
Bachelor’s thesis

Information Technology

2018

Antti Oksman

GAME DESIGN PROCESS -
REMAKING A DOS GAME

– case Triplane: Furball

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology

2018 | 47

Antti Oksman

GAME DESIGN PROCESS -
REMAKING A DOS GAME

 case Triplane: Furball

The aim of this thesis was to introduce the various phases of the game development cycle,
starting from the planning and design phase and ending in the almost ready-to-be released
product. This was achieved by reviewing the phases only briefly, inspecting the different work
stages step-by-step, the overall design and development process and some of the occurring
problems and their solutions. The work conducted for this thesis was not based on any specific
written theory for game development and relies more on the authors own experience and
knowledge about game design and development.

The work was carried out for MansikkaMarmeladi.io, a game company whose first commercial
product the subject of this thesis was. The game is based on a game called Triplane Turmoil,
originally released for DOS (disk operating system). The gameplay mechanics and visual
expression was borrowed from the original game and was implemented with a modern look and
feel. The new game is otherwise completely made from the ground up with new original assets,
audio, code, and graphics.

The game was evaluated at different phases of development with user testing by the
commissioning company and external testers. The company also attended several demo days
and different game events where feedback about the game was collected. The game proved to
be a very functional and entertaining concept.

In the time of this thesis work, the game was not completed fully to be available as a published
product. It is difficult to estimate the amount of the remaining work, however setting the schedule
for releasing the game in early 2019 should be possible.

KEYWORDS:

game design, game development, retro, GameMaker

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tietotekniikan koulutusohjelma | Sulautetut järjestelmät

2018 | 47

Antti Oksman

DOS-PELIN UUDELLEEN SUUNNITTELU JA
TOTEUTUS

 case Triplane: Furball

Tämän opinnäytetyön tavoitteena on esitellä pelikehitys- sekä suunnitteluprosessin eri vaiheet
projektin aloituksesta toteutuksen viime metreille saakka. Vaiheet käydään pääpiirteittäin läpi,
tarkastellen niiden eri työvaiheita sekä niissä esiintyneitä erityisiä ongelmatilanteita ja niihin
ratkaisuja. Työ ei perustu mihinkään tiettyyn pelikehityksen teoriaan vaan pohjautuu enemmän
kirjoittajan omaan kokemukseen sekä tietämykseen pelisuunnittelusta ja kehityksestä.

Työ tehtiin MansikkaMarmeladi.io -nimiselle pelialan yritykselle, jonka ensimmäinen kaupallinen
tuote oli tämän opinnäytetyön aihe. Työn aiheena oleva peli perustuu peliin nimeltä Triplane
Turmoil, joka julkaistiin alun perin DOS-käyttöjärjestelmälle. Pelimekaniikka sekä visuaalinen ilme
lainattiin alkuperäiseltä peliltä ja toteutettiin modernilla tuntumalla sekä ulkoasulla käyttäen täysin
uusia grafiikoita, koodia ja musiikkia.

Peliä arvioitiin sen eri vaiheissa käyttäjätestein, jossa testaajana olivat toimeksiantajayritys sekä
ulkopuoliset testaajat. Yritys osallistui myös useisiin demopäiviin sekä erilaisiin pelitapahtumiin,
joissa kerättiin palautetta pelistä. Peli osoittautui hyvin toimivaksi ja viihdyttäväksi tuotteeksi.

Opinnäytetyön puitteissa ei peliä saatu vielä julkaisukelpoiseksi tuotteeksi. Lopullisen jäljelle
jääneen työn määrää on vaikea arvioida, mutta pelin julkaisemisen aikataulun asettaminen
vuoden 2019 alkupuolella pitäisi olla mahdollista.

ASIASANAT:

pelisuunnittelu, pelikehitys, retro, GameMaker,

CONTENTS

GLOSSARY 6

1 INTRODUCTION 7

2 DESIGN SPECIFICATIONS 8

2.1 Triplane Turmoil 9

2.2 Modernization 10

2.3 New features 13

3 SOFTWARE ARCHITECTURE 15

3.1 GameMaker Studio 2 15

3.2 GameMaker Language + JSON 16

3.3 Development plan 16

4 IMPLEMENTATION 19

4.1 First Flight 19

4.2 Physics 19

4.3 Multiplayer 24

4.4 Player base mechanics 27

4.5 User-Interface or ‘UI’ 29

4.6 Miscellaneous gameplay mechanics 31

5 TESTING 33

5.1 Using AI for testing 33

5.2 Using humans for testing 35

5.3 Importance of different test hardware 37

5.4 Creating test data for analyzing 38

6 VALIDATION 41

6.1 Finalizing physics 41

6.2 Balancing gameplay 42

6.3 Events 43

7 EPILOGUE 45

7.1 Further development 45

7.2 Missing components 45

7.3 Final thoughts 45

REFERENCES 47

FIGURES

Figure 1. Multiple production cycles in a single product (Chandler 2014, 4) 17
Figure 2. Basic UML chart for menu paths. 29

IMAGES

Image 1. Triplane Turmoil 8
Image 2. Native resolution width difference 10
Image 3. Comparison of map height. 11
Image 4. Triplane Turmoil UI 12
Image 5. Papers, please! 13
Image 6. Prototype ready. 19
Image 7. Parent object of plane. 21
Image 8. Step event of plane parent object. 22
Image 9. Bombing the forest. 23
Image 10. Bomb trajectory. 24
Image 11. Emblems. 25
Image 12. Fly-through cave under a hill of anti-air guns. 25
Image 13. Basic skirmish modifiers. 26
Image 14. Cannon ranges; AAA left, AA-MG right. 28
Image 15. Hangar man "Butters" in action. 28
Image 16. hUI and pUI 30
Image 17. Butters on lunch break. 33
Image 18. Consistently rising memory usage curve indicates a leak. 34
Image 19. Outsourcing playtesting. 36
Image 20. "Google Golden Triangle by Amit Agarwal, on Flickr" 39
Image 21. Improved hangar UI 43

GLOSSARY

Asset Assets include everything from 3D models, sprites, sound
effects, code and anything that could be used inside the
game.

DOS Disk Operating System, initially released in 1981

Freeware Software that is distributed with no monetary cost, all
modifications are prohibited without permission.

Github.com A web-based hosting service for version control using Git. It
is mostly used for computer code.

GPLv3 General Public License, software released under GPL
usually includes all source-code and resources free-of-
charge and can be modified freely

Indie game A game that is published or produced with no outside
funding.

Shareware Proprietary software, which is initially free, and user are
encouraged to share it. Usually not having all the features
included/enabled.

Skirmish A term used in older games to describe a mode where
players battle against each other.

