

Nguyen Nhat Minh

Building a component-based modern web appli-
cation: full-stack solution

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

21 September 2018

 Abstract

Author
Title

Number of Pages
Date

Nguyen Nhat Minh
Building a component-based modern web application: full-stack
solution
55 pages
21 September 2018

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Head of Department (ICT)

This thesis paper aimed to review relevant literature and build up a theoretical background

for practical code implementation and analysis about software engineering in general and

specifically full-stack web development. A relatively modern choice of full-stack web devel-

opment with MySQL, PHP (CodeIgniter 3), JavaScript (in KnockoutJS), HTML5 and Boot-

strap3 will be reviewed in this study.

Software engineering is a comprehensive discipline; building robust and reliable software

requires not just learning and doing but also questioning existing theories. Why build soft-

ware by using specific tools and methods instead of choosing others? This study intends to

review some industry standards of software-building process and explore component-based

thinking and advantages of using software frameworks in web development.

The case study for this project is Aurora Exchange Oy, a peer-to-peer lending platform and

an ideal start-up to be analysed, as its software is in a rapid development process and each

implementing software feature must be delivered quickly without sacrificing quality with min-

imum testing effort.

Keywords AuroraX, Web, MySQL, PHP, JavaScript, CSS.

Contents

1 Introduction 1

2 Theoretical background 2

2.1 Client and server model 2

2.2 Front-end technologies 3

2.3 Back-end technologies 4

2.4 Popular web development frameworks 5

2.5 Software development cycles and development methodologies 6

2.5.1 Waterfall development model 7

2.5.2 Agile development model 9

2.6 Popular software development patterns 12

2.6.1 The Observer Pattern (Behavioral) 12

2.6.2 The Facade Pattern (Structural) 14

2.6.3 The Singleton Pattern (Creational) 14

2.6.4 Model-View-Controller (Enterprise Patterns) 15

2.6.5 Inversion of Control (Enterprise Patterns) 16

2.7 Human-computer-interaction (HCI) and user-centric design (UCD) 17

2.8 REST architecture 21

2.9 Introducing several selected software development frameworks with code
implementation 23

2.10 Functional programming (JavaScript) 31

2.11 Software development in a start-up environment 34

3 Requirement analysis and architecture overview 36

3.1 Use cases analysis 36

3.2 The borrowing process flow 39

3.3 The investing process flow 40

4 Implementation 41

4.1 Implementation objective 41

4.2 Implementation details 42

5 Results 53

6 Evaluation of Results 53

7 Conclusion 54

References 56

List of Abbreviations

HTML Hyper Text Markup Language

CSS Cascading Style Sheet

JS JavaScript

AJAX Asynchronous JavaScript and XML

SQL Structured Query Language

JSON JavaScript Object Notation

XML Extensible Markup Language

HTTP Hyper Text Transfer Protocol

REST Representation State Transfer

DOM Document Object Model

API Application Programming Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

MIME Multipurpose Internet Mail Extensions

MVC Model View Controller

CRUD Create Read Update Delete

POJO Plain Old Java Object

JDBC Java Database Connectivity

JDO Java Data Object

CI CodeIgniter

CGI Common Gateway Interface

SMTP Secure Mail Transfer Protocol

SDLC Software Development Life Cycle

GUI Graphical User Interface

UI User Interface

HCI Human Computer Interface

UCD User Centered Design

ROI Return on Investment

GPD Gross Domestic Product

IoC Inversion of Control

DI Dependency Injection

XSS Cross-site scripting

SPA Single-page application

1

1 Introduction

Technology is advancing rapidly, and software is the core element of the trend; after

every few years new software frameworks become available, a new programming para-

digm appears and the choices for doing software development become more varied.

Choosing a right software solution for a project will essentially determine deliverability

and quality for the software and eventually contribute to the success of the project.

From enterprise to small-and-medium company to start-up, each entity contains its re-

quirements and software development cycle which is comparable to the others but not

the same, however. A software development process is often more formal and structured

in an enterprise than another one in a start-up. This thesis paper concentrates on re-

viewing architecture design in a start-up and explore a few implemented features to see

how software engineering practices were applied in the environment.

The case study company is AuroraX, a start-up with a few years of existence. AuroraX

was established in 2012, four years after the financial crisis in 2008. The company aims

to take part in the consumer lending market which were dominated by credit institution

and small-loan companies. According to “suomenpankki.fi.” [1], the stock of household

consumer credit Finland was almost €19 billion which is roughly 8.7% of Finland GDP

($251.88 billion from “tradingeconomics.com” [2]) in 2017; although only a small portion

of the total household consumer credit contributes directly to Finland GDP, the proportion

of the consumer credit’s size to the GDP size is substantial. In traditional consumer lend-

ing, taking a loan takes unpredictable time, interest rate is determined by one side (often

the lenders), and no opportunity exists for normal people to invest in loans of other peo-

ple. To solve those issues, AuroraX targets to facilitate lending money activities from

investors to borrowers, serving well interests of both parties. On Aurorax’s platform, bor-

rowers can consider offers with different interest rates from investors, and investors can

diversify and reduce risk by invest in multiple borrowers with different interest rates in

different risk rate categories that they feel comfortable with. The company’s first-step

operations together with other peer-to-peer lending businesses’ activities hopefully will

prove a new sustainable business model which contributes positively to financial systems

of Finland and other future operating countries.

Building AuroraX’s software comprises the challenge of resource constraints of a start-

up, each implementing feature required independent thinking from a developer and test

2

activity is often minimal. From the challenge, AuroraX’s development team sees that only

truly agile development and fast-to-react development method will work. Uncertainty is

a part of daily work and the AuroraX’ development team prioritizes only features which

contribute to the immediate better user experience.

2 Theoretical background

This chapter reviews theory related to server-client operations, relevant technologies as

well as some popular web development frameworks and software design patterns which

are applicable in a start-up context.

2.1 Client and server model

Client/Server computing is the technology that resolves many modern organizations’

data management problems. Client and server are two independent processes which

are defined in the Client/Server computing model. A Client requests services from the

server process and a Server provides requested services for the Client. [3, p. 1.]

In various kinds of server such as file server, print server, application server etc., the web

server is pertinent in the context of this thesis paper. In web server, web application

provides access to data and documents for clients, which often request through a web

browser to the server by HTTP protocol. The medium for transfer data between those

two processes is a network, which can be an organization’s intranet or the internet, de-

pend on purpose of the web application. [3, p. 1.]

Figure 1. Basic Client/Server computing model – reprinted from [3, p. 1].

Figure 1 illustrates that a variety of computers in the network can provide services. The

medium where request process happens is the most important element here. For exam-

ple, in the Client/Server Database system, the functionalities come from both a server

3

system and multiple clients where some task can be performed on the client system

through the network of computers. [3, p. 2.]

For a web application, developing the client side requires using front-end technologies

and for the server side, back-end technologies are needed. In the next two subsections,

front-end and back-end technologies will be introduced to continue building up theoreti-

cal background for this thesis paper.

2.2 Front-end technologies

HTML is the industry standard mark-up language for structuring a website on the World

Wide Web. HTML5 is the latest version of HTML and it contains larger number of sup-

ported technologies to provide richer user experience. HTML5 consists of many func-

tionalities and those can be divided into groups base on their function such as “connec-

tivity, semantics, offline and storage, multimedia, 2D/3D graphics and effects, perfor-

mance and integration, device access, styling”. With HTML5, a developer can define

more clearly the content of a site, ensure seamless communication between server and

client, store data on the client-side locally and enable video and audio to user. Further-

more, the developer can present 2D/3D effect on a site, utilize more effective computer

resource, build application for different devices and write more sophisticated styling. [4.]

In a commercial website, HTML would not be sufficient to represent complex data in a

professional and coherent format. CSS is the technology that used to describe how ele-

ments of a document such as HTML will be rendered on a user’s screen. CSS also en-

ables the reusability of a stylesheet as the same one can be used with different HTML

documents.

To “make webpages alive”, JavaScript was invented in 1995. It is a multipurpose pro-

gramming language which is best known as the scripting language for web pages or for

the front-end part of a website. JavaScript can handle user interaction on a site such as

adding new HTML elements to the page, changing existing content and styles, reacting

to user actions, sending network request through AJAX, getting and setting cookie, ac-

cess data on the client-side (“local storage”). JavaScript conforms to ECMAScript (ES)

specification with most features (depending on the ES version) supported by all major

browsers. At present, the programming language is executable on server side or any

device with a JavaScript engine (V8, SpiderMonkey etc.). [5.]

4

HTML, CSS and JavaScript together can solidly construct the front-end part website for

presenting data purpose. However, without back-end technologies, a website limits to

displaying data, responding to user interactions and processing simple data on a device’s

browser. For most of commercial web applications, back-end technologies are essential.

2.3 Back-end technologies

Back-end technologies were developed to facilitate the saving, processing and retrieving

of data for web applications from the server side. A database server, an application

server and a server-side language are core elements of a website’s backend technical

stack.

The application server contains the role of performing all operations between backend

business applications or databases and users. Some popular choices of development

are Apache HTTP, Apache Tomcat, IBM WebSphere, JBoss, Glassfish and Internet In-

formation Services (IIS).

The database server can be Oracle, Microsoft SQL Server, Informix, Oracle, DB2, Post-

greSQL, Ingres, MySQL etc. SQL Server is a “relational database management system”

(RDBMS) which is a bundle of services working together to help retrieving, storing data

easier. SQL Server was developed by Microsoft to compete against Oracle which is the

dominant server until the 1980s. The first major version of SQL Server was 7.0, which

was released in 1998. [6, p. 2.]

