

PARK HERE

A Web Based Application for Finding Available Parking Spaces

in Tampere, Finland

Omokaro Richardson Bob

Master’s thesis

November 2018

Degree program in

Information Technology

2

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Masters in Information Technology

Omokaro Richardson Bob

A web based application for finding available parking spaces in Tampere,

Finland

Master's thesis 41 pages, appendices 3 pages

November 2018

This master’s thesis focuses on a real time information collection and monitory system.

The aim is to show and provide information on available car parking slots in Tampere

region. This study proposes that real time information and monitory system can be

achieved by utilizing Finnpark API.

Contemporary urban rising is witnessing huge traffic as more vehicles are on the road

on a daily basis. According to Statistics Finland, over 5,045,365 cars were in traffic use

in 2017. The primary purpose is to ease movement of persons, goods and services from

one point to another. These movements often create significant challenges such as road

congestion, for all road users. In addition to road congestion, finding parking spaces in

public car parks is a challenge for car owners.

Oftentimes, vehicle owners are fined for parking in unauthorized places or even on the

road side thereby causing traffic gridlock for other road users.

By utilizing a web interface powered by Finnpark API, this study provides real time

update of available parking slots in Tampere region. After inputting their desired desti-

nation in the web interface, car owners are provided with available parking spaces. This

study proposes that with the use of this web interface, car owners will save valuable

time and money involved in finding suitable parking lots.

Key words: web application, real time, car parking slot, Finnpark API

3

CONTENTS

1 INTRODUCTION ... 8

2 COMPONENT REQUIREMENT AND TECHNOLOGIES 11

2.1 CLIENT-SIDE PROGRAMMING .. 11

2.1.1 AngularJS framework ... 11

2.1.2 Bootstrap framework ... 12

2.1.3 JQuery library.. 12

2.1.4 Google maps ... 12

2.1.5 Google Maps API .. 13

2.1.6 Embed Google map ... 13

2.1.7 REST API ... 15

2.1.8 How RESTful APIs work ... 16

2.2 SERVE-SIDE PROGRAMING ... 17

2.2.1 DATEX2 ... 17

2.2.2 XML .. 18

2.2.3 Finnpark API ... 19

2.3 IDE ... 20

2.3.1 Visual studio Code .. 20

3 SYSTEM ARCHITECTURE AND USE CASES .. 21

3.1 System Architecture ... 21

3.1.1 HttpClient .. 22

3.2 Use Case Diagram ... 22

3.3 Class Diagram .. 23

3.4 ER Diagram ... 25

4 DESCRIPTION OF SYSTEM AND API ... 27

4.1 Data Contents ... 28

4.1.1 Parking facilities basic information. ... 28

4.1.2 Parking facility table publication .. 29

4.1.3 Parking facility status information .. 29

5 SYSTEM DEVELOPMENT AND TESTING ... 32

5.1 System Development ... 32

5.1.1 Adding bootstraps and Jquery ... 33

5.2 Testing ... 35

6 USER INTERFACE IMPLEMENTATION. .. 36

6.1 Front Page .. 36

6.2 Input Destination .. 37

6.2.1 Parking Facilities ... 37

4

6.2.2 Availability .. 38

6.3 Get Direction .. 39

7 DISCUSSION ... 40

7.1 Future Development. ... 40

8 REFRENCES .. 41

9 APPENDICES ... 42

Appendix 1 ... 42

Finnpark DATEX 11 parking extension table ... 42

https://www.dropbox.com/sh/ujs2hoim8z9py2y/AABIplU25NWZktVokYbZ

MWk_a?dl=0 ... 42

Appendix 2 ... 42

Finnpark parking data API source code .. 42

http://parkingdata.finnpark.fi:8080/Datex2/OpenData.. 42

Appendix 3 ... 42

Front end code ... 42

Appendix 4 ... 44

Implementing map component code ... 44

5

ABBREVIATIONS AND TERMS

XML Extensible Markup Language

SGML Standard Generalized Markup Language

UML Unified Modeling Language

IDE Integrated Development Environment

REST Representational State Transfer

MVC Model, View, Controller software architecture style

CSS Cascading Style Sheets

HTML Hypertext Mark-up Language

JS JavaScript commonly used programming language

 for Web programming

GUI Graphical User Interface allows users to interact with electronic devices

API Application Programming Interface

FINNPARK Tampere Parking agency

ER Entity Relatioship

https://searchmicroservices.techtarget.com/definition/SGML-Standard-Generalized-Markup-Language

6

LIST OF FIGURES

Figure 1: Standard carpark scenario .. 8

Figure 2: System overview.. 10

Figure 3: Snap shot of embedded google map .. 15

Figure 4: REST API architecture diagram .. 17

Figure 5: System Architecture diagram .. 21

Figure 6: Vehicle driver use case diagram .. 23

Figure 7:. Parking system class diagram (hansOnUML, 2018). 25

Figure 8: ER Diagram for Smart Parking (Super intellegence parking system (SIPS)) 26