UI User interface, space where user interacts with the game.

Game engine a software development environment that can be used to
build video games for different platforms.

GMS GameMaker Studio, game engine developed by YoYo
Games Ltd.

GML GameMaker Language, programming language used
especially in GMS.

JSON JavaScript Object Notation, lightweight data-interchange
format. Easy for humans to read and write, Easy for
machines to parse and generate.

Memory leak A failure in a program to release discarded memory, causing
impaired performance or failure.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

1 INTRODUCTION

This thesis aims to overview the whole game design process from start to finish. As the

subject is very broad, each individual step will be briefly discussed, not delving too deep

into specific subjects or details about the process.

The client for this project is an indie game company called MansikkaMarmeladi.io, which

are developing a game called Triplane: Furball that is a remake of an old classic Finnish

indie game called Triplane Turmoil. A remake of a game means that the game is heavily

influenced by the original game but is a separate stand-alone product. The author of this

thesis works as the lead designer for the company and is also responsible for coding of

the game. Triplane: Furball takes place approximately in the WW1 era when triplanes

dominated the skies. The game features 4-player skirmish battles against AI and/or

human players and a difficult single-player campaign that should take at minimum 5

hours to complete. The gameplay purely consists of the dogfighting of these fighter

planes and the name of the game comes from aviation slang where furball means "a

confused aerial engagement with multiple combatants".

The development process used in this thesis is a product of accumulated knowledge

from various sources like online videos, talks and from overall experience about games,

more than depending on set rules or actual written theory. The thesis will be reviewing

the steps taken in the design process and comparing these to the set guidelines and the

common practices that are used by the game industry.

This thesis will examine some very specific and most interesting problems encountered

during the development process and how these could be solved. Some of the problems

are common in the sense that they could be encountered in any game development

process and some only apply to this specific project.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

2 DESIGN SPECIFICATIONS

When designing a remake, nostalgia can be one’s best friend and worst enemy. The

feeling of nostalgia can be deceitful for those who experience familiarity with the product

as this can trigger emotions and feelings that accompany these feelings that could lead

to the product not feeling as good as the original used to. It is essential to take the needs

of modern audience into account and use them together with the feelings that raise

familiarity.

The goal of this thesis is to design a game that gives the player that familiar feel of

nostalgia and keep the game fresh and interesting for the modern player. A DOS game

called Triplane Turmoil (Image 1) will be used as the basis for the overall design and

keep the key gameplay elements that made Triplane Turmoil the game it is. A strong

trend of re-releasing old games can be observed in today’s game market. Crash

Bandicoot Trilogy is one the most recent examples of this trend. The team behind this

launch Vicarious Visions only created new high-definition assets and released the game

on all the main platforms and became an instant success overnight, selling millions of

copies. (forbes.com – Crash Bandicoot).

Image 1. Triplane Turmoil

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

While this method of game design can be lucrative, work in this thesis aims for more

originality in the product by taking a game that was made 20 years ago, modernizing the

core concept and adding new features. At the end of the project, the game should have

something familiar to those who know the original Triplane Turmoil and something fresh

for those who are experiencing Triplane: Furball for the first time ever.

2.1 Triplane Turmoil

Triplane Turmoil was released in 1996 for DOS by Finnish game studio Dodekaedron

Software. Triplane Turmoil featured a 4-player deathmatch against AI or PVP and a hefty

single-player campaign mode. The game was originally released as shareware for the

price of 100FIM equivalent to roughly 20€ today. Triplane Turmoil was later released as

freeware and in 2009 Dodekaedron Software released Triplane Turmoil under GPLv3

license and it is currently hosted on github.com and is still somewhat actively updated.

(github.com - Triplane Turmoil).

The events of Triplane Turmoil take place sometime during the WW1 era. The game

features 4 feuding countries: Finland, Germany, Japan and the United Kingdom. The

story mode consists of 4 different campaigns, one for each country with 6 missions each,

totaling for 24 missions. The deathmatch mode is also known as skirmish, where

maximum of 4-players can battle against each other or AI-controlled planes in 6 different

maps. Each map features a base which is usually defended by anti-air cannons, machine

gun turrets and patrolling infantry.

The most memorable element from the game was the cheery military marching music

that was used as the main theme for the game and each country also had its own

modulated version when playing the campaign. The music was composed by Markku

Rankala aka ‘Dragst’ who worked for Dodekaedron Software. Everyone who has ever

played the game can imagine the theme currently playing. The second unique feature

was how the skirmish mode was laid out in three screens or planes in top of each other.

When the plane would fly out from the top right edge of the map, it would re-appear from

the left center edge etc. At the time this was extraordinary to see the whole map on the

screen and how the players could make strategic decisions based on the information

gathered from the available view.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

2.2 Modernization

The re-designed game should appeal to both larger target groups, the modern players

that never played the original Triplane Turmoil and the nostalgic players who have

previous experience. The design is focused on improving and adding on the following

key elements:

a) Fast-paced combat

b) Eventful gameplay

c) Easy-to-use main menu

d) Intuitive in-game UI

e) Modern retro visuals

f) Unforgettable soundtrack

Fast-paced combat

Players today have accustomed themselves to fast feeling gameplay, compared to the

old games which can feel sluggish and slow-paced. The resolution available in monitors

today are a multitude of the DOS era monitors and with increased computational power,

games have just become smoother and faster experience overall. Because of the

increased resolution, game world can be made much larger and wider than the original

had. (Image 2.)

Image 2. Native resolution width difference

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Creating larger sprites ensures that players who want to play the game from their huge

65" TV screens can also see where they are flying compared to the original DOS game

which never had to be designed to be played in a living room. The original plane sprite

is 20x20 pixels in size. A plane sprite of 36x36 pixels is used in this game to ensure the

visibility of the sprite. The original game map was able to vertically fit about 7 planes

whereas the new re-designed map can only fit about 4 planes (Image 3). To compensate

for wider and lower map sizes, the planes need to have more speed added to keep the

gameplay feeling fast and for the players to be quickly able to fly to the opposite ends of

the map. The agility of the planes had to be increased so the players can control the

plane that has greater speed. This results the gameplay to be very intense as the space

is limited and decisions need to be made swiftly when players are in a combat situation.

Image 3. Comparison of map height.

New UI

The original UI is very clunky and hard to use for those unfamiliar with it (Image 4). While

it had its good side or maybe just a golden memory from the days of being young and

adventurous, it was hard to navigate and would sometimes function illogically, for

example when setting up the controls for the player, then selecting that player in skirmish

and finding that the controls will not work. This was because each plane controls had to

be set separately in a controller menu specific to skirmish and the controls set for

individual player would only work in solo mode play.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Image 4. Triplane Turmoil UI

The old UI can be used as a good reference image for the style of the new design.

