

KARELIA UNIVERSITY OF APPLIED SCIENCES
Information Technology

Jesse Varis

AUTOMATING PROCESSES IN WEB-INTERFACES WITH
ROBOTIC PROCESS AUTOMATION

Thesis
December 2018

THESIS

NOVEMBER 2018

Information Technology

Tikkarinne 9

80200 JOENSUU

FINLAND

+ 358 13 260 600

Author (s)

Jesse Varis

Title

Automating processes in web-interfaces with Robotic Process Automation

Abstract

The primary goal of this thesis was to explore the automation of processes in web-based
systems with Robotic Process Automation, a relatively new technology for the
automation of repetitive and rules-based business processes. With the wide adoption of
web-based systems and the recent surge of Robotic Process Automation in process
automation, the combination of the two is a topical and an interesting subject to study.

This thesis comprises of two parts. The first focuses on the theory of Robotic Process
Automation and the available solutions in general, as well as through the lens of web-
applications. The second part defines use cases for Robotic Process Automation in two
different web-applications and goes through the implementation as well as testing
phases for the automation of these processes.

This thesis gives the reader a general idea of what Robotic Process Automation is, what
it can be used for, and what it looks like in practice when applied to web-based
processes.

Language

English

Pages 33

Keywords

Robotic Process Automation, UiPath

Table of contents

1 Introduction .. 6

2 Robotic Process Automation .. 7

2.1 Benefits .. 9

2.2 Capabilities and ideal processes ... 10

2.3 RPA in web-applications .. 11

3 RPA Tools .. 13

3.1 UiPath .. 14

3.1.1 UiPath Studio ... 15

3.1.2 UiPath Selectors .. 16

4 Use cases .. 17

4.1 Use case one: Moodle ... 18

4.1.1 Implementation and process flow .. 20

4.1.2 Problems and solutions ... 22

4.2 Use case two: Data scraping from YTJ .. 25

4.2.1 Implementation and process flow .. 26

4.2.2 Problems and solutions ... 27

5 Testing and results... 28

5.1 Case one: Moodle .. 28

5.2 Case two: Data scraping from YTJ .. 29

6 Conclusion ... 31

References.. 33

Abbreviations and terms

.Net Framework Software development framework by

Microsoft that is used to build applications

that run on Windows Platform.

AI Artificial Intelligence

API Application Programming Interface, a

definition of a set of rules or methods that

allow software to access the features or

data of an application.

CRM system Customer-relation management system, a

system used for storage and handling of

customer data.

GUI Graphical User Interface, the graphical

component of a system, or a web page in

the context of this thesis.

HTML Hypertext Markup Language, the standard

markup language for web pages.

Microsoft Workflow Foundation A Microsoft technology that provides an

API, an in-process engine, and a designer

for the implementation of processes as

workflows.

RPA Robotic Process Automation

Robot In the context of this thesis, Robot refers to

the software that executes the automated

processes.

VB.Net Visual Basic .Net, a programming

language on the .Net Framework.

XML Extensible Markup Language, a markup

language that is both human and machine

readable.

6

1 Introduction

The primary goal of this thesis is to explore the current capabilities and possible

challenges of automating processes in web interfaces using Robotic Process

Automation. With the wide adoption of web-based systems, a substantial part of

processes subject to automation involve manual work done in web interfaces.

With that and the recent surge of Robotic Process Automation in the automation

of business processes, this thesis aims to take a closer look at what automation

in these systems involves, what the current capabilities of Robotic Process

Automation tools are, and what problems may arise when making practical

implementations.

A secondary objective for this thesis is to give the reader a general idea of what

an RPA in practice is, and in a way that is easily readable and understandable.

When researching other theses about RPA I noticed that there are not that many

that focus on implementation on a more precise level. I feel that is a gap this

thesis can somewhat fill. In addition to that, RPA is something that is heavily

advertised as something not only for technical people, but for subject matter

expects interested in automating their own processes too, so I think writing this

thesis with that in mind is a good secondary goal.

This thesis comprises of two parts. The first focuses on the theory basis of RPA

as well as on the current RPA products available. This part considers the

elements of RPA in general, not only in web-applications. The second part is the

implementation and testing of two use cases for RPA in web-applications.

The structure of the thesis is as follows. It begins in chapter two by defining RPA,

its benefits, the ideal processes for it, and by exploring the use of RPA in web-

interfaces from a theoretical point of view. In chapter three, the current key

providers of RPA software are identified, and one is chosen for the practical part

of the thesis. The chosen application and its features are then presented in the

same chapter. Chapter four begins the practical part of the thesis by going

7

through the chosen cases for automation as well as their implementations. The

testing and results for the cases are in chapter five. Finally, chapter six ends the

thesis with conclusions.