5

Figure 2. Ranking of popular DBMS – reprinted from [7].

Figure 2 demonstrates ranking of popular Database Management System (DBMS)

based on several relevant metrics on “db-engines.com”. According to the site [7], six

variables were taken into consideration for ranking:

• “Number of mentions of the system on websites” (search engine queries
on Google, Bing, Yandex).

• “General interest of the system” (Google Trends).

• “Frequency of technical discussions about the system” (on Stack Overflow
and DBA Stack Exchange).

• “Number of jobs offers, in which the system is mentioned” (on Indeed and
Simply Hired).

• “Relevance in Social networks” (number of Twitter tweets).

The server-side programming languages can be PHP, Ruby, Python, Java, Scala, C#

(.NET), JavaScript etc., each of them consists of different characteristics and the imple-

mentation choice depends on a developer team’s preference and competence.

2.4 Popular web development frameworks

Web development framework owns a narrower definition than software framework, so it

is ideal to first clarify the second definition. Techopedia defines software framework as

“a conceptual or concrete platform where generic functionality can be selectively spe-

cialized or overridden by developers or users”. Frameworks comprises of libraries where

6

application programming interface (API) is reusable inside the developing application.

[8.]

Some important features of a software framework following Techopedia [8] are described

below:

• Default Behaviour: a framework consists of default behaviour to user inter-
action.

• Inversion of Controller: the framework defines the global flow of control ra-
ther than the caller.

• Extensibility: a framework can be extended but cannot be modified to main-
tain the purposes of the framework as simplifying development environ-
ment, enabling developers to focus on project requirements rather than re-
building repetitive functions and libraries.

Web development framework consists of those features which serve a smaller environ-

ment, applying to web applications. For both front-end and back-end technologies, nu-

merous (web development) frameworks enable rapid development, promote the reusa-

bility and enhance quality of software. Those frameworks are often open-source meaning

that the source codes are visible for anyone who is interested in reading, testing and

contributing. Therefore, large communities of developer are able to review and contribute

to fixing bugs and releasing new versions for those frameworks.

Bootstrap, Foundation and Material are popular front-end framework choices at present.

Bootstrap is a famous example front-end framework, as built-in stylesheet classes can

be reused as many times as needed, helping in rapid prototype and development of a

website.

In back-end development, various frameworks are available for back-end language such

as Laravel, Zend, Symphony, CakePHP, CodeIgniter etc. for PHP; Django, Flask etc. for

Python and JavaServer Faces, PrimeFaces, Spring, Struts etc. for Java.

2.5 Software development cycles and development methodologies

Most software projects use the same standard development practices, which is referred

to as the “software development life cycle (SDLC)”. Waterfall and agile are two main

methodologies and each one contains many variations.

7

2.5.1 Waterfall development model

The waterfall model is a method that consists of origin from other processes of engineer-

ing such as manufacturing and construction. Each step of the process is “well-defined”

and must be completed before continuing to the next one. [9, p. 37.]

Figure 3. Waterfall process – reprinted from [9, p. 38].

The waterfall methodology requires heavy documentation as it often involves independ-

ent teams in development of each phase. Requirements must be documented fully for

all needed functionalities by business users before design phase can start. In design

phase, often technical manager, business manager and project manager review the de-

sign from the technical team before moving to implementation phase. The review will

produce a “Gap Analysis” document which produces the requirements that are not re-

solved by the design. [9, p. 38.]

In project implementation, Gantt charts help project manager keep track of details of the

work to be carried out. Several Gantt charts can exist at the same time and one of them

can be dedicated for tracking coding effort. Therefore, status of implementing items and

progress on each of them together with dependencies between can be easily visible for

every stakeholder of a project. Furthermore, a regular project meeting involving devel-

opment team and managers carry out the mission of updating the charts. [9, p. 38.]

8

Figure 4. An example of a Gantt chart – reprinted from [9, p. 39].

With waterfall model, testing and verification take part late in a project. Base on the re-

quirement documents, a dedicated testing team will execute a test plan to make sure all

requirements are implemented correctly, and system works as expected. Testing con-

sists of several types and depending on the project. Not all of them need to be executed

every time.

Table 1. Testing types and descriptions– reprinted from [9, p. 39].

Testing type Description

Regression Testing If changes appear in implemented code, all old test cases
must be re-executed to make sure new changes do not
break the old code-base.

User Acceptance Testing Business users will take part in this test to see all defined
requirements are implemented.

Integration Testing Testing the correct interfacing between the testing system
and external systems or between sub-systems in the same
system.

Black Box Testing The tester is not permitted to access to the codebase, test-
ing is conducted by the tester from the view of users.

White Box Testing The tester knows about code implementation of the project
and can provide insights about reasons of a bug.

Performance Testing Usually testers test load to see how many users that sys-
tem can handle in a timeframe (10 seconds, a minute etc.)
and see potential scalability issues.

When all test activities are carried out, the final product can be released to the end users.

Maintenance often happens in this phase, and minor changes/enhancements are intro-

duced. On theory, testing in waterfall model can take advantage of a well-defined re-

quirement documentation from the previous stage to build a well-structured test plan and

estimate exact needed testing effort, hence conclude a successful software project. In a

9

real-life software project, requirement changes are often introduced at a later stage of a

project, causing difficulty in testing, cascading effect of delaying and late delivery as the

whole rigid model must start over. As a result, the testing team must wait until new re-

quirements are conducted. The disadvantage can be mitigated by performing the model

on a smaller scale with many short iterations, this method is named as “iterfall”. [9 pp.

39-40.]

2.5.2 Agile development model

In contrast to Waterfall development model, Agile development model embraces

changes in a software project. The model implements practical process control, where

“frequent feedback and adaptation” decides direction of development rather than strictly-

defined documentation. Scrum is considered one of the most popular agile framework;

in fact, many text books dedicate to write about Scrum. The framework contains the

objective of managing releases of software in short interactions, where timeline of devel-

opment can be precisely scheduled. Scrum’s goal is to produce software in short sprints,

each sprint delivers something that can be tested. To achieve the goal, Scrum aims to

reduce hierarchical structure of a team, the three simplified roles are: the product owner,

the development team and the Scrum Master. [9, p. 40.]

The Product Owner is an individual who possesses vision and need of building a soft-

ware for solving customer problems. The person does not own the competency to build

the software, and s/he needs to fulfil the role of creating requirements and keeping track

as well as prioritizing and organizing each requirement. Input from the Product Owner is

only needed when the development team asks. [9, p. 41.]

The Scrum Master owns only a role of facilitating communication and coordination be-

tween the Product Owner and the product development team. The person runs neces-

sary meetings for the Scrum process and manage to ensure conformation to Scum rules

such as time limits, speaking restriction etc. The development team in Scrum contains

no structure and requires doing self-organizing. Scrum rules may be enforced by the

Scrum Master; however, no other people intervenes in the development except the de-

velopment team itself. A cross-functional team is encouraged with members who pos-

sess various expertise such as technical writer, back-end developer, front-end devel-

oper, designer, tester etc. but limit to those who are essential for completing a sprint.

The team might need input from outside in the process of a sprint such as clarification

10

from production owner about a requirement or the help of the Scrum Master if slow re-

sponse from an external party exists. [9, p. 41.]

It is important to ask what the typical characteristics of a sprint are and what the detailed

process behind it is. Scrum’s time length varies between two to four weeks. Pros and

cons exist in exceedingly long or exceedingly short the length, as the short timespan

makes delivery difficult, and the long timespan lengthens the reacting time to requirement

changes. A sprint starts with a “Spring Planning Meeting” with limit dedicated time be-

tween development team and the product owner to produce a sprint backlog and a prod-

uct backlog.

A product backlog is created by the product owner, and it includes statements about the

finished product. Those statements are called “stories”, which will need to be selected

for prioritizing and then clarifying during the first half of the sprint planning meeting. The

development team needs to estimate how much effort for each story and how many story

points can be finished in the next sprint. The selected subset of stories will be considered

further in the second part of the meeting for planning the sprint backlog. The prioritized

story items are analysed to present more details for creating a sprint backlog, and later

each item will be assigned to a development team member with estimated time for com-

pletion. [9 pp. 41-42.]

Figure 5. Scrum task board example – reprinted from [10].

To effectively manage the sprint backlog items, spreadsheet or other special software

can be used. Another popular choice of use is sticky notes or index cards on a whiteboard

11

with one item on a card (figure 5). When a sprint starts, the development team and the

Scrum Master do daily scrum. This meeting usually lasts for about 15 minutes, in which

each development team member answers few questions such as what a person has

been working on since the last meeting, what is s/he planning to do before the next

meeting and had s/he experienced any difficult in completion of the personal task. [9, p.

42.]

Figure 6. Burndown chart example – reprinted from [10].

To track development progress, a burndown chart can be constructed with completed

items and time on two axes of the chart (figure 6). That brings visibility of number of

items/task hours to be conducted versus time and how fast the development speed as

well as the overall progress of the project. The Scrum Master will gain confident in un-

derstand is that the project on track and s/he will be able to communicate to the product

owner through the burndown chart. [9 pp. 42-43.]

When each sprint ends, product owner will be demonstrated the completed working func-

tionality in a time-boxed meeting. The meeting aims to gather feedback about the com-

pleted stories and serve few meaningful purposes. Those purposes include: demonstrat-

ing progress is made; demonstrating in an incremental manner each completed function-

ality; misunderstanding can be verified easily if the implementation is different from the

story when everyone retains a fresh memory about that and wasted time is limited to

only one sprint; priorities can be remade frequently. [9 pp. 43-44.]