Because modern hardware does not have the limitations of color or resolution, designing

a good-looking UI is much easier. A modern UI should use elements which the players

are already familiar with, to make it intuitive and easy-to-use, for example, the concept

of buttons and how they function or if a box looks like it can be toggled, then it should

also function that way.

When designing the menu, it is important to take in to account the living room element

and to ensure a good user experience when the player is using a gamepad only. Buttons

need to be drawn large enough to be read from two meters away and the whole menu

(and the game) must work without the need to use a mouse for navigation. Menu paths

should be simple, and elements must have clear visual feedback when they are selected

and when then they are not. A well-designed UI makes the game experience feel

polished and players not feeling frustrated.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Graphical style

The art style should remind of the original game, while bringing modern elements and

effects to the table and modernizing the overall visual style. This can be achieved, for

example, by adding particle effects to visualize the game and therefore lessening the

need for hand-drawing animations and effects used.

The graphical style will be drawing from the WW1 -era and games that take place during

that era, keeping away from pastel-toned colors and keeping the style more dark and

serious. The Medal of Honor series and Papers, please! are great examples of the style

this game aims to emulate (Image 5).

Image 5. Papers, please!

2.3 New features

The intention is to make the game look like itself and not just something that was remade

by copying all the assets from the original and writing some code. Every asset for the

game will be made from scratch to fit the need and visual style, only keeping the look

and feel of the original game. The original game featured 6 skirmish maps and one of

these maps is re-drawn and featured as homage to the original game, also adding 5

totally new skirmish maps and a completely new single-player campaign, featuring 4

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

different personal stories and the story progression is designed for the players to feel the

weight of the war.

The skirmish mode will have added mutators which can be unlocked by playing the story.

Mutators are options that can be toggled to alter the PVP-gameplay in a multiple of

different ways; for instance, removing the gravity all together, switching all plane bullets

to bombs, making all machine gun turrets artillery cannons, having an AI wingman to

help the players in the fight, kill streak bonuses and similar features.

During the ongoing development of a game, there are moments that produce ideas and

improvements that could make the game play better, look better or add impressive

features. This is called a ‘feature creep’ that will prolong the ongoing development when

the team is deviating from the original plan. Making a solid design plan and following it

from the start will help the game to become released and all those great ideas that come

up during development can be saved for upcoming titles. As such, the original Triplane

Turmoil was a solid game back in its days even with its flaws, so taking the set changes

and keeping the core mechanics will avoid the feature creep while keeping originality for

this new game.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

3 SOFTWARE ARCHITECTURE

Creating games today is easier than ever. One does not really need any special skills or

traits to do so. Just download the selected game engine and start hacking the game

together. Internet is full of free assets, everything from art, sounds to complete games

with source code included. Engines like Unity make it so easy that one does not even

need to write code, just using a mouse to drag some 'blocks' around, glue some graphic

assets on top and you have ready-to-ship game. Well in theory at least.

It is true that the barrier for entry is lower than ever and almost all the mainstream engines

having large and helpful communities beside them; new aspiring developers create more

games than ever before. This creates another problem of market saturation, while it is

easy to start developing a game; it will be considerably harder to get it finished and even

harder to get it seen by the potential customers. This is the part where one's maturity as

a developer plays a big part and how the game is going to turn out.

3.1 GameMaker Studio 2

From the sea of engines, the one that stand out the most was GameMaker Studio 2 or

'GMS' in short. Developed by YoYo Games Ltd. initially released in 1999 and it has a

superior track record with 2D games. (gamesindustry.biz - YoYo Games). GMS is also

very affordable for small indie developers and with a free trial version that is more than

enough to get one started in game development.

The main selling point for it was its usability and easy-to-learn interface. GameMaker

being out there for so long it has gathered a big and active community with healthy

amount of tutorial videos varying from beginner to advanced topics.

Comparing GMS to other similar engines like Godot, pygame and Construct and other

2D engines, (websitetooltester.com - comparing 2D engines) GMS felt like the most

mature one and one with the ability to expand infinitely when knowledge of the engine

increases. GMS can be used to compile your game to pure C++ and supports all the

major platforms PC, MAC, Linux, HTML5, Playstation, XBOX, iOS and Android with

Nintendo Switch support coming later this year.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

3.2 GameMaker Language + JSON

However, biggest thing about choosing GMS over other engines was the programming

language it uses. GML or GameMaker Language is derivate from C++, heavily modified

one but as C++ syntax and programming paradigms were already familiar, the choice

was made easy.

GML is friendlier when it comes to typing the language; there is no need to declare

variables, memory allocation is much simpler, almost to a fault as GML does offer limited

capabilities when memory management is in question.

There are some added constructs such as the 'with' block. (GML Manual - 'with') 'With'

can be used to directly address 'objects' and change values in them. In C++ this would

be generally be done by referencing the instance of that class and changing the value

where ever it was referenced. GML allows lots of these types of shortcuts to make things

little easier at the cost of complexity.

The ease of writing and non-typed architecture makes GML at times feel like a scripted

language i.e. Python. GML also has built in data structures that resemble arrays but

instead of allocating a certain amount of memory at run time are dynamic in nature. (GML

Manual - Data structures) They are generally faster to manipulate with the cost of more

memory usage. Data structures in GML can be also be imported and exported from and

to JSON with building functions. This can be very helpful when the need of external files

like a save game or hi-score lists are needed.

JSON itself is language-independent interchangeable data format for transmitting text

from one place to another. With common usage and universal support for almost

anything it is superior language to transmit human readable data over software

application limits.

3.3 Development plan

Creating milestones is important part for the sense of advancement during development.

While keeping all involved motivated when achieving these milestones, they're also

important for scheduling the project. (Chandler 2013, 7.)

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Rather than building discrete components and adding them together in the end, focus

will be developing components than can be built on and added together during the

development process creating a complete product.

First starting from a quick prototype with the plane and the basic mechanics like flying,

turning, rolling the plane, then landing on a pad, adding the hangar where to 'roll in' and

creating the hangar man to push player in and out. Bit by bit when building these

components and adding on; product can be called a game or first playable prototype at

least.

Figure 1. Multiple production cycles in a single product (Chandler 2014, 4)

After the basics have been implemented, project can move to larger complexities like

building the maps, creating the menus, multiplayer, enemy planes and the rest of needed

components. Iterating the same basic principle that can be seen in in Figure 1 for each

individual component, each component can also be set as a milestone. Keeping the

components small enough or chopping them to smaller milestones will make the

workload also feel smaller and make the work easier to deal with in example doing the

whole menu, its layouts and functions in one go. As the task is enormous, it would be

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

very hard to work on and keep motivated. Instead chopping it in smaller individual task

and creating milestones like in the example below keeps work much more manageable.