It should be noted that as a fairly new industry, the literature of RPA is scarce and

often not credible enough to be cited. As such, some statements lacking sources

in this thesis are based on the experience and/or opinion of the author.

2 Robotic Process Automation

Robotic Process Automation, or RPA, is a relatively new technology for the

automation of business processes with a core focus on automating repetitive,

rules-based, and labor-intensive tasks. It consists of the creation and deployment

of software robots that can mimic human behavior in the user interface of

applications. This mimicked behavior can be things like data entry to forms or

data extraction from documents. In practice, tasks are automated by producing a

list of the actions performed in the task for the robot, and then letting the robot

perform the task by running back that list of actions.

Previously it might not have been possible or worthwhile to automate or improve

certain tasks because of constraints such as being stuck on old applications with

lacking APIs or upgrading to new systems being too expensive. RPA solutions

aim to make it possible to automate these tasks by modeling and configuring the

task for the robot to perform. APIs, changes to software, or changes to the

process itself are not required as the robot can perform the task in the graphical

user interface in the same way a human would.

One of the primary goals of RPA solution providers is to make the process of

building these robots as easy and fast as possible. That combined with the fact

that almost nothing in the process itself needs to be changed is a big selling point

for RPA as it lowers the barrier for entry on automating tasks and can lead to a

high return on investment. Some of the products and advertisements for RPA go

8

as far as to avoid the association with software development altogether and

advertise it as something anyone can do with very little training. That makes it

tempting for companies to retrain their subject matter experts to automate the

tasks in their own field. Whether retraining the workforce displaced by automation

to build robots is a good idea or not remains to be seen though.

In the recent years, RPA has been growing extremely fast, with some of the

solution providers raising hundreds of millions and reaching valuations in the

billions in their funding rounds (UiPath 2018a & Automation Anywhere 2018). Not

to mention that some of these providers have been in the business for only a

handful of years. According to Everest Group (2018), as a whole the global RPA

independent vendor market almost doubled to $480-510 million in 2017, and a

similar growth of 75-90% is expected for 2018. As for the adoption by businesses,

recent and accurate numbers are hard to find, but in a 2017 study by Deloitte,

53% of 400 businesses they polled had begun their RPA journey, and that

number is expected to rise to 72% by 2020 (Deloitte 2017). To get a rough idea

of how new RPA and the interest in it is, figure 1 shows a graph from Google

Trends that tracks the interest in it over time from 2012 to 2018. From the graph,

the start of the quick rise of RPA can be traced to somewhere in the beginning of

2015.

9

Figure 1. Interest over time in “Robotic Process Automation”, from Google

Trends

As for the technology itself, it is perhaps not as revolutionary as one might think,

since many of its features existed in automated testing software and screen

scraping technologies before RPA as a term was ever conceived (Arrow Digital

2018). What distinguishes RPA from its humble beginnings though is that it

packages all of that and much more into one solution that can automate in

practically any application.

Also, one slightly misled association that is often made is with RPA and intelligent

automation. On its own, RPA is not intelligent. RPA requires the process and its

rules to be completely defined and configured for the robot. The robots

themselves do not, for example, have the ability to learn. In the future though,

RPA will likely be combined with machine learning and AI solutions to automate

more complex processes. Some cases for this already exist, e.g. Hollard Group

combined RPA, machine learning, natural language processing, optical character

recognition and analytics to process their 1.5 million yearly insurance claims

(UiPath 2018i).

2.1 Benefits

The most obvious benefit of RPA is the monetary benefit of reducing labor costs

by moving tasks from humans to robots. The annual cost of a single robot in 2017

was from $5000 to $10000, which for the amount of work it can perform compared

to a human is relatively cheap (Forrester 2017). For optimal processes, the

potential return on investment is clearly huge. The price of a robot does not

consider other costs though, such as infrastructure, development or

maintenance. The robots need their own environments to run in, and someone

must build them as well as maintain them in case they break or the process

changes. For smaller companies, the costs could quickly catch up with the

savings gained through reducing labor costs, making some processes not qualify

for automation from a purely financial perspective.

10

Luckily, saving money is not the only benefit. Being software, the robots are much

faster than humans and they can work around the clock. This means they can

complete tasks in less time and whenever desired. Furthermore, they do not

make mistakes like a human would, because they perform the task exactly the

way they are configured to. All of this can massively improve the aspects of quality

and speed of completion in the process. For example, in case of a time sensitive

process the robot can run it during the night and have it completed before a

human would have even started working on it in the following morning. (AppliedAi,

2018b)

As all their actions can be logged and traced when needed, the robots are also

easier to monitor than humans. This can improve security and compliance. In

case of an error, the exact actions of a robot can be traced, and the location of

the problem found instantly, as opposed to trying to figure out what a human did

and when. Logs can also potentially provide higher quality analytics for the

processes, giving more insights in the overall quality of the process and the parts

of it that need further improvement. (AppliedAi, 2018b)

2.2 Capabilities and ideal processes

In the UI, robots should be able to perform practically any action that a human

can. Robots can navigate in systems, read structured data from interfaces, read

or write files, and so on. In addition to that, as it is software it can also do things

such as connect to APIs, read and write to databases, or execute complex

calculations.