An additional meeting can be organized which is the “sprint retrospective” which aims to

review the sprint to see what the team did well, or other improvements can be made in

the next sprint. This kind of meeting is required after every sprint in the beginning of the

project, later the meeting can be organized less frequent and only when requests exist.

Scrum does not provide details for actual development, it often combines with other

12

practices such as extreme programming. In addition, Scrum can be used by the devel-

opment team in small scale in large organization where the waterfall method is deep-

rooted in the project management structure. [9, p. 41.]

2.6 Popular software development patterns

Software development patterns aim to solve common software development problems,

based on popular-known terminology and implementation when the problems are recog-

nized. One of the earliest definitions of software patterns comes from “Design Patterns:

Elements of Reusable Object-oriented Software (Gamma et al., 1994)”, referring to as

the “Gang of Four” (GoF). In the later part of this section, few popular architectural pat-

terns will be reviewed. The reviewing patterns include observer, façade, singleton which

are divided into categories of behavioral, structural and creational, respectively. In addi-

tion, two enterprise patterns: Model-View-Controller and Inversion of Control will be dis-

cussed. [9, p. 19.]

2.6.1 The Observer Pattern (Behavioral)

The observer pattern contains of two components, one of those exposes an event that

the other can register to listen for and will be notified when event changes from the first

component happen. When the notification is not needed, the observers can unregister

to save computing resources. [9, p. 19.]

Figure 7. Observer diagram – reprinted from [9, p. 20].

13

Figure 7 reveals structure of the observer pattern in which an observer implements an

interface that was defined by the Subject class. The “ChangeNotify” method loops over

a list of observers to call the method on each of them. If needed, the subject can imple-

ment an interface for receiving notification from the observers and trigger desired func-

tions. Some examples include live football updates, live weather updates, instant mes-

saging, chat rooms etc. [9, p. 20.]

Figure 8. An example of AngularJS data-binding [11].

Figure 8 demonstrates a popular example of using AngularJS (observer pattern), any

text input from user in the input field will be reflected in the <h1> element, the observer

(input) will notify the subject (h1) and trigger change event on the subject whenever a

change in the input field happens. Initially the h1 element will contain text value of “John”

resulting from setting the “myCtrl” object property “firstname” to “John” in the script part.

Figure 9. An example of KnockoutJS data-binding [12].

Figure 9 illustrates a similar example of implementing observer pattern on two input

fields, in which username input field is initially empty and password input field contains

value of string “abc”. Any changes in those input fields will update the “userName” and

“userPassword” observables to hold to the same values.

14

2.6.2 The Facade Pattern (Structural)

The facade pattern aims to provide simplified external interface for a complex internal

system. The internal system can be built by small independent components for better

performance, easier testing and other purposes. [9, p. 20.]

Figure 10. Façade pattern structure – modified from [9, p. 21].

In figure 10, Method_1() and Method_2() will be available for client which will do not

necessarily concern with the complexity of the SubSys1 and SubSys2. The client can

query SubSys1 and SubSys2 if the intention of a method does not change, even when

changes in the subsystems appear. This is structural pattern as it does not necessarily

solve a functional problem and components can be re-arranged to achieve the result. [9,

p. 21.]

2.6.3 The Singleton Pattern (Creational)

The Singleton Pattern is widely-used in Java and C#, which guarantees that only an

instance of a class exits at runtime. This is achieved by using private constructor and

static “Create” or “getInstance” methods. This is useful when a resource-heavy compo-

nent is guaranteed not to be constantly created and destroyed. A new object created

from a class will always refer to an existing instance. [9, p. 21.]

15

The Singleton pattern is an example in Creational category; another example is Factory

pattern. The Factory pattern helps to create efficiently instances of a class, depend on

different parameters pass in. Beside Singleton and Factory patterns, the Builder pattern

(in Singleton category) facilitates the creation a complex object from different sub-objects

and the pattern’s user does not necessarily concern with how the object is created. [9,

p. 21.]

2.6.4 Model-View-Controller (Enterprise Patterns)

Most software design patterns are useful and applicable, however Model-View-Controller

(MVC) pattern and Inversion of Control (Dependency Injection) are especially abundant

in any distributed and/or enterprise environment. Those patterns contribute greatly to

building a component-based software system.

MVC is one of the oldest software design patterns and is still being used in many web

and mobile applications. Each component in the pattern possesses its own concern and

single responsibility. The Model defines data in an application and aware of changes of

data’s state. The View display system’s data and accepts inputs through some Graphical

User Interfaces (GUI) or another non-human interface. The Controller obtains input from

the view and queries data from the model; base on defined business logic, actions will

be handled on the Model or the View. [9, p. 22.]

Figure 11. Model-View-Controller (MVC) pattern – modified from [9, p. 23].

16

Figure 11 reveals that in the pattern, a controller can support many views, the model

does not depend on other component and the view contains dependencies on the model.

In addition, the controller communicates directly with the model and the view. [9, p. 23.]

2.6.5 Inversion of Control (Enterprise Patterns)

For system that consists of many components which must be tested separately, Inver-

sion of Control (IoC) or Dependency Injection (DI) pattern is essential. The pattern im-

plements the “separation of duties” concept, in which each component contains well-

defined tasks to fulfill. [9, p. 23.]

In the pattern, if a class (consumer) uses service of another class (provider), the con-

sumer should not instantiate an instance of the provider, instead the class should use an

abstraction (usually interface) from the provider. The interface’s reference will be kept in

the consumer so that it can use any class implementation of the interface. [9 pp. 23-24.]

Figure 12. Façade pattern structure – modified from [9, p. 24].

Dependent objects are instantiated externally, to be fed to the consumer who does not

control the creation process of those objects. The external provider can be passed into

consumer; that implementation is often referred as “dependency injection” which con-

sists of three methods to achieve: constructor injection, method injection and setting in-

jection. [9, p. 24.]

17

2.7 Human-computer-interaction (HCI) and user-centric design (UCD)

Human computer interaction (HCI) started “in the early 1980s” as a research in computer

science’s special field including human factors engineering and cognitive science. Until

late 1970s, interaction with computers is limited to information technology professionals

and dedicated hobbyist. The period is also a milestone of humanity when personal com-

puting with personal computer platform (operating systems, programming language,

hardware) and personal software (applications such as spreadsheets, text editors for

productivity) made computer a desirable product for every person on the world and em-

phasize the needs of development of “usability” for people who want to utilize computers’

resources more efficiently. [13.]

In the end of 1970s, personal computer poses challenge as well as opportunities for the

first appearances of various projects in cognitive science including “cognitive psychol-

ogy, cognitive anthropology, the philosophy of mind, artificial intelligence, and linguis-

tics”. A part of cognitive science’s programme is “cognitive engineering” which aims to

build systematic and scientific applications though synthetisation of science and engi-

neer. One of the first example of cognitive engineering is HCI. In parallel to HCI devel-

opment, human factors engineering, and documentation development are two notable

fields in engineer and design area next to HCI. Human factors engineering aims to eval-

uate human-system interaction in aviation and manufacturing, in which human operators

often possess higher problem-solving capability. On the other side, Documentation had

mission of producing technical description with a cognitive approach by combining theo-

ries of reading, writing, media and practical user testing. In document development, the

“usability” of documentation is strongly emphasized. [13.]

Due to the unmanageable complexity of software in the 1970s (the “software crisis”),

software engineering must concentrate on non-functional requirements comprising of

maintainability and usability, beside functional requirements. Therefore, iterative proto-

typing and practical testing are relied heavily in software development processes. Com-

puter graphics and information retrieval (started in 1970s) are two fields that see the

needs of interactive systems to go further than the past’s achievements. All attempts in

early development of computer science reveals the necessity of computer to better un-

derstand and empower users. [13.]

HCI consists of the technical focus on “usability”, which can be naively understood as

“easy to learn, easy to use”. Yet, the usability concept inside HCI is continuously

18

becoming richer, now often containing of fun, well-being, aesthetic tension, flow, human

development support, etc. Nowadays, HCI has expanded larger than computer science,

with less focus on “individual or generic user behaviour” but more on social, original

computing, accessibility for the elders and impairers. HCI grown to include “games,

learning and educations, commerce, health and medical applications, emergency plan-

ning and response, system to support collaboration and community”. Furthermore, HCI

includes both the “early graphical user interfaces to interaction techniques, handheld and

context-aware interactions”, etc. [13.]

Figure 13. Disciplinary knowledge involved in design of HCI – reprinted from [13].

Figure 13 illustrates “user experience/usability” is the contemporary cross intersection of

all disciplinaries and HCI. HCI academic programs train many professional types: “user

experience designers, interaction designers, user interface designers, application de-

signers, usability engineers, user interface developers, application developers, technical

communicators/online information designers”, etc. It is fascinating to see HCI moved

“beyond the desktop”, in which “interaction-design.org” specifies three distinct senses or

boundaries. Firstly, by realizing the desktop metaphor is limited than it was, meaning that

the “messy desktop” for direct interaction between users and data objects/folders should

be substituted or enhanced by searching feature. Secondly, the Internet changed our

society and interaction methods between people. People can use tools and application

to collaborate through instant message, wikis, blogs, online forums, social networking,

media spaces and other workspaces for collaboration. New “paradigms and mechanism

for collective activity” appeared such as “online auctions, reputation systems, crowd

sourcing” etc. Facebook, Twitter, Linkedin, Linux and Github communities are few ex-

amples of daily computing experiences for many people. Thirdly, with the explosion of

19

appearance of new computing devices, started by laptops in the early 1980s, and

handhelds in the mid-1980s; computing now appear in almost all human daily activities

through interaction with cars, home appliances, furniture, clothing, remote conference

call devices, smartphones, etc. Understanding of HCI from science and engineer view-

points provide a solid foundation for further study of building useful applications (with

great usability) to harness the “pervasive incorporation of computing into human habi-

tats” and enhance human activity and experience. [13.]