Figure 9: Shows Google search parking pin points in Tampere 27

Figure 10: Shows the parking information in XML format. ... 28

Figure 11: Node.js setup for windows. ... 32

Figure 12: Creating angular project, parkhere test .. 33

Figure 13: Adding bootstrap and Jquery to Angular cli .. 34

Figure 14: Bootstrap scripts needed in scripts and Bootstrap css file in styles in angular-

cli.json file ... 34

Figure 15: Node and NPM installation testing. ... 35

Figure 16: Parkhere interface .. 36

Figure 17: Parkhere inputing destination .. 37

Figure 18: Google maps destination results .. 38

Figure 19: Parkhere results using google maps .. 39

Figure 20: Integration of google maps in Parkhere ... 39

7

LIST OF TABLES

Table 1: Shows the UML packages. ... 28

Table 2: DATEXII Parking Extension: parkingFacilityTablePublication 29

Table 3:DATEXII Parking Extension: parkingFacilityTableStatusPublication 30

8

1 INTRODUCTION

With a steady increase in urbanization, towns and cities have experienced an exponen-

tial growth in the daily use of cars. According to Statistics Finland, over 5,045,365 cars

was in traffic use in 2017. The primary purpose was to ease movement of persons,

goods and services from one point to another.

These movements often create a significant level of traffic congestion for all road users.

With the rising increase in car usage, public and private parking slot have also become a

challenging utility. This includes finding parking slots close to the desired destination

for activities such as transacting business, shopping, social activities, etc.

Also, where parking slots are available, it is usually a significant distance away from the

desired destination. Thus, car owners often drive slowly around their desired parking

slots until an opening becomes available. Hence the phenomenon of cruising for parking

(Shoup, 2006) in congested places. Cruising for parking refers to car owners continu-

ously driving in a vicinity until they find an available parking slot. Besides the cost of

time, money and gas, cruise parking has a negative impact on the overall economic pro-

gress of the affected area. Thus, prior knowledge of where to park your car when you

arrive at your destination will save you time and gas if you already have an idea of the

closet available parking spot.

Figure 1: Standard carpark scenario

9

In addition, vehicle owners are often fined for parking in unauthorized places or even on

the road side thereby increasing the chances of traffic gridlock for other road users.

This thesis proposes that to avoid cruise parking and alleviate car congestion, car own-

ers can be provided a platform equipped with real time update of available parking slots

are provided on request. To achieve this, the API from Finnpark is utilized. Tampere

region is used as a case study to show the effectiveness and profitability of this study.

Tampere houses a population of 231,853 inhabitants (Tampere-city, 2018). It is the se-

cond largest city in Finland with an active urban environment. Although transportation

system in Tampere is very effective, the region still experiences cruising for parking;

hence the emergence of smart parking apps such as Easypark, Finnpark, and Parkman.

These apps are paid services offering available parking slots to users for a fee. In addi-

tion to preventing cruising parking, users get to pay for only what they use which elimi-

nates fines for overparking or underutilizing paid parking time.

A common limitation of these apps is that they do not provide information on available

free parking slots, hence the web application service analyzed in this thesis.

The web application uses the FinnPark API to search for available free parking slots for

users.

The park here system entails the following:

 Destination: the user inputs desired destination in to the search browser button

 Available Parking facilities: park here display all available parking facilities

nearby.

 Get direction: the get direction links the user to Google map for fastest route to

the desired location.

10

This is shown in the figure 1.

Figure 2: System overview

Parking Destination search

Available parking

Facilities

Google map

 Direction

11

2 COMPONENT REQUIREMENT AND TECHNOLOGIES

The purpose of this thesis is to deploy a web based parking application that shows

available parking spaces in the Tampere region of Finland.

This thesis is been deployed and implemented with already existing technologies. For

this section, we will be explaining the components and technology used in this thesis.

2.1 CLIENT-SIDE PROGRAMMING

Client side programming has mostly to do with the user interface, with which the user

interacts. In web development it's the browser, in the user's machine, that runs the code,

and it's mainly done in JavaScript, flash, HTML, CSS and any language running on a

client device that interacts with a remote service is a client-side language.

2.1.1 AngularJS framework

Angular JS (AngularJS, 2018) is a JavaScript-based open-source front-end web applica-

tion framework mainly maintained by Google and by a community of individuals and

corporations to address many of the challenges encountered in developing single-page

applications.

 The JavaScript components complement Apache Cordova, a framework used for de-

veloping cross-platform mobile apps. It aims to simplify both the development and the

testing of such applications by providing a framework for client-side model–view–

controller (MVC) and model–view–view model (MVVM) architectures, along with

components commonly used in rich Internet applications. In 2014, the original Angu-

larJS team began working on the Angular application platform (Fluin, 2018).

The AngularJS framework works by first reading the HTML page, which has additional

custom tag attributes embedded into it. Angular interprets those attributes as directives

to bind input or output parts of the page to a model that is represented by standard Ja-

vaScript variables. The values of those JavaScript variables can be manually set within

the code, or retrieved from static or dynamic JSON resources (Fluin, 2018).

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Web_application_framework
https://en.wikipedia.org/wiki/Web_application_framework
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model_View_ViewModel
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/HTML_attribute
https://en.wikipedia.org/wiki/Directive_(programming)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Variable_(computer_science)
https://en.wikipedia.org/wiki/JSON

12

2.1.2 Bootstrap framework

Bootstrap is a free and open-source front-end framework (library) for designing web-

sites and web applications. It contains HTML and CSS-based design templates for ty-

pography, forms, buttons, navigation and other interface components, as well as option-

al JavaScript extensions. Unlike many web frameworks, it concerns itself with front-end

development only.