What RPA on its own cannot do is essentially anything that requires human

judgement. Things like reading from unstructured data or improvising in case of

unknown exceptions. Unstructured data in practice can be, for example, a text

field with instructions written by a human that needs to be interpreted in order to

know how to continue in a process.

11

As for ideal processes, they are the ones that can be clearly defined down to a

set of rules, that have a lot of repetition, and that currently consume a lot of

manual human labor. Processes fulfilling those three requirements will most likely

lead to the biggest return on investment. It also helps if the process is as

straightforward as possible, since defining exceptions for a robot can get

laborious and therefore expensive. The process and the systems involved in it

should also be stable since changes to them also require changes to the robot,

which will in turn make the maintenance expensive. These are perhaps the most

important ones, but there are many other aspects to consider, such as the

strategic value of the process to the company, employee or customer satisfaction

gained from its automation, potential quality improvements, and so on.

(AppliedAi, 2018b)

2.3 RPA in web-applications

Like in any other application, RPA can perform in web-applications basically any

straightforward actions that a human can. To do that, it needs to be able to identify

the elements that it wants to interact with. For that, there are practically two

techniques. One is using image capturing and screen position, and the other is

identifying the element from the underlying structure of the application.

Image capturing in this context means using a previously saved image to identify

the position of an element on the screen and it is the inferior way as it only

considers the ‘where’ (on the screen) part of the equation. Knowing only the

position on the screen, actions are limited and e.g. scraping the text must be done

by manually copying it to the clipboard. When using image capturing, scraping

the text can become impossible in some cases as the elements can have text

that cannot be selected or the elements themselves can be completely hidden

from the view.

Much more can be done when identifying the individual elements straight from

the application structure, as the elements and their attributes can be directly

interacted with. For example, a text within them can be read or modified

12

programmatically. With web applications, accessing the underlying structure is

not a problem since they are opened and rendered in the browser. The standard

markup language that browsers read and render web pages from is HTML. To

put it simply, HTML consists of nested elements and their attributes. As HTML is

the standard and standardized, RPA solutions can use its attributes, among other

things, to uniquely and reliably identify elements in web-applications.

There are some things that could make web automation difficult though.

Obviously, web pages are not built with RPA in mind, and the underlying structure

can be a mess even if the page looks normal on the surface. The structure being

a mess or the page having been built badly can make identifying the elements

harder, or cause other unreliability issues. On the other hand, the page having

been built well does not mean that it benefits RPA either. A lot of modern pages

have e.g. dynamicity on the surface of the page as well as under it. On the

surface, things constantly moving or changing can complicate actions like clicking

on the elements. Under the surface, the elements or even whole segments of the

page can be dynamically created, meaning that all their attributes can be

dynamically generated as well. The elements being dynamic could make uniquely

identifying them harder, or in some cases impossible.

Some other things to consider with web-applications are updates and connection

reliability. With locally installed applications, you can control or at least know its

update schedule, and as it is locally installed, connecting to it is not a problem.

With web-applications, neither of these is guaranteed. In a worst-case scenario,

the update and maintenance schedule of the web-application used is completely

unknown as well as unreliable. Updates can cause huge problems as changes to

the page can change the elements or their attributes, which can break the

automation. The page unexpectedly going on a service break when the robot is

supposed to run will lead to an error and increased maintenance costs of the

robot as someone needs to check these errors. As for the connection, when

relying on connecting through the internet, it can be slow or not work at all, on

their end or on your end, which again can lead to errors.

13

With all that, the simpler the page the better. One could even say that the older

the page, the better. Old and simple web-pages do not usually have all the bells

and whistles of a modern web development causing issues and are instead static

as well as somewhat reliable. They are also more likely to lack the fancy

integration tools and APIs that would probably be utilized before resorting to RPA.

3 RPA Tools

There is quite a lot to choose from when it comes to RPA tools, as the offering

has grown fast along the business in the last few years. In June 2018, Forrester

counted 32 different product vendors in their report on the current RPA solution

providers (Forrester 2018). In addition to those with paid licensing models, free

and open source solutions have also started to emerge. For example, Robot

Framework, a Finnish open source test automation framework that expanded into

RPA in 2018 (Siili Solutions 2018).

In their report, comparing the RPA product offering, Forrester analyzed and

scored 15 of the 32 providers they deemed most significant, evaluating them on

30 different criteria. Based on their current offering and strategy, Forrester chose

UiPath, Automation Anywhere, and Blue Prism as the three leaders in the field.