1. Menu design

2. Menu layout with placeholders

3. Menu functions

4. Individual menu location as separate milestones

5. Bigger menu items can be chopper to sub-milestones

5.1. Options Menu layout

5.2. Options menu function

5.3. Options/Audio menu layout

5.4. Options/Audio menu function

Manageability is a key, and this creates a natural way to break the work load and switch

between different tasks. As production moves on, it becomes much easier to estimate

the time it takes to complete something and to create these different milestones. Change

of scenery also works in development, doing small task and switching between larger

complexities keeps the work interesting through long development cycles.

Planning everything step-by-step and creating a path that must be walked exactly during

development is either smart or good for developing a game.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

4 IMPLEMENTATION

4.1 First Flight

The work started by borrowing the plane model from the original Triplane Turmoil,

importing the sprite to GMS and creating base for the whole game. At this point there are

no plans to future proof the code or making any elegant solutions, idea is just to start

creating something that can be built on later.

Making the plane move on screen when arrow keys are pressed is simple enough,

adding gravity, making the background blue to imitate sky and in under an hour the first

working prototype is ready.

Adding a landing strip with a placeholder hangar, little collision system so the plane can

land on the strip and 'Butters' the hangar man to just stand there, the landing strip is

looking crowded already (Image 6).

Image 6. Prototype ready.

4.2 Physics

GMS has a readymade physics engine for beginning developers and quick prototyping

but to gain as much control over the engine as possible, creating a dedicated physics

engine in GMS to handle the needs of the game without the game engine itself limiting

development.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

In games real physics are rarely used and this was the case in this project also. Flying

planes had to 'feel good' but not be limited by real-world rules. More than that not every

object needs to have physics attached, so creating the engine was more done in a case-

by-case basis and not as a global force affecting everything.

Planes

Planes need to be able to act like planes do; stalling, accelerate over max speed when

flying down with throttle, glide without throttle, gain speed when gliding downwards, able

to lose speed when gaining altitude, spin, roll, turn and all the other aerial maneuvers.

The key mechanic in the game is that all the planes are different; they each have different

weaknesses and strengths, so the flow and the dynamics are based around finding what

strategy best suits the current situation in battle. All this needs to be considered when

creating the physics for the plane, to avoid writing boilerplate code and to make fiddling

plane stats easier when changes are wanted.

Creating a parent object that handles all those things mentioned above and more so that

when a child object is created it will inherit all those properties from the parent. Making

unique children this way is not that more difficult as the child will inherit the base stats

and then with some set flags customize how the child is created. For example physics

code is shared with every instance or object of type 'plane' and all different plane stats

are in the parent object, when creating the child plane that is a different type of ‘plane’ it

inherits the physics and the stats for that type of ‘plane’ (Image 7).

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Image 7. Parent object of plane.

Writing a good collision system is the most important part of the physics engine, as all

the planes need to react somehow with the world and objects around them. So, all the

collision code that the plane object itself needs is written in the parent object, like

everything else (Image 8).

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Image 8. Step event of plane parent object.

What happens when plane touches another plane? When the plane hits the ground?

How about flying too high or over the sides of the map; landing, gets hit by a bullet or a

bomb? Everything needs to have a collision event, in principle it works by checking every

frame if something has happened. GMS has a very good collision system built-in, so it is

just a matter of design and coding how everything works and is handled. Famous

scientist once said, "for every action, there is an equal and opposite reaction", in this

case the latter is mostly true as this game does not need to obey the laws of physics.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Image 9. Bombing the forest.

Bomb

Bombs are the other piece of the puzzle being the second mechanic that makes the

game fun (Image 9). Getting the physics right was a priority so you would always feel a

little chuckle when dropping one. Carrying more bombs adds weight to the plane making

it heavier and cumbersome to fly. Players are needed to balance between agility and

ability to suit their playing styles.

When designing bomb physics the goal was maximum fun, so there is very little drag

added which results that they can be thrown almost half of the map length if done right.

This creates moments of chaos and confusion as random player thrown artillery barrage

of bombs will hit the base of opposite player (Image 10).

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Image 10. Bomb trajectory.

Bombs of course also need their own collision events and as they destroy almost

everything they touch and not just planes, similar decision was made with bomb collision

as with plane collisions. Only thing that directly affect bombs like destroying them in mid-

air would be handled in bomb code and everything else that is affected by bombs are

handled in their own parent objects. For example, destroying another plane with a bomb,

collision event would be handled in the parent event of the plane not the bombs. This

eliminates the need for writing the boilerplate again by not handling every kind of parent

object in the actual bomb code itself.

4.3 Multiplayer

With the basic mechanics implemented multiplayer component is ready to be built. Total

of 4 players (human or AI controlled) can play against each other or fight in teams of 2

or 3. Each player controls 1 of the 4 sides available conveniently named after the color

it represents; Orange, Blue, Green and Yellow. In the original game Triplane Turmoil

each side was named after a country represented by its main colors and flag. A choice

was made not to identify these different sides by name or a country or come up with any

made-up country names or their back stories. However unique emblems for each side

was created, which are more like a coat-of-arms than a flag for a country. This will help

players to identify with the set aside more than just a color would (Image 11).

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Image 11. Emblems.

After all players have picked their sides, they can choose the theater for battle. There

are 6 unique theaters to choose from that each have their own unique elements, location

and theme to make the battles play out differently and vary the player experience.

Placements of the bases and their air defenses make the most difference. Some theaters

feature unique elements (Image 12) like land forces battling each other and taking over

the enemy base or in the desert theater there is huge rock formations where a player

can hide behind and make a tactical strike to the unsuspecting victim or hirs base.

Image 12. Fly-through cave under a hill of anti-air guns.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Multiplayer features three different modes to choose from; kills, lives and scores. When

playing for kills, a point limit is set and the player who first reaches the set limit by killing

other players wins the game. In lives mode point limit sets the amount of lives each player

has and when the lives run out hir is out of the game. Last man standing wins. Playing

for scores players rack up points by bombing enemy base, killing enemy troopers and

destroying enemy planes, first one to reach the set point limit wins the game. Fourth

option is an unlimited game that only the game host can end manually.

Players also have lots of modifiers to choose from to make games more interesting. The

basic ones include but not limited to; unlimited ammo, unlimited gas, disable infantry,

disable AAA and similar modifiers (Image 13). There is also included some special

modifiers like making all machine gun ammo from planes change to bombs, adding a fog

of war so no one can see what’s happening on ground level, disable gravity, disable

gravity for bombs only, troopers shoot mortars instead of bullets and similar modifiers.