Advantages of bootstrap are:

 Ease of Use: Bootstrap provides less files for those who are accustomed to CSS

pre-processing. However, for users who do not know how to use it, they have

the option of having the traditional plain CSS files instead.

 Highly Flexible: Bootstrap gives the developers the flexibility to develop. It is a

CSS framework with predefined classes for layout using its grid system, various

CSS components and JavaScript functions.

 Responsive Grid: This is the strongest part of the bootstrap framework. Boot-

strap offers a 12 column grid system. The grid system is responsive, that is it ad-

justs itself depending on the device resolution of the client.

 Big List of Components: Bootstrap has all the components you would require

for your website. It includes Drop down Menus, Navigation Bar, Progress Bar,

Alerts, Labels, and Badges etc.

2.1.3 JQuery library

Bootstrap comes with several JavaScript components in the form of JQuery plugins.

They provide additional user interface elements such as dialog boxes, tooltips, and car-

ousels. They also extend the functionality of some existing interface elements, including

for example an auto-complete function for input fields.

2.1.4 Google maps

Google Maps is a web mapping service developed by Google. It offers satellite imagery,

street maps, 360° panoramic views of streets (Street View), real-time traffic conditions

https://en.wikipedia.org/wiki/Web_mapping
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Satellite_imagery
https://en.wikipedia.org/wiki/Google_Street_View

13

(Google Traffic), and route planning for traveling by foot, car, bicycle (in beta),

or public transportation.

Google Maps uses JavaScript extensively. As the user drags the map, the grid squares

are downloaded from the server and inserted into the page.

For the purpose of this thesis I will only make use of the route planer component.

2.1.5 Google Maps API

Google Maps API allows developers to integrate Google Maps into their websites. It

was a free service that requires an API key. Web sites use the Google Maps API, mak-

ing it the most heavily used web application development API.

The Google Maps API is free for commercial use, provided that the site on which it is

being used is publicly accessible and does not charge for access.

2.1.6 Embed Google map

Google map’s interactive features which includes accurate directions, location details,

360 degree street level panoramas zooming, panning and satellite views makes it the

most popularly used online mapping service. In addition, the friendly user interface

which is regularly updated with new improved features facilitates its seamless opera-

tional processes.

Part of the seamless operational process of google maps includes the ability to embed it

easily on a website.

Google map on a website provides the site with authority, trustworthiness, professional-

ism and confidence for end users. A characteristic feature of google map is the use of a

pin to accurately pinpoint a location. This is particularly useful for businesses because

of its specificity in providing not only the exact location of an address but also its sur-

rounding neighborhood.

https://en.wikipedia.org/wiki/Google_Traffic
https://en.wikipedia.org/wiki/Route_planner
https://en.wikipedia.org/wiki/Software_release_life_cycle#Beta
https://en.wikipedia.org/wiki/Public_transportation
https://en.wikipedia.org/wiki/JavaScript
https://developers.google.com/maps/
https://en.wikipedia.org/wiki/API_key

14

Benefits of embedding google map on a website includes:

1. Especially for the less tech savvy, google map provides accurate directions to a

specified address for users. This saves time and prevents inaccurate copying of

address into a native map application.

2. Google map also presents the users with easy access to other data such as phone

number, website address, and locality.

3. Other areas of local interest are also presented to users when accessing google

map on a website. This can include popular location on interest close to the spe-

cific address.

4. Availability of 360 street view panorama ensures that users can find the speci-

fied address thus reducing the chance of going the wrong way.

5. To boost confidence and trustworthiness, google map also shows verified re-

views from other customers.

6. Importantly, interacting with google map keeps users on a website. This is valu-

able for search engine optimization issues.

15

Figure 3: Snap shot of embedded google map

2.1.7 REST API

A RESTful API is an application program interface (API) that uses HTTP requests to

GET, PUT, POST and DELETE data.

A RESTful API also referred to as a RESTful web service is based on representational

state transfer (REST) technology, an architectural style and approach to communica-

tions often used in web services development.

REST technology is generally preferred to the more robust Simple Object Access Pro-

tocol (SOAP) technology because REST leverages less bandwidth, making it more suit-

able for internet usage. An API for a website is code that allows two software programs

to communicate with each another. The API spells out the proper way for a developer to

write a program requesting services from an operating system or other application.

The REST used by browsers can be thought of as the language of the internet. With

cloud use on the rise, APIs are emerging to expose web services. REST is a logical

https://searchmicroservices.techtarget.com/definition/application-program-interface-API
https://searchwindevelopment.techtarget.com/definition/HTTP
https://searchmicroservices.techtarget.com/definition/REST-representational-state-transfer
https://searchmicroservices.techtarget.com/definition/Web-services-application-services
https://searchmicroservices.techtarget.com/definition/SOAP-Simple-Object-Access-Protocol
https://searchnetworking.techtarget.com/definition/bandwidth
https://whatis.techtarget.com/definition/code
https://whatis.techtarget.com/definition/operating-system-OS
https://searchsoftwarequality.techtarget.com/definition/application
https://searchwindevelopment.techtarget.com/definition/browser
https://searchwindevelopment.techtarget.com/definition/Internet

16

choice for building APIs that allow users to connect and interact with cloud services.

RESTful APIs are used by such sites as Amazon, Google, LinkedIn and Twitter

2.1.8 How RESTful APIs work

A RESTful API breaks down a transaction to create a series of small modules.