The “software crisis” happened in 1970s was not the only time that humanity faces diffi-

culty of building software; some notable recent software failures and costs can be seen

from article names “Why Software Fails” on IEEE-Spectrum by Robert N. Charette.

Figure 14. Recent software project failures and estimated costs – modified from [14].

It was estimated that one trillion USD will be spent in software projects in 2005 worldwide;

however, 5 to 15 percent of those projects will be abandoned right after delivery and

many others will be competed late with over budget. Those failures are due to twelve

reasons following the Robert N. Charette’s article. In a talk in 2011 for “humanfac-

tors.com”, Dr. Susan Weinschenk mentioned three out of the twelve reasons of failures

are related directly to user experience or User-centered design (UCD) work including:

“badly defined system requirements; poor communication among customers, developers

and users; stakeholder politics”. Furthermore, she concluded the three issues can be

resolved by a user-experience professional’s typical work such as stakeholder inter-

views, user research, testing, user-center design. [15.]

20

UCD is a design process which is carried out in different iterations, in each iteration,

designers focus on user needs and involve users in the design process by “research and

design techniques” to build accessible and usable products for the user. Designers need

to employ investigative and generative methods and tools to deepen understanding

about users. In UCD, designers possess goals of building the whole user experience for

a product, hence the design team must comprise of multiple disciplinary professionals

such as psychologist, software and hardware engineer, domain experts, stakeholders

and users. [16.]

Figure 15. Summary of “The ROI of User Experience” talk – reprinted from [17].

Figure 15 demonstrates summary of the “ROI of User Experience” talk by Dr. Susan

Weinschenk (2011), which many points of views resonate with the author theoretical

understanding and practical work experience. It is essential for a programmer/developer

to possess sufficient understanding about UCD (which is often conducted by User Expe-

rience Designer), to make sure that every line of written code must contain meaningful

purpose(s) and ideally results in better “usability” of an application.

21

2.8 REST architecture

Representation State Transfer (REST) is an architectural style which is becoming more

popular in many recent web development projects, therefore understanding of REST and

its constraints is essential for any web developer. REST is used for distributed hyperme-

dia system with constrains to retain a set of software engineering principles. In Roy Field-

ing’s dissertation in 2000, he mentions REST as an architectural style applying “to the

design of Hypertext Transfer Protocol (HTTP) and Uniform Resource Identifier (URI)”.

The REST architecture aims to reduce interaction latency between general interfaces

and intermediary components, therefore system which was built with REST will be able

to scale up to Internet size. [18.]

Some important characteristics of REST for HTTP and URIs by Sundvall et al. [18] are:

• URIs as forms of resource identifiers identify resources which are targets
of references.

• Various representations formats for resources such as “HTML, XML, JSON
(JavaScript Object Notation), serialized Java objects and plain text” were
built to be included in the body of the messages. The HTTP header in-
cludes representation metadata such as media (MIME) type in the HTTP
protocol.

• To act on resources, specified methods (HTTP verbs) are used in request
from client. Methods such as OPTIONS and GET should not create the
server side’s changes, meaning that results of the methods’ results can be
cached to serve for future requests. Representation of resources is fetched
by GET method on the URI identifies of the resource (which is accom-
plished by requesting an URL on a browser). To update content or create
if the content is missing at a target URI, PUT method should be used. DE-
LETE method is used to delete resources. In addition, POST method is
used for adding resources or modify existing ones.

• Headers, a HTTP status code, and optionally a body are included in a re-
sponse. Furthermore, status codes consist of different meanings such as
success: “200 OK”, “2001 Created” etc.; redirection: “301 Moved Perma-
nently”, “304 Not Modified”; request errors: “404 Not Found”, etc.; server
errors: “500 Internal Server Error”. “Location” header field with target URL
should be included in new resources responses’ creation or redirection.

Uniform Resource Identifier defines a physical or abstract resource. URI contains multi-

ple components, those can be illustrated in figure bellow.

22

Figure 16. URI Components– reprinted from [18].

Figure 16 reveals how an URI is constructed with the first three components: scheme or

protocol (http, ftp, mailto, urn), optional user info part and connecting server and port.

The other components of the URI help to point to the correct file in a specific part or help

to build up an identifier that can be sent to the server, being processed differently. [18.]

If the fragment part (using only for the client - after “#”) is changed, it is not necessary to

send new request to the server. Client-side code can use the fragment to redirect user

to correct segment of a webpage; the fragment also helps in bookmarking and enhancing

back button a browser as the button can help to redirect user even when the history is

generated by the client-side, not by fetching from the server. [18.]

The REST architecture is not ideal in all use cases, for example when a server must

frequently initiate interaction or sending notifications. REST can achieve better scalability

level if it is enhanced correctly with other design patterns and solutions. Sockets can help

for reducing overhead of unnecessary features in POST and GET requests if those re-

quests are small and frequent between components or between client and server. Web-

Sockets can take advantage of the upgrade mechanism of HTTP by opening over a

single TCP socket a bidirectional communication channel. In addition, reducing requests’

number and caching and can help further to solve scalability issues. [18.]

As Fielding stated in section 2.3.1.3 of his dissertation about Network Efficiency: “An

interesting observation about network-based applications is that the best application per-

formance is obtained by not using the network”, application designers can try to reduce

total necessary calls by making less (larger) requests instead of many small ones. Cach-

ing or temporary storing of fetched files can help to reduce request number to a server if

the server is able to understand state of the fetched data. The HTTP/1.1 protocol header

provides helpful information that can be used to understand information related to cache

between client and server. Some examples are: “expires” header, “cache-control” header

(“max-age”); “ETag”, “last-modified”; “If-None-Match”, “If-Match”. The first and the

23

second set of headers indicate when new response need to be re-sent to the client-side.

“If-None-Match” helps server to determine whether to serve a page from GET request or

not; if the previous cached response matches, HTTP status code “304 not modified” will

be sent by the server. Similarly, if a client sends a PUT request, “If-Match” header can

be examined to see the necessity of updating a resource which might be updated by

someone else. [18.]

Many more advanced techniques such as vertical scale up, horizontal scale out (Sharing,

MapReduce) that will not be covered in this section, as the reviewed architecture style

and techniques are more suitable for a start-up’s immediate concerns.

2.9 Introducing several selected software development frameworks with code imple-
mentation

Software frameworks often are built following industry standard with numerous neces-

sary design patterns. Model-View-Controller (MVC) is a prevalent pattern which applies

in many web development frameworks. In this thesis section, few web development

frameworks will be mentioned and introduced briefly. For brevity, this section focuses on

introducing few back-end frameworks together with their controllers’ core features.

Server-side web frameworks are software that helps to increase productivity in writing,

maintaining and scaling the back-end parts of web applications. Common web develop-

ment tasks will be simplified by libraries and tools, those tasks include routing URLs to

correct handlers, performing Create, Read, Update, Delete (CRUD) operations on data-

bases, session management, authorization, security enhancement and output handling

(JSON, XML, HTML). [19.]

A developer can build web applications without frameworks; however, that incurs the

unnecessary tasks of manually building and testing of some commonly-available soft-

ware components. In contrast, using web frameworks, the developer can use the existing

well-tested, low-level software components to write simpler syntax and deal with easier,

high-level code. [19.]

24

Figure 17. Express framework code sample.

Figure 17 illustrates routing setup of a small flashcard game application which was writ-

ten on Express framework. Express.js (or Express) is a web application framework for

Node.js which was released in 2010 with designed architecture for simplifying the pro-

cess of building APIs and web applications [20]. From the figure, the first line calls Ex-

press library, following by the second line which assigns all Router library of Express to

the “router” constant. Line 6 illustrates the handling of user request to the root route of

the application with GET method (which is typically carried out by a user accessing to an

URL on a browser). In the call-back function, request and response objects are available

and response (res) handles redirection to another route of the application. Similarly, in

line 12, another router was built to handle GET method to the root URL with additional

parameter “:id”. The Express framework helps to catch easily request parameter such

as the “id” constant in line 14 for identifying which card a user is requesting. If no side

can be extracted from the request parameter, a default option will be provided, meaning

25

the user will be redirect to a webpage containing a question view for a card (line 17).

Line 23 reveals construction of a “templateData” object which will be provided when a

“card” view is rendered in line 34. Finally, the “router” object will be exported to be avail-

able for using in the whole application with the statement in line 37. In this example, the

route file, naming “cards.js” acts as a controller to handle request (routing) to application,

serve relevant data to different views.

Spring is another web framework that is essential to mention in this section. Spring is the

most popular framework for building enterprise application in Java. That is an open

source Java platform which was released first time in 2003, initially by Rod Johnson.

Spring framework can be used to build any Java application; however, it is famous as a

framework for building web applications on JavaEE platform. Spring framework contains

numerous benefits in using such as enabling development of applications using POJO

(Plain Old Java Object) in enterprise-class level. In addition, Spring is modular; even with

substantial number of built-in classes, developers only need to concern with classes that

they need. Moreover, Spring embraces testing as code that depends on environment is

available in the framework and POJO empowers dependency injection for injecting test

data. Spring handles well exceptions from other connected technologies such as Java

Database Connectivity (JDBC), Hibernate or Java Data Objects (JDO). Many other ben-

efits of Spring framework for building Java web application make the framework becomes

the top selection for various Java projects. [21.]

26

Figure 18. Spring framework code sample.

