

Author(s)
Title

Number of Pages
Date

Maria Syed
Machine Learning in Healthcare

60 pages + 0 appendices
12 October 2018

Degree Bachelors of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)
 Janne Salonen, Supervisor

Artificial Intelligence has become popular in a multitude of everyday tasks, from self driving
cars to predicting stock market fluctuations, however, it has most notably impacted the
healthcare field where its usefulness is especially significant due to the nature of
healthcare centers recording large volumes of health data.

Therefore, the applications of Artificial Intelligence in healthcare are endless, for instance,
future health problems can be predicted and treatment plans can be devised instantly.
However, this thesis aims to explore one of these applications, i.e. disease diagnosis,
particularly the diagnosis of pneumonia.

Pneumonia is the infection of the lungs that affects about 400 million worldwide causing
various health problems such as difficulty in breathing and uncontrollable coughing. This
disease is typically diagnosed with the help of a chest X-ray along with other physical
examinations. This thesis aims to build a machine learning model that is able to leverage
computer vision to analyse chest X-ray images and identify features that indicate the
presence of pneumonia. It aims to speed up the time taken by doctors to diagnose
pneumonia and start a suitable treatment plan immediately, helping save lives.

The thesis will uncover the fundamentals of deep learning and computer vision to aid the
understanding of how the practical work was done and at the same time explores different
methods of developing a functional convolutional neural network. The outcomes of each
model developed will be analysed and a conclusion drafted based on the analysis.

Keywords pneumonia, machine learning, health, neural network,
artificial intelligence

Table of Contents

Abstract
List of Abbreviations
1						Introduction 1	
2	 Pneumonia 3	

2.1	 Traditional Diagnosis 5	
2.2	 Importance of AI in Diagnosis 6	

3	 Machine Learning 6	
3.1	 Machine Learning Systems 8	
3.2	 Deep Learning and Neural Networks 12	
3.3	 Convolutional Neural Networks 17	
3.4	 Transfer Learning 25	

3.4.1	 Inception v3 25	
3.4.2	 MobileNet v1 27	

4	 Project Tools and Methods 28	
4.1	 Keras 29	
4.2	 TensorFlow 30	
4.3	 Building a Model 31	

5	 Implementation 34	
5.1	 Building CNN with Keras 34	
5.2	 Transfer Learning 40	

6	 Results and Analysis 49	
7	 Conclusion 53	
References 54	

List of Abbreviations

AI Artificial Intelligence

GPU Graphics Processing Unit

RML Right Middle Lobe

ILI Influenza-Like Illness

PCA Principal Component Analysis

ANN Artificial Neural Network

ReLU Rectified Linear Unit

CNN Convolution Neural Network

3D Three Dimensional

API Application Programming Interface

TPU Tensor Processing Unit

 1

1 Introduction

Following the 31 year long Artificial Intelligence (AI) winter, AI was reborn in 1997 with

the release of IBM's Deep Blue AI and in the years that followed it has spread into

almost every aspect of human life. One of the biggest impact AI has made is

undoubtedly in the healthcare sector with some even predicting that AI powered doctors

will eventually succeed human doctors. This exaggeration may, to some extent, be true,

however there is a higher possibility that in the near future AI may simply aid physicians

to make critical decisions or substitute the decision making entirely (1.) Given the

nature of healthcare centers accumulating large volumes of health data, AI is especially

useful in this field since it can bring to light crucial pieces of information that would be

otherwise be buried in heaps of data.

There are several startups already taking advantage of this circumstance by applying

machine learning with Big Data to provide medical experts with more informative data to

help them decide on the correct mode of action. For instance, Google's DeepMind

Health project designs the best treatment plan for cancer patients by rapidly analyzing

their medical test results and instantly referring them to the correct specialist, hence,

creating a "test to treatment" flow which has been proved to be beneficial for the

patients. (2) Similarly, the famous Watson supercomputer from IBM has been reapplied

for use in oncology where it can leverage its learning on abundant medical research,

textbooks, guidelines etc. to assess the medical records and medical evidence of a

patient to present possible treatment options along with evidence to support them. An

oncologist then solely needs to select the most appropriate option for the patient (3.)

The spike in the popularity of smartphones collecting various health data including but

not limited to blood pressure, dietary habits and heart rate, means that the possibilities

of not only keeping up with a user's health but also identifying patterns using machine

learning models becomes significantly effortless. These models have several uses,

from recommending healthier substitutes to sending out alerts when the level of

healthiness could be a concern. (4 pp. 6)

It is evident that the possibilities for applications of machine learning in the healthcare

field could be endless from personalized treatment to drug discovery to disease

 2

diagnosis. However, this thesis focuses on one of these applications, i.e. the diagnosis

of pneumonia.

Pneumonia is an infection that affects one or both of the lungs commonly due to viruses

or bacteria. Diagnosis of pneumonia typically involves a physical exam along with a

chest X-ray analysis. The analysis of the chest X-ray can be aided by using machine

learning techniques to rapidly produce a result and a certainty of it. The machine

learning algorithm learns from about 5800 images of categorized patient chest X-rays

and applies this learning to diagnose new images. The purpose for developing this

model is to allow doctors to receive a quick and near accurate prediction of diagnosis

and to possibly further examine the patient in need, in effect, allowing them to spend

more time on patients who need it.

This research aims to create a solid machine learning model and describe the methods

and tools used. Especially it tries to answer the following research question: How can

machine learning can be used to most accurately diagnose pneumonia from the

analysis of chest X-rays.

The scope of this thesis includes an introduction to theory about AI and machine

learning and deep learning techniques relevant to the thesis practical work carried out

along with an introduction to pneumonia as an infection, the causes and current medical

efforts conducted for diagnosing it. Machine learning techniques were applied to a

dataset fetched of about 5800 chest X-ray images of people categorized as either

normal or diagnosed with pneumonia.

The criteria used for the evaluation of each test model was whether it could predict the

set of validation data most accurately with least errors in a short period of time taking

little Graphics processing unit (GPU) power. In addition, the final precision rate was

taken into account.

The outcome of this thesis is a machine learning model that fulfils all the criteria and

thus aids doctors with the diagnosis of the disease.

This thesis is divided into 7 sections. This is the first section introduces the thesis topic,

the research question and outcome. The second, third and fourth sections add

theoretical background to the thesis work, while the fifth and sixth sections are related

 3

to the implementation and analysis of the project work. The second section explores

briefly the complications of pneumonia, the current efforts of doctors in its diagnosis and

the benefits of using AI in this process. Next, the third section adds more theoretical

background to the practical work carried out this in thesis by exploring the fundamentals

of machine learning, AI, neural networks and deep learning and the fourth section

introduces the tools and methods used in the project work. While the fifth section dives

deep into the implementation of the project work describing the different methods of

creating the machine learning model that were used, the sixth section analyzes the

results of the implementation and finally the seventh section interprets the results from

the research question point of view and draws the final conclusions.

2 Pneumonia

This section gives a brief introduction to pneumonia which is the leading cause of death

in underdeveloped countries, elderly communities, infants and the ill. This section also

describes the traditional methods of diagnosing pneumonia without the use of AI and

then advances further into explaining the importance of using AI to help with the

diagnosis of pneumonia.

To begin with, pneumonia, a disease infecting 450 million people worldwide (5), affects

the lungs of the infected, inflaming the alveoli (air sacs) and discharging pus in them

causing wracking cough with phlegm in addition to chills and uneasy inhalation and

exhalation. (6) Figure 1 shows the difference between normal and pneumonia infected

alveoli.

Figure 1. How pneumonia affects the alveoli. (7)

 4

As shown in Figure 1, alveoli affected with pneumonia are occupied with fluid and few

blood cells while healthy alveoli are empty and able to hold enough air to carry out its

normal functions.

While pneumonia can be caused due to several types of germs, it is typically caused by

bacteria or viruses present in the inhaled air. In most cases the body can fight off these

germs preventing any infection to the lungs, but in some cases the body's immune

system is not strong enough (6.)

Pneumonia can be acquired in several ways, for example in hospitals or healthcare

institutions where the patient comes into contact with the disease when visiting a

hospital for another reason, such as when patients are on ventilators. Pneumonia

acquired in this way are quite dangerous since the bacteria causing it might be resistant

to antibiotics and moreover, the effects of the infection can be more serious since the

patient's condition is considerably weak (6.)

On the other hand, pneumonia can also be acquired outside of hospitals/health care

facilities. This acquisition is said to be community acquired and is the most common

way of acquiring pneumonia. While the source can be bacteria which can effortlessly

spread to a person infected with a common flu, certain fungus found in soil or faeces of

birds can also be a cause for this type of pneumonia. Other sources include

bacteria-like organisms and certain viruses which cause the common cold, but the

infection caused by them are quite mild (6.)

Apart from the community and hospital/health care, pneumonia can also be acquired

when food, fluids, saliva or vomit is accidentally inhaled into the lungs. Those with some

disruption to their natural gag reflex are at the highest risk for this type of acquisition

(6.)

Since pneumonia can be acquired in several ways, it can be difficult to assess the

source of the infection. There are several diagnostic techniques administered to infer

this information as well as correctly identify the presence of the infection itself. The next

subsections will explore the traditional methods of diagnosis and how AI can intercept

and help with the process.

 5

2.1 Traditional Diagnosis

Traditionally, in order to diagnose pneumonia, a physical examination is performed

which includes listening to the patient's lungs, with a stethoscope, for atypical sounds

that indicate the presence of pneumonia. In the case of a suspicion, a series of tests

are administered which include blood tests to confirm the presence of pneumonia and

to identify the exact organism causing the pneumonia if it is present. A pulse oximetry

may also be performed to determine the level of oxygen present in the blood since

pneumonia can prevent lungs from moving much of the oxygen into the blood (8.)