Each module addresses a particular underlying part of the transaction. This modularity

provides developers with a lot of flexibility, but it can be challenging for developers to

design from scratch. Currently, the models provided by Amazon Simple Storage Ser-

vice, Cloud Data Management Interface and OpenStack Swift are the most popular.

A RESTful API explicitly takes advantage of HTTP methodologies defined by the RFC

2616 protocol. They use GET to retrieve a resource; PUT to change the state of or up-

date a resource, which can be an object, file or block; POST to create that resource; and

DELETE to remove it.

With REST, networked components are a resource you request access to -- a black

boxwhose implementation details are unclear. The presumption is that all calls are state-

less; nothing can be retained by the RESTful service between executions.

Because the calls are stateless, REST is useful in cloud applications. Stateless compo-

nents can be freely redeployed if something fails, and they can scale to accommo-

date loadchanges. This is because any request can be directed to any instance of a com-

ponent; there can be nothing saved that has to be remembered by the next transaction.

That makes REST preferred for web use, but the RESTful model is also helpful in cloud

services because binding to a service through an API is a matter of controlling how the

URL is decoded. Cloud computing and microservices are almost certain to make REST-

ful API design the rule in the future.

A typical REST API architecture diagram is shown in figure 4 below.

https://searchitchannel.techtarget.com/definition/cloud-services
https://whatis.techtarget.com/definition/Amazon
https://searchcio.techtarget.com/definition/Google-The-Company
https://whatis.techtarget.com/definition/LinkedIn
https://whatis.techtarget.com/definition/Twitter
https://searchcio.techtarget.com/definition/transaction
https://whatis.techtarget.com/definition/module
https://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3
https://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3
https://searchstorage.techtarget.com/definition/Cloud-Data-Management-Interface
https://searchstorage.techtarget.com/definition/OpenStack-Swift
https://searchmicroservices.techtarget.com/definition/object
https://whatis.techtarget.com/definition/file
https://searchsqlserver.techtarget.com/definition/block
https://searchsoftwarequality.techtarget.com/definition/black-box
https://searchsoftwarequality.techtarget.com/definition/black-box
https://whatis.techtarget.com/definition/stateless
https://searchdatacenter.techtarget.com/definition/scalability
https://searchdatacenter.techtarget.com/definition/workload
https://searchcloudcomputing.techtarget.com/definition/cloud-computing
https://searchmicroservices.techtarget.com/definition/microservices

17

Figure 4: REST API architecture diagram

2.2 SERVE-SIDE PROGRAMING

In this thesis, I will be using the Finnpark API. Data content of the interface:

 location

 name

 address

The interface content has been made as a DATEX2 extension.

2.2.1 DATEX2

Datex2 (European-Union, 2018) is a data exchange standard for exchanging traffic in-

formation between traffic management centers, traffic service providers, traffic opera-

tors and media partners. It contains for example traffic incidents, current road works and

other special traffic-related events. These data is presented in XML-format and is mod-

https://en.wikipedia.org/wiki/XML

18

eled with UML. The standard is developed by the technical body intelligent transport

systems

2.2.2 XML

XML (w3schools.com, 2018) is a file extension for an Extensible Markup Lan-

guage (XML) file format used to create common information formats and share both the

format and the data on the World Wide Web, intranets, and elsewhere using standard

ASCII text.

XML is similar to HTML. Both XML and HTML contain markup symbols to describe

the contents of a page or file. HTML, however, describes the content of a Web page

(mainly text and graphic images) only in terms of how it is to be displayed and interact-

ed with. For example, the letter "p" placed within markup tags starts a new paragraph.

XML describes the content in terms of what data is being described. For example, the

word "phonenum" placed within markup tags could indicate that the data that followed

was a phone number. An XML file can be processed purely as data by a program or it

can be stored with similar data on another computer or it can be displayed, like an

HTML file. For example, depending on how the application in the receiving computer

wanted to handle the phone number, it could be stored, displayed, or dialed.

XML is considered extensible because, unlike HTML, the markup symbols are unlim-

ited and self-defining. XML is a simpler and easier-to-use subset of the Standard Gen-

eralized Markup Language (SGML) standard for how to create a document structure. It

is expected that HTML and XML will be used together in many Web applications.

XML markup, for example, may appear within an HTML page.

The reason for creating the XML markup are;

 It simplifies data sharing

 It simplifies data transport

 It simplifies platform changes

 It simplifies data availability

Example of how to represent an XML markup file formats is shown below,

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://searchmicroservices.techtarget.com/definition/XML-Extensible-Markup-Language
https://searchmicroservices.techtarget.com/definition/XML-Extensible-Markup-Language
https://searchsqlserver.techtarget.com/definition/information
https://searchdatamanagement.techtarget.com/definition/data
https://www.theserverside.com/definition/HTML-Hypertext-Markup-Language
https://whatis.techtarget.com/definition/markup
https://searchmicroservices.techtarget.com/definition/extensible
https://searchmicroservices.techtarget.com/definition/SGML-Standard-Generalized-Markup-Language

19

<? xml version="1.0" encoding="UTF-8"?>

 - <note>

 <to>Tampere</to>

 <from>Jyvaskyla</Ffrom>

 <heading>Destination</heading>

 <body>Don't forget me this weekend!</body>

 </note>

2.2.3 Finnpark API

Finnpark API is an open data DATEX2 web service that provides data from parking

facilities in Tampere. The data format is in XML and the standard is the

ITS_Standards|DATEXII. It was made available to the public since February 2005. The

data is maintained by finnpark Oy.