These special modifiers can only be unlocked by playing the campaign mode and are

awarded when players reach certain checkpoints in the campaign or doing special tasks

like flying from one end of the map to another with only one unit of petrol. Playing the

game rewards, the player and breaks the normal gameplay-loop while also adding more

gameplay elements that should add some longevity to the overall life of the game.

Image 13. Basic skirmish modifiers.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

4.4 Player base mechanics

Each player starts the battle from their respective bases. In addition to airfield and

hangar, base usually contains at least two anti-aircraft weapons, machine gun turret,

artillery gun, barracks that can spawn infantry and a control tower. Control tower is the

only one that does not have any additional functionality other than providing points when

destroyed in score limit game in skirmish mode.

Barracks

Barracks spawns a limited number of infantry to help in base defenses and in some maps

and campaign missions to take over enemy bases and AA-weapons. When a trooper

walks over enemy controlled AA-weapon it captures it to fight in their side until destroyed.

This creates the need for player in certain situations to defend against enemy infantry.

After a trooper is killed it spawns after some time has passed. Destroying the barracks

stops the spawning of infantry and barracks does not re-spawn during the game.

Anti-air

Anti-air weapons are players’ worst enemy and best friend, designing them not to be too

accurate so that players would not feel them to be too unfair. Still for inexperienced pilots

AA can prove to be a challenge. When in a furball over enemy territory, dodging the AA

fire can become a real challenge even for the experienced pilot, so the fight is better take

elsewhere. AA-MG can fire almost 180 degrees and have no height limitations on how

low they start shooting. AAA has a bit lower range of motion but can shoot far greater

distances and can’t shoot targets that fly below certain limit (Image 14). They start

tracking the target early, so it should give up player a little heads up that they are soon

going to be under fire. However, it is usually too late if player passes that point and is not

ready for it. AA-weapons re-spawn after some time when destroyed; this keeps the

battlefield active and always full of danger. Re-spawning can be toggled off in the

modifier menu.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Image 14. Cannon ranges; AAA left, AA-MG right.

Hangar

Hangar is the place where player spawns from, after death there is a little timer that

delays the time when player can spawn back in to the game. Amount of carried bombs,

ammo and fuel can be changed in the hangar menu before spawning in to the battlefield.

Your helpful mechanic will push you on to the tarmac and you can take off. If player takes

damage in battle and manages to land in his own base, player can call the mechanic to

push the plane back in for safety, repairs and reloading ammunition and fueling up the

plane (Image 15).

Image 15. Hangar man "Butters" in action.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

4.5 User-Interface or ‘UI’

Players need to able to navigate through the game as much ease as possible, both in-

game and off-game. Off-game meaning the interface that player is first greeted when

starting the game aka 'Main Menu' and in-game interface meaning the things player

needs to interact while playing the actual game aka 'HUD' or Heads-Up Display.

Main Menu was designed to look like a binder notebook; this had the unpleasant effect

to unnecessary limit the space there was to use for menu items which made it somewhat

crowded in locations in the menu. The goal was to keep menu paths as short as possible

to reduce the need to go back and forth between things and for player to be able to get

to in-game mode as quickly as possible. Before the addition of quickplay-button (1-click

from menu), through skirmish menu it takes 2-clicks to get to in-game without making

any changes to game setup (Figure 2).

Figure 2. Basic UML chart for menu paths.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Quickplay button is a great way to introduce new players to the game. It is located

conveniently on the upper left middle in the menu and the red color makes it catch your

eye. It takes the player instantly to a balanced game with AI to get a quick glimpse of

game mechanics, how things work and if they like the game or not. The first five minutes

with a new player to the game are the most important ones and UI experience takes a

big chunk from that short time span. (gamasutra, extra credits).

Everything is also made navigable with a controller only to support "TV-only", forcing the

player to have a mouse for navigation would make the experience not-so-enjoyable.

Having full controller support throughout the game also makes porting to consoles much

easier job if that comes in question later in the games life cycle.

In-game interface (hUi) or the 'hangar User-interface' is where player can setup the

number of bombs, ammunition and petrol for the plane before taking off. HUi consist of

3 vertical bars and each bar represents one unit of a type. Same icons are used in the

player User-interface or ‘pUi’ to show the status of units and are only visible when

consuming a type of thing like dropping a bomb or using enough petrol (Image 16).

Making hUi floating above hangar and pUi following the player and being visible only

short periods of time, this gives more space to fill the in-game room with more visually

appealing content and the makes the actual interfaces less-intrusive.

Image 16. hUI and pUI

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

4.6 Miscellaneous gameplay mechanics

AI

AI was designated to be a worthy opponent for players and to have different behavioral

traits to accomplice different goals. This lessens to need to script AI planes in solo

missions where the normal "seek & destroy enemy planes" is secondary and something

else like "protect object x" is the primary objective. The base for the games AI was done

by Sallamari Rantanen as a part of her thesis. (Rantanen, 2017)

Particles

Particles are created using the built-in particle engine in GML but to optimize the draw

pipeline, memory usage and visual effects; custom particle sprites were created. This

gives a lot more control about the look of effect. This enables the creation of all kinds of

explosions, debris, smoke and weather effects that are more suited to the needs and

visual style of this game.

Dynamic backgrounds

Dynamic backgrounds are designed to make the game world unique for every map. In

addition to the random weather effects mentioned earlier, the background system can

spawn different elements each time a session is started. This includes a random amount

of clouds moving at different speeds, randomized color for the sky that gives the feeling

of different times in a day, background elements like mountains or villages depending

which map the player is currently playing and similar effects.

Audio

Sound and music generate the overall feel and the atmosphere of the game. The main

track is the one player hears when starting the game. This cheery military march style

track should give the feeling of lighthearted humor and fun. Another main track is the one

player hears when starting the solo campaign. The campaign is set to be 24 missions’

long starts with this uplifting 'ready-for-war' styled hi-tempo marching music but when the

player makes progress through the campaign the same track is modulated and changed

to sound a lot gloomier and depressing. In the end when player reaches the final stages

of the long campaign the weight of the war should really be heard from the music alone.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

There is no in-game music track as all the sounds of reloading, gun fire, bombing and

the occasional scream of terror really set the feel for theatre of war.

Environment

Destructible environment makes the play-field show that a battle is being fought. Trees

catching fire, buildings getting destroyed, smoke and rubble everywhere; as the battles

go on, it was very important for the project that the battlefield would also show this

element. While not everything is destroyable and not catching on fire, creating these

elements that the players can destroy accidentally or on purpose creates a sense on

consequence and reaction to player actions.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

5 TESTING

As the subject of testing is very broad and could hold a thesis on its own, this section

only overviews some of the methods that have been used and explains them briefly.