The only one that came even close was WorkFusion, a solution that focuses on

AI. The results did not come as a surprise as UiPath, Automation Anywhere, and

Blue Prism are the ones that come up first in almost every context when

researching RPA. Out of the three, Forrester ultimately gave UiPath the best

score, while also giving it by far the best score in many of the technical aspects.

(Forrester 2018)

Besides the technical aspects, UiPath also demonstrates the most potential out

of the three leading RPA products. As can be seen from Figure 2, UiPath is

currently leading the pack, but a year earlier in the first quarter of 2017 when

Forrester made a similar report, UiPath was placed third with especially weak

market presence compared to the other two leaders. So, within a year it has

14

passed or at least caught up with the other two on seemingly all aspects.

(Forrester 2017)

Figure 2. Forrester’s 2018 comparison of RPA products

As the focus of this thesis is on exploring the current capabilities of RPA, I am

obviously picking the best solution for the practical part, or UiPath in this case.

UiPath also happens to offer the most extensive trial version out of the three, with

Automation Anywhere only having a 30-day trial, and Blue Prism not offering one

at all.

3.1 UiPath

UiPath, founded in 2005, is a software company originating from Romania that

specializes in RPA. They launched their first RPA product in 2013, after which

their business has been growing exponentially (UiPath 2018d). In the beginning

of 2018, they reported a growth in enterprise customers from one hundred to

15

seven hundred during the year 2017 (UiPath 2018a). After the first half of 2018,

that seven hundred had grown to over one thousand five hundred (UiPath 2018b).

In 2018, the company also reached a valuation of over $1,1 billion in their Series

B funding, where they raised $153 million (UiPath 2018a). And since that was not

enough, during the writing of this thesis UiPath held another funding round,

raising $225 million for a valuation of $2,9 billion (TechCrunch 2018).

Their flagship product is called UiPath platform. It consists of three components,

those being UiPath Studio, UiPath Robot, and UiPath Orchestrator. UiPath Studio

is the development environment where the automation workflows are built, UiPath

Robot is used to run the automations, and UiPath Orchestrator is used for

scheduling and monitoring the robots as well as providing analytics of them.

(UiPath 2018f & UiPath 2018g & UiPath 2018e)

UiPath offers a free trial version of their product, called UiPath Community

Edition. UiPath Community Edition includes all the functionalities of UiPath Studio

and UiPath Robot needed to build and execute robots. What it does not include

is local hosting of the Orchestrator, and instead offers an online version for testing

purposes. Orchestrator, however, is not needed in the scope of this thesis.

(UiPath, 2018c)

3.1.1 UiPath Studio

UiPath Studio is a visual development environment in which you build your

automations. It is built upon the Microsoft Workflow Foundation of the .Net

Framework and is based on the idea of building workflows made of sequential

programming steps called activities (Microsoft 2018). An activity is a step in the

workflow that in UiPath can be anything from a click to sending an email or

creating a file. All the programming functionality is contained within these

activities, for the purpose of keeping the workflows visual and easy to follow.

Hundreds of core activities are included in the UiPath Studio.

16

The building of workflows in the studio is done by dragging and dropping activities

from the sidebar and into the workflow. There are three types of workflows;

sequences, flow charts and state machines. Multiple activities are always

contained in a sequence, which is just a linear container for activities. An example

of a sequence containing activities can be seen in Figure 3. Activities and

sequences containing activities can then be used in flowcharts or state machines

for a more complex workflow logic.

Figure 3. UiPath Studio, with a sequence containing two click activities.

On the surface, UiPath Studio looks code free as the programming functionality

is contained within the activities. However, since it is built on the .Net Framework,

it allows the use of all VB.Net variable types in addition to their own, as well as

the usage of .Net functions when working with these variables within the activities.

The building and usage of custom-made activities as well as invoking of VB.Net

code in the workflow is also supported, in case the execution of a more complex

code is needed. All that allows practically as much depth as needed while keeping

the surface simple.

3.1.2 UiPath Selectors

17

What UiPath claims is the secret to their resilient core is “the selector”. Selectors

are a technology which UiPath developed years before entering the RPA market

(UiPath 2018e). A selector is a string of XML that UiPath activities use to identify

elements in applications. Basically, they are a collection of the attributes of an

element and its parents in the UI that can be used to uniquely identify that

element, so that actions like clicks can be performed on it. The selector

technology works on any application in the Windows ecosystem, not just web

applications. UiPath automatically generates selectors for activities, but they can

also be made manually and customized for more accuracy and robustness. An

example of a selector pointing to the search field in google.com can be seen in

Figure 4.

Figure 4: An example of a selector, pointing to the search field in google.com.