Figure 18 illustrates a shortened version of a controller in Spring framework. The first line

imports “Autorwire” annotation feature to the controller, enabling injection of two objects

“categoryRepository” and “gifRepository”. The classes “CategoryRepository” and “GifRe-

pository” are annotated with “@Component” annotation so that the two object instances

can expose necessary methods inside the “CategoryController” class. Line 17 illustrates

an example of handling GET request to “/categories” route, which return a view name

“categories” with data available from the “categories” object fetching from line 20.

“ModelMap” is a built-in interface which helps to make data available to any view in the

String framework. Line 24 demonstrates an example of how to handle a route when a

user clicks on an item in the “categories” list and tries to see detail of an individual cate-

gory. Spring helps to extract URL parameter “id” with “PathVariable” annotation, hence

in line 26, a single category can be obtained. In line 29, all “gif” items in a category can

be queried and assigned to the “gifs” variable to be used in the view “category”.

27

CodeIgniter is a relatively modern MVC development framework that will be reviewed in

this section. Currently, CodeIgniter (CI) 3 is the application production version, CI2 is the

legacy version and CI4 is coming. CodeIgniter is an Application Development framework

building on top of PHP programming language. PHP is a back-end programming lan-

guage which owns long history of existence. The programming language was created in

1994 by Rasmus Ledof who used it to track visitors on his online resume page. Originally,

the program is named “Personal Homepage Tools” and was written in C programming

language to create a set of Common Gateway Interface (CGI) binaries. Through time,

PHP language has evolved to the current version of PHP 7. [22.]

Figure 19. Google Trend comparison of popular PHP frameworks [23].

Many of features are available out-of-the-box from CodeInigniter3 including: Model-

View-Controller Based System, Light Weight, Full Feature database classes, Query

Builder Database Support, Form and Data Validation, Security and XSS filtering, Session

Management, Email Sending Class (Support Attachments, HTML/Text email, multiple

protocol with SMTP, Mail etc.), Image Manipulation Library (cropping, resizing, rotating

etc.), File Uploading Class and many more. Those listed libraries build up a solid foun-

dation of functionalities for any commercial software web application (in PHP). More than

dozens of frameworks for PHP currently exist; however, CodeIgniter is arguably one of

the top choice, although not as popular as the rising Laravel framework. [24.]

28

In the following section, two excepts of sample PHP code written in PHP will be analyzed

to demonstrate the simplicity of the CodeIgniter framework.

Figure 20. An example controller performing CRUD written in CI framework – part 1 [25].

Figure 20 reveals an example of a controller written in CodeIgniter, the controller here

consists of several responsibilities: displaying views and perform CRUD operations. Line

2 illustrates inheritance of “Stud_controller” from “CI_Controller” which is a base class in

CodeIgniter framework which contains many helper classes. The constructor of the class

guarantees that whenever the class is use, the “url” helper and “database” libraries are

loaded in line 6,7. The “public” accessor ensures that the function can be call directly

from a browser URL, for example “index” function can be call by request the URL: ba-

seURL + “/” + “Stud” (base URL is the root URL of a web application such as http://lo-

calhost and “+” is an operator for string concatenation). The “index” function obtains data

to an associative array “data[‘records’]”. Line 15 illustrates the simplicity of serving a view

“Stud_view” with “data” fetched from the database; on the view data will be available in

29

the PHP object “records” and freely to be used to construct the dynamic part of the

“Stud_view”. This “index” function owns a purpose of serving default data about students

when a user is redirected to the route “/Stud_controller”.

In addition, the controller consists of other responsibilities such as serving views and

performing CRUD operations. Function “add_student_view” demonstrates how to serve

the view with name “Stud_add” to user. Following CI convention, the view file is in a

separated folder (often named “views”). Function “add_student” starts on line 23 acts as

a callable function for adding student to the database; the action logically will come from

the “Stud_add” view but can come from any other view as well. The function loads an-

other Model with name “Stud_model” on line 24; this model is another PHP class (located

in “models” folder) which contains a single responsibility in the CI framework - perform

interaction with the database (CRUD operations). The function expects form input com-

ing from POST method from two input fields with name “roll_no” and “name” coming from

a view. On line 31, the helper database method “insert” performs inserting the request

data into the database. Before inserting, no validation or sanitization of input data “$data”

was considered as the code segment illustrates a simplified example. After inserting

data, student data needs to be re-fetch to be available to the front-end part, performing

by line 33 and 34. Finally, line 35 serves the view “Stud_view” with all students’ infor-

mation including the just added student information to a user.

30

Figure 21. A sample controller performing CRUD written in CI framework – part 2 [25].

With CI framework, it is also simple to perform update and delete data. Function “up-

date_student_view” performs serving a view for updating a student information by ex-

pecting a student number obtaining from the URL in segment 3rd in line 3 (eg. with re-

quest to the URL: baseURL + “/” + “Stud” + “/” + update_student + “/” + 3, the “roll no”

variable will hold value of 3). Line 41 and 42 query a student data and line 44 serves the

view “Stud_edit” with the queried data. Starting on line 47, function “update_student”

performs updating data of a student. To interact with database, model “Stud_Model” is

loaded in line 48. Similarly, to the “add_student” function, this function expects two input

fields sending through POST method, containing roll number and name to be updated.

The “Stud_Model” model will perform update those new data on a row which is found by

querying in the database with “old_roll_no” number. When the action is successfully con-

ducted, “Stud_view” with all refreshed students’ data will be served on line 60. The func-

tion “delete_student” will help to delete a student by “roll_no” number, and the operation

sequence is comparable to other functions as demonstrated above. It is noticeable here

31

that the complexity of “Stud_Model” model is abstracted away from the “Stud_controller”

controller, a call to “delete” function on line 66 expects the model does it work which can

be carried out by a CI database helper method or a regular SQL query.

The pattern here is clear, a function to serve a view for changing data and a function

does the actual work in a controller of CI framework. Certainly, developers own the flex-

ibility to write code differently, but fundamentally interaction with database is simplified

when coding is conducted in an expected pattern which is available out-of-the-box from

CI framework (documentation).

Many other notable software frameworks that are not introduced here such as

Django/Flask for Python and ASP.Net for C#; however, the fundamental MVC design

patterns are similar in all mentioned frameworks in this section from the author point of

view, hence code samples are not introduced.

2.10 Functional programming (JavaScript)

Functional programming is a software development style that has become more popular

recently. This section aims to concisely review functional programming concepts, why

and how to use those concepts in JavaScript – an essential programming language in

most modern web development projects.

The users’ demand compounding with rapid development of web platforms and browsers

changes the way of web application development today. Frameworks can help to build

more robust, scalable applications; however, the complexity of the code base can easily

go out of control. Object oriented programming can partially solve the problem, although

programmers need more. The popular questions that application designers must answer

[26, p. 4] include:

32

• Resource Extensibility: does developer need to constantly refactor code to
add new functionalities?

• Easy to modularize: does changes in one file affect other files?

• Reusability: are there unnecessary duplications?

• Testability: is that easy to write unit test for a function?

• Easy to reason about: is that the application well-structured and written
code easy to follow?

Functional programming today is supported by built-in API functional supports in many

major programming languages: Scala, Java8, Python, JavaScript etc. In JavaScript,

functional programming helps programmers to be more productive by enabling clean,

modular, testable and succinct code. In functional programming, four fundamental con-

cepts need to be maintained, including: declarative, pure functions, referential transpar-

ency, immutability. [26, p. 5.]

Declarative programming aims to construct a set of operations without revealing how

those were implemented or how data flow through them, in contrast to imperative or

procedural programming that exist in most structured (C etc.) and object-oriented lan-

guages (C++, C#, Java etc.). For example, to square all numbers in an array, declarative

programming would be carried out differently.

Figure 22. Procedure/imperative looping in JavaScript – modified from [26, p. 8].

Figure 22 illustrates imperative style of programming by telling how to perform a task for

computer. In contrast, declarative program concerns on what logic to achieve without

specifying a program’s state changes or control flow. The Array.map() function helps

programmer to focus on implementing the correct behaviour on each element of an array.

33

Figure 23. Declarative looping in JavaScript – modified from [26, p. 8].

Figure 23 demonstrates that programming can be freed from managing a loop, which is

difficult to reuse and bring overhead in maintain more written code (meaning more bugs).

In addition, high-order functions such as map, reduce, filter simplify loop control in func-

tional programming. Loop control abstraction also bring benefit of using lambda expres-

sion or arrow functions (EcmaScript 6), which is a succinct alternative way of wring anon-

ymous function passing in as a function argument. Functional program also aims for

statelessness and immutability, which can be achieved by using pure functions. A pure

function only depends on provided input and not on any hidden or external state that

changing during its evaluation or between function calls. In addition, a pure function does

not cause changes outside of its scope such as changes to a global object or pass in

parameters. It is proven that many benefits arise if return result of a function is consistent

and predictable, which make the “referential transparency” property of functional pro-

gramming. [26 pp. 8-9.]

Figure 24. Referential transparency examples – modified from [26, p. 9].

In figure 24, the result of “increment_imp” is difficult to predicted as it depends on how

many time the function was called; yet the function “increment_dec” always return a pre-

dictable result base on a pass-in parameter value. Passing parameters with scalar values

and defined those beforehand would help to avoid side effect of a function, however

when “objects are passed by reference”, programmers must be careful not to accidentally

change them. The passing parameters to a function should be immutable. [26 pp. 14-

15.]

34

Immutability is an important concept in functional programming, meaning that data can-

not be change after it was created. In JavaScript (as well as other programming lan-

guages) primitive types are immutable, yet other objects such as array are not. One

example is the Array.sort function in JavaScript causing sort operation in the original

array, which is often an undesirable side effect to programmers. JavaScript developers

often encounter difficulty in maintaining large functions that rely on external shared vari-

ables, with many branching and unclear structure. Functional programming style is prom-

ised to solve the difficulty to overcome modern software complexity. This section serves

as an introduction to functional programming as the subject is complex and consists of

great depth to be explored further. [26, p. 15.]

