
Application Workflow Analysis and Simulation

Bachelor's Thesis

Tuomo Ruuskanen

Degree Programme in Information Technology

Accepted ___.___.__

SAVONIA UNIVERSITY OF APPLIED SCIENCES
Degree Programme

Information Technology
Author

Tuomo Ruuskanen
Title of Project

Application Workflow Analysis and Simulation
Type of project Date Pages

Final Project 25 May, 2010 36
Academic Supervisor Company Supervisor

Mr. Keijo Kuosmanen Mr. Henry Sulkers
Company

GE Healthcare Finland Oy
Abstract

Computer systems are growing in performance very rapidly. Modern processors can

handle massive amounts of data in a very small period of time. It has become apparent

that other subsystems in a computer are becoming an increasing bottleneck. The hard

disk subsystem is the slowest part of the computer system.

GE Healthcare initiated this project to provide better information about minimum

system requirements to their clients. The purpose of this project was to obtain

comprehensive knowledge about disk subsystem usage and performance in certain

scenarios.

The first part of this project for GE Healthcare was to analyze data flow and

corresponding disk subsystem input and output of two clinical information systems.

The second part of this project was to create synthetic simulation tooling to stress the

disk subsystem in a way similar to real application environment.

The results of this project showed that there is a clear similarity between theorized disk

usage and real disk usage. Knowledge received from this project showed that synthetic

performance measurement can be used to test the disk subsystem before a real

application is deployed.
Keywords

Performance, database, storage subsystems, workflow analysis, hard disk.
Confidentiality

Publi

SAVONIA-AMMATTIKORKEAKOULU
Koulutusohjelma

Tietotekniikka
Tekijä

Tuomo Ruuskanen
Työn nimi

Ohjelmiston Tiedonkulun analysointi ja simulointi
Työn laji Päiväys Sivumäärä

Insinöörityö 25.5.2010 36
Työn valvoja Yrityksen yhdyshenkilö

lehtori Keijo Kuosmanen Henry Sulkers
Yritys

GE Healthcare Finland Oy
Tiivistelmä

Tietokonejärjestelmien suorituskyky on kasvanut nopeasti. Modernit suorittimet

laskevat massiivisia määriä tietoa pienessä ajassa. On ilmennyt, että muut

alijärjestelmät tietokoneessa ovat kehittymässä pullonkaulaksi. Yleisesti ottaen, jos

siirrymme kauemmaksi suorittimesta kaistanleveys pienenee eksponentiaalisesti ja

keskimääräinen hakuaika kasvaa eksponentiaalisesti. Kovalevyjärjestelmä on

tietokoneen hitain alijärjestelmä.

GE Healthcare käynnisti tämän projektin saadakseen lisää tietoa järjestelmän

minimivaatimuksista. Tämän lopputyön tarkoitus oli saada kattavaa tietoa

levyjärjestelmän käytöstä ja suorituskyvystä.

Tässä lopputyössä analysoitiin kliinisten tietojärjestelmien tallennusjärjestelmään

kohdistuvaa liikennettä. Toinen osa lopputyötä oli kehittää synteettinen työkalu, joka

rasittaa levyjärjestelmää kuten oikea ohjelmistoympäristö.

Tämän lopputyön tulokset näyttävät, että teoreettisen levynkäytön ja oikean

levynkäytön ero on pieni. Tässä lopputyössä saavutettu tieto osoittaa että, synteettistä

suorituskyvyn mittausta voidaan käyttää levyjärjestelmän testauksessa .
Avainsanat