The main method of diagnosis, however, is a chest X-ray. With this X-ray, the extent

and location of pneumonia can be determined. Interpreting it involves searching for

certain white spots called infiltrates in the X-ray of the lungs that show the presence of

an infection (8.) Figure 2 shows a chest X-ray of a patient with typical right middle lobe

(RML) pneumonia. The infection is highlighted with white arrows.

Figure 2. RML pneumonia. (8)

To further identify the type of organism causing the infection and kind of acquisition,

other tests can be performed such as the analysis of sputum which is the fluid expelled

from the lungs after a deep cough. Analysis of the pleural fluid can also be carried out,

where the fluid is extracted from the lungs with a sharp needle between the ribs (8.)

In a chest X-ray, the infiltrates (white spots) can be quite small and difficult to spot at

one glance with the human eye, furthermore, other discrepancies may look like white

spots resulting in a misdiagnosis. For this reason, a machine learning model with high

accuracy would be optimal for spotting the infiltrates in the images. It not only spares

 6

time for the radiologists to spend on other important tasks, but is also able to spot very

early stages of pneumonia before it has become critical.

2.2 Importance of AI in Diagnosis

As previously outlined, certain radiographs of patients with pneumonia can visually look

normal, resulting in false negatives (situation where an ill person is incorrectly

diagnosed as normal) which can be fatal for the patient since the right care is not given

in time. According to study in Critical Care (9), almost 50% of initial stage pneumonia

linked with influenza were not identified in chest X-rays. In addition, during the 2009

H1N1 infection pandemic, italian emergency departments were given 34 cases of

pneumonia patients reporting influenza-like illness (ILI) and intense respiratory issues

but a chest X-ray analyzed by a human eye failed to identify pneumonia in almost half

of them (9.)

This is quite serious since H1N1 can drastically advance into an acute illness resulting

in admission to an intensive care unit or in some cases, death. However, detecting

pneumonia early enough can decrease the harshness of the infection and linked

mortality by initiating the right antiviral treatment in time. In some cases, a chest X-ray

may not be enough to diagnose, but a chest ultrasonography should also be taken (9.)

To summarize, the model produced by the outcome of this thesis does not aim to

correctly diagnose patients, however, it aims to ease the decision making of radiologists

by bringing to light certain features that may be missed by the human eye, therefore

helping the detection of pneumonia in its early stages. The next section introduces

machine learning, AI and deep learning and how they are related to one another.

3 Machine Learning

Computer science is a vast field with a large number of areas. This sections introduces

AI as one of those areas and how it relates to machine learning and deep learning.

Following that, this section further investigates the different types of machine learning

and the challenges of building models and then dives deeper into neural networks,

convoluted neural networks and the theory behind the approach and architectures used

in the practical implementation.

 7

In short, AI focuses on replicating human behaviour and decision making in machines in

order to give them the ability to take note of their surroundings and then undertake

tasks centered towards fulfilling its primary objective. In turn, AI has a number of

applications with machine learning being one of them which emphasizes on building

computer systems that assimilates data and its experiences to learn and improve itself

without being specifically coded for it. Consequently, it makes these computer systems

autonomous, i.e. be able to work in complicated surroundings with no continual

direction provided by someone, and adaptive, i.e. be able to gain insight from its

experience and advance its performance based on that (10.) Figure 3 shows a

diagrammatic representation of the relationship between all the fields and subfields

discussed with the addition of deep learning, a subfield of machine learning which is

explained further in section 3.2.

Figure 3. The relationship between computer science, AI, machine learning and deep learning

As can be seen in Figure 3, computer science encapsulates AI which in turn contains

machine learning as a subfield and which finally includes deep learning. The practical

work of this thesis incorporates deep learning techniques to develop the machine

learning models. The next subsection provides a overview on the types of machine

learning systems that can be created and explains in more detail the type of machine

learning that was used in the practical work and why.

 8

3.1 Machine Learning Systems

To begin with, there are three types of machine learning; supervised learning,

unsupervised learning and reinforcement learning. Each type produces a model that

learns and improves in different ways, whether it learns from labelled data, unlabelled

data or from continuous trial and error.

Firstly, unsupervised learning begins with unlabelled data and attempts to find meaning

in it using different machine learning techniques. These techniques either apply

clustering which is the grouping of data with similar features into clusters and

attempting to estimate which cluster the new data belongs to, or alternatively these

techniques may reduce the dimensionality of the data to form a simple representation of

the training data to answer questions about new data effortlessly (12 pp. 55.)

Secondly, reinforcement learning involves the improvement of the machine learning

model through constant trial and error with the aim of earning maximum rewards in the

long run. The model has no real training data, instead it learns from its own experience.

The model, in practice, explores its surroundings and if the outcome of its exploration

produces a positive result (reward), it learns from this and continues on this correct

path. On the other hand, if the result of its actions results negatively then it tries to

perform other actions to stray away from the incorrect path and the process repeats. In

this way, the model is continuously learning and improving with every iteration (12 pp.

81.)

On the contrary, supervised learning begins with a set of labelled data and aims to

classify new data after studying the relationship between the training data. In the

practical work of this thesis, the training dataset fed to the machine learning model is

labelled and so supervised learning falls in line with the type of learning that needs to

be done.

A supervised learning model studies the relationship in the training dataset with their

labels and then applies that knowledge to label new data. As a real world metaphor, this

is the type of learning that is typically conducted in schools, i.e. the teacher presents

objects to the students and informs them what they are then the students try to

recognize these objects in different scenarios and guess what they are.

 9

Supervised learning can perform two tasks; either regression i.e predicting an

analogous variable by determining the relationships between the inputs or classification

i.e. selecting a distinct label for the unknown input. (12 pp. 16-18)

The labelling of chest X-ray images carried out in the practical work however, falls into

the category of classification since distinct labels need to be predicted for the given

input image but more specifically, the practical work belongs to binary classification

since there are two labels meaning the input image can be one or the other.

Softmax regression is a function used in the architecture of the project work model

which initially calculates a score per class then it applies the softmax function to the

scores to compute an approximate probability for each class. (11 pp. 139) The softmax

function is as follows:

 σ(s(x)) P
︿
k = k = exp (s (x))k

xp(s (x))∑
k

j=1
e j

 (11 pp. 140)

 is the number of classes,K

 is the vector consisting of the scores pertaining to each class for (x) s x

is the approximate certainty that the instance falls into the class (s(x)) σ k x k

The aim of these supervised learning models is to calculate parameters that reduce the

value of the cost function (or loss function) with every iteration. A cost function is

essentially a function that calculates how far the model's prediction is from the true

values. (11 pp. 20) The idea is that a particular metric is calculated on the network's

prediction errors. These errors are averaged over the whole dataset producing a value

representing the proximity of the model to the optimal (24.) In the case of logistic and

softmax regression, an ideal model predicts large certainty for the target class and a

small certainty for the rest of the classes. (11 pp. 140)

There are different loss functions that can be used for the classification purposes. One

is the hinge loss function which is used for distinct classification of the data, for

example, 0 being normal chest X-ray and 1 being pneumonia. Alternatively, the two

values could be -1 or 1 (24.)

 10

Although diagnosing whether or not a person has pneumonia is quite distinct, i.e. a

person either has or does not have pneumonia, the certainty of the machine learning

model is also quite interesting, i.e. a person has 60% chance of having pneumonia. For

this reason, a binary cross entropy loss function is selected. In this loss function, the

output would be a value between 0 and 1 for each class representing the probability

that the image belongs to that class. For this reason, logically the final layer in the

neural network needs to be a softmax function which as explained, outputs value just as

required. The value of this loss function increases as the model's output probability

strays away from the actual probability (24.)

One approach to discover the lowest value of this cost function is gradient descent. It

works by beginning with the cost function with random parameters (random

initialization) and then it computes the cost function's local gradient at those parameters

and selects new parameters which are further in the direction of the decreasing gradient

until it reaches a point where the value of the gradient is zero. (11 pp. 111) The

calculations converge as shown in Figure 4 and the most optimal parameters are found

(12 pp. 24-25.)

Figure 4. Gradient descent. (12 pp. 25)

The length of the steps taken in gradient descent during each iteration (called the

learning rate) is quite critical since a low learning rate can take a considerable length of

 11

time to arrive at the minimum, however, a high learning rate can result in overshooting ,

i.e. crossing over the minimum to the other half of the graph resulting in a value for the

cost function even higher than it was before. Hence, the learning rate needs to be

adjusted to overcome these two issues. A good learning rate is one where the value of

the cost function is always decreasing after every iteration.

On the contrary, gradient descent does not necessarily compute the global minimum

i.e. the lowest value of the cost function, it can sometimes settle at the local minimum

i.e. a point in the graph which is the lowest in its area but not the lowest for the whole

function. However, with simple linear regression techniques with the mean squared cost

function which is most common for this regression, the resulting graph is a shape like

that of Figure 4, meaning there is solely one minima and that is the global minima. (12

pp. 112-113)

Bias-Variance Tradeoff
One of the most common problem in supervised machine learning is overfitting.

Overfitting occurs when the model learns a function that exactly explains the training

data and starts creating relationships or learning characteristics that do not exhibit the

actual patterns. On the other hand, underfitting occurs when the model is not formed

well enough to identify the actual trends and relationships in the dataset. (11 pp. 26)

This is where bias-variance tradeoff is useful. Bias is the magnitude of inaccuracies

made when using a simple model to estimate real-world circumstances while variance

is measure of how sensitive the test errors are to changes in the training data. As a

model becomes more complex, its bias reduces but its variance rises i.e. it can explain

the training data very well but cannot explain new data as well. Conclusively, an

acceptable model should have low bias along with low variance (12 pp. 27-28, 8 pp.