While also going into little more in-depth about some of the problems that have been

encountered and how they were solved.

5.1 Using AI for testing

It proved invaluable for the project having the AI planes flying around in a very early

stage of development. This created the possibility that everything developed that

somehow related in-game was able to be tested "on the fly". The AI also cheats as it can

act on information instantly rather than taking its time to think like humans would do. This

helped to find many rather weird bugs in the code that would only happen in very specific

situations. One bug that returned many times during the development was the hangar-

man Butters, who is always causing trouble (Image 17). Because AI player can generate

inputs much faster than human player, sometimes Butters would stay outside the hangar

"dancing" and refuse to go in. This would then spawn multiple instances of Butters when

a new plane was spawned, and this then creates a memory leak that after time will crash

the game because there would be n number of Butters dancing on the airfield.

Image 17. Butters on a lunch break.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Play testing

Stability and play testing was the main work for AI players. It was common during

development to leave AI battling against each other for multiple hours at a time to check

for the overall stability of the game. GMS has a somewhat good error system, so after a

crash happens, it will point the developer to the right direction from where to start looking

the reason for the crash. Doing these marathon test runs are also very good for checking

out memory leaks (Image 18). Sometimes the leak is so small that it is very hard to notice

using the GMS provided analytics and developer tools, so running the game while AI

plays the game for multitude of hours can enlarge these problems for easy detection.

Image 18. Consistently rising memory usage curve indicates a leak.

Infantry

Troopers, like every enemy object in the game have at least some kind of scripted AI like

behavior implemented. Troopers have their own behavioral scripts that make them act

when certain situation occurs, so after the basic trooper AI was implemented, testing

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

them was more overseeing an automated process than controlling anything. When

testing for a specific use-case in the trooper AI, manually controlling a plane and trying

to trigger that behavior was the fastest route to achieve results. Trooper AI had to be

completely autonomous when patrolling around the battlefield so the only way to achieve

this was to just let it test itself, while creating different test situations and taking notes on

how it would handle itself.

Anti-Air Defense

Cannons work with same principle of scripted AI like behavior and will always perform

the same way under a similar circumstance. It would have been possible to create

scripted events for planes to test certain situations repeatedly but during the

development there was never a big enough need to build a testing environment to quickly

create these scripts and have these specific test cases. Instead manually flying the

planes and testing cannon AI in different situations. With the help of AI assisted play

testing there is almost 100% certainty that the cannons work as intended. Having a kind

of fall back in the code when the AI script does not know what to do, resets itself and will

not break everything and crash the game, helps with those rare situations that can

sometimes occur when dealing with multiple planes coming in and out of cannon range

and dying in weird ways.

5.2 Using humans for testing

Throughout the development humans have been the projects greatest asset in testing

the game and getting that valuable feedback for what works and what does not. Mostly

the game was plaid by the main developing team, with almost in 1:1 ratio of play testing

and development hours. From the very first prototype, every change in code, minor

adjustment to gameplay to major gameplay modes, everything had to be tested. There

is a certain way how the game should feel, and what feels good and what doesn't, it is

easy to test and say if the change made is good or not. Also having multiple opinions on

a feature helps to shape it in the right direction as there is no need to trust single

developers’ abilities alone. After countless hours of testing and playing the game, ones’

opinion of the game and its mechanics can become little biased.

Outsourcing play testing and feature-testing to trusted partners gives unbiased feedback

on gameplay and mechanics. MansikkaMarmeladi.io has been regularly inviting them to

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

playtest the overall game and sometimes just single features. Not giving any hints or

tutoring how things work or what is to be expected to happen gives an opportunity to

learn by watching how real player would act. People that have been regularly used to

test gameplay are also very good giving feedback on how things feel compared to last

time they played the game. Addition to just testing the game, seeing someone enjoy the

game is a great test to the game itself and that it is fun to play (Image 19).

Testing the fun factor and stability of the game in larger scale, a demo was also released

that features 1 skirmish map playable with AI or human players. Demo did not give any

meaningful data that would have helped in the development or validation of the game.

This was kind of shame but expected. Demo was released in itch.io that is the go-to

place for indie developers to share their games. Problem was that the demo did not

attract enough audience to get a good amount of feedback about the game or how it

plays. Best feedback with new players was gathered during demo days and special

events that will be presented more widely later.

Image 19. Outsourcing playtesting.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

5.3 Importance of different test hardware

At the company’s disposal with minor modifications there are over 14 different kinds of

computers that vary greatly in performance, screen resolution, age and operating

system. This is a great resource to be able to test the game in-house without spending

time on gathering feedback on different types of guest-machines. Almost all the

computers are Windows machines from different eras from Windows 7 to Windows 10;

Windows is the main target platform for the game.

Benchmarking started very early on development. Low performance machines had the

ability to spot bottlenecks in the game very quickly and from there it was easy to set a

point of reference on how the game should be able to perform with low-end computers.

When the game grew larger and more complicated, the need for performance also grew

or at least this was expected. Further inspection of the code showed some poorly

optimized design choices which made the game run awful with those low-end machines.

The game is drawn only in 2D, so it should be able to run with pretty much anything that

has a decent modern not more than 10 years old integrated graphics card. If the user

has a dedicated GPU, game should be always performing well. With some optimization

and code refactoring, benchmarking was back on track.

During the development there was more problems related to low performance machines

than high performance machines but that does not mean high performance machines

passed without troubles. The game time or tick is based on a 60 frames-per-second

clock, so one tick is 1/60th of a second. This was the easiest way to build the game with

GMS engine. This means that if the game cannot achieve the desired 60-fps clock speed,

it will run slower. This is not as much a problem as if the game wants to run over the 60-

fps clock speed, this could be the case when user has a monitor capable refreshing the

screen over that 60-fps limit. Current gaming monitors can go up to 240Hz and luckily

company had 144Hz screen that could be used for testing. The problem occurs when

the game is forced to run in-sync with the desktop refresh rate, in this case 144Hz. So,

everything in the game world is 2.4 times faster. This problem could have been avoided

by building the game time based on actual time and the refresh rate of the user, but this

problem never occurred in the beginning of the project. GMS can deal with these

scenarios with the current system, but this needs the developer to be aware of the

problem first as GMS cannot handle this kind of problem automatically.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Sometimes weird, possibly hardware related problems have occurred in the test

machines. There was this very consistent problem with one of the laptops that every 30

seconds there would be a big lag spike that would halt the game completely for a few

moments and every 8 seconds a minor spike would occur. After the optimizations

mentioned above were implemented in the game, lag spikes were not so defining but still

occurring consistently and only with this one laptop. This was suspected to be caused

by graphical memory buffer running out of space or something related as it is happening

in consistent intervals, but this theory was never proven, or any evidence found even

with rigorous testing. It is plausible that this problem will come haunting after the release

with more test hardware available which means the buyers of the game.