2.11 Software development in a start-up environment

Startups are new companies with small history of record, high uncertainty and rapid evo-

lution. Following recent studies, startups demonstrate an important position in a country

economy. In 2014 in the US, 476000 new businesses are created each month, contrib-

uted to 20% of new job creation [27]. In 2016 in Finland, 383 million Euros are invested

in 400 new start-ups, a new record in Finnish history [28]. This section of the thesis

concentrates to explore software engineering practices in start-ups’ environments.

Doing software engineering in a startup means that “done is better than perfect” and

people “move fast and break things”. A startup contains the flexibility to accept frequent

changes, therefore the most viable process is agile methodology. The time from new

ideas to production must be short requiring fast releases with iterative and incremental

approach. Lean methodology is a variation agile development, which targets to pinpoints

the riskiest part of an application and implements a minimum viable product (MVP) for

testing and moving on to the next iteration. In that way, any change will introduce less

costs to the product and a testable version is available early to see feasibility of continu-

ing development. [27.]

35

Table 2. Typical characteristics of startups – modified from [27].

Testing type Description

Lack of resources

Economical, human, and physical resources are limited.

Highly reactive In comparison to more established companies, startups
can react quickly to changes in markets, technologies
and products.

Uncertainty Startups deal with highly uncertain environment of mar-
ket, product features, competition, people and finance.

Rapid evolving Startups aim to grow and scale fast.

Time pressure All constraints force startups to release new features
fast and frequent. Constant pressure from customers
and investors appears in daily work.

Third-party dependency The lack of resources makes startups rely on external
solutions to build products: open source software and
API, outsourcing etc.

Small team Startups start with small number of people.

One product Only one product/service exists to be built.

Low-experienced team Team is often formed by people with less than 5 years
of experience and fresh graduated students.

New company The company was created recently.

Full organization Startups consist of low hierarchical structures with no
need for upper management, the team is centered
around the founder and everyone owns multiple respon-
sibilities.

Highly risky Startup contain high failure rates.

Not self-sustained In the early stage, startups need funding from external
sources such as venture capitalist, angle investors, per-
sonal/family funds etc.

Limited working experience The short existing time make organizational culture non-
existence.

Table 2 reveals recurrent traits of startups, which many points resonate with the author’s

personal experience. Startups need to gain new customers fast, by concentrating on

serving customers, making them act as “designers”. Feedbacks from customers are crit-

ical and often used by developers to drive requirements. In addition, the team is the

central of development, by empowering each member of the team, manager hopes to

counterbalance the lack of resources. Finally, startups contain the advantage of choos-

ing newest technologies without concerning legacy codebase. Startups attempt to gen-

erate revenue and find funding fast, hence software quality is not the most critical ele-

ment. In that environment, developers own freedom to choose what to work on, stop to

take measure when anything is wrong and accept that failures are inevitable for faster

learning or pivoting when necessary (skip unnecessary complex features with small

36

impacts). Few common practices that should be mentioned from startups including: us-

ing well-known frameworks to quickly change to product following market needs; using

of prototyping and experimentations with existing components; using easy-to-implement

tools to increase development speed. [27.]

3 Requirement analysis and architecture overview

3.1 Use cases analysis

This section aims to review AuroraX from an architecture point of view regarding its fi-

nancial application nature. AuroraX is a start-up, meaning the company software product

must constantly change and new features need to be implemented fast. For a financial

commercial application, a relational database for saving data is essential as it is difficult

to achieve the same performance and data integrity in comparison to other non-relational

database solutions. A backend language is needed and on the front-end styling effort

must be minimized by utilizing font-end frameworks. User experience on the UI can be

enhanced by JavaScript with a suitable framework to handle user interaction and input

data validation. In addition, the back-end part must contain the robustness, correctness

and security of a financial application as well as extensibility and flexibility to interact with

external APIs. In addition, the application allocates most of computing work to the

backend, as the platform is not built in style of a real-time trading platform (for financial

products such as: stocks, commodities, electric etc.). It is better to first understand im-

portant use cases to gain a holistic view of the application.

37

Figure 25. UML use cases of a borrower.

From the constraints of requirements, the use case diagram here reveals core function-

alities of the application and how different entities achieve goals with helps from the sys-

tem. Figure 22 illustrates how different actors in the system to interact with a borrower.

The system needs to constantly know about who the borrower is and on which page and

which action is the user trying to perform with the help from the authentication system.

The borrower needs to provide personal information such as social security number; in

Finland, the number would reveal information about a person’s age, other personal de-

tails and personal payment remarks (with the help of a third-party API, which will impact

the person’s credit rating). The credit rating provider provides information about recent

banking transactions of a person which are used to determine a person’s risk rate level.

An offer to a person is determined by the credit rating algorithm with different parameters

of maximum loan amount, interest and repayment time. The person can modify a loan

request to see if other options are available and commit to a loan when feeling satisfied

38

with an offer. After ID validation, the system will automatically send money to the user

account. Invoices must be sent, processed and recorded in the system for borrowers to

see. Furthermore, borrowers can make early repayment for any amount that is larger

than the amount of the next payment plan item. In addition, the borrower needs to be

able to see transaction history and perform login/logout.

Figure 26. UML use cases of an investor.

Figure 26 demonstrates how an investor can achieve his goals by interacting with the

system’s exposed functionalities. The system needs to know about additional required

information for an investor to guide the user to input more information and the category

of the investor: individual or corporate. The investor must be able to input data to for

creating an account with (minimum) information requesting from the system including:

email, password, living country, social security number, the first name and the last name.

The person needs to see market information and statistics such as what are most recent

loan requests, what is the open loans request’s total volume, how much is the amount of

39

a loan request and what was the interest rate. The investor needs to see projection of

how much s/he will earn in the future and be able to modify to see real-time answer of

projected returns. The investor can proceed in the investor flow and system will generate

investment invoice for the user to pay; afterwards, system batch will acknowledge the

investment and the investment will be displayed on the investor’s investment dashboard.

The investor must be able to see investment details of each investment basket and

breakdown of each of those details demonstrating how much had been paid, and how

much left, and interests (paid/unpaid) for each of the breakdown; a transaction list illus-

trates information for each transaction must be available in a view for the user.

Another important user in the system is the admin user, who can search borrowers and

investors in the systems and perform different actions for customer service operation. In

addition, daily batch operations with various functionalities such as processing invoices

of investment and repayments, validating ID, cancelling outdated loans, etc. can impact

users in the system directly when it runs.

3.2 The borrowing process flow

The borrowing process flow or in short, “the borrower flow” is how the application de-

signer calls the process including all steps for a new borrower to register and complete

the borrow process. The flow has been changed many times with trial-and-error method

to find the ideal one to optimize the borrower funnel.

Figure 27. The stages of a sale process - modified from [29].

40

Figure 27 reveals steps before purchasing of a customer for a product. For an online

financial product as AuroraX, the funnel is normally shorter for a customer: a customer

can find AuroraX through email marketing or Google Ads, Facebook Ads etc. digital mar-

keting campaign, communication can be short or only one-way through video introduc-

tion and FAQs (Frequent Ask Questions) text, and meeting may not be needed, contract

can be viewed online and is sent by email, product is delivered as a solution by using

the application, and payment is carried out by paying invoice through online bank service.

The cost per customer from a loan comparison site such as “vertaaensin.fi” is currently

60 to 80 euros, and similarly from other affiliate sites in Finland. Using their services is

one way of booting sales and increasing brand awareness and brand value, however in

the long term, the most sustainable strategy is improving user experience on the site,

optimizing the borrower flow, together with using “word-of-mouth” marketing method.

Figure 28. Optimized borrower flow.

Figure 28 illustrates a simplified borrower flow for a borrower, deriving from requirements

of the borrower funnel analysis.

3.3 The investing process flow

The investing process flow (the investor flow) includes all steps for a new investor to

register and make an investment, and steps for an existing investor to make new invest-

ment.

41

Figure 29. Optimized investor flow.

Figure 29 demonstrates the shortest path possible for a new investor to complete invest-

ment action. For an existing investor, inputting personal information step is not needed.

In here a web-shop experience is built for investor when s/he must spend minimum effort

to preview potential purchases (funding baskets) and only need to provide personal in-

formation when a purchase decision is made.

4 Implementation

4.1 Implementation objective

This section aims to review the process of building the new investor dashboard which is

one of the main views for investor user in the system with modern styling and smooth

user experience. The dashboard stands in the system as one of critical selling point to

attract new investors and the center piece to present investment data to existing investor.

Therefore, the page contains high complexity and high dependencies for other parts of

the investor flow. Building the dashboard takes time and effort to rethink base on the

designer’s designer what essential elements to keep and how to construct the on the

code level in a SPA (Single Page Application) style.

42

Figure 30. Component structure of an investor dashboard.

Figure 30 reveals the component-based structure when the page was planned further

after receiving design materials from a designer. The navigation and footer components

can be reused in all other pages of the application and the market exchange component

can be reused for the borrower’s UI. The core element of the page is the baskets section

where each basket with all its functionalities appears. To reuse existing authentication

system, a new user with a random-generated email and a default password will be gen-

erated whenever a user proceeds in investor path from the landing market page. The

user’s information will be asked and updated in the system on another page when the

user decided to proceed to the invoice generation page. The “baskets” component needs

to be built by reusing and improving existing source code. The investment summary

component will only reveal when two baskets were created (can be in any state financed

or not-financed) or when one financed basket was realized in the baskets section. Other

components on the page needs minimum changes to work together with the “baskets”

component.