suorituskyky, tietokannat, levyjärjestelmät
Julkisuus

Julkinen

TABLE OF CONTENTS

ACKNOWLEDGEMENTS..5

ABBREVIATIONS..6

 1. INTRODUCTION

 1.1. Project Introduction..7

 1.2. Centricity…………..8

 1.3. Centricity Critical Care..8

 1.4. Centricity Anaesthesia..9

 1.5. General Computer System Overview…………………………...…...…10

 1.6. Bottlenecks in General Computer Systems..11

 2. APPLICATION WORKFLOW

 2.1. Application 1..14

 2.2. Application 2..17

 3. MEASUREMENT TOOLS

 3.1. Application Workflow Monitoring………………………………..….....19

 3.2. Windows Performance Counters...….…..20

 3.3. Commands to Automate Counter Usage..20

 3.4. Database Internal Performance Monitoring...22

 3.5. Script Tooling...……………24

 4. TEST RESULTS

 4.1. The Results..25

 4.2. Analyzing the Results..28

 5. PERFORMANCE MEASUREMENT BY SQLIO

 5.1. Microsoft SQLIO...20

 5.2. Sqlio Parameters………………...………………………………....…...31

 5.3. Sample script........................….………………………...........................32

 5.4. Sample Output..33

 5.5. Data Extraction and Analysis...34

 6. CONCLUSION………………………………............………………………...35

REFRENCES…………………………………………………………………..36

5

ACKNOWLEDGEMENTS

During the course of this project I have learned more how to work in a IT company. One

of the most important things I have learned is how to work in a project. It is important to

define goals in a project and to divide the work in smaller pieces to better track

successes and problems.

I want to thank GE Healthcare for providing this opportunity for me. Additionally I

want to thank my family, friends, teachers and colleagues for providing much needed

support.

6

ABBREVIATIONS

abbreviation meaning
RAM Random Access Memory
CPU Central Processing Unit
DB Database
OS Operating System
HDD Hard Disk Drive
RAID Redundant Array of Independent

Drives
NAS Network Attached Storage
SAN Storage Area Network
MB Megabyte
GB Gigabyte
ns nanosecond
ms millisecond
I/O Input / output
SATA Serial Advanced Technology

Attachment
SCSI Small Computer System Interface
SAS Serial Attached SCSI

7

1. INTRODUCTION

1.1 Project Introduction

GE Healthcare Finland started this project to analyze disk subsystem traffic in two

different clinical information systems. These two application environments will be

referred as application 1 and application 2. These applications have multiple software

components and function in a computer network environment. A typical environment

consists of a number of servers and multiple client workstations. Due to time

limitations, only the ingoing data from medical devices to the disk subsystem will be

examined in this thesis. This thesis is divided into five parts.

In the course of this project it is important to study what components are involved in a

general computer system. The study of application work-flow and disk subsystem traffic

requires knowledge of different subsystems: disk systems, caching between

components, random access memory and the processor. Without the knowledge about

these components it is impossible to determine bottlenecks in application workflow or

to set up measurement tools correctly.

The goal of this project is to analyze disk subsystem traffic in two application

environments. This thesis provides information on what software and hardware

components are involved in application 1 and application 2 environments. Both

applications use the same database software. The internal logic and internal monitoring

tools of the database are examined in this thesis. General names of the software

components are used, no real component names are given.

The major part of this project is to measure disk subsystem traffic. This thesis provides

information on what tools are used in the measurements. Operating system tools are

used to measure disk behavior and database internal tools are used to measure database

activity. In this project these tools are used extensively, therefore automation and

scripting of these tools will be discussed.

The most interesting part of this thesis will be the results gathered from measurements.

8

The resulting data gives information about disk subsystem utilization under load by

different sets of medical devices in both application environments. Only the difference

between these applications will be provided, no real measurement data will be given.

The correlation between theoretical disk input and actual measured input will be

calculated and analyzed.

The final part of this project is to measure real world performance of certain disk

subsystems. This thesis provides information on what tools were used to measure

performance and how they are configured. The goal of the performance measurements

is to simulate how well the disk subsystem would behave under load by application 1 or

application 2 before the actual applications are installed.

1.2 Centricity

In this project the workflow of data is analyzed in two Centricity products: Centricity

Critical Care and Centricity Anesthesia. It is reasonable to provide some information on

which kind of uses these applications have and what environments they are used in.

Centricity is a clinical documentation and information system that provides doctors,

nurses and other care personnel access to all patient information and documentation at

the point-of-care or in another convenient location remotely whenever and wherever

needed. The application provides care personnel reference information and document

templates in clinical setting throughout the whole care process. /1/

1.3 Centricity Critical Care

Centricity Critical Care includes a wide selection of different tools. This Clinical

information system provides ability to easily and reliably standardize, plan, and

document the whole care process. It makes available all the information needed for

effective patient care and resource planning. The system can be easily modified

according to local need of the care unit. Care procedures can be configured according to

preferred standards without any programming. /1/

9

Centricity Critical Care enables doctors and nurses to concentrate more on patient care

by reducing their workload at the point-of-care. Automatic and standardized

documentation can reduce the probability of medical errors. Data is automatically

gathered from bedside medical devices such as infusion pumps, monitors and

ventilators. This system enables automatic system integration to other hospital systems

such as patient administration and radiology department reducing time needed for

documentation. /1/

Care documentation can be done at the point-of-care, which enables early and on site

data collection. The remote station provides the possibility to access all patient data and

a way to plan treatments from a remote location such as a physician’s office. The

multibed station provides tools for device interfacing and care documentation from one

workstation to multiple beds in intermediate care units like high dependency and step

down units. The user-interface of Centricity Critical Care is depicted in Figure 1. /1/