The game is planned to be released on all three main platforms; Windows, Mac and

Linux. The problem with both Linux and Mac release is that each platform needs the

game to be compiled separately on the target platform, for the target platform. In short

this means that when compiling the game in a Windows machine, it cannot run in either

platform; Linux or Mac. With each platform come platform specific problems; like

controllers not recognizing correctly or the code is running in wrong order, so things will

not work as expected. There has not been any testing done on either system, so at this

point it is impossible to say if there are any problems but the safe bet would be definite

yes. With the limited resources available for the development, if running and testing the

game in either system turns out to be too much of a hassle, both version will skip the

initial release and will be adhered later.

5.4 Creating test data for analyzing

In web development it is common to use heat maps to gather data from the users using

the site. Heat map is drawn as an overlay for the site administrator that shows how the

users have interacted with the site, where the mouse cursor is and how it moves during

the visit and what content is clicked (Image 20). In game design heat maps can be used

to visualize different types of information, mostly to identify imbalances in the current

map or scenario. (Gamasutra - Balance and Flow maps). The principle works the same

way as with web development, user interacts with the game while the game collects the

data that can be later used for an example; heat maps.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

Image 20. "Google Golden Triangle by Amit Agarwal, on Flickr"

A modified version of the heat map principle was created that collects the location of the

plane and its color when it is killed. Variable that also gets the object that killed the plane

can also be attached to the data. This can be tracked during live gameplay by toggling

the option to draw colored crosses on the map in those locations where the deaths have

occurred, or while running a long test session with AI which gives an image with the map

that has the death locations drawn into it. This data can then be used to determine

multiple types of information.

When doing session with AI only, the heat map can show if a certain AI gets killed

multiple times in the same location. This can indicate a problem in the AI or just an issue

in level-design. If a human player gets killed multiple times in the same spot, then this

indicates that the problem is in level-design. For example, certain AA-gun can be placed

in such a way that AI and most human players cannot avoid it. This can lead to

unnecessary frustration with the player and that is the opposite of what the game is trying

to achieve. Solution would be to remove the AA-gun or just place it in a new location.

Data gathered from the deaths heat map can also be used with completely opposite

usage; to see places in the level that get no deaths at all. This could indicate a safe spot

for players to give some breathing room during a battle. Safe airspaces are generally

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

rare as the game is very fast paced and action tends to "seek the players" but levels with

parts where there is no AA insight tend to be bit safer. These spots also give the players

an opportunity to dogfight head-on where usually the pilot with superior skills wins the

fight.

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

6 VALIDATION

6.1 Finalizing physics

After countless hours spend playing the game, it never felt quite right. While the game

became familiar how it works and plays, there is always room for improvement.

Bombs 2.0

Bombs never felt quite right; there were some trick shots that were not possible with the

current physics system. For example, a trick when plane is angled upwards with low

medium speed then just at the last second pulling up, stalling the plane and throwing the

bomb 90 degrees upwards. When the plane is stalling it dives down and after player

recovers from the stall player should be able to fly under the bomb before it drops. This

was the sum of two things that needed adjustment to make things work as designed.

First adjusting the bomb fall gravity in downwards angle a bit lower, this makes it "hang

in the air". Second adjustment was increasing the gravity or fall speed when the plane is

stalling. As a result, the trick shot was working as designed and as a side-effect; bombs

got a little longer flight trajectory that increased the fun factor.

Speed 2.0

Speed of the planes also turned out to be slightly problematic, as the overall speed of

the planes was good but the low amount of drag and strong acceleration made things

slightly too fast. The amount of bombs each plane carried also did not affect enough in

overall stats of the plane. As an example, the blue plane that is the fastest one with

highest acceleration and can carry up to 3 bombs (max is 6), could climb almost vertically

with max load, meaning all bombs, ammo and fuel. Compared to the weakest powered

plane, the yellow plane with bomb capacity of 6 and lowest acceleration and max speed

it would only stall when trying climb vertically with max load. Both planes with their

minimum loads could climb vertically with ease and planes just do not do that. It should

work in a way that plane needs to build a small amount of speed by diving and then it

could climb vertically without stalling, heavier the load, less time it should be able to climb

before stalling. Tinkering with the weights and the effect it has on dragging the plane

somewhat fixed the issue, but because the blue plane is so fast it also the problem of

stopping the plane in time. With minimal load and pulling the plane up engine off, drag

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

could not affect it enough before the plane would hit "skyroof" that marks the top limit of

the map and makes the plane spin out of control to its death. This made turning the plane

insanely difficult in certain situations. Adding the amount of drag plane has on certain

ranges of upwards angle helped a lot with the issue.

All the adjustments affect more on the high-level player as they start to get a knack on

how the planes control, it will be interesting to see when there is a solid player-base and

those new high-level players start suggesting how planes should control. Now the

adjustments are based mostly off development teams’ own experiences and only a

fraction on gathered test data from play testers.

6.2 Balancing gameplay

To keep the gameplay fun for 4-players with different level of skill in a same multiplayer

match where all the planes behave and act complete different from each other is an

interesting challenge to say the least. Bombs were noticed to for being way too effective

method of destroying other planes and the planes machine gun would get very little

usage. This leads to matches being a bombing fest and not feeling like a dogfight game

it was intended.

The range of the machine gun was buffed on all the planes by hefty amount and also the

bullet travel speed was increased. After the change in a chase situation the chasing

player has a slim chance to get the kill even with the slowest plane when before the

bullets would have never reached the chased plane. This also makes jousting much

more interesting when players constantly need to evaluate the route of least damage in

certain combat situations with multiple threats. Bombs were accidentally made so that

you could destroy them in mid-air with machine gun and a decision was made to keep it

as a feature as this added another skill element in the game and eliminates some of the

cheap kills player could do with bombs.

All the planes have natural weakness to some plane and are strong against the other.

Like the blue/yellow pair; because the blue is so fast the yellow can never catch it if the

blue decides to flee but because the yellow can turn so quickly, and blue cannot, in the

right place like on a corner of the map yellow can obliterate blue at will. Tweaking all the

turn rates and speeds values of the planes has been an ongoing fight throughout the

development but with enough situational awareness and knowledge of the planes traits

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

a skilled pilot can win any fight. This is exceptionally important part when it comes to

high-level play. No one wants to lose because the plane is just under-powered against

one type of plane.

