 shows how the look and feel of the entire UI has changes on the new web

application.

Figure 4 Messages view page of the Desktop and Web applications

Figure 5 illustrates the fixes that has been implemented on certain UI components of the

old desktop application to improve the UI features and user experiences that were not

sufficient in looks or usage before.

Figure 5 Standard message implimentations

30

Figure 6 shows the responsive behaviour of the grid that were not even in the question

in the previous desktop application and also the integration of the forms on to the grid

making the user experience very high and easy.

Figure 6 Responsive behaviours of both applications

As illustrated in all the above figures the web application has a different colour and font

choices than the one from the desktop application but still tried to keep the appearance

of the desktop application. This hopefully will help users to feel familiarised with the web

application. The grids are also responsive and intuitive as shown in Figure 7. CRUD

operations are implemented with external form on the desktop application while in the

web application the operations are performed on the grid itself without any external forms

needed.

Making the UI components fully functional using recent technologies was the next chal-

lenge that will be discussed in the coming section.

31

6.2 functionality

In this application almost, all the grids contain information that are changing every few

seconds and these changes are very crucial in making this whole system work. There-

fore, displaying all the changes as they happen to every authorized user should be im-

plemented effectively and sharp.

As stated above, the team had to find a new way to update the grid and other compo-

nents in real-time without sending get requests to the database again and again. This

was possible to be done using one of the recent technologies of SignalR. SignalR basi-

cally reads through a database table and signals only the rows that has been changed

with the new or updated data in them. The frequency of this signaling can be set by the

developer as often as needed.

After the changed row's data are being signaled the client-side program has to compare

the changed data and find them and update the changes. SignalR has saved the client

side from sending requests and redrawing the UI to display it. But the one catch in using

SignalR was the client side has to still iterate through the entire data and match the

changed values and update it with the Signaled changes. This can slow at times and

impossible depending on the size of the data and the frequency of the signals.

Luck for the team since the data are displayed on a grid to avoid the hit on the perfor-

mance and make the updates visible with a minimum delay, a tool was needed to take

care of this long and heavy process with built-in program. Kendo UI grid was the perfect

solution for this issue. Kendo grid not only provides a grid with a good-looking interface

but also supports SignalR. It provides and a way to read through all the signaled changes

and update the rows in the grid without any noticeable delay.

The updated are being displayed every 5 seconds for most of the grid data but in some

cases where, the data transported is heavy, the frequency is slowed to few seconds

more to ease stress on the application and increase the performance. The kendo grids

are also easily editable with high level of responsiveness.

32

7 Conclusion

This thesis project has successfully produced a functional web application to replace an

old Windows Forms desktop application. The web application serves the same purpose

as the old application but the interface and the entire logic to do it has been done in a

different platform and language. It is aimed to help users of the old desktop application

to use this projects application as a replacement without any confusion and having fa-

miliar feeling while using this application.

Latest and effective tools have been brought to use in the development of this applica-

tion. It was also possible to make this application support real-time updates and data

streams for certain parts of it.

This thesis project has let the author learn a great deal of things both in programming

and teamwork aspects. The application was done without any provided base codes or

any guidelines. Even though it gets confusing and tough to make decisions and take the

development to a smooth phase it makes developers learn new things along every steps

of the way. There are several logics learned in order to make the application work in

general. Most of these logics have not been used or worked on before with the authors

experience. There are also tools and frameworks that are used in this thesis project

which are firs time experiences then but mastered ay the author now. The things learned

through this thesis project are with no doubt important in future developments.

Two developers were involved in this project developments, including the author, who

have to communicate well in order to reach a common understanding to decide the next

step of the project. There were no rules or procedures on how to undertake these com-

munications. But several communication tools have been involved. Git and VSO are the

frequently used communication tools used. Experiencing to use those tools was an in-

teresting part of the project. It has Helped improve communication skills and team work

technique knowledge.

Finally, there are things that can be learned from this thesis project and certain recom-

mendations that can be made. The first one is that in projects involving large grids to be

processed and perform CRUD operations, it is a good idea to take Kendo UI grid systems

into consideration since kendo has a built-in and simple support for all the above

33

operations and a lot more. Moreover, kendo also has a smart and fast way of handling

signals sent via SignalR and displaying the changes on the grid.

34

References

1 Martin Löfberg. Patrik Molin. Web vs. Standalone Application. Sweden: Blekinge
Institute of Technology: 2005.

2 Yaapa Hage. Express Web Application Development, Packt Publishing Ltd,
ProQuest Ebook Central, 2013

3 Erik Brown. Windows Forms programing with C#. 209 Bruce Park Avenu Green-
wich: Manning Publications: 2002.

4 W3School. History of the Web. USA: Oxford Brookes University: 2002

5 Microsoft Developer Network. Designing for web or Desktop? [Online]. 2018.

 [link] https://msdn.microsoft.com/en-us/library/ms973831.aspx

6 Microsoft Docs. Develop Windows Doc Application [Online]. 2018.

[link] https://docs.microsoft.com/en-us/windows/desktop/choose-your-technology

7 Natalie Matkovska. WinForms vs. WPF [Online]. 2016.

[Link] https://www.linkedin.com/pulse/let-battle-begin-winforms-vs-wpf-natalie-
matkovska?trk=portfolio_article-card_title

8 Rufus Vinci. AngularJS Web Application Development Blueprints. Olton: Packt
Publishing: 2014.

9 Rai Rohit. Socket.io Real-time Web Application Development. Aprix publication:
2014

10 Eccher Clint. Professional Web Design: Techniques and Templates (CSS and
XHTML). Boston: Course Technology: 2008.

11 Kaplan Dean. Web Designers Application Sketch Book.

12 Microsoft Developer Network. Introduction to SignalR. [Online]. 2016.

[Link] https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/in-
troduction-to-signalr

https://msdn.microsoft.com/en-us/library/ms973831.aspx
https://docs.microsoft.com/en-us/windows/desktop/choose-your-technology
https://www.linkedin.com/pulse/let-battle-begin-winforms-vs-wpf-natalie-matkovska?trk=portfolio_article-card_title
https://www.linkedin.com/pulse/let-battle-begin-winforms-vs-wpf-natalie-matkovska?trk=portfolio_article-card_title
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr

35

13 Ingebrigtsen Einar. SignalR. Real Time Application Development. Packt Publish-
ing Ltd: 2013.

14 Pascal Precht. angular-translate. [Online]. 2016.

[Link] https://angular-translate.github.io/

15 Microsoft Developer Network. Azure Active Directory B2C Documentation.
[Online]. 2018

[Link] https://docs.microsoft.com/en-us/azure/active-directory-b2c/

16 npm Community. http-server

[Link] https://www.npmjs.com/package/http-server

17 Semel. Official Website

[Link] http://semel-en.sivuviidakko.fi/

18 Kendo UI for jQuery Documentation and API references. [Online].

 [Link]https://docs.telerik.com/kendo-ui/api/javascript/data/datasource/configura-
tion/transport.signalr#transport.signalr

19 Ganatra Sagar. Kendo UI Cookbook. Packt Publishing Ltd: 2014.

20 Adams John. Learning Kendo UI Web Development, Packt Publishing Ltd, 2013.

https://angular-translate.github.io/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/
https://www.npmjs.com/package/http-server
http://semel-en.sivuviidakko.fi/
https://docs.telerik.com/kendo-ui/api/javascript/data/datasource/configuration/transport.signalr#transport.signalr
https://docs.telerik.com/kendo-ui/api/javascript/data/datasource/configuration/transport.signalr#transport.signalr

Appendix 1

 1 (1)