126-127.) Figure 5 demonstrates the consequences of having different levels of bias

and variance.

 12

Figure 5. Bias-variance tradeoff consequences. (13)

As illustrated in Figure 5, the best balance of bias and variance is having a low level of

each, too high levels in either can skew or scatter the results. In order to attain

acceptable levels of bias and variance, a substantially large amount of data needs to be

used to prevent inaccurate relationships being inferred and the loss functions needs to

be regularized by adding a penalty for big coefficients to prevent over explaining any

variable. Therefore the dataset chosen for this thesis is quite large with about 5800

images to use in order to prevent overfitting. This is important to keep a low bias and

low variance in the produced model.

3.2 Deep Learning and Neural Networks

To begin explaining the fundamentals of deep learning and neural networks, the

biological neural network must be explained since it has been studied extensively due

to its phenomenal structure and has heavily inspired deep learning. At its core, It is

made up of neurons which are interlinked with each other through structures called

dendrites. Each neuron receives bursts of signals called impulses from interlinked

neurons and if the number and frequency of these impulses exceed a set threshold, the

neuron fires off its own impulse through a long structure called axon to the next

neurons. This dense network of neurons is collectively called the human neural network

and is found in any animal brain (9 pp. 255-256, 2 pp. 92) Figure 6 shows the structure

of a singular neuron.

 13

Figure 6. Model of a biological neuron. (4 pp. 92)

As illustrated in Figure 6, the dendrites are connected to the cell body so it can directly

send the signals it receives to the cell body for processing and the axon branches off

into smaller structures called synapses at which the dendrites of the next neuron are

connected.

This complicated structure of the human brain has inspired a subfield of machine

learning called deep learning to develop Artificial Neural Networks (ANNs) which

involve simple processing components connected in a large network in multiple layers

to study and model complicated patterns without requiring an unusually large volume of

data. ANNs work in a similar manner as biological ones, i.e. it receives several inputs

with weights (positive or negative), weighs them individually and sums them up in the

summation processor, passes it through an activation function and finally fires an

output. This configuration is called a Perceptron and is depicted diagrammatically in

Figure 7 (14.)

Figure 7. Model of an artificial neuron. (15)

 14

The activation function essentially computes the addition of the weighted inputs and

makes the decision of whether to send an impulse to the next neurons or not. (4 pp. 95)

There are several choices of activation functions with the most simplest being the step

function which returns either 1 or 0 depending on whether the sum of the inputs are

greater than a certain value. In theory, there are two main types of activation functions;

Linear activation functions and non-linear activation functions. The former has the

equation which is simply a straight line graph with a constant slope hence it (x) x f =

does not work well with the complex and multitude of parameters that are commonly

input into a neural network. On the other hand, non-linear activation functions are more

commonly used since they have a graph which could include curves making it

adaptable and generalizable with a multitude of data. Non-linear functions are further

divided based on their curves/ranges. Some of these include the sigmoid/logistic

activation function and Rectified Linear Unit (ReLU) Activation Function which will be

utilized in this thesis' project work (16.)

A sigmoid/logistic activation function is differentiable and monotonic (entirely

non-increasing or non-decreasing). This method calculates the addition of the weighted

input features along with a bias and returns the logistic of the result which is a sigmoid

function returning a value between zero and one. (11 pp. 134) This logistic function is:

(t) 1 1 e)σ = ÷ (+ −t
(11 pp. 135)

 t is the input value

If the result of this logistic function is above a threshold then the next impulse is fired,

otherwise it is not. Figure 8 shows this logistic function graph demonstrating the sigmoid

shape of the function.

 15

Figure 8. Logistic function graph. (11 pp.135)

On the other hand, ReLU activation function produces a graph, as shown in Figure 9,

which has its bottom half rectified hence the value is always zero if the value is y x

zero or below. This activation function is heavily used in Convolutional Neural Networks

(CNNs) and deep learning (16.)

Figure 9. ReLU activation function graph. (16)

A neural networks consists of several these perceptrons connected in one or more

layers with the output of one layer being the input of the next. Several neural networks

are jointly called multi-layered neural networks as illustrated in Figure 10 which consists

of 3 types of layers: Input, hidden and output where there may be several hidden layers

which is more commonly found (17.)

 16

Figure 10. Multi-layered neural network. (15)

It can be seen in Figure 10 that the signals pass successively from the input layer to the

hidden layer and finally to the output layer. The main functionality of the hidden layer is

to identify the most critical information and patterns from the input layer and exclusively

pass those onto the successive layer making the neural network swift and efficient by

discarding useless data. (16)

In order to adjust the weights between the input and hidden layers, a method called

backpropagation is applied making the ANN a learning algorithm. This is necessary

since only the error margin in the output layer is known i.e. only the correct output from

the training sets as well as the actual output from the neural network are known. In

backpropagation, the errors are calculated in the final output layer then propagated

backwards to the hidden layers which is in turn propagated back to the input layer. In

this way, the weights are fine-tuned to reduce the error from the output layer. This

process repeats til the weights are only changed very little in each step and the error

shrinks to a very small value (16.)

Since majority of real-life machine learning problems involve inputs and outputs having

a non-linear complex relationship, ANNs as a solution are consequently a great fit since

they possess the ability to learn and model these types of relationships very well.

Moreover, ANNs can be applied to a variety of purposes since once it is trained, it is

able to deduce hidden relationships from new data that is has never encountered

before. Furthermore, since ANNs do not have restrictions on the distribution of input

 17

variables and do not impose rigid relationships in data, they are very useful with highly

volatile data e.g. stock prices (17.)

There are several types/variations of ANNs being used in Machine Learning each

specialised for different uses. One of these is a convolutional neural network which is

specialised for image classification and is consequently used in the project work.

3.3 Convolutional Neural Networks

The brilliance of the human vision is unfathomable, in nanoseconds, the eyes digest

voxels of data which the human brain not only can identify and name objects in, but it

can also differentiate colors, understand depth and distinguish shapes from its

background. At the very core of this structure are neurons passing and processing

signals with certain neurons in the eyes specialized to assimilate information from light

and pass it to the brain for preprocessing and analysis. (18 pp. 85) Identifying images of

chest X-rays is a computer vision problem where that exact behaviour of the eyes

needs to be replicated in computers in order to process images. This can be carried out

with a specialized form of ANN called CNN.

It can be argued that traditional machine learning algorithms such as linear regression

or k-means clustering can be fed raw pixels of image data and it can attempt to classify

them by identifying common features and their relationships. However, this would not

work in practice since the signal to noise ratio would be extremely low for any proper

learning. On the contrary, a further argument could be made that if a human could

handpick important features from the images and feed that to a traditional machine

learning algorithm, the model would perform better since the dimensionality of the

problem would be lowered and the signal to noise ratio would increase. Although it may

be true that the model would indeed perform better, it would not have really grasped the

underlying idea of the image without requiring the entry of several thousands and

thousands of handpicked features which in hindsight could be time consuming and

difficult in complex problems. (18 pp. 87-88)

In comparison, deep learning would be suitable for image classification of chest X-rays

since every layer of a neural network learns and builds up features from the input data it

obtains. However, a vanilla/regular deep neural network would be unsuitable for this

classification task since the chest X-ray images are quite large with some about 2090 

 18

× 1858 pixels large, so each neuron in a fully connected hidden layer would receive

about 3,883,220 input weights and that would mean the network would need a very

very large number of neurons over numerous layers. This makes it quite uneconomical

and increases the likelihood of the model overfitting to the data. Evidently, vanilla deep

neural networks have scalability issues as demonstrated in Figure 11 (18 pp. 89.)

Figure 11. The number of connections in between layers escalates as the image size increases.

(18 pp. 89)

On the other hand, CNNs remarkably decrease the amount of parameters by arranging

the neurons in the layers in three dimensions, i.e. the layers have height, breadth as

well as depth as seen in Figure 12. Consequently, CNNs are the most suitable

architecture to be used in image classification. This architecture has been heavily

inspired by how human vision works (18 pp 90.)

Figure 12. Neurons arranged in three dimensions to reduce number of parameters. (18 pp. 90)

CNNs essentially reshapes two dimensional image data to Three Dimensional (3D)

data which includes the image width, height and the number of channels the image has,

 19

for example, a grayscale image has 1 channel while a full color image has 3 channels

(red, green, blue). This is depicted in Figure 12 as 3D blocks of data passing through

each 3D layer one after another. Simply, CNNs apply multiple filters to an image's raw

pixel data to isolate and study higher-level features which the machine learning model

can use for classifying. (19)

The architecture of a CNN is similar to an ANN containing an input layer and an output

layer. However, instead of the hidden layers, CNNs consist of three important

components; convolutional layers, pooling layers and dense layers. (19) A simple

architecture of a CNN is showing in Figure 13.

Figure 13. Common CNN structure. (11 pp. 367)

The CNN architecture illustrated in Figure 13 has an input layer followed by pair of

convolution and pooling layers then again followed by a second pair of convolution and

pooling layers and finally the fully connected layers which is connected to the output

layer. Each layer has different functionalities.