The data content includes;

 Parking facility basic information: location, name, address

 DATEXII Parking Extension: parking Facility Table Publication.

 Parking facility status information: open, closed, spaces Available, almost full,

full At Entrance, full, status unknown, normal Parking Conditions Suspended

and special Parking Conditions in Force

 DATEXII Parking Extension: parking Facility Table Status Publication

The URL for the API access is http://parkingdata.finnpark.fi:8080/Datex2/OpenData

Finnpark provides more DATEXII information about parking facilities upon agreement.

These details include the following;

 more detailed facility parameters (capacity, structure, payment, services, max.

vehicle sizes, etc.)

 more detailed occupancy information

 occupancy forecast

 similar data from street parking

 similar data from other cities in Finland.

http://parkingdata.finnpark.fi:8080/Datex2/OpenData

20

2.3 IDE

An IDE is application that provides the environment for software developers to develop

their code. They are simply code editors which help to facilitate code completion, in-

dentation, testing, debugging and lots more.

2.3.1 Visual studio Code

Visual studio code is a code editor created by Microsoft development team. Visual Stu-

dio Code combines the simplicity of a source code editor with powerful developer tool-

ing, like IntelliSense code completion and debugging.

Visual studio code editor is free to download that is why I choose to use it as the code

editor for this thesis.

21

3 SYSTEM ARCHITECTURE AND USE CASES

3.1 System Architecture

In this thesis we are using Angular js for the client-side and connected to API from

Finnpark. This is because Finnpark Tampere already has provided the API to their data

base parking facilities. Therefore, client-side developer just needs to know the URL to

the REST API of Finnpark.

Figure 5: System Architecture diagram

Web

Client

Rest API

Finnpark

-DATEX11

R
eq

u
es

t

R
es

p
o
n
se

Angularjs

- Bootstraps

- JQuery

- JavaScript

- Google map

22

3.1.1 HttpClient

Client-side applications mostly communicate with backend services over the HTTP pro-

tocol. Today’s browser supports two types of APIs for making HTTP requests. The

XMLHttpRequest interface and the fetch () API.

In Angular applications, the HttpClient in @angular/common/http gives a simplified

HTTP API that rests on the XMLhttpRequest interface visible by browsers. The ad-

vantages of the HttpClient are:

- Its test features,

- typed request and response objects,

- request and response interception,

- streamlined error handling

3.2 Use Case Diagram

In software engineering use cases diagram are very important to describe a specific way

of using the software from the client-side who is the so user of the software. Therefore,

a use case diagram is a UML (Unified Modeling Language) is a general-purpose, devel-

opmental, modeling language in the field of software engineering that is intended to

provide a standard way to visualize the design of a system.

Some of the advantage of use case is that;

 Simplify system requirements

 Communicate with the end users and domain experts

 Test the system

Vehicle driver who is the system user searches for available vacant parking space

prior to starting the journey and the use cases is the step by step sequence of actions

that provide something of measurable value to the user like inspection the parking facil-

ities for available parking vacant spaces.

https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Software_engineering

23

It also provides history to find out which parking facilities are most occupied and less

occupied. So, the driver finally decides which parking facility is best to park the vehicle.

The use case diagram below gives some details for vehicle drivers

Figure 6: Vehicle driver use case diagram

3.3 Class Diagram

A class diagram represents the static view of an application. The class diagram repre-

sents the main building block activities in object-oriented language that are used to

show the different objects in the system, their attributes, operations and the relationships

of the classes. The figure 5 below shows a class diagram for parking system.

The class diagram consists of three major objects shown on a rectangular box- class,

attributes and methods. The class is the name of the system to be design. The class

name in this project is called the parking structure. The attributes shows a significant

piece of data containing values that describe each instance of that class also known as

fields, variables, properties.

The attributes of the class Parking Structure is city, address, type. The city variable is

string, address also return string and the type returns structure type. In this case there is

a composition relationship between the class name Parking Structure and the class name

24

Parking Level. The Parking Level attributes is FI Number (floor number) that is return

as an integer. All attributes is made public that is every one can access the system.

The class name parking space also has a composition relationship to Parking Level that

means the parking space class cannot exist without the Parking Level. There are three

attributes to the class Parking Space. These attributes are Space Number (integer), Floor

Number (parking level), and Space type (parking space type).

The methods in this Parking Space is park, unpark, getFeeAmount, pay. The other in-

heritances in the system from the class Parking Space are Regular Space, Handicapped

Space, and Vehicle Interface whose inheritance relationships are car, truck and motor-

bike. The car class has an inheritance name class Electric and Convertible.

Other information that needs to be considered in the class diagram are class name;

 Structure Type whose attributes is either Public or Private.

 Parking Space Type – attributes are Regular, Compact, Handicapped and Mo-

torbike.

25

Figure 7:. Parking system class diagram (hansOnUML, 2018).