For selector customization, UiPath has a tool called UiExplorer that comes with

the studio. In it the elements can be inspected, and their selectors customized. It

also provides a visual tree of the application document object model, where the

elements can be searched and selected for selector creation. It is a useful tool as

the alternative would be inspecting the elements from the browser.

4 Use cases

When choosing the processes for the practical part of this thesis I wanted to have

ones that would demonstrate different use cases for RPA, as well as ones that

would be easy to understand and compare to real-world use cases. I also wanted

them to display the distinct task types for robots, those being data scraping and

data input.

18

For the implementation, there were a couple of options. Mainly, there was the

option of using UiPaths own project template called UiPath ReFramework,

which is provided with the studio. It is built on top of the transactional business

process template and uses the state machine layout for top level process flow.

It also has a couple of useful built-in things like error handling, project

initialization and configuration files, and credential fetching. With all that, it could

have been used for both the cases presented in this thesis.

However, to keep things simple, I did not use the template and opted to build

the projects from scratch instead. I did use the state machine layout, as it

seems to be what UiPath themselves prefer, and does offer some more

flexibility than a flowchart, which is the other option. How the state machine

works in UiPath is that there are states and transitions. The states have entry

and exit blocks where activities can be executed, and transitions are essentially

movements between the states. Multiple transitions can go in and out of states

and their condition is used to decide which one to follow. Activities can also be

inserted within the transitions if needed.

As for exception handling, it was done similarly to how it is done in the

ReFramework template, as in by using UiPath’s try-catch activity within the

states to encapsulate all the other activities and marking the error in a variable

in the catch block when one occurs. Transitions then check for that variable and

move to an appropriate state, e.g. the end step of the process in case of an

error.

4.1 Use case one: Moodle

The first use case is for the free and open source learning management system

Moodle. Moodle is widely used all around the world, claiming 138 million users

globally (Moodle 2018). That hopefully makes it a relatable and an easy to

understand example for most people. It also offers an easy local installation which

is ideal for a thesis as the use isn’t restricted in any way.

19

As for the process itself, I chose course creation as it is a simple but an easily

expandable example. A real-world case could be one where there is a large

number of courses in another learning management system that need to be

moved to Moodle, and straight up export and import is not supported. This is

where a robot could be configured to perform the manual labor of extracting the

courses, perhaps performing some parsing, and then creating the courses in

Moodle. At bare minimum it could involve creating the courses with the basic

information, or it could involve moving the course content, files, etc. as well.

For this thesis, I focused exclusively on the course creation part of that imaginary

process, as I mainly wanted this case to demonstrate data entry. All the needed

information for creating the courses is already provided for the robot in an Excel

file. The Excel file has a table format where courses are in rows. The row contains

basic information and topic names as well as topic content for four topics. An

example of the Excel is in Figure 5.

Figure 5. An example of the Excel used in the first case

With that, the process becomes a relatively simple one where the robot first reads

the Excel file, logs in to Moodle, and then creates a course for each row provided

in the Excel. A step by step representation of the process contains the following

steps:

1. Read the Excel file

2. Open and log in to Moodle

2.1. Navigate to site home page

2.2. Turn editing mode on

3. For each row in the Excel file

3.1. Click “Add new course”

3.2. Fill in the basic information (name, short name, summary)

3.3. Click “Save and display”

20

3.4. Click “Proceed to course content”

3.5. For each topic

3.5.1. Change the topic name

3.5.2. Open the topic content editor

3.5.3. Add the topic content

3.5.4. Save and return to course main page

3.6. Return to the site home page

4. Close Moodle

4.1.1 Implementation and process flow

To start with, the complete top-level process flow in a state machine can be

seen in Figure 6. The states are somewhat like the highest level in the step-by-

step description of the previous chapter. First, there is the “Init” state where the

robot reads the Excel file into a datatable variable within UiPath. Then there is

the “Login state” where it logs into Moodle, and the “Read Row” state where it

reads the next row in the datatable. If a row exists, the “Create course” state is

executed, and the robot creates the course in Moodle. If the creation is without

errors, it moves back to the “Read row” state. When the “Read row” state no

longer finds a new row, the robot transitions to the “End” state where the

browser is closed and the execution ends.

Error handling is done with the transitions that have the “Error” text as well as

the “Out of rows” one. In all of them except the one after the “Create course”

state, in case of an error the transition leads to the “End” state. If an error

occurs in the “Create course” state, the transition leads to the “Login” state

where the robot logs in to Moodle again and then continues the execution from

the next row. In a real-world scenario, the robot would probably also mark down

the courses that it failed to create, as well as other errors, and report those e.g.

by email.