Convolutional Layers
The convolutional layers receive the 3D image data from the input layer and apply a set

amount of convolutional filters to it to produce a 3D output feature map . Neurons in this

layer are only connected to a little portion of the layer before it, making its efficiency far

better than neurons that are fully connected. (18 pp. 94)

This layer's design was inspired by how human's visual cortex is arranged in layers

where each layer is scattered with feature detectors replicated over the entire area to

detect and expand upon the features identified in the preceding layers. (18 pp. 91)

In practice, convolutional layers consist of multiple layers of neurons in a feed-forward

neural network and each applies a set of filters/kernels to identify certain features in the

 20

image. A filter is essentially a matrix of weights trained to identify specific features. It

advances across every section of the image to check for the presence of particular

features and it performs a convolution operation in order to produce a value of the

measure of confidence it has that the feature exists. A convolution operation is

essentially the multiplication and addition of two matrices and in the context of these

filters, it produces a larger value if the feature is actually present in the segment of the

image, otherwise it produces a low value (20.)

To illustrate the function of the convolutional filters, consider the pixel filter illustrated in

Figure 14 with weights distributed specifically to identify a right curve.

Figure 14. Example of a convolutional filter and its visualization for a right curve feature. (21)

The pixel representation of the filter in Figure 14 has weights of 30 distributed in the

shape of a right curve with weights of 0 surrounding it. The visualization of the filter

shows the right curve it searches for. Figure 15 shows the result of applying this filter to

a segment of the image that contains a right curve (20.)

Figure 15. Application of the filter to a segment of the input image with a right curve. (21)

 21

As shown in Figure 15, the product of the calculation between the input image's pixels

and the convolutional filter's pixels is a very large number indicating the right curve

feature is, in fact, present in this image segment. However, if the same filter was

applied now to a different section of the image, one without a curve bending to the right,

it outputs a low value for that section as shown in Figure 16 (20).

Figure 16. Application of the filter to a segment of image without any right curves. (21)

The calculation of the pixels in Figure 16 produce a value of 0 indicating that this image

segment does not contain the right curve. Consequently, after applying this filter to all

sections of the image, an output feature map is produced which consists of all the

convolutions of the input image. It is important for the filter to contain the exact number

of channels as the input so that the matrix multiplication can be applied. This is why

since the chest X-rays used in this thesis are black and white with only one channel, the

filters also have a single channel. Alternatively to passing the filter over every section of

the image, it can also slide over intervals with a stride value (20.) A convolution with

strides has output dimensions that can be calculated as:

loor() nout = f s
n − fin + 1 (20)

is the output dimension nout

 is the input image dimension nin

 is the window sizef

 is the stride. s

 22

Figure 17 shows a complete 3D visualisation of how the convolutional filters extract the

features from the 3D image data and finally produce the 1 by 1 by 1 feature map.

Figure 17. 3D representation of one convolutional filter being applied to image. (22)

Figure 17 shows the image data on the left with dimensions 32 by 32 by 3 meaning the

images are 32 pixels wide, 32 pixels high and is full color RGB since it has 3 channels.

The convolution filter has dimensions of 5 by 5 by 3, the depth of the filter must match

the depth of the image. The filter produces an output feature map with dimensions 32

by 32 by 1 as shown in red in the right side of the figure. Each filter produces a feature

map with a depth of 1. So 10 filters will produce a output feature with a depth of 10. The

feature maps produced by each filter are stacked onto each other to produce the final

output feature map (22.)

In order for the CNN to learn the weights of a filter, it must undergo some non-linear

mapping. This is carried out by adding a bias term to every output produced by the filter

and then passing through a non-linear activation function like the ReLU activation

function in the case of the CNN used in this thesis. This non-linearity in the network is

important since the model needs to account for the non-linearity in the input (20.)

Pooling Layers
Pooling layers are responsible for reducing processing time by downsampling the data

it receives from the preceding convolutional layers in order to decrease the feature

map's dimensionality and sharpen the identified features. Max pooling is a typically

used algorithm for pooling. In this algorithm, a window moves over subregions of the

 23

feature map with a specified stride, keeping the highest value and discarding the rest

shown in Figure 18 generating a compressed feature map (19.)

Figure 18. 2 by 2 max pooling. (22)

As is demonstrated in Figure 18, the 2 by 2 max pooling window first moves over the

top left portion containing the 2 by 2 matrix of numbers in light red, of which 6 is the

maximum number so it is recorded on the top left of the resulting matrix. Next, the max

pooling window moves to the top right 2 by 2 portion of the image which has the

maximum value of 8 and it is therefore recorded on the resulting matrix. The window

then proceeds to move over the final bottom two portions of the image and record their

maximum values. Finally the final resulting matrix containing the maximum numbers 6,

8, 3 and 4 is produced. (22)

Figure 19 shows a 3D representation of the pooling layers' functionalities. The depth of

the final output is always equal to the depth of the input data. (22)

Figure 19. 3D representation of the reducing dimensionality feature of pooling. (22)

 24

As is seen in Figure 19, pooling drastically decreases the volume of memory needed

and the amount of operations carried out in the next processes of the network. In

addition, it makes the network focus on only particular neurons reducing the chances of

overfitting the data. The size of the output of a max pooling operation is calculated

exactly the same way as convolutional output dimensions are calculated.

Furthermore, max pooling output remains the same even in the event of the input

variables moving slightly. This is especially beneficial if the location of the feature is

unimportant compared to the existence of that feature. On the contrary, a large amount

of this local invariance could damage the ability of the network to hold critical

information. Consequently, an efficient max pooling layer should have low spatial extent

(18 pp 99.)

After the convolutional layers isolate the features and the pooling layers downsample

them, the output is passed to the dense layers or fully-connected layers for flattening

and classifying.

Dense/Fully Connected Layers
The dense layers are responsible for classifying the features into the possible classes.

These layers are also called fully connected layers since all the nodes contained in it

are connected with every node in the layer preceding it (19). In these layers, the input is

flattened to produce a feature vector, this process is depicted in Figure 20, where every

row in the input is chained together to form a long feature vector. More the number of

layers, longer this flattened feature vector is (20).

Figure 20. Flattening to produce a feature vector. (23)

 25

As illustrated in Figure 20, the 3 by 3 matrix of numbers are sequentially added row by

row to the feature vector chain forming a new vector with 9 rows. This feature vector

passes through several dense layers, where in each layer, it is multiplied by specific

weights, added to set biases and introduced non-linearities (20).

In the final output layer in the neural network, there exists one node per target class that

the model can output along with a softmax activation function to calculate a number

between zero and one for each class. This value generated can be interpreted as the

probability that the image belongs to the corresponding class (19.)

3.4 Transfer Learning

Building a whole CNN architecture requires a large amount of time, GPU and data to

find the correct weights for achieving the best results. However, there exists machine

learning models developed pre trained on a gigantic dataset with a great amount of

generalization i.e. it can be applied to big variety of datasets and still produce a good

prediction. One alternative to constructing own model is to begin training with a model

that has already been trained on other similar data and train that model on another

dataset leveraging their feature extraction abilities. This process is called transfer

learning . It performs well when the amount of data is in the thousands and it can be run

in a very short period of time in a GPU-less machine (24.)

Transfer learning is possible since CNNs can learn perceptively generic features in the

early layers and then steadily develop features particular to the given dataset in further

layers. These features from the first few layers are the "building blocks of vision

processing" (24).

Hence, an alternative method to building a model to identify pneumonia could be to

apply transfer learning on an existing well trained generalized CNN model. There are

several pretrained models available that are well able to learn with new data. This

thesis explores transfer learning using the popular Inception v3 and the MobileNet v1

model.

3.4.1 Inception v3

Google's Inception v3 is a model for image recognition that was developed by the

Google Brain Team for ImageNet's visual recognition challenge. It has proven to

 26

achieve an accuracy more than 78.1% on the Imagenet dataset which consists of a

large number of images classified into a thousand classes. The concept of the model

was developed over the years by several expert researchers (25.)

The paper "Rethinking the Inception Architecture for Computer Vision" published in

2015 was strongly used as the basis of the inception v3 model. (25)

This paper states that improvements in the performance of a classification model is

transferable to a large multitude of computer vision tasks. Different CNN models

created in 2014, for example VGGNet, needed a large amount of computation for the

evaluation of the network. On the other hand, GoogLeNet architecture of Inception was

constructed for functioning under rigid computational limitations. This special design

resulted in using parameters amounting to only five million beating AlexNet being a

twelve times reduction from it. In comparison, VGGNet used three times more

parameters than AlexNet. This justified the use of Inception in big data where a large

amount of data needs to be processed at a relatively low computational cost (26.)

The famously paper describes certain design strategies to optimize the design of

Inception. Firstly, it describes that bottlenecks (which relates to the layer preceding the

last output layer performing the classifications) can be avoided so the depicted size

from the inputs reduces moderately down to the outputs prior to undertaking the last

representation for the assignment given. This ensures the assessment of the data is not

determined solely on the dimensions of the data which at best can provide only an

approximate guess (26.)

Secondly, in order to train the CNN at a higher rate, the activations for each unit tile can

be increased. Thirdly, to bring about quick learning, the input's dimensions can be

decreased prior to carrying out spatial aggregation functions since there is very little

loss in information when the dimensions are lowered. Finally, the paper suggests to

harmonize the network's width as well as depth to achieve the best performance. It can

be carried out by adjusting the magnitude of filters with respect to the network's depth

(26.)

 27

With all of these adjustments to the existing structure of CNNs at that time, including

factorising the convolution layer by increasing the size of the filters and decreasing the

size of the grids for efficiency. (26)

This architecture and all of the ideas put forth in the paper has revolutionized the

Inception structure. Now Inception v3 is built with convolutions, average pooling, max

pooling, concatenates, dropouts and fully connected layers with batchnorm being

utilized heavily in the model and used on the activation inputs with the softmax

activation function to calculate the loss. Figure 21 shows the high level model of the

Inception v3 (25.)