3.4 ER Diagram

An ER diagram shows the basic logical structure of the data base. Figure 8 below

shows basic features of a simple smart parking system as represented in the data base of

the system. For the purpose of this thesis I am not going into details explanation be-

tween the entity, attribute and action relationships because the data base for this project

is an open API from Finnpark. Hence I do not have the privilege right into the core data

base ER diagram. The figure is just to show what basic information requirement for a

smart parking database.

26

Figure 8: ER Diagram for Smart Parking (Super intellegence parking system

(SIPS))

27

4 DESCRIPTION OF SYSTEM AND API

In this chapter we shall go through all the implementation processes. The system is im-

plemented in with the user interface which consists of three main stages; destination,

availability of parking spaces, and the get direction which is linked with Google map

(Google, 2018) for drive direction.

Figure 9: Shows Google search parking pin points in Tampere

In this project, Finnpark API which is an open source data serves as the source for the

parking facilities in the Tampere region. The parking facilities basic information in-

cludes: location, name and address. The data content in the API uses DATEX11 stand-

ard and the data format is UML.

28

ParkingFacilityTablePublication

Main package for static parking information

ParkingFacilityTableStatusPublication Main package for dynamic parking information

AreaExtension

Support package

ParkingTariffs

Support package

PeriodExtension

Support package

SpecificDataTypeExtension

Support package

ParkingExtensionEnumerations

Support package

4.1 Data Contents

The data contents of the Finnpark DATEX11 parking facilities in Tampere.

Table 1: Shows the UML packages.

4.1.1 Parking facilities basic information.

The parking facilities basic information includes the location, name and addresses of the

displayed available parking spaces in real time. The format is in XML (Rouse, 2018).

Figure 10: Shows the parking information in XML format.

29

4.1.2 Parking facility table publication

This table gives a quick view of the header information, class and the mandatory rec-

orded for all publications.

Table 2: DATEXII Parking Extension: parkingFacilityTablePublication

HeaderInformation

Class

Mandatory record for all publications

[0-1] areaOfInterest

Enum The extent of the geographic area to which the

related information should be distributed.

Values; continentWide, national, neighbouringCoun-

tries, notSpecified and regional

confidentiality

Enum The extent to which the related information may be circu-

lated, according to the recipient type. Recipients must

comply with this confidentiality statement.

Values; internalUse, noRestrictions, restrictedToAuthori-

ties, restrictedToAuthoritiesAndTrafficOperators, restrict-

edToAuthoritiesTrafficOperatorsAndPublishers, restrict-

edToAuthoritiesTrafficOperatorsAndVms

informationStatus

Enum Status of parking extension information.

Values; real, securityExercise, technicalExercise and test.

[0-1] urgency

Enum This indicates the urgency with which a message

recipient or Client should distribute the enclosed

4.1.3 Parking facility status information

 The status information of the facilities shows if the facility is open, closed, spaces

available, almost full, full at entrance, full, status unknown, normal parking conditions

if suspended or a special parking condition is required.

30

Table 3:DATEXII Parking Extension: parkingFacilityTableStatusPublication

HeaderInformation

Class

Mandatory record for all publica-

tions

[0-1] areaOfInterest

Enum See details from

ParkingFacilityTablePublication

confidentiality

Enum See details from

ParkingFacilityTablePublication

informationStatus

Enum See details from

ParkingFacilityTablePublication

[0-1] urgency

Enum See details from

ParkingFacilityTablePublication

[0-n] ParkingAreaStatus

Class Status may optionally divided

into parking areas

[0-1] parkingAreaOccupancy

Percentage The percentage value of total

parking spaces occupied.

[0-1] parkingAreaOccupancyTrend

Enum The trend of the occupancy of

the parking facility table.

Values; decreasing, increasing,

stable

parkingAreaReference

Reference A reference to a versioned table

which represents the collection of

parking facilities

[0-1]

parkingAreaTotalNumberOfVacantParking-

Spaces

Integer The total number of vacant

parking spaces available in the

specified parking facilityTable

[0-1] totalParkingCapacityLong-

TermOverride

Integer Possibility to override the static

value totalParkingCapac-

ityLongTerm
[0-1] totalParkingCapacityOverride

Integer Possibility to override the static

value totalParkingCapacity

[0-1] totalParkingCapacityShortTer-

mOverride

Integer Possibility to override the static

value totalParkingCapac-

ityShortTerm

31

Note: see appendix for more tables

[0-n] ParkingFacilityStatus

Class This class may be either subclass

for

ParkingStatusPublication or

ParkingArea

32

5 SYSTEM DEVELOPMENT AND TESTING

5.1 System Development

This section provides the system development environment setup instructions.

Angularjs requires some other third party libraries to be installed. Therefore before

starting to setup the environment, Node.js must first be installed.

Node.js is a JavaScript runtime built on chrome’s V8 JavaScript engine.

 Node.js is also used for developing desktop applications and for deploying tools that

make developing web sites simpler. For example, by installing Node.js on your desktop

machine, you can quickly convert CoffeeScript to JavaScript, SASS to CSS, and shrink

the size of your HTML, JavaScript and graphic files. Using NPM a tool that makes in-

stalling and managing Node modules, it’s quite easy to add many useful tools to your

web development toolkit.

First download the windows or mac installer form Node.js website and run the installer.

The system must be restarted after installing Node.js before it can run.

Figure 11: Node.js setup for windows.