21

Figure 6. Top-level process flow in a state machine for the first case

The activities that execute the actual actions required in each state, such as

clicks and typing text in the forms, are all contained within the states. I will not

go in detail about them, but a sample of what they look like in the “Create

course” state is provided in Figure 7.

22

Figure 7. Sample of the activities in the “Create Course” state

4.1.2 Problems and solutions

Even though Moodle is and looks fairly simple, there were multiple small things

that required alternate solutions to the obvious one, and ones that I noticed

could be unreliable in the long run. There were also some issues with the robot

being too fast in its execution.

Most notably, while adding the content to the course, there were a couple of

spots where completely reliable selectors could not be created, and less reliable

ones had to be used instead. This was mostly because Moodle creates four

empty topics to new courses by default, and the way they are built is very

similar to each other. For example, when adding content to the topics, the edit

dropdown for that topic section needs to be clicked before opening the page

with the content editor, and the way dropdowns are identified by Moodle seems

23

to be dynamic. An example of this with the edit dropdowns pointed out by purple

squares and their selectors added next to them can be seen in Figure 8.

Figure 8. A new Moodle course

The problem is not that the selectors do not work, but that the identifying part of

the element, or id in this case, seems to be dynamically created. For each drop

down, Moodle appears to use a similar id, but with an incrementing index at the

end. If that is the case, the selectors for these elements only work for as long as

new dropdowns do not appear on the page before the ones used, and when

they do the robot will either add the content on the wrong sections or fail as it

will try to open a section that does not exist.

As for how one could make a more robust solution in this situation, the search

from the page could be limited to the topic section that needs to be edited, so

only one dropdown is found. That can be done in UiPath with an activity called

Find Children. Find Children can be used to find the children or descendants of

a specified element based on a filter. With the topic section as the specified

element and the dropdown attributes in the filter, it only returns one element, the

dropdown element for that section, and that can then be used in the click

activity that opens the dropdown.

24

One smaller but slightly interesting thing was that the text could not be straight

up inserted into the text editor fields of Moodle (example in Figure 9). In this

process, there were text editor fields like that when adding the course summary

and topic contents. Basically, there are two ways of inserting text into fields in

UiPath, either with the “Set text” or “Type into” activities. “Set text” is instant as it

inserts the text into the text attribute of the element, and “Type into” types the

keystrokes as a human would. The text editor is probably built in a way that it

does not have the text attribute that “Set text” uses, so it does not work. “Type

into” does work but is in this case unusable as the course summary can be so

long that the robot will type the text into it for an unreasonably long time.

The most practical solution in this case was using hotkeys, or more precisely

copying the text into the clipboard and pasting it into the text field using the

ctrl+v hotkey. For both, UiPath has activities by default, so no VB.net code is

needed.

Figure 9. A text editor field in Moodle

Another even less significant thing was that when adding the topic names, it

seemed impossible to inspect the element where the topic name is written using

UiPath’s features. The selector that UiPath automatically created was not

suitable so it had to be edited, but as the field where the text is written into

disappears on basically any action that is not typing into it, UiExplorer was not

able to inspect it. In this case, I had to create the selector “manually”, as in by

inspecting the element in the browser and getting the attributes from there.

25

Apart from these things, there were not really any problems with the

implementation, and only a couple of things needed to be modified before

moving on to testing.

4.2 Use case two: Data scraping from YTJ

For the second process, I wanted a typical data scraping process. One where

data is searched, scraped and stored or sent somewhere. An example of a real-

world case similar to the process I am going to use here would be extracting

customer information from a CRM system for the purpose of moving it elsewhere.

This could be necessary, for example, when updating an old CRM system to a

new one, and if the old one did not provide APIs or other features for the

extraction of the data.

Data scraping itself is a very broad term and there are an infinite number of

different things you could extract from the web. The one I chose, though, is

scraping basic company information from YTJ, the Finnish business information

system. As an input, the robot will have a csv file with a list of business IDs. It will

perform a search on the business IDs on the YTJ website and scrape the

predetermined set of information for each company. The scraped information will

be stored in an Excel file. Step by step, the process will be as follows.

1. Read the csv file

2. Open “https://tietopalvelu.ytj.fi/” in the browser

3. For each row in the csv file

3.1. Search for the company

3.2. Select and open the company from search results

3.3. Scrape the following information

3.3.1. Trade name

3.3.2. Company form

3.3.3. Home municipality

3.3.4. Line of business

3.3.5. Address

26

3.3.6. Phone

3.4. Write the scraped information into the Excel

3.5. Return to the search page

4. Close the browser

4.2.1 Implementation and process flow

As can be seen from Figure 10, the top-level process for the second process

ended up looking almost identical to the first one. This is mostly because they

both follow the same logic of looping rows of data and performing an action on

that data, only in this one instead of using that data to create something it is

used as a foundation to search, scrape and store other data. I also used the

state machine from the first one as a template for this one, which contributed to

them looking similar.