Figure 21. Inception v3 high level architecture. (25)

As is shown in Figure 21, the sample input to the model is a 299 by 299 image with 3

channels and the output is a three dimensional 8 by 8 by 2048. There are about 11

layers in the model where the final two layers can be retrained with new data and the

model should be able to produce a mode with a good accuracy.

3.4.2 MobileNet v1

MobileNets are a new grade of models with high efficiency for "mobile and embedded

vision applications". A MobileNet model makes use of factorized convolutions to form a

depthwise convolution and a pointwise convolution which is basically a 1x1 convolution.

The combination of depthwise and pointwise convolution is called depthwise separable

convolution. These models were built on the basis of utilizing "depthwise separable

convolutions" in order to create deep learning neural networks that are lightweight (27.)

 28

Essentially, a regular convolution layer performs both the filtering and merging inputs

within a single step, however, the depthwise separable convolution splits this process

into 2 layers, one for filtering and one for merging. This significantly decreases the size

of the model as well as the computation needed (27.) Figure 22 shows the difference

between a regular convolution versus a MobileNet's depthwise separable convolution.

Figure 22. Left: A regular convolution layer. Right: Depthwise Separable convolution. (27)

The regular convolution layer shown in Figure 22 begins with a standard 3 by 3

convolution, followed by a batchnorm and finally a ReLU function. However, the

MobileNet convolution layer begins with a depthwise convolution layer which is a

factorized form of the standard convolution, followed by pointwise convolution an ReLU

with batchnorms between all the layers.

Despite of utilizing this special type of convolution, a MobileNet model still keeps its first

layer as a full convolution. Every layer of the MobileNet architecture has a batchnorm

and ReLU function right after it except the last dense layer since it requires no

nonlinearity, instead it is linked to a softmax layer to produce probabilities for

classification (27.)

4 Project Tools and Methods

There are various deep learning tools that are available, out of these two, Keras and

TensorFlow, were tested and used in this thesis, therefore, this section will focus on the

fundamentals of these tools, the advantages they offer and why they were chosen.

Furthermore, this section will also emphasize the method of building a machine learning

model, more specifically the seven steps in building a machine learning model.

 29

4.1 Keras

Keras is a simple high level application programming interface (API) for building and

training neural networks with a significantly low learning curve. This library is written

entirely in Python programming language and can allow other deep learning languages

of a lower level run under it like TensorFlow, CNTK or Theano (28.)

Kera was built with user-friendly interface and quick experimentation in mind giving it an

advantage over other deep learning tools. It provides a logical straightforward interface

which reduces to a minimum the amount of actions required by the user for typical

uses, as well as it gives feedback at the time of error that is comprehensible (28.)

Furthermore, since Keras is easily learnt and simple to use, it increases productivity of

the user giving it a competitive edge in machine learning competitions and challenges.

Not only is Keras user-friendly, but it is also transposable and extensible since their

models are built by interlinking customizable units together with hardly any restrictions

(28.)

Evidently, Keras is highly used in not only startups like Netflix and Uber focussing on

deep learning but also in deep learning research communities making it the second

most mentioned deep learning framework in scientific papers sent to arXiv.org as of

October 2017 (shown in Figure 23). (28)

Figure 23. arXiv mentions in October 2017. (28)

 30

Evidently, as seen in Figure 23, Keras has been mentioned second most in arXiv while

TensorFlow takes the largest share being mentioned about 3 times as much as Keras

since it is open sourced.

Further popular features of Keras include the capability of developing with various other

deep learning backends with the added bonus that a model with only built-in layers can

be moved easily across the backends, for example, a model can trained with a

particular backend then loaded with a different one. The choices of backends are

limited to TensorFlow, CNTK and theno backend with MXNet backend support currently

in progress (28.)

Due to the ease of use, efficiency and popularity of Keras, it was selected as one of the

tools used to develop a deep learning model for image classification.

4.2 TensorFlow

Originally used by developers in Google to build machine learning models for internal

use, TensorFlow has since then in 2015 been released as an open source software

library for developers to develop and train neural networks. This library is also written in

Python where data is expressed as arrays with multiple dimensions called tensors. (18

pp. 39)

TensorFlow visualizes distinct calculations as a graph of data flows where each node

stands for an arithmetic operation. When used in the context of deep learning, neural

networks are represented as tensors giving the possibility to leverage state-of-the-art

hardware for increased speed producing an elegant yet articulate method for the

implementation of models (18 pp. 39-40.)

In order to supply inputs to a model produced by TensorFlow, a placeholder component

is initialized every time the computational graph is instantiated. TensorFlow uses

sessions to interact with the computational graph. A session's purpose is to initialize the

graph and all of the variables and to run the graph as well. Consider a placeholder

variable a, another TensorFlow variable b and a bias c. In a session where a and b are

multiplied by TensorFlow operation tf.Mul and the bias c is added the result, the

resulting computational graph generated would be Figure 24 (18 pp. 46-47.)

 31

Figure 24. Sample computational graph in TensorFlow

Google released a new breed of processing units called Tensor processing unit (TPU)

which is a hardware chip developed specifically for machine learning and was

customized to work seamlessly with TensorFlow. This hardware chip was programmed

to have highly optimized execution using little power for its machine learning tasks.

Furthermore, Google has since then released a second generation of TPUs in mid 2017

which supply a performance of almost two hundred teraflops, moreover, if these TPUs

are arranged in clusters, the performance could exceed 10 petaflops. Evidently, the

performance of TensorFlow has been heavily invested on and so has been chosen as

the second deep learning tool used in this thesis (29.)

This subsection gave a brief simplistic introduction to how Google's TensorFlow works

under the hood, however, there are various other concepts to study related to

TensorFlow and its use. TensorFlow was used in this thesis project to create the model

produced from retraining the pretrained models which are described in detail in section

5.

4.3 Building a Model

A model in the context of machine learning is the product of training a machine learning

algorithm on a training data set. This model can then be applied on new data to predict

outcomes. There are 7 essential steps in build a machine learning model and thereby

 32

accurately identifying pneumonia in chest X-rays; data collection, data preparation,

model selection, training, evaluation, hyperparameter tuning and finally prediction (30.)

The first step is to gather and prepare the data. This step is critical since the amount

and the condition of the data can determine how successful the model is. The data for

the purposes of this thesis was gathered from kaggle where the data was collected from

children aged 1 to 5 from Guangzhou Women and Children's Medical Center in

Guangzhou. These X-rays were all scanned during their scheduled clinical care. There

are 5863 images of chest X-rays of two categories, normal or pneumonia, where the

diagnosis for pneumonia was triple checked by 3 expert physicians before they were

sent for training AI (30.)

After gathering the data, comes the next step of data preparation. At this stage, the data

needs to be void of errors, labelled correctly and also needs to be segmented into

three. The largest portion of this split is the training set, i.e. the data the model learns

from. The second largest portion is the test set, i.e. the data the model assesses its loss

from while it trains. Finally, the third and smallest portion is the evaluation set, i.e. the

data we use to evaluate our final model to truly infer how accurate it is. It is important to

separate this data since evaluating the model based on the training data is useless

since the model already knows what class it falls in. Using new data for this purpose

truly gives us the real world performance (31.)

In this case, the data came prepared from the kaggle dataset as separated in three

folders, train, test and val (evaluation), where each of these had images separated in

two folders representing their category, normal or pneumonia. Also, prior to the data

being uploaded for AI use, low quality or incomprehensible images were removed

during its quality control screening. (30)

The third step in machine learning is the selection of a model. This is the main portion

of the practical work which was experimenting with different kinds of models and

identifying which suits the best for our machine learning problem and dataset. Since this

is an image classification task, a CNN is certainly used. The reasons for using a CNN

was described in detail in section 3.3. Section 5.1 and 5.2 explores the different

alternatives to CNN that can be used to solve this problem and then section 6 evaluates

 33

the two models based on certain metrics and section 7 presents the suitable model that

has been selected (31.)

The fourth step is training. This is the step where the dataset prepared is fed into the

model to iteratively improve its predictive abilities. The labelled training images are input

to the CNN model, in which certain features of the image pertaining to their class are

identified via the various convolutional filters which then is passed through some

pooling layers to reduce its dimensionality and finally to the dense layers which pass it

through a softmax function to output a probability value for each class, normal and

pneumonia. During the training, the parameters of the neural network are tuned and

optimized in each iteration in order to minimize the loss in the output layer which is

calculated by a particular loss/cost function. While at first it performs poorly, the

predictivity becomes better and better but must be stopped at a certain point to avoid

unbalancing the bias and variance tradeoff (31.)

The fifth step is evaluation. Using our evaluation set extracted in data preparation step,

we try to predict whether the given image has pneumonia or not. Outputting a higher

probability value for the correct class more number of times confirms that the model has

a good predictivity.

The sixth step in machine learning process is hyperparameter tuning. This is the

process of tweaking our parameters of our model in order to improve our model (31.)

This is carried out several times in sections 5.1 with details on experiments with

different number of epochs. The aim is to improve the evaluation of the model. If the

final evaluation improves then it shows the tuning is in the right direction. Otherwise,

alternative tunings are attempted.

Finally, the seventh and final step is prediction. This is the stage when the machine

learning model has graduated from its experimental stages and can now be applied in

practice and answer real life questions (31.)

 34

5 Implementation

This section focuses on the implementation of the project work, more particularly, the

fourth, fifth and sixth steps in machine learning, starting with training CNN models, then

evaluating the results and finally tuning certain parameters to aim to improve the model.

There are two approaches to building a CNN that are used, first one being building the

CNN from scratch with Keras, i.e. creating a machine learning model, adding the

required layers, activation function and finally compiling with a certain loss function.