33

After installing Node and NPM, the next step is to install angular.js from the Visual

studio code editor with the command npm install –g @angular/cli. Note, any code editor

can be used here. The next step is to create the project with a simple command line; ng

new Parkheretest.

 Figure 12: Creating angular project, parkhere test

5.1.1 Adding bootstraps and Jquery

Install latest Bootstrap version and Jquery for Bootstrap JavaScript support to your project:

$ npm install --save bootstrap jquery

The --save option will make Bootstrap appear in the dependencies.

Then edit/add the bootstrap scripts needed in scripts in .angular-cli.json file:

"scripts": [

"../node_modules/jquery/dist/jquery.js",

"../node_modules/bootstrap/dist/js/bootstrap.js"

],

Add/Edit also the Bootstrap css file in styles in .angular-cli.json file:

"styles": [

"../node_modules/bootstrap/dist/css/bootstrap.min.css",

"styles.css"

],

34

Figure 13: Adding bootstrap and Jquery to Angular cli

Figure 14: Bootstrap scripts needed in scripts and Bootstrap css file in styles in angular-

cli.json file

35

5.2 Testing

To make sure the Node.js and NPM is installed is by running simple commands from

the windows CMD command line and typing node –v and npm –v. the result will show

on the command prompt displaying the different version of each packages. Figure 6

shows the expected result.

Figure 15: Node and NPM installation testing.

36

6 USER INTERFACE IMPLEMENTATION.

 The system user interface design is in three containers as already mentioned in the de-

scription in chapter 4. We will be discussing the user interface in this chapter. The user

will be able to navigate the website easily because it simple and direct to the goal of this

project. This project was design using the most available tools commonly used in web

application.

6.1 Front Page

 The front page of this GUI shows the information on how to get started in finding a

parking facility in the Tampere region.

Figure 16: Parkhere interface

37

6.2 Input Destination

Parkhere web GUI is a very easy to navigate. The users simply need to input the desti-

nation address by typing the location on the search button and click search. A display of

all available parking facilities near to the user destination will appear with the names. A

click on the choice of the user chosen parking facilities will redirect you to the get direc-

tion page.

Figure 17: Parkhere inputing destination

6.2.1 Parking Facilities

A display of all available parking facilities closest to the destination address is displayed

with Google map directions. The figure below shows available parking spaces around

TOAS, Tampere.

38

Figure 18: Google maps destination results

6.2.2 Availability

The information about the parking facility is displayed when you click on any of the

parking facility. This details shows whether the parking facility is open, closed and the

spaces available. It also shows if it is almost full and other information depending as

provided by the parking facilities owners.

39

Figure 19: Parkhere results using google maps

6.3 Get Direction

The get direction navigates the user to Google map direction. To achieve this in this

project we embedded the Google map for driving direction into the web site

Figure 20: Integration of google maps in Parkhere

40

7 DISCUSSION

Parkhere web application was designed to ease cruising by vehicle drivers looking

for parking facilities to park their cars. It is an addition to the existing parking

system in Finland. However, this project was tailored to Tampere parking facili-

ties providing real time information on the parking facilities in Tampere. I choose

Tampere for this project because of the availability of already existing parking

API provided by Finnpark.

The objective of this thesis was to design a system for finding parking facilities in

Tampere by successfully implementing Finnpark open REST API for this project.

Although, the process of implementing the API in my web application was quite

challenging, I was able to navigate through it by creating an api.xml extension in

my code in assets and copied the xml file from the parking data datex2 open data

provided by Finnpark but there were still some other issues that require further

investigation.

The system required extensive programming skills and this has taught me new

programing best practices in current trend technologies like using bootstrap,

jquery, angularjs, including embedded Google map for easy navigation. While the

core coding technologies such as bootstrap, html and css, jquery, and angularjs

served the operational framework in the backend, embedded google map present-

ed an aesthetic and functional feature for users. This made the user interface ac-

cessible to users.

7.1 Future Development.

The initial plan for this project was specifically to point the drivers to the location

of parking facilities but more information can be provided about the facilities

which also Finnpark provided by reaching an agreement to obtain such data. Some

of this further implementation would be;

 more detailed facility parameters (capacity, structure, payment, services, max.

vehicle sizes, etc.)

 more detailed occupancy information like heating

 occupancy forecast

 similar data from street parking

 similar data from other cities in Finland

 a mobile application deployment.

41

8 REFRENCES

AngularJS. (2018, November 7). Scope of AngularJS. Retrieved from AngularJS:

https://docs.angularjs.org/guide/scope

European-Union. (2018, November 2). Tampere Parking DATEX2. Retrieved from

Transforming transport: https://data.transformingtransport.eu/dataset/tampere-

parking-datex2

Fluin, S. (2018, 10 27). Angular: Branding Guidelines for AngularJS. Retrieved from

Angular JS: https://blog.angularjs.org/2017/01/branding-guidelines-for-angular-

and.html

Google. (2018, October 24). Embeded Google Map. Retrieved from Google Map:

https://www.embedgooglemap.net

hansOnUML. (2018, November 15). Parking Lot. Retrieved from GenMyModel:

https://repository.genmymodel.com/hansOnUML/ParkingLot

Rouse, M. (2018, November 24). XML File Format. Retrieved from Whatis.com:

https://whatis.techtarget.com/fileformat/XML-eXtensible-markup-language

Shoup, D. C. (2006). Cruising for parking. Transport Policy, 479–486.