Figure 10. Top-level process flow in a state machine for the second case

27

Arguably, the process could have been separated into more states in this case,

e.g. the saving of the data into the Excel file happens in the same state as it is

scraped in and could have been separated into its own. But as the process is

small and the saving and scraping do not warrant separate error handling, I kept

it them in the same one.

Like the state machine, the process flow for this implementation is very similar

to the first case. In the “Init” state, the robot, in addition to reading the input file

with the business IDs, also creates a datatable template where the scraped

information will be stored before writing it into the Excel. It then opens the YTJ

business search page in the “Open YTJ search” state, checks for the next

company on the input list in the “Init next company” state, and searches for the

company, scrapes the data and saves the data for that company in an Excel file

in the “Search and scrape state”.

4.2.2 Problems and solutions

This implementation ended up being more straightforward than the first one, as

there were not really any significant surprises with the search form, its results,

or their underlying format. I did note that the table elements on the page did not

have identifying attributes, which could lead to possible mix-ups between tables

were they to be too similar in content. For the data collected here though, the

rows and columns within the tables were named though and the table structure

itself was normal, so it did not cause any issues. Apart from that note and the

fact that there appeared some whitespace in some element attributes which had

to be fixed with wildcards, everything went smoothly.

However, one thing I would like to elaborate on about the table structure is that

even though it did not end up affecting this implementation, I noticed that there

was dynamicity within some of the tables. For reference, there is an image of

the page containing the information in Figure 11. The dynamicity combined with

the fact that the tables themselves were not uniquely identifiable apart from their

28

position on the page, could in some cases lead to the robot reading information

from the wrong table. As an example, if reading from a table that only has

identified columns and not rows, if another table with the same column name

appeared, the two could get mixed up by the robot. But again, this was not an

issue in this implementation, just something I took note of.

Figure 11. An example of the page from which the data is scraped

5 Testing and results

5.1 Case one: Moodle

After being content with the implementation, I ran the process through a few

testing rounds. For the testing I created five different course templates with

varying amounts of content.

29

For the first test I ran the process with 20 courses, creating each course four

times. The execution took 12 minutes and 44 seconds, or around 38 seconds

per course. Out of 20, the process failed two times with both happening in the

same part of the process and for the same template. The part that failed was

opening the topic content editor, or specifically opening it after returning from

another content editor.

What happened was that the robot missclicked the edit dropdown button,

because after returning from another content editor, Moodle places the

beginning of that topic on the page to the top of the browser, and this happens

with a small delay. With the delay, the robot sometimes tried to click on the next

edit dropdown at the exact same time that the page was shifting, causing the

click to miss.

One way to prevent these kinds of errors in UiPath is the WaitForReady

property in activities. With it, the selected the activities are only executed after

the page is fully loaded. Unfortunately, in this case the page navigating to the

topic was not part of the page loading but happened after it. Because of that,

the only solution I could come up with was adding an artificial two-second delay

before the click activity for the edit dropdown, so that the page would have time

to shift before the robot moved on.

After fixing that problem I ran the process again, this time with 100 courses, or

20 of each template. The execution took 1 hour and nine minutes, or around 41

seconds per course. Out of 100 courses, not even one had errors.

5.2 Case two: Data scraping from YTJ

For testing this process, I gathered a sample of 100 business IDs to scrape the

data from. I wanted as much variance as possible, because the process for

each business ID would not really change between repetitions, so repeating the

process for the same business ID would be unlikely to yield different results.

30

This is because the process mainly happens on one page, the one where the

data is scraped from, and that page will only change when searching for

different business IDs.

As I began testing for this process, it quickly became apparent that something

was wrong, as almost every business ID ended in an error. Something I had not

noticed during the development, probably as a result of using too small of a

sample as examples, was that most companies ended up not having either

phone number or street address listed. Not having something listed meant that

those rows where completely omitted from the table on the page, causing the

robot to throw an error when scraping that row. However, this was easily fixed

by configuring the robot not to throw an error from the activities that scraped

those rows in the table, meaning that data from them was left empty if not

found. That configuration in UiPath could be defined for each activity in its

properties.

It is debatable whether this is a good solution, since now there will not be errors

for those rows even if there is a legitimate problem with the scraping. That

happening in this case is extremely unlikely though, as when the scraping for

these rows happens, it is already established that the table exists by the

previous activities using the same table.

With the robot configured not to throw errors for missing phone numbers or

addresses, I ran the process for the 100 business IDs. The execution time was

six minutes and 38 seconds, or approximately four seconds per business ID. As

for errors, there were none, and the Excel had all the scraped data correctly

saved. A sample of the Excel containing the data can be found in Figure 12.