While the second approach is applying the method of transfer learning. Both

approaches were be tested and the results presented.

5.1 Building CNN with Keras

As described in detail in section 4.1, Keras is a simple to use, highly efficient deep

learning API. The fourth step in machine learning is training, hence, this subsection

explores the building and training of CNNs with Keras.

The first step is to import all the related libraries, as shown in Listing 1.

Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
Listing 1. Importing required libraries from Keras.

These packages include the Sequential Keras model which is a model built ahead

where layers just need to be linearly stacked. It is useful in the modelling of this CNN

with its many layers. Since the inputs are images with two dimensions, i.e. width and

height, two dimensional convolution layers are used, hence, Conv2D is imported. While

MaxPooling2D is imported for max pooling in two dimensions. Max pooling is selected

for use in the pooling layers of this CNN. Finally, Flatten and Dense correspond to the

flattening of the feature vector and the dense/fully connected layer respectively.

One the required packages have been imported, the machine learning convoluted

neural network can begin to be built. To do this, the sequential model is initialized as in

Listing 2

 35

Initialising the CNN
model = Sequential()
Listing 2. Initialising the CNN model.

Then a two dimensional convolutional layer is added as shown in Listing 3

model.add(Conv2D(32, (3,3), input_shape=(64,64,1), activation='relu'))
Listing 3. Adding convolutional layer to model.

As shown in Listing 3, a two dimensional convolutional layer is added to the model with

32 output filters, filters with shape of 3 x 3, 64 x 64 input images with one channel since

the X-ray images are grayscale and it utilizes the ReLU activation function.

Next, a second convolutional layer is added and after that a two dimensional max

pooling layer with the pool size of 2 x 2 as seen in Listing 4.

Adding a second convolutional layer
model.add(Conv2D(32, (3,3), activation = 'relu'))
model.add(MaxPooling2D(pool_size = (2,2)))
Listing 4. Adding second convolutional layer and max pooling layer to model.

Following that, the flattening is carried out to reduce the multi-dimensional feature

vector into a long chain of vectors as in Listing 5.

Flattening
model.add(Flatten())

Listing 5. Adding flattening layer to model.

And finally the fully connected layers are added with ReLU activation function and a

sigmoid activation function. After that the classifier is compiled with the binary cross

entropy loss function and calculate the loss based on accuracy metric. Listing 6 shows

these additions.

Full connection
model.add(Dense(units = 128, activation = 'relu'))
model.add(Dense(units = 1, activation = 'sigmoid'))
Compiling the CNN
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics =
['accuracy'])
Listing 6. Adding the dense layer to the model and compiling it.

 36

Finally after the whole model is set up and compiled, the training and testing data can

be prepared and fed into the model. First, the training and test set need to be rescaled

and reshaped. This is carried out with the help of ImageDataGenerator where the

images are scaled down by 255 and reshaped to 64 by 64. Listing 7 shows these steps.

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(rescale = 1./255)

Fetching training data set
training_set = datagen.flow_from_directory('data/train',
target_size = (64,64),
batch_size = 32,
color_mode='grayscale',
class_mode='binary')

Fetching test dataset
test_set = datagen.flow_from_directory('data/test',
target_size = (64,64),
batch_size = 32,
color_mode='grayscale',
class_mode='binary')

Listing 7. Resizing and reshaping train and test dataset.

As seen in Listing 7, datagen is an instance of the ImageDataGenerator and is used to load

the training and test set scaled down by 255 with target size 64 by 64 as grayscale and binary

images. This makes all the data in the set of the same size and have the same shape keeping

them uniform.

Finally we run the classifier with certain number of epochs with certain number of steps

per epoch and number of validation steps as in Listing 8.

model.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 1,
validation_data = test_set,
validation_steps = 2000)
Listing 8. Fitting images to model.

As seen in Listing 8, 8000 training steps are set per epoch with 1 epoch defined and

utilizing the test dataset with 2000 validation steps. Figure 25 shows the progress of this

training on a Jupyter notebook.

 37

Figure 25. One epoch running progress on Jupyter notebook

As shown in Figure 25, every iteration shows the loss and the accuracy which are

based on the training data. At the end of one epoch, the validation accuracy and loss

are shown which represent true accuracies since it is the value obtained from

comparing the results on the test data that has been kept aside.

One epoch with 8000 training steps was run which took about 40 to 60 minutes to

complete training. The results can be seen in Figure 26.

Figure 26. Results of one epoch run.

The next step in building a machine learning model is evaluation. In here, the results of

training the model with 1 epoch are evaluated. As shown in the figure, running one

epoch produced a validation accuracy of only 76.4% with training accuracy of 99.1%.

While 76.4% is not a very high number since it means that 1 in 4 patients are incorrectly

diagnosed, an evaluation of the models in this thesis are carried out with the 16

evaluation images kept aside. These are new data the model has not been trained or

tested on. At first, the model was made to predict the classes of 8 normal chest X-ray

images. Figure 27 shows the results.

 38

Figure 27. Evaluation of model training with 1 epoch on normal chest X-ray images.

The results of the predictions shown in Figure 27 show all but one were correctly

identified as normal and each prediction was completed in milliseconds which is

exceptionally fast. The model seemed to get 7 out of 8 predictions correct meaning

87.5% correct with this small dataset.

Next 8 images of X-rays with pneumonia were fed to the model. Figure 28 shows the

results.

 39

Figure 28. Evaluation of model training with 1 epoch on pneumonia chest X-ray images.

As displayed in Figure 28, all of the images were correctly classified within milliseconds,

giving it a 8 out of 8 meaning 100% accurate.

In conclusion, the final tally for 8000 straining steps of a CNN built from scratch by

Keras was 76.4% validation accuracy with 93.8% accuracy with evaluation data giving

predictions in 3 milliseconds. While the results of the evaluation data is quite impressive

already, the validation accuracy is still not satisfactory. However, certain parameters

were tuned to further bring the results to what was expected.

The sixth step in machine learning after evaluation is hyperparameter tuning. Hence

since the number of epochs in the last iteration was quite low, being only one, the value

was increased to 10 epochs and the results collected. Figure 29 shows the final

validation accuracy and loss after running 10 epochs.

 40

Figure 29. Progress of accuracies running 10 epochs.

As demonstrated in the figure, the first epoch produced a validation accuracy of 76.76%

as expected, however, it can be seen that the validation accuracy begins dropping with

every iteration, settling at 62.5% after the fourth iteration. On the other hand, the

accuracy increases from 99.17% to 100% at the third epoch but then starts drastically

reducing and finally settles at about 74%. These results are significantly worse than the

results before and consequently the model performs poorly during the final evaluation.

It can be inferred from these results that the model could be overfitting to the data,

hence it performs well with data it is familiar with and performs poorly with new data.

The largest difference was in the third epoch, as can be seen in Figure 29, where the

accuracy was 100% but validation accuracy only 75.48%.

All in all, it can be concluded that the CNNs did not perform up to expected, although,

the model that ran for 1 epoch did significantly better and had a fairly good accuracy.

The next subsection will explore a completely different approach of building CNNs.

5.2 Transfer Learning

As explained in section 3.4, an alternative to building a customized CNN is to apply

transfer learning to existing CNN models. This thesis will explore retraining the

Inception v3 model and the MobileNet v1 model.

 41

Inception v3 Retraining
In order to retrain Inception v3 which has been pre-trained on ImageNet, TensorFlow

Hub needs to be used to consume the modules which are essentially parts of a

pre-trained model.

Quite simply, the first step to begin the retraining was to download the retraining code

from GitHub (32) which was stored in file called retrain.py. Next to run the retraining

process, code shown in Lising 9 was run in terminal on MacOS, where the last

parameter points to the directory the images were stored.

python retrain.py --image_dir <path to image dir>
Listing 9. Command for retraining Inception v3.

The very first step is computing the bottleneck values for all the images fed to the script

and caching these values to be reused any time the same data is retrained. This layer

is responsible for producing adequate values that the model can use for differentiating

between the two classes. Therefore, it needs to produce a meaningful and information

packed summary relating to the images. It has been seen that the data required to

distinguish between the 1000 categories available in ImageNet is adequate to classify

unfamiliar data. Figure 30 shows the logs relating to the creation of these bottlenecks

(33.)

Figure 30. Creation of bottlenecks in the terminal.

As shown in the figure, there is a bottleneck that is created for each image and saved

into a folder named tmp. After all the bottlenecks have been created, the training of the

last few layers of the model commences. The number of training steps defaults to 4000

which is enough to produce adequate results. Figure 31 shows the logs relating to the

training (26.)

 42

Figure 31. Logs related to the retraining process.

As displayed in Figure 31, there is a train accuracy, cross entropy and validation

accuracy. While the train accuracy represents the share of the training images in the

current set accurately labelled, the cross entropy shows how well the training is

performing relative to the result of the cross entropy loss function and the validation

accuracy relates to the accuracy on a batch of images selected at random from another

set. This represents the legitimate accuracy since it is measured on new data the model

has not learnt from. A low validation accuracy and high training accuracy indicates the

model is overfitting to the data (26.)

This loop runs 4000 times and in each iteration it selects 10 images at random, send it

to the last layer, compare the results with the correct labels, compute the loss and

backpropagate to the previous layers to update their weights. In this way, the accuracy

is improved at every step and at the last run, the model is evaluated on a batch of

images stored separate from those learned from to present the final accuracy (33.)

With 4000 iterations, the final test accuracy was 96.3% as shown in Figure 32.

Figure 32. Final test accuracy of the retraining.

This result is very great and is a value that was beyond the expected range of 90% -

95%. Figure 33 shows the changes in validation accuracy and cross entropy loss over

training steps.