Figure 1. Centricity Critical Care. /1/

1.4 Centricity Anaesthesia

The fundamental priorities in anesthesia include providing high quality patient care with

efficient planning and care process management. Achieving these goals means having

the crucial information available at the point-of-care. Centricity Anesthesia is a clinical

information system. It is an easy to use solution for high performance perioperative

10

environment. Centricity Anesthesia provides electronic anesthesia records of the entire

anesthesia process from pre-operative assessment to post anesthesia care. /1/

This solution helps medical personnel to see patient data more clearly and accurately by

automatically collecting data from medical devices or hospital information systems. The

user interface is optimized to save time and increase data viewing by touch screen

optimized user interface, preconfigured cases and pick lists. The needs of care personnel

are usually unique and different, therefore this system has been designed to be flexible

for a wide variety of configurations. /1/

Centricity Anesthesia is scalable from small stand-alone units to fully networked large

installations. Centricity anesthesia provides an option to install a basic documentation

version or a full perioperative solution to cover the entire process from anesthesia

planning to post anesthesia care. The user-interface of Centricity Anaesthesia is depicted

in Figure 1. /1/

Figure 2. Centricity Anaesthesia. /1/

1.5 General Computer System Overview

A typical computer system consists of the following parts: the central processing unit or

the CPU, chipset, random access memory, non-volatile storage i.e. hard disk. These are

the main components that are involved in storing, fetching and processing data. T

computer system contains other components as well, such as power supply, several

11

peripherals, numerous I/O devices and so on. In the context of this thesis it is only

important to examine those parts, which are involved in moving, storing and processing

the actual data. Figure 3 shows a typical computer system. The application fetches data

from the hard disk, processes it in the CPU, while using memory as a “working table” to

store processed data.

Figure 3. Computer system. /2/

1.6 Bottlenecks in General Computer Systems

Modern computer systems have grown in performance very rapidly since the first

computers were built in the mid 20th-century. This trend of growing performance has

been steady and there is no end in sight. The Moore's law which states that the number

of transistors in a processor doubles every two years is still true and will continue to be

true for years to come. This increase in transistors has made possible the increase of

processor operating frequencies.

In a computer system it has become apparent that other subsystems have become a

bottleneck for the processor, moving farther away from the processor the working

memory of a computer system called the random access memory, RAM is reached.

Increase in frequencies of the RAM has clearly fallen behind from increasing CPU

12

frequencies this has lead to the invention of multi-core CPUs and multi-channel

memory systems. It is more efficient to use the CPU transistors to create multiple cores

and to access data via multiple channels simultaneously from the memory. Still the

memory subsystem is significantly slower than the internal caches of the CPU, which is

the so-called Von Neumann Bottleneck.

The non-volatile storage of a computer system or the hard disk subsystem is clearly the

slowest component of the overall system. The mechanical nature of hard disk storage

makes it the slowest part of the computer system. Total throughput of a single HDD is

typically 100 times smaller than the throughput of the RAM system and the random

access time is typically almost 1 million times longer.

To combat increasing bottlenecks in a computer system it is reasonable to add caches

between slower parts of the system. For example the CPU has usually multiple levels of

internal cache memory to access frequently used data faster. The cache closest to the

CPU is the fastest, but also the smallest and the cache farthest from the CPU is the

slowest, but also the largest. Random access memory can in some applications be

thought as a cache between the CPU and the hard disk storage system. Usually hard

disks have their own internal caches and bigger storage systems such as RAID systems

have a storage-controller, which can have multiple gigabytes of cache for faster access

of frequently used data. This helps to queue write operations more efficiently. Caching

of write operations does not come without a risk, a loss of power could lead to data loss

or corruption of data.