4.2 Implementation details

The concept of scope is important in JavaScript, as scope protects accidentally rewriting

variables and difficult-to-track bugs. On the investor dashboard, different JavaScript

scope for each non-related component needs to be constructed. Navigation bar and

43

footer are two separate components that each consists of its own scope. Investor sum-

mary, baskets and market exchange contain the same scope, as some data of the bas-

ket’s component are used for both market exchange and investment components.

Figure 31. Investment basket creation mechanism.

Figure 31 illustrates a loop between two views (components) in which an investor can

adds as many baskets as s/he wants to the investor dashboard for previewing. The “add

basket to dashboard” component should be a subcomponent of the “baskets” component

in the dashboard to reduce duplicated business logic; however, to lower complexity of

the dashboard component, the other component was implemented as a separate com-

ponent on another view. With this design, an investor will experience a similar UI to the

UI when buying products from an e-commerce site (Amazon, Ebay etc.). Each basket

consists of two sections: investment details on the left side and projected return on the

right side. A basket contains two states: financed (investment invoice was paid) and un-

financed (investment invoice was not paid).

44

Figure 32. An unfinanced basket.

Figure 26 demonstrates an unfinanced basket for an investor, all necessary information

about the basket was gathered from another component “add basket to dashboard”.

Base on the amount of investment and yearly interest, the chart on the right side of the

basket component will represent corresponding computed data with the compound in-

terest formula.

Figure 33. Structure markup of a basket (code folded).

Figure 33 reveals how a basket component was structured in HTML markup. Line one

uses Bootstrap CSS class to style the whole division taking 11 columns in a 12 grid

columns system for a responsive layout. The JavaScript (JS) object “moneyinvestedinta-

ble” contains an array of all basket objects that belong to an investor. Each basket com-

ponent owns four components (views) inside and only one component is revealed at a

time (the “modalPayInvoice” is a legacy component here). Constructing the basket in this

way requires minimum loading/waiting time for each action on the page after all re-

sources were loaded once. On the same position of each basket, different views can be

45

rendered depending on the defined logic. KnockoutJS framework makes adding busi-

ness logic to HTML friendlier (than using PHP) with built-in dynamic rendering function-

alities for HTML elements on a browser DOM (Document Object Model). In the figure,

the “$data” notation is a special notation which defines the accessing data is belonged

to each object scope in the “moneyinvestedintable” array in the “foreach” loop.

Figure 34. Structure HTML markup of a basket - part1.

Figure 34 demonstrates a part of markup structure of a basket component for the basket

detail section (the left section of the figure 26) when a normal view is visible (when

$data.baketView() == ‘basket’). The “basketView” observable can own different values

after declaration and the DOM will see the variable’s changes to update accordingly. Line

2 styles the division to takes half of the immediate parent (container) division’s width in

screen size medium and above (from Ipad to larger screen size devices) and takes the

whole parent’s division width in screen extra small (mobile). Line 3 illustrates name of

the basket. Line 4-10 defines a division which only demonstrates when financed money

46

by an investor exists, meaning the “amount_financed” is greater than 0 and the basket

status is more than 1. Line 6 defines an input of type checkbox which is styled by CSS

with a slider style; the checkbox will toggle “reinvestment” functionality of a basket

(meaning the earned interests of the basket can be reinvested in other loans or not). Line

11 constructs a division which reveals state of waiting for payment of a basket, the divi-

sion will not be demonstrated when the basket is financed. Line 15 uses the CSS “row”

class of Bootstrap framework to styles another division underneath the other divisions

on the UI. The CSS class “table-responsive” on line 16 helps to make a table takes full-

width of a parent division; if any overflow due to higher table width than a screen exists,

a scroll bar will be illustrated for browsing each part of the table. Line 21 reveals how

much cash in a basket is available for investment. Line 29 illustrates “amount_invested”

and symbol of a currency for a basket; when a user clicks on the amount, a breakdown

view will be demonstrated to see more details. Line 38 reveals loan repayment time for

an investor. Line 42-54 constructs a table row, which contains five risk ranges to be

chosen for five risk categories: AAA, AA, A, B, C ranging from the least risky to the risk-

iest (eg. if minimum required risk is A, the UI demonstrates AAA-A risk range).

47

Figure 35. Structure HTML markup of a basket - part2.

Figure 35 illustrates part 2 of HTML markup for the detail section of a basket component.

Line 3 structures amount per borrower with currency symbol. Line 7 forms text on the UI

for a basket’s minimum interest rate which can be manually define by an investor or can

be set for default market rate. Line 9-16 defines a table row illustrating the earned interest

which is only visible if a basket contains financed money. Line 17-31 constructs another

row in the table if an investor initiated adding funds to a basket; the funds can be deleted

if an investor changes his/her mind by clicking on a delete button. For an unfunded bas-

ket, line 33-42 demonstrates the amount to be financed. Line 46-53 creates several sym-

bols to trigger other functionalities of a basket: editing, selling, adding funds to basket

and move funds between baskets in which only editing function is available for an un-

funded basket.

48

Figure 36. Structure HTML markup of a basket - part3.

Figure 36 reveals markup of a chart of return on investment for a basket, each chart is

draw on a canvas with the help of “chart.js” library. Data of a chart is computed by Ja-

vascript and input to the variable “basketChartDashboard”. The basket can be deleted if

it was not funded as in line 3.

Figure 37. A financed basket.

Figure 31 illustrates a basket when it is financed. In the basket, 1000€ was lent out to

borrowers and 200€ is going to be added to the basket. Delete option is not available for

this basket as the logic in HTML markup hides it.

Figures 34, 35, 36 demonstrate HTML structure of a basket component. However, for

each investor, data will be different, and the representing data of a basket must be dy-

namic revealing in real-time corresponding to the investor setting such as changing in-

terest rate, adding funds, changing amount to be invested. This is the place when Ja-

vaScript and AJAX are needed. With KnockoutJS framework (JavaScript), a developer

49

can plug in different computed variables to a HTML markup, and AJAX will help to trigger

a call to backend to obtain additional data.

Figure 38. Investor dashboard view model.

Figure 38 reveals how a JS file for the dashboard view was constructed. Line 1-91 define

a function in KnockoutJS style for initializing on line 95. The function requires an object

(“extensionViewModel”) which contains any additional needed data fetching from the

backend. Line 96 binds the ViewModel to a division with id “dashboard_wrapper”. Only

one ViewModel can bind to a DOM element at a time; therefore, header and footer on

this dashboard page contain their own ViewModels which possess different scopes to

the dashboard ViewModel. The separation of scopes helps to avoid problems of acci-

dentally-redeclared variables and duplicated function names. Line 94 using jQuery li-

brary to ensure that the DOM is fully loaded when a user lands on the page to start

executing the code inside by calling an anonymous JS function which will be executed

immediately. The dashboard page now contains all needed variables which will be con-

structed inside the ViewModel. Line 91 call function “getCurrencyOption” which is defined

50

in line 62-89. In the function, an AJAX function written in jQuery syntax is defined. The

first part of the AJAX function define which method to call to the backend server (GET

method), which URL to call (to getCurrencyOptions function in the controller main, with

BASEURL of the environment: development, test or production) and which type of data

is expected in return (JSON).The function expects at least one object to be returned,

hence line 69-71 contains a loop to add image URL for each currency for loading on the

UI, after that all data is assigned to an observable “offeringCurrency” which will be used

in the dashboard UI. A default currency which is the first element of return data array will

be assigned to the observable “selectedCurrency”. If the AJAX function fails, an alert

message will be illustrated to the user. In addition, the AJAX function when completed

will call function “getMoneyInvested” if the user is on the dashboard page. This code

excerpt demonstrates an example of how to construct safe asynchronous calls with

jQuery library.

Figure 39. Function to obtain all baskets.

Figure 39 demonstrates an AJAX function to initialize all baskets and their functionalities.

The AJAX call to backend expects to obtain an object in JSON format. If one or more

added basket exists, the user preferred currency symbol and abbreviation are assigned

to two observables in line 9 and 10. Line 13 calls a function to obtain summary data of

return on the summary section of a dashboard. For each object in the return data array,

a new basket object with its data are initialized in line 19. Line 22-25 reveals a functional

way of processing array in immutable way, as the “moneyinvested” object was not mu-

tated and a desired result set containing basket objects for payment was obtained.

51

Figure 40. A basket ViewModel.

Figure 40 demonstrates the shortened code of a basket ViewModel with the main func-

tions highlighted. In the code snippet, several core functions of a basket such as “modi-

fyBasket”, “addFunsToBasket”, “moveFunds”, “saveEditedBasket” define the main inter-

actions of an investor with a basket. Line 3 illustrates a clever way to reuse the “this” key

word in JavaScript as all observable and functions start with “self” will be only bind to

context of the ViewModel. Line 5 defines data for return on investment chart with all data

points were already calculated in a query, therefore minimize computing on a user’s

browser. Line 101-107 and 209-215 demonstrate two examples of how to use knockout

validation library, which help to bind validation to an observable and keep the validation

event if an element containing the observable is removed and re-added to the DOM. In

fact, each basket is a complex JavaScript object which is defined in nearly 900 lines of

code with more than 50 variables that directly fetched from the backend database, there-

fore computing work must be conducted as much as possible from backend, specifically

by constructing complex and efficient SQL queries for improving user experience.

52

Figure 41. An example SQL query.