 43

Figure 33. Tensorboard graphs for Inception v3 retraining.

In Figure 33, the tensorboard shows the graph of the validation (eval) in blue and that of

the training in orange. Both plots are plotted with the number of training steps

completed as the independent variable. In the first plot on the left, it can be seen that

the validation and training accuracy increase at a similar rate, at first rapidly then

gradually reaching an equilibrium. Although the validation accuracy graph is always

slightly below that of the training. It can be concluded from this that there is not a

significant amount of overfitting occurring. The second plot on the right shows the value

of the cross entropy loss function. Both curves seem to decrease at a similar rate after

each training step, first rapidly then eventually reaching some equilibrium at about 0.1.

The value of the validation loss function seems to be only slightly higher than that of the

training, indicating the overfitting occuring was at an acceptable level.

Finally, the output model was tested on the evaluation data, the 16 images not used in

the training which was used as the final criteria for this thesis. Figure 34 shows the

results of 8 images of normal chest X-rays.

 44

Figure 34. Evaluation of model retrained on Inception v3 with normal chest X-ray images.

As can be inferred from the figure, 6 out of 8 images were correctly identified which is

75% of the dataset and the percentages of those that were correctly identified as

normal are quite high while the other two incorrectly identified outputted a high

probability of being infected with pneumonia.

Figure 35 shows the results of the 8 images of chest X-rays of patients with pneumonia.

 45

Figure 35. Evaluation of model retrained on Inception v3 with pneumonia chest X-ray images.

As seen in Figure 35, 8 out of 8 images were correctly identified as infected with

pneumonia with very high probabilities, all certainty of pneumonia being above 90%.

All in all, Inception v3 has not out performed building a CNN from scratch with keras yet

since a CNN with 2 convoluted layers and only 1 epoch performed slightly better

already although its final validation accuracy was low compared to Inception v3

retrained.

Next, transfer learning process was carried out on another pretrained model, MobileNet

v1 and the results from that are compared to the previous models.

 46

MobileNet v1 Retraining
For the purposes of this thesis, a pre-trained MobileNet_v1_1.0_224 model was

retrained with images of chest X-rays from the dataset. This process was similar to the

retraining of Inception v3 in the previous section, with the exception of the first script

that was run. This script is shown in Listing 10.

python retrain.py --architecture="mobilenet_1.0_224" --image_dir <path to
image dir>
Listing 10. Command for retraining MobileNet v1.

The bottlenecks were also created similar those generated during the inception v3

retraining and following that, it was trained iteratively with train accuracy, validation

accuracy and cross entropy values displayed after each iteration. And finally after the

final iteration, the final validation accuracy was also displayed. The final accuracy was

96.6% which is 0.3% better than that returned by Inception v3 retraining. Figure 36

shows this.

Figure 36. Final test accuracy of MobileNet v1 retraining.

The graph of validation accuracy and cross entropy changes, however, look quite

different with lot of fluctuations with quite frequently the graph rising all the way to the

top and bottom. This is shown in Figure 37.

Figure 37. Tensorboard graphs generated for accuracy and cross entropy by training step.

 47

In Figure 37, both graph plots have orange lines corresponding to the training process

while the blue line corresponds to the validation process. The left graph plot shows the

accuracy over training steps while the right plot shows the cross entropy loss function

value over training steps. There were 4000 training steps in total. As can be seen, the

accuracy for both the training and validation increase almost at the same rate while

increasing rapidly initially and levelling out gradually. However, the training accuracy

seems to reduce and increase drastically at few points resulting in long vertical lines on

the graph. The validation accuracy does not seem to follow this trend. The cross

entropy for both training and validation also decrease at the same rate but the traìning

cross entropy value also has few spikes which match those in the accuracy graph.

These spikes can be due to some anomaly, but skipping these anomalies the trend of

the accuracy and training graphs being almost the same is a positive sign that there is

very little overfitting to the data occuring.

Although the validation accuracy of the retrained MobileNet model has achieved a

significantly great accuracy, being the highest value yet, of 96.6%, the final evaluation

of the model with the 16 evaluation images reveals really how well the model performs.

Figure 38 shows the predictions of this model on the 8 normal evaluation images.

 48

Figure 38. Evaluation of MobileNet v1 retrained model on normal chest X-rays

As seen in the figure, the model was able to predict 7 out of 8 images with the correct

class and has predicted the correct class for all but one with a very high certainty

percentage with percentages above 95% and 5 of them predicted with 100%

probability. Furthermore, it has predicted them within a fraction of a second, which is

about 8 times faster than Inception v3 retrained model.

Next, the pneumonia chest X-ray images were run through the model and the results

are shown in Figure 39.

 49

Figure 39. Evaluation of MobileNet v1 retrained model on pneumonia chest X-rays

As seen in Figure 39, this model has remarkably been able to predict all of the classes

correctly with 100% certainty and also within a fraction of a second.

After all the models have been trained and used on new data, the results were analysed

and compared against different metrics which is explored in the next section of this

thesis.

6 Results and Analysis

This section covers the comparison and analysis in order to create full picture of how

the different models performed against each other. This thesis explored two different

methods of building a CNN model, either building one or applying transfer learning on

an existing generalized pretrained network. There are several ways to measure

 50

performance of the models. One way is to make use of a confusion matrix, which is

essentially a table with the number of rows corresponding to the number of actual

classes and the number of columns corresponding to the number of predicted classes.

Hence in this case, it will be a 2 by 2 table. Listing 11 shows how a confusion matrix

can be generated with Keras.

Step 1. Prepare the validation images

val_datagen = ImageDataGenerator()

val_dataset = val_datagen.flow_from_directory('data/val',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary',
color_mode='grayscale',
shuffle=False)

Step 2. Create an array of predictions

y_pred = classifier.predict_generator(val_dataset)

Step 3. Get array of correct classes
y_real = val_dataset.classes

Step 4. Generate confusion matrix report
from sklearn import metrics

confusion_matrix_report = metrics.confusion_matrix(y_real, y_pred)
Listing 11. Generating confusion matrix

As can be seen in Listing 11, first the validation images are prepared by resizing to 64

by 64, second the classifier is used to generate predictions based on the validation

dataset, third an array of the correct class labels are fetched and finally a confusion

matrix is generated from the predicted classes and the actual classes. Figure 40

compares the generated confusion matrix for the classifiers built with Keras for 1 epoch

and 10 epoch.

Figure 40. Confusion matrices for, in order from left: 1 epoch, 10 epochs, Inception v3 retrained,
MobileNet retrained.

 51

The first row in each confusion matrix in Figure 40 represents the classes for the normal

class (negative class), while the second row represents that for the pneumonia class

(positive class). In each confusion matrix, the top left number corresponds to the true

negatives, that is the number of images that were correctly classified as normal, while

the top right corresponds to the false positives, that is the number of images wrongly

classified as pneumonia. The number at the bottom left corresponds to false negatives,

that is the number of images wrongly classified as normal while the number at the

bottom right corresponds to the true positives, that is the number of images correctly

classified as pneumonia (11 pp. 85.) The precision of these models can be calculated

as:

recision p = TP
TP + FP (11 pp. 85)

TP is the number of true positives,

FP is the number of false positives

As shown in the confusion matrices, the CNN that ran with one epoch had 7 true

negatives while only 1 false positive while having no false negatives and 8 true

positives. These results are great and the precision is calculated to be 0.89 which is

89% precise.

While the CNN that ran with 10 epochs has no true negatives, 8 false positives, no false

negatives and 8 true positives. Hence, the precision is calculated to be 0.5 which is only

50% precise.

For Inception v3 retrained model, there were 6 true negatives, 2 false positives, no false

negatives and 8 true positives, Therefore, the precision is calculated to be 0.8 making

the model 80% precise according to its confusion matrix.

Finally, the model retrained on MobileNet v1 had the same confusion matrix and

therefore the same precision as that of the model built with Keras running 1 epoch.

Hence, it had a precision of 89% based on its confusion matrix.

 52

To summarize, Table 1 shows the overview of the performance of each model showing

its accuracy, validation accuracy, precision and average time taken to produce one

prediction.

Table 1. Summary of the performance of all the models.

Method Model Accuracy Validation
Accuracy

Precision Avg time for
a prediction

Time to
train

With
Keras

1 epoch 99.14% 76.4% 89% 0.003s 47.9 min

10
epochs

74.28% 62.5% 50% 0.002s 734.5 min

Transfer
Learning

Inception
v3

96.3% 96.3% 80% 5s 26 min

MobileNet
v1

96.6% 96.6% 89% 0.6s 21 min

As can be seen in Table 1, running 1 epoch with 8000 steps produced 76.4% validation

accuracy while acquiring 89% precision taking 3 milliseconds for each prediction. While

running 10 epochs produced only 62.5% validation accuracy acquiring only 50%

precision taking 2 milliseconds for each prediction. On the other hand, retraining

Google's Inception v3 model resulted in 96.3% validation accuracy when run with 4000

steps but was able to attain only 80% precision taking over 5 seconds for each

classification. Finally, retraining MobileNet v1 model with 4000 training steps fared

much better results with 96.6% final validation accuracy and at the same time attaining

89% precision taking only about half a second for each classification.

Additionally, it can be seen from Table 1 that the time taken to train a 1 epoch model

was almost an hour, while the retraining completed within 20 to 26 minutes. On the

other hand, running 10 epochs took over 12 hours to complete.

Inferring from these results, it can be concluded that the model built by retraining a

pretrained model with MobileNet v1 architecture was best suited for the data since it

produced the highest accuracy, validation accuracy, precision and completed training

 53

in the least amount of time. Moreover, it produced predictions in a fairly good amount of

time, taking about half a second.