The computer system can be thought as a person who is working at a table. The person

is the CPU, memory is the table and hard disk is the bookshelf that is located farther

away from the person. Items that are on the table can be accessed faster than the items

in the bookshelf. Approximations of typical bandwidths and access times gathered in

Table 1.

13

Table 1. Subsystem performance

Subsystem Bandwidth Access latency
CPU ~100-300GB/second 1-10ns
RAM ~5-30GB/second 10-20ns
Mechanical hard drive 10-100MB/second 8-15ms
Solid state drive 50-250MB/second 0,1-10us

The problem of slower external systems and caching as a solutions has been known for

a long time. The designers of the first computer systems in 1946 already realized this

problem and this development has continued throughout the ages of computing.

“Ideally one would desire an indefinitely large memory capacity such that any particular

word would be immediately available. We are forced to recognize the possibility of

constructing a hierarchy of memories, each of which has greater capacity than the

preceding but which is less quickly accessible.” /3/

14

2. APPLICATION WORKFLOW

In this project for GE Healthcare the disk subsystem traffic was analyzed in two

different application environments. These environments contain several servers, client

workstations and software components to transform data between different formats.

Application 1 and application 2 share some similar components. Different components

or devices of the overall systems are described in Figures 4 and 5.

2.1 Application 1
Application 1 environments consists of the following components:

- Medical devices

- Concentrator boxes

- Device interfacing software

- Interface engine

- External systems

- Application server

- Workstations

- Database server

- storage subsystem

Medical devices record clinical data from patients such as heart rate or temperature.

Medical devices transfer data via a serial connection to concentrator boxes or directly to

a device interfacing workstation. A concentrator box is a device that converts serial data

from medical devices to the TCP/IP stream. This device has multiple serial ports, which

are mapped to corresponding TCP/IP ports. Concentrator boxes are connected to device

interfacing workstations.

Device interfacing software handles medical device connectivity. This software

component contains device drivers, error logging and logic to send data from medical

devices to the interfacing engine. Interface engine is a third party server software

component. The Interface engine is responsible for transforming data between different

formats. Different data routes and communication points can be specified according to

production environment requirements. The interface engine can also be used to parse

15

useless or redundant data out.

External systems send or request data to or from the database, such as the hospital

information system or laboratory system. The interface engine handles communications

between external systems and application 1. The interface engine can handle external

system communications in both applications 1 and 2.

The application server serves client workstation requests and is connected to the

database in order to save and request data. In this example it is located in the same

physical computer as the database server. Workstations request or add data from or to

application server. This includes medical device data from medical devices and

documentation added from client workstations.

The database server is a relational model database back-end, that stores all data from the

whole system and supplies data to the application server. Storage subsystem stores data

in disk drives or group of drives. There are many different storage systems available

including storage area network, SAN, network attached storage, NAS or directly

attached storage. NAS systems are not used in applications studied in this thesis.

A SAN consolidates large groups of hard drives together. A SAN provides “Virtual hard

drives” (logical unit numbers, LUNs) to computers that need to access storage.

Computers that use these LUNs see them as though they were local to themselves.

SANs use block-level separation of data. SANs are usually used in large production

environments, where multiple computers require high performance and storage

consolidation. /4/

A NAS uses file-based protocols to access data, such as NFS (Network File System) or

SMB. In a NAS it is clear to the storage-using computer that the storage is remote and

the computers access data at file-level, not in block level as in a SAN. Directly attached

storage is the case when hard drives are directly attached to a computer via a SATA-,

SCSI-, or a SAS-bus, like in a normal workstation computer. /4/

16

Figure 4. Application 1 workflow

17

2.2 Application 2

Application 2 environment contains many of the same components that application 1.

Some of the components are absent in application 2 and some components have

different roles. Application 2 does most of the work in the workstation computer, this is

very different from application 1, where most of the work is done in the application

server. Application 2 environment consists of the following components:

-Medical devices

-Concentrator boxes

-Interface engine

-External systems

-Application server

-Workstations

-Database server

-Storage subsystem

In application 2 environment device interfacing, data gathering, compression and

database interfacing are done in workstation software. Application server handles

distribution of workstation software and manages internal post office for inter-

workstation communications. The database server uses the same software, but it is

configured in a different way to suit application requirements.