Super intellegence parking system (SIPS). (n.d.). Retrieved 11 9, 2018, from ER

Diagram: https://sites.google.com/site/sips5688/project/er-diagram

Tampere-city. (2018, April 19). City of Tampere. Retrieved October 22, 2018, from

https://www.tampere.fi/en/city-of-tampere/information-on-tampere.html

w3schools.com. (2018, October 13). Introduction to XML. Retrieved from

W3Schools.com: https://www.w3schools.com/xml/xml_whatis.asp

42

9 APPENDICES

Appendix 1

Finnpark DATEX 11 parking extension table

https://www.dropbox.com/sh/ujs2hoim8z9py2y/AABIplU25NWZktVokYbZMWk_a?d

l=0

Appendix 2

Finnpark parking data API source code

http://parkingdata.finnpark.fi:8080/Datex2/OpenData

Appendix 3

Front end code

<div class="container">

 <nav class="navbar navbar-expand-lg" style="color: #17222c;">

 <div class="col-md-3 main_logo">

 </div>

 <button class="navbar-toggler" type="button" data-toggle="collapse" data-

target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false"

aria-label="Toggle navigation">

 </button>

 <div class="collapse navbar-collapse" id="navbarSupportedContent">

 <ul class="navbar-nav c-header__menu">

 <li class="nav-item active">

 About (current)

 <li class="nav-item">

 Login

 </div>

 </nav>

 <div class="row board">

 <div class="row">

 <div class="col-md-5">

 <div class="heading">Find parking in seconds</div>

 <div>

https://www.dropbox.com/sh/ujs2hoim8z9py2y/AABIplU25NWZktVokYbZMWk_a?dl=0
https://www.dropbox.com/sh/ujs2hoim8z9py2y/AABIplU25NWZktVokYbZMWk_a?dl=0
http://parkingdata.finnpark.fi:8080/Datex2/OpenData

43

 Choose from millions of available spaces, or reserve your space in advance. Join over 1.5

million drivers enjoying easy parking.

 </div>

 <div class="row">

 <div class="col-md-12">

 <input type="text" #name class="c-searchform__input form-control" placeholder="Where

are you going?"/>

 </div>

 <div class="col-md-12">

 <button class="c-searchform__submit c-searchform__input"

(click)="open(name.value)">Search</button>

 </div>

 </div>

 </div>

 <div class="col-md-1"></div>

 <div class="col-md-6 right-li">

 <div>How it Works</div>

 <div>

 Input your destination.

 </div>

 <div>

 Park Here shows you available spaces.

 </div>

 <div>

 Get directions to your destination by clicking the ‘Get Di-

rection’ button.

 </div>

 </div>

 </div>

 </div>

 <div class="row main-body">

 <div class="col-md-12 span-logo">

 </div>

 <div class="c-slider col-md-12">

 <h2>Parking made easy</h2>

 </div>

 <div class="col-md-4">

 <div>

 </div>

 </div>

 <div class="col-md-4">

 <div class="w">

 </div>

 </div>

 <div class="col-md-4">

 <div>

 </div>

44

 </div>

 </div>

</div>

<app-map #map [name]="name.value"></app-map>

Appendix 4

Implementing map component code

import { Component, OnInit, NgModule, Input, OnChanges } from '@angular/core';

import { MouseEvent } from '@agm/core';

import { BrowserModule } from '@angular/platform-browser';

import {Http, Headers} from '@angular/http';

import { parseString } from 'xml2js';

import 'rxjs/add/operator/map';

@NgModule({

 imports: [

 BrowserModule,

]

})

@Component({

 selector: 'app-map',

 templateUrl: './map.component.html',

 styleUrls: ['./map.component.css']

})

export class MapComponent implements OnInit {

 constructor(private http: Http) { }

 @Input() name;

 markers: Marker[] = [{

 lat: 51.673858,

 lng: 7.815982,

 draggable: false

 }];

 lat = 51.673858;

 lng = 7.815982;

 zoom = 7;

 ngOnChanges(changes) {

 console.log(this.name);

 let text = '';

 this.http.get('./assets/api.xml').toPromise()

45

 .then((res) => {

 return text = res.text();

 })

 .then((res) => {

 parseString(res, (err, result) => {

 const nst1 = result.d2LogicalModel.payloadPublication[0].genericPublicationExtension[0];

 const nst2 = nst1.parkingFacilityTablePublication[0].parkingFacilityTable[0];

 const parkingFacility = nst2.parkingFacility;

 for (let i = 0; i < parkingFacility.length; i++) {

 const log = parkingFacili-

ty[i].entranceLocation[0].pointByCoordinates[0].pointCoordinates[0].longitude[0];

 const lat = parkingFacili-

ty[i].entranceLocation[0].pointByCoordinates[0].pointCoordinates[0].latitude[0];

 const obj = {log, lat};

 this.markers.push({lat: lat, lng: log, draggable: true});

 }

 });

 });

 }

 clickedMarker(label: string, index: number) {

 console.log(`clicked the marker: ${label || index}`);

 }

 mapClicked($event: MouseEvent) {

 this.markers.push({

 lat: $event.coords.lat,

 lng: $event.coords.lng,

 draggable: true

 });

 }

 ngOnInit() {

 }

}

interface Marker {

 lat: number;

 lng: number;

 draggable: boolean;