31

Figure 12. A sample of the Excel with the scraped data

6 Conclusion

The primary goal of this thesis was to explore the web automation features of

Robotic Process Automation through theory and practical use cases. From the

perspective of that goal, I feel the thesis is successful. I am especially satisfied

with the results of the implementation and testing of the use cases, as they

ended up showcasing the different aspects of RPA quite well. They also had

some parts that could be focused on for a more grass roots level analysis of

web automation specific issues. The testing for them went smoothly, and to be

honest, after the development I was not expecting too many problems with it

either. Even though successful and mostly without problems, the tests did also

have a few errors that could not be predicted at the implementation phase

which is typical for RPA and therefore useful to be able to include in this thesis.

As for the secondary goal, I hope that this thesis is as easily digestible as I

planned for it to be. I cannot speak for that myself, but in the theoretical part I

think I was able to cover most of the essential aspects of RPA for the reader to

be able to follow the practical part without prior knowledge of the subject. Also,

the use cases being as straightforward as they were, I think anyone should be

able to follow their process, implementation, and testing as well.

32

To be somewhat self-critical though, the use cases could have been more

complex and had larger scopes. When planning them, I was not totally sure of

what to prioritize, mainly whether to keep them simple and understandable or to

expand them in order to showcase more features and pain points. I ended up

leaning more towards simple and easy to understand, and as a consequence

they did not demonstrate as many problems or interesting aspects as I had

originally thought and hoped they would. This of course is not something one

can completely plan for and could be flipped around to say that the product as

well as the target applications worked better than expected.

Other than expanding the scope of the use cases, what I might have done

differently in hindsight, is to give more consideration for free and open source

solutions. With solutions like Robot Framework becoming available, their

viability would perhaps be more interesting to study than the already

established solutions. Also, licensing costs for the top products are not cheap

and they are always a commitment of sorts to the product and RPA itself.

Eliminating them with the use of free solutions might make companies that

would not even consider RPA give it a chance.

To end with, RPA is obviously a promising business with a huge amount of

money being funneled into it, so its development will be interesting to follow.

Integrations into machine learning and AI solutions becoming more available in

the future will hopefully allow RPA to automate not only rules-based processes

but also more complex ones. The current solutions already seem extremely

capable for automating simple processes like the ones presented in this thesis,

and with the companies developing them raising hundreds of millions of capital,

the evolution of the technology will likely be fast.

33

References

Automation Anywhere. 2018.
https://www.automationanywhere.com/company/press-room/6145-
automation-anywhere-raises-250-million-reaching-a-1-8-billion-
valuation-in-one-of-the-largest-series-a-financing-rounds. 1.11.2018

AppliedAi. 2018a. https://blog.appliedai.com/top-robotic-process-automation-
rpa-benefits/. 14.11.2018

AppliedAI. 2018b. https://blog.appliedai.com/rpa-implementation/. 14.11.2018

Arrow Digital. 2018. https://www.arrowdigital.com/insights/2017/09/from-qa-to-
rpa-an-unlikely-origin-story. 30.10.2018

Deloitte. 2017. Deloitte Global RPA Survey 2017

Everest Group. 2018. Robotic Process Automation (RPA) Annual Report 2018 –
Creating Business Value in a Digital-First World

Forrester. 2018. The Forrester Wave™: Robotic Process Automation, Q2 2018

Forrester. 2017. The Forrester Wave™: Robotic Process Automation, Q1 2017

Microsoft. 2018. https://docs.microsoft.com/en-us/dotnet/framework/windows-
workflow-foundation/. 3.11.2018

Moodle. 2018. https://moodle.net/stats/. 13.10.2018

Siili Solutions. 2018. http://robotframework.org/rpa/. 28.8.2018

TechCrunch. 2018. https://techcrunch.com/2018/09/18/uipath-lands-225m-
series-c-on-3-billion-valuation-as-robotics-process-automation-
soars/. 2.11.2018

UiPath. 2018a. https://www.uipath.com/press-room/uipath-raises-153-million-
series-b. 18.8.2018

UiPath. 2018b. https://www.uipath.com/press-room/uipath-leads-rpa-market-
with-unmatched-customer-adoption. 18.8.2018

UiPath. 2018c. https://www.uipath.com/community. 18.8.2018

UiPath. 2018d. https://www.uipath.com/blog/the-technical-journey-of-uipath.
19.8.2018

UiPath. 2018e. https://studio.uipath.com/docs/about-selectors. 19.8.2018

UiPath. 2018f. https://www.uipath.com/studio. 19.8.2018

UiPath. 2018g. https://www.uipath.com/robot. 19.8.2018

UiPath. 2018h. https://www.uipath.com/orchestrator. 19.8.2018

UiPath. 2018i. https://www.uipath.com/blog/rpa-ai-success-stories. 9.9.2018