18

Figure 5. Application 2 workflow

19

3. MEASUREMENT TOOLS

3.1 Application Workflow Monitoring

Application workflow monitoring of application 1 and application 2 will be carried out

with windows performance counters and database internal procedure. These monitoring

tools provide a wide variety of parameters to measure, such as CPU usage, memory

usage, network usage, physical disk usage. In this thesis the most interesting data

concerns disk usage.

The reason, why two different tools are used is that the database internal tooling does

not provide information about physical disk usage and windows performance counters

do not provide information about database internal performance. This chapter provides

information on how to configure these tools and helps understand the input and output

of these tools. Figure 6 depicts, what tools are used for which parts of the system.

Figure 6. Database internal components. /5/

20

3.2 Windows Performance Counters

Windows performance counters provide the possibility to monitor the utilization of

different hardware and operating system components, for example the CPU usage,

memory usage, network activity and storage system utilization. Different counters can

be added from the properties menu of a certain counter. Settings parameters, such as

sample interval, log file-type, log file location, and monitoring schedule can be given.

In this project the main interest is in the physical disk usage, so in this thesis it is

reasonable to concentrate only in that section and provide configuration details about

physical disk monitoring.

Figure 7. Performance counters

3.3 Commands to Automate Counter Usage

The performance counters can be configured via windows GUI as seen in the Figure 7.

However, if performance counters are used repeatedly it is reasonable to create some

21

script tooling to configure the counters automatically. This saves time and ensures that

the counters have the same settings always. These commands can be put in a windows

batch file, or can be run from a command line. Here are a few examples on how to script

counter creation, updating and starting. Figure 8 shows the properties for the created

counter.

logman create counter DISKIO -si 1
//Create counter named DISKIO and set sample interval to 1
//second
logman update DISKIO -c "\PhysicalDisk(1 D:)* -rf 01:00:00
// update DISKIO counter to monitor all available counters
// of physical disk usage of drive
// D: and set test duration of 1 hour
logman query DISKIO
//Shows the properties of counter DISKIO
logman start DISKIO
//Start counter DISKIO
logman stop DISKIO
// Stop counter DISKIO; output will be generated to the
//specified file.

Figure 8. Performance counter setting

22

3.4 Database Internal Performance Monitoring

The database internal monitoring procedure provides a comprehensive overview of

database performance from the database point of view. The monitoring procedure is

initialized with sql-utility from windows commandline. The monitoring procedure asks

for the sample time interval as input, it is also possible to specify which parameters are

measured. After the sample interval time has passed the results will be outputted to a

text file. In this thesis it is reasonable to only concentrate on the subjects that give

information about disk subsystem utilization. The following subjects are useful when

monitoring disk subsystem utilization: Kernel Utilization, Task Management,

Transaction Profile, Transaction Management, Data Cache Management, Disk I/O

Management and Network I/O Management. /5/

There is a possibility to monitor data and behavior of the subjects; Application

Management, Cache Wizard, Data Cache Management, Disk I/O Management ESP

management, Housekeeper Task Activity, Index Management, Kernel Utilization, Lock

Management, Memory Management, Metadata Cache Management, Monitor Access to

Executing SQL, Network I/O Management, Parallel Query Management parallel,

Procedure Cache Management, Recovery Management, Task Management, Transaction

Management, Transaction Profile and Worker Process Management. /5/

Kernel utilization shows output for database engine utilization. It outputs data for

engine busy time, engine idle time, network I/O checks and disk I/O checks. Checks

occur when database engine checks, whether a certain operation is complete, if

completed next operation can start. /5/

Task management outputs data about opened connections to database, number of

context switches of database engines and task context switching reason. Context

switches occur when database engine switches from one user task to another, when it

has to wait for some operation to complete for example disk I/O. Context switching

reason shows count of context switches for particular reason for example Disk I/O or

Network I/O. /5/

23

Transaction profile outputs the number of transactions occurred during the sample

interval. Separate counters exist for different types of transactions. Output shows counts

for inserted rows, deleted rows, updated rows and total rows affected. /5/

Transaction management shows data for transaction log activity. It contains data of user

log cache flushes to transaction log. The transaction log is a database device that holds

data about committed transactions, such as row inserts, deletions and updates. The user

log cache is a small cache, which gets flushed to disk usually when transaction commits,

but other reasons exist, such as full ULC or change of database. This section outputs

counts and reasons for ULC flushing. /5/

Data Cache Management gives data about cache usage, large I/O usage and

asynchronous prefetch statistics. Cache usage shows counts of cache misses and cache

hits. Cache hits occur when a certain page is found in cache and it does not have to be

read from disk. Cache misses occur when a page is not found from cache and has to be

read from disk. Large I/O is a read operation from disk that reads several pages at once

to improve performance; it is initiated when something is needed from disk.