7 Conclusion

To summarize, this thesis emphasized the importance of artificial intelligence in the

medical field and used the diagnosis of the pneumonia infection with machine learning

as a use case of the vast applications of artificial intelligence in healthcare. The

research aimed to answer how AI can be used to identify pneumonia in chest X-ray

images. The concept of AI and its many subfields were introduced along with the

concept of neural networks as a computational replica of the human nervous system

created to answer questions. However, it was highlighted that a plain neural network is

not enough to classify images due to scalability issues, hence convolutional neural

networks which is new class of neural networks with better handling for image data was

used.

Two different approaches to creating CNNs were highlighted, first approach was

building a whole one, while the other method involved applying transfer learning method

on a pre-trained neural network. After training and analyzing the results, a CNN

developed from retraining MobileNet v1 model architecture presented the most optimal

solution to the problem, generating the highest accuracy, precision and taking the least

amount of time to train while producing predictions at a fairly good rate. This model can

be used in the real world to identify pneumonia with accuracy of 96.6% and precision of

89%. Therefore the answer to the research question is that retraining a pre trained CNN

produces results faster and more accurate than the other option, however the best pre

trained CNN architecture should be selected.

All in all, with the applications of machine learning in healthcare rising to new heights in

today's world, the tools with which these models can be made are improving and

becoming simpler to use, unlocking a multitude of opportunities such as identifying

pneumonia in chest X-rays within half a second, a task that would take hours for a

physician to infer in the years before.

 54

References

1 Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S et al. Artificial intelligence in
healthcare: past, present and future. Stroke and Vascular Neurology.
2017;2(4):230-243

2 Welcome to DeepMind Health | DeepMind [Internet]. DeepMind. 2018 [cited 26
September 2018]. Available from:
https://deepmind.com/applied/deepmind-health/

3 IBM Watson for Oncology - Overview - United States [Internet]. Ibm.com. 2018
[cited 20 September 2018]. Available from:
https://www.ibm.com/us-en/marketplace/ibm-watson-for-oncology

4 Bell J. Machine Learning: Hands-On for Developers and Technical
Professionals. Indianapolis: John Wiley & Sons, Inc.; 2015.

5 Lodha R, Kabra SK, Pandey RM (June 2013). "Antibiotics for
community-acquired pneumonia in children". The Cochrane Database of
Systematic Reviews. 6 (6): CD004874. doi:10.1002/14651858.CD004874.pub4.
PMID 23733365

6 Pneumonia - Symptoms and causes [Internet]. Mayo Clinic. 2018 [cited 26
September 2018]. Available from:
https://www.mayoclinic.org/diseases-conditions/pneumonia/symptoms-causes/s
yc-20354204

7 Pneumonia | Wikisickness [Internet]. Wikisickness. 2015 [cited 27 September
2018]. Available from: http://wikisickness.com/pneumonia.html

8 Pneumonia - Diagnosis and treatment - Mayo Clinic [Internet]. Mayoclinic.org.
2018 [cited 26 September 2018]. Available from:
https://www.mayoclinic.org/diseases-conditions/pneumonia/diagnosis-treatment/
drc-20354210

9 Normal-Looking Radiographs Can Delay Pneumonia Diagnosis [Internet].
Ebmedicine.net. 2018 [cited 26 September 2018]. Available from:
https://www.ebmedicine.net/content.php?action=showPage&pid=18

10 How Should We Define AI? [Internet]. Elements of AI. 2018 [cited 26 September
2018]. Available from: https://course.elementsofai.com/1/1

11 Géron A. Hands-On Machine Learning with Scikit-Learn and TensorFlow. 1st
ed. [S.l.]: O'Reilly Media, Inc.; 2017.

12 Maini V, Sabri S. Machine Learning for Humans. 2017.

13 Mayo M. Understanding the Bias-Variance Tradeoff: An Overview [Internet].
Kdnuggets.com. 2018 [cited 6 October 2018]. Available from:
https://www.kdnuggets.com/2016/08/bias-variance-tradeoff-overview.html

https://deepmind.com/applied/deepmind-health/
https://www.ibm.com/us-en/marketplace/ibm-watson-for-oncology
https://www.mayoclinic.org/diseases-conditions/pneumonia/symptoms-causes/syc-20354204
https://www.mayoclinic.org/diseases-conditions/pneumonia/symptoms-causes/syc-20354204
http://wikisickness.com/pneumonia.html
https://www.mayoclinic.org/diseases-conditions/pneumonia/diagnosis-treatment/drc-20354210
https://www.mayoclinic.org/diseases-conditions/pneumonia/diagnosis-treatment/drc-20354210
https://www.ebmedicine.net/content.php?action=showPage&pid=18
https://course.elementsofai.com/1/1
https://www.kdnuggets.com/2016/08/bias-variance-tradeoff-overview.html

 55

14 Advanced Neural Network Techniques [Internet]. Elements of AI. 2018 [cited 26
September 2018]. Available from: https://course.elementsofai.com/5/3

15 For Dummies — The Introduction to Neural Networks we all need ! (Part 1)
[Internet]. Medium. 2016 [cited 26 September 2018]. Available from:
https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neura
l-networks-we-all-need-c50f6012d5eb

16 Activation Functions: Neural Networks – Towards Data Science [Internet].
Towards Data Science. 2018 [cited 26 September 2018]. Available from:
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d9
1d6

17 Introduction to Neural Networks, Advantages and Applications [Internet].
Towards Data Science. 2018 [cited 26 September 2018]. Available from:
https://towardsdatascience.com/introduction-to-neural-networks-advantages-and
-applications-96851bd1a207

18 Buduma N, Locascio N. Fundamentals of deep learning. 1st ed. Sebastopol,
CA: O'Reilly Media, Inc.; 2017.

19 Build a Convolutional Neural Network using Estimators | TensorFlow [Internet].
TensorFlow. 2018 [cited 26 September 2018]. Available from:
https://www.tensorflow.org/tutorials/estimators/cnn

20 Convolutional Neural Networks from the ground up – Towards Data Science
[Internet]. Towards Data Science. 2018 [cited 26 September 2018]. Available
from:
https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-
up-c67bb41454e1

21 Deshpande A. A Beginner's Guide To Understanding Convolutional Neural
Networks [Internet]. Adeshpande3.github.io. 2016 [cited 26 September 2018].
Available from:
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convo
lutional-Neural-Networks/

22 Dertat A. Applied Deep Learning - Part 4: Convolutional Neural Networks
[Internet]. Towards Data Science. 2017 [cited 10 October 2018]. Available from:
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neur
al-networks-584bc134c1e2

23 Introduction to Convolutional Neural Networks | Rubik's Code [Internet]. Rubik's
Code. 2018 [cited 26 September 2018]. Available from:
https://rubikscode.net/2018/02/26/introduction-to-convolutional-neural-networks/

24 Patterson J, Gibson A. Deep Learning. 1st ed. O'Reilly Media, Inc.; 2017.

25 Advanced Guide to Inception v3 on Cloud TPU | Cloud TPU | Google Cloud
[Internet]. Google Cloud. 2018 [cited 27 September 2018]. Available from:
https://cloud.google.com/tpu/docs/inception-v3-advanced

https://course.elementsofai.com/5/3
https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-c50f6012d5eb
https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-we-all-need-c50f6012d5eb
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/introduction-to-neural-networks-advantages-and-applications-96851bd1a207
https://towardsdatascience.com/introduction-to-neural-networks-advantages-and-applications-96851bd1a207
https://www.tensorflow.org/tutorials/estimators/cnn
https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67bb41454e1
https://towardsdatascience.com/convolutional-neural-networks-from-the-ground-up-c67bb41454e1
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://rubikscode.net/2018/02/26/introduction-to-convolutional-neural-networks/
https://cloud.google.com/tpu/docs/inception-v3-advanced

 56

26 Szegedy C, Vanhoucke V, Loffe S, Shlens J, Wojna Z. Rethinking the Inception
Architecture for Computer Vision [Internet]. 2015. Available from:
https://arxiv.org/pdf/1512.00567.pdf

27 Howard A, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T et al.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications [Internet]. Google Inc.; 2017. Available from:
https://arxiv.org/pdf/1704.04861.pdf

28 Keras Documentation [Internet]. Keras.io. 2018 [cited 26 September 2018].
Available from: http://keras.io

29 TensorFlow [Internet]. En.wikipedia.org. 2018 [cited 10 October 2018]. Available
from: https://en.wikipedia.org/wiki/TensorFlow

30 Chest X-Ray Images (Pneumonia) [Internet]. Kaggle.com. 2018 [cited 26
September 2018]. Available from:
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

31 The 7 Steps of Machine Learning – Towards Data Science [Internet]. Towards
Data Science. 2018 [cited 26 September 2018]. Available from:
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e

32 Github.com. 2015 [cited 27 September 2018]. Available from:
https://github.com/tensorflow/hub/raw/master/examples/image_retraining/retrain.
py

33 How to Retrain an Image Classifier for New Categories | TensorFlow Hub |
TensorFlow [Internet]. TensorFlow. 2018 [cited 27 September 2018]. Available
from: https://www.tensorflow.org/hub/tutorials/image_retraining

https://arxiv.org/pdf/1512.00567.pdf
https://arxiv.org/pdf/1704.04861.pdf
http://keras.io/
https://en.wikipedia.org/wiki/TensorFlow
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e
https://github.com/tensorflow/hub/raw/master/examples/image_retraining/retrain.py
https://github.com/tensorflow/hub/raw/master/examples/image_retraining/retrain.py
https://www.tensorflow.org/hub/tutorials/image_retraining