Figure 41 reveals a shortened query for providing data to the investor dashboard. Differ-

ent parameters can be passed in to the function to obtained different result sets. Line 56

reveals that if data is needed for the summary section of the dashboard, data points will

be calculated based on the existing data set considering currency conversion rate for the

user. Line 54 illustrates a query to provide data for all baskets with additional chart data

points calculated. Line 58 demonstrates another way of calling the function for reporting

purpose. The calculation of data points for projected earnings can be carried out in Ja-

vaScript from a result data set; however, calculation in this way brings computing process

to the SQL server and using JavaScript objects for only displaying purpose on the user

UI. Writing in syntax style of lines 54, 56 and 58 in CodeIgniter ensures the passing-in

variables will be prepared (escaped special characters) before substituting for the “?”

placeholders in the query string (“$query”), to prevent SQL injection. This query function

should be in a model class (in MVC design pattern) and be called by controller(s) to

provide relevant data to the UI.

53

5 Results

Building, maintaining and improving AuroraX’s core product is a continuous process. For

the investor dashboard feature, the project can be considered successful. The dash-

board was rewritten to be more compelling both in visual effect and usability. No question

about how to invest to AuroraX’s arrives in support mailbox since released time on pro-

duction on beginning of 2018, meaning the process is straightforward with an intuitive

UI. Before the project, investing in AuroraX is a lengthy process with many views and

irrelevant details. To achieve this result, it takes time for the development team to brain-

storm about how to improve the existing feature, rewrite investor flow with existing tech-

nical constraints, obtain a design and start implementing.

In writing code for this investor dashboard feature, the author must understand every line

of the existing codes and how different components are pieced together by reverse en-

gineer method (as documentation is not available at the time). In addition, it requires

courage and an innovative mind to break existing working codes, modify and improve

them to deliver the final product on time. It is great to look at a coherent and functional

UI with well-structured codes but difficult to say the process takes more than a month

including testing and fixing. From business point of view, the CEO and the chairman

were happy to see the final product, though it would be excellent if that can be delivered

in one month (which author found difficult as the other developers were busy working on

other features and were not able to help at the time).

6 Evaluation of Results

The completed dashboard is valuable for AuroraX as every new investor will use it in

investment process. If the system contains no invested money in due to inability of in-

vesting from investors (not-functional UI), borrowers will not see any loan offers and

leave the platforms for other competitors, despite the costs of (online) marketing to attract

them. Solving investor problems (improving investing flow) first is the correct decision

(colloquially it is the chicken and egg problem) as at the time, AuroraX started gaining

traction of attracting new borrowers after the heavy costs of the previous marketing ac-

tivities. Therefore, the success of the investor dashboard is critical for further steps of

development of the company.

54

The project contains several challenges as the code-base was written in non-SPA style.

It takes time to modify backend function to be callable by AJAX as well as handle properly

asynchronous nature of AJAX calls. In addition, more effort was spent on styling (in CSS)

the dashboard from scratch as the new design is different from the previous existing UI.

Many parts of backend were not written by the author, so time must be consumed for

understand the existing codebase and decide what to rewrite and what to reuse.

In the future, many improvements can be conducted to the dashboard. Unit tests should

be written for every computing functions which guarantee no unexpected/new bugs ap-

pear in existing functionalities when new codes are introduced. The dashboard currently

only illustrates minimum needed information for investors; it should demonstrate more

informative data such as: infographic information of borrowers, historical records of re-

covery (recovering) in each risk rate category, multiple currencies handling (implement-

ing). In addition, front-end code needs to be fully separated from back-end code with

back-end (following REST architecture style), acting as an API server. After that, Re-

actJS framework can be gradually migrated to replaced KnockoutJS framework, to take

advantage of reusable front-end component capability from ReactJS. Furthermore,

Webpack or other front-end build tools can be used to automate the front-end build pro-

cesses such as checking code format, compressing web assets (images, files etc.), re-

moving comments, running front-end tests etc.

7 Conclusion

This thesis paper seeks to find relevant theory behind implementation of a commercial

product feature. Based on this study it seems that the difference between theory and

implementation is not that substantial, as the software industry standards are seen eve-

rywhere in the final product. The project was implemented in agile methodology, the

software features were built on top of more-than-a-decade-age patterns and a mature

backend language with reliable performance and small difficulty in using frameworks.

The project helps the author to consolidate understanding of the principle: Don’t Repeat

Yourself (DRY), which aims to reduce repetitive codes or technical debts by using soft-

ware design patterns, software frameworks and following industry standards.

The author found that software is fragile when it is built without a modern build process

and automation tools such as automated testing, automated deployment and continuous

integration. Despite all the difficulties in building, software is essential to technological

55

development when the costs of building it are surpassed by the future values of reusa-

bility and scalability and if the software is robust, reliable and brings added-value to us-

ers’ lives.

56

References

1 Pick-up consumer credit growth [Online]. Suomen Pankki.
URL: https://www.suomenpankki.fi/en/Statistics/mfi-balance-sheet/older-
news/2017/kulutusluottojen-kasvu-kiihtynyt. Accessed 15 August 2018.

2 Finland GDP 1960-2018 [Online]. Trading Economics.
URL: https://tradingeconomics.com/finland/gdp. Accessed 15 August 2018.

3 Yadav, Subhash Chandra. An Introduction to Client Server Computing. New Age
International Pvt Ltd Publishers; 2009.

4 HMTL5 – Developer guides. MDN Web Docs community [Online].
URL: https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5. Ac-
cessed 15 June 2018.

5 An introduction to JavaScript [Online]. Javascript.info.
URL: https://javascript.info/intro. Accessed 15 June 2018.

6 Mike McQuillan. Introducing SQL Server. Apress; 2015.

7 DB-engine ranking [Online]. Solid IT.
URL: https://db-engines.com/en/ranking. Accessed 15 August 2018.

8 What is Software framework? [Online]. Techopedia.
URL: https://www.techopedia.com/definition/14384/software-framework. Ac-
cessed June/2018.

9 Crookshanks, Edward. Practical Enterprise Software Development Techniques.
Apress; 2015.

10 A typical sprint, play-by-play [Online]. Scrum.org.
URL: https://www.scrum.org/resources/blog/typical-sprint-play-play. Accessed 15
June 2018.

11 AngularJS Tutorial [Online]. W3schools.
URL: https://www.w3schools.com/angular/tryit.asp?filename=try_ng_data-
binding_two-way. Accessed 15 August 2018.

12 Knockout: The “value” binding [Online]. Knockoutjs.com.
URL: http://knockoutjs.com/documentation/value-binding.html. Accessed 15 Au-
gust 2018.

13 Human Computer Interaction – brief intro [Online]. Interaction Design Foundation.
URL: https://www.interaction-design.org/literature/book/the-encyclopedia-of-hu-
man-computer-interaction-2nd-ed/human-computer-interaction-brief-intro. Ac-
cessed 15 August 2018.

57

14 Why Software Fails [Online]. IEEE Spectrum.
URL: https://spectrum.ieee.org/computing/software/why-software-fails. Accessed
15 August 2018.

15 The ROI of User Experience [Online]. Human Factors International.
URL: https://www.youtube.com/watch?v=O94kYyzqvTc. Accessed 15 August
2018.

16 What is User Centered Design? [Online]. Interaction Design Foundation.
URL: https://www.interaction-design.org/literature/topics/user-centered-design.
Accessed 15 August 2018.

17 ROI of User Experience [Online]. Human Factors International.
URL: http://www.humanfactors.com/whitepapers/ROI_of_user_experience.asp.
Accessed 15 August 2018.

18 Applying REST architecture to archetype-based electronic health record systems
[Online]. BMC.
URL: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-
6947-13-57. Accessed 15 August 2018.

19 Server-side web frameworks [Online]. MDN Web Docs community [Online].
URL: https://developer.mozilla.org/en-US/docs/Learn/Server-
side/First_steps/Web_frameworks. Accessed 15 August 2018.

20 Express history. Expressjs.com [Online].
URL: https://github.com/expressjs/express/blob/master/History.md. Accessed 15
August 2018.

21 Spring Framework Overview [Online]. Tutorials Point.
URL: https://www.tutorialspoint.com/spring/spring_overview.htm. Accessed 15
August 2018.

22 PHP: History of PHP [Online]. Php.net.
URL: http://www.php.net/manual/en/history.php.php. Accessed 15 August 2018.

23 Comparing frameworks trend [Online]. Google Trends.
URL: https://trends.google.com/trends/explore?date=today%205-
y&q=laravel,CodeIgniter,Symfony,CakePhp,Zend. Accessed 15 August 2018.

24 CodeIgniter Features [Online]. British Columbia Institute of Technology.
URL: https://www.codeigniter.com/user_guide/overview/features.html. Accessed
15 August 2018.

25 CodeIgniter Working with Database [Online]. Tutorials Point.
URL: https://www.tutorialspoint.com/codeigniter/working_with_database.htm. Ac-
cessed 15 August 2018.

58

26 Luis Antencio. Functional programming in JavaScript. Manning; 2016.

27 What Do We Know about Software Development in Startups? [Online]. IEEE
Software.
URL: https://www.infoq.com/articles/what-do-we-know-about-software-develop-
ment-in-startups. Accessed 15 August 2018.

28 Finnish startups attract the most venture capital in Europe — but there's one big
problem [Online]. Business Insider Nordic.
URL: https://nordic.businessinsider.com/finnish-startups-attract-the-most-venture-
capital-in-europe-2017-6. Accessed 15 August 2018.

29 Marketing and sales alignment for improved effectiveness [Online]. Patterson, L.
J Digit Asset Manag (2007) 3: 185.

URL: https://link.springer.com/article/10.1057/palgrave.dam.3650089. Accessed
15 August 2018.