Asynchronous prefetch tries to estimate what data is needed from disk and places that

data to cache for possible later use. /5/

Disk I/O management shows per device data about database disk usage. Database

devices are a way to separate data over different database files that can be distributed

amongst several physical disks or partitions. The output data includes; Number of write

operations, number of read operations and number of APF read operations. /5/

Network I/O Management shows the network I/O operations. Items included in the

output are; sent packets, sent bytes, received packets, received bytes. Information about

network management is useful when examining correlations between network traffic

and disk utilization. /5/

24

3.5 Script Tooling

Part of this project was to generate measurement tools. Without proper script tools it is

impossible to start these tools simultaneously, hard to ensure that certain parameters do

not change, cumbersome to configure tools separately and to keep track of output files.

Below is an overview of a script created to automate measurements. Due to intellectual

property protection the complete code is not given, only the steps of the script.

1. Check if the database server is installed, if not, inform the user and exit

2. Give information about the database and the computer

3. Query the registry for available drives to monitor

4. Ask how many hours to run the test, ensures correct time format automatically

5. Ask how many minutes to run the test, ensures correct time format automatically

6. Ask how many seconds to run the test, ensures correct time format automatically

7. Ensure non zero time, if input ask time again

8. Convert measurement time to seconds

9. Ask for the first drive to be monitored

10. Go to 9, if nothing is given here

11. Ask for the second drive to be monitored

12. Ask for test environment description, will be added to filename

13. Test whether performance counter already exists if not create it

14. Communicate testing parameters to the database server

15. Communicate testing parameters to windows performance counters

16. Start database internal performance monitoring and windows performance

counters simultaneously.

17. Wait for test run to complete, output files will be put in the same folder and are

given descriptive names according to the test environment.

25

4. TEST RESULTS

The purpose of these tests was to measure the database disk I/O under load by medical

devices. The main goals of these tests were to measure how much disk input medical

devices create in the database. No exact numbers are given in the results, only

comparison between application 1 and application 2.

4.1 The Results

The medical devices send certain parameters to be saved to the database. Some of these

are settings parameters, which tell the client user what settings are selected in a certain

device and some data parameters that are considered the real payload. These parameters

include for example patient heart rate and body temperature. These parameters and their

respective sample rates are listed in tables 2 and 3. Sample rates are different in

application 1 and 2.

Table 2. Medical Device parameters

Device Device 1 Device 2 Device 3 Device 4
parameters 12 10 2 2
Data parameters 80,00% 100,00% 100,00% 50,00%
Settings

parameters

20,00% 0,00% 0,00% 50,00%

Table 3. Sample rates

Environment Device 1 Device 2 Device 3 Device 4
Application 1
Data parameters 36/min 30/min 3/min 6/min
Settings

parameters

3/15min

Application 2
Data parameters 9,6/2min 10/2min 1/15min 1/15min
Settings

parameters

2,4/15min

26

The number of disk I/Os shows Number of disk input /output operations by the database

as reported by the database performance procedure. This is a mix of 2kB, 4kB and 16kB

I/O operations. Writes show the number of write operations by the database as reported

by performance procedure. This is a mix of 2k and 4k writes. Reads show the number of

read operations by the database as reported by database performance procedure.

Cache hits show the number of times the database was looking for a page in the cache

and found it. Cache misses show the number of times the database was looking for a

page in the cache but did not find it. This means that the database has to access the disk.

A page is the smallest unit of data the database is able to handle. Total write transfer rate

is calculated from windows performance counter output report. Network bytes show

database engine sent and received bytes.