6.3 Events

The greatest platform to collect feedback and see the game performing in a real-life

situation has been the events the company has been attending, like demo days, meet-

ups and showrooms. Getting to see first-hand how people new to the game interact with

it, what features really work and how they take the game overall. Good example of a

problem that was encountered this way was how new players had a very hard time trying

to take-off with the yellow plane and usually ended up crashing it in the first few seconds.

This happened because planes start with all the maximum items they can carry and

because yellow plane can carry 6 bombs that make it very heavy and slow so taking-off

needs bit more fines. For developers and regular tester this was not a problem as they

were very used to mechanics and taking-off with heavy loads. Setting planes to start with

balanced loads and indicating with the ‘hUI’ that player can indeed load more to the plane

seemed to fix this issue well (Image 21).

Image 21. Improved hangar UI

Demo-days also showed the great potential game has, when a group of random people

can enjoy the game for an hour and even come back later for more. Human players also

tend twist the game mechanics to their limits that can reveal unintended mechanics. Like

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

how you can land the plane like a helicopter if correct set of moves is executed. These

high-level of play mechanics give sense of accomplishment to those who sink the hours

in and take the time to learn these tricks which in process adds more longevity to the

game.

The company attended the first public event in about five months of development time.

This gave the necessary feedback to see if the game has any potential at all and if it is

worth sinking in more development time. Now almost two years later and the launch

around the corner the answer was clear, the game really is fun to play.

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

7 EPILOGUE

7.1 Further development

As of writing this thesis the development of the game is still an ongoing process. There

is at least 5 months’ worth of work to be done before the game can be released. AI needs

more work the get it operating as intended in every scenario. For example, adding

scripted events and other programmable timelines to support the overall gameplay. The

progression system is not finished yet as the overall rank/level up mechanic needs to be

created and tested and design the time it takes the player to go from level 1 to max level.

The game also needs to be polished to look presentable and for capturing a larger

audience.

7.2 Missing components

The solo campaign mode has not been implemented at all at this point. The story has

been written and all the supporting elements are complete, for example designing the

levels and events and how the missions should play out. However, all the art assets need

to be drawn and the actual code to be written, one can just hope that the development

will not be encountering any major complications as the solo mode is a major part of the

whole experience.

7.3 Final thoughts

This game has been a major part of the author’s free time for a long time. One could

think that writing this last chapter should be easy after thousands of hours spend on

design and actual development time of the game, but it is hard to reflect on it. The

development of this game has had multiple long breaks, writing this thesis was the

second longest time for the author have taken off from developing the game and only

time the author has opened the editor was to take some screenshots of the game for this

thesis.

While game development has been strictly a hobby for the author, committing to a large

project like this one is not easy. It was never hoped that this game would become one of

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

those big titles that would make considerable sums of money. When first time really

committing to this project it was agreed that if breaking even not counting in the time that

has been put in, game would be deemed success. Even if this has been just a hobby,

after all the time spend it would be nice to see it bear some fruit also. However, as the

game industry is ever growing, and one really must fight for survival and visibility in this

flooded and saturated market, making any profit is mostly just a game of chance.

One lesson that was really learned during this time is that one should never start a game

company if one’s survival would depend on it. Only with financial freedom could a person

really think to work just in the game industry and not doing anything else as ones’ day

job. The authors respect goes out to the people who have made the name for themselves

in this competitive business.

The final product can be seen at the commissioning company’s official page.

(http://mansikkamarmeladi.io)

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Antti Oksman

REFERENCES

Chandler, H. 2013. The Game Production Handbook. USA: Jones & Bartlett Publishers.

forbes.com - Crash Bandicoot. Referenced 24.9.2018
https://www.forbes.com/sites/erikkain/2017/09/24/crash-bandicoot-n-sane-trilogy-has-sold-over-
2-5-million-copies-on-ps4/#2ff067625a70

Gamastura - Balance and Flow maps, Referenced 22.10.2018
https://www.gamasutra.com/view/news/125213/Opinion_Balance_and_Flow_Maps.php

gamesindustry.biz - YoYo Games. Referenced 25.9.2018
https://www.gamesindustry.biz/articles/2017-03-08-yoyo-games-our-competition-with-unity-is-
all-in-peoples-heads

gamesindustry.biz - YoYo Games. Referenced 25.9.2018
https://www.gamesindustry.biz/articles/2017-03-08-yoyo-games-our-competition-with-unity-is-
all-in-peoples-heads

github.com - Triplane Turmoil. Referenced 24.9.2018
https://github.com/vranki/triplane

GML Manual - Data structures. Referenced 26.9.2018
https://docs.yoyogames.com/source/dadiospice/002_reference/data%20structures/index.html

GML Manual - 'with'. Referenced 26.9.2018
https://docs.yoyogames.com/source/dadiospice/002_reference/001_gml%20language%20overv
iew/401_18_with.html

Google Golden Triangle by Amit Agarwal, on Flickr
https://www.flickr.com/photos/amit-agarwal/2052668047

Rantanen, S. 2017. AI for warplanes in a 2D side-scroller.
http://urn.fi/URN:NBN:fi:amk-2017091815174

websitetooltester.com - comparing 2D engines. Referenced 25.9.2018
https://www.websitetooltester.com/en/blog/best-game-engine/

https://www.forbes.com/sites/erikkain/2017/09/24/crash-bandicoot-n-sane-trilogy-has-sold-over-2-5-million-copies-on-ps4/#2ff067625a70
https://www.forbes.com/sites/erikkain/2017/09/24/crash-bandicoot-n-sane-trilogy-has-sold-over-2-5-million-copies-on-ps4/#2ff067625a70
https://www.gamasutra.com/view/news/125213/Opinion_Balance_and_Flow_Maps.php
https://www.gamesindustry.biz/articles/2017-03-08-yoyo-games-our-competition-with-unity-is-all-in-peoples-heads
https://www.gamesindustry.biz/articles/2017-03-08-yoyo-games-our-competition-with-unity-is-all-in-peoples-heads
https://www.gamesindustry.biz/articles/2017-03-08-yoyo-games-our-competition-with-unity-is-all-in-peoples-heads
https://www.gamesindustry.biz/articles/2017-03-08-yoyo-games-our-competition-with-unity-is-all-in-peoples-heads
https://github.com/vranki/triplane
https://docs.yoyogames.com/source/dadiospice/002_reference/data%20structures/index.html
https://docs.yoyogames.com/source/dadiospice/002_reference/001_gml%20language%20overview/401_18_with.html
https://docs.yoyogames.com/source/dadiospice/002_reference/001_gml%20language%20overview/401_18_with.html
https://www.flickr.com/photos/amit-agarwal/2052668047
http://urn.fi/URN:NBN:fi:amk-2017091815174
https://www.websitetooltester.com/en/blog/best-game-engine/