Table 4. Device 1 results

Environment # of Disk I/Os Cache Network

Bytes

Bytes/s total write

transfer rate
Application 1 writes

1x

reads

1x

hits

1x

misses

1x

Received:

1x

sent:

1x

1x

Application 2 writes

5,4x

reads

1x

hits

0.04

misses

1x

Received:

0,53x

sent:

0,12

5,85x

27

Table 5. Device 2 results

Environment # of Disk I/Os Cache Network

Bytes

Bytes/s total write

transfer rate
Application 1 writes

1x

reads

1x

hits

1x

misses

1x

Received:

1x

sent:

1x

1x

Application 2 writes

5,89x

reads

10x

hits

9,4x

misses

1x

Received:

0,86x

sent:

0,27x

6,51x

Table 6. Device 3 and 4 results

Environment # of Disk I/Os Cache Network

Bytes

Bytes/s total

write transfer

rate
Application 1 writes

1x

reads

1x

hits

1x

misses

1x

Received:

1x

sent:

1x

1x

Application 2 writes

20,3x

reads

10x

hits

3,04x

misses

1x

Received:

1,96x

sent:

0,005

30,4x

28

Table 7. Results of all devices combined

Environment # of Disk I/Os Cache Network

Bytes

Bytes/s total

write transfer

rate
Application 1 writes

1x

reads

1x

hits

1x

misses

1x

Received:

1x

sent:

1x

1x

Application 2 writes

5,56x

reads

1x

hits

17,5x

misses

1x

Received:

1,7x

sent:

0,43x

7,26x

4.2 Analyzing the Results

Tables 2 and 3 show the theoretical amount of parameters that application 1 and

application 2 save to the database. Below is a calculation, of how many parameters are

saved to the database per minute. From this theory it is possible to calculate the data

input ratio between these applications.

Application 1(total) = (36+30+3+6+0,2)/min = 75,2/minute
Application 2(total) = 4,8+5+(1/15)+(1/15)+(2,4/15) =
10,1/minute
Ratio = Application 1(total)/Application 2(total)
Ratio = (75,2/minute)/(10,1/minute) = 7,4

The amount of database activity and disk write transfer rate can be seen in tables 4 to 7.

The most interesting data when concentrating on the disk input is on the “# of disk

I/Os” and “Bytes/s total write transfer rate”. These readings report the bulk data transfer

to the database and finally to the disk subsystem. Cache and network statistics data is

more useful when analyzing database read operations.

Some comparison of theory and practice can be calculated from these results. Below is a

29

calculation of how close the theoretical database input is to the measured input.

Comparison is taken from above calculations and from Table 7. Results of all devices

combined.

Theoretical and measured ratios between application 1 and application 2:

Theoretical database input ratio: 7,4
Measured database input ratio: 7,26

Difference: (7,4-7,26)/7,4*100% = 1,9%

From the calculations it is apparent that theory and actual measurements correspond

well. This is logical when only the device sample rates change between application 1

and 2.

30

5. PERFORMANCE MEASUREMENT BY SQLIO

In earlier stages of the project, the storage subsystem usage under certain test scenarios

was analyzed. In order to put the storage subsystem usage into context it is important to

measure the actual performance of a certain system. The performance measurement

should simulate the I/O patterns of application 1 and application 2. This is done to find

out what performance can be achieved from a certain disk subsystem in these two

application environments.

5.1 Microsoft Sqlio

Sqlio is a free tool by Microsoft that is designed to simulate storage subsystem I/O

workload of a Microsoft SQL Server. Although it is designed for Microsoft SQL Server

it has been proven a useful simulation tool for other databases as well. Before using this

tool it is recommended to have at least some understanding of the storage subsystem.

Many variations of different block sizes, queue depths, thread amounts, I/O directions

and I/O types should be tested to get comprehensive data about possible storage

bottlenecks. Figure 9 shows a system to be tested with Sqlio, arrows in the figure

represent different I/O patterns. /6/

Figure 9. System analyzed by Sqlio

Disk subsystem

RAID Controller

Windows operating system
Running Sqlio

Cache

I/O
 d

ire
ct

io
n

Q
ue

ue
 d

ep
th

I/O
 ty

pe

B
lo

ck
 s

iz
e

31

5.2 Sqlio Parameters

These are some of the useful parameters to be included in Sqlio tests. These parameters

determine the behavior, output and test duration of Sqlio. After analyzing the disk I/O

generated by medical devices as shown before, it is reasonable to tune Sqlio to generate

similar disk I/O patterns. Tuning Sqlio parameters can generate different mixes of I/O

patterns. The most important things to tune are; type of I/O (sequential or Random),

block size, read/write, queue depth. Different parameters are shown in table 8. These

are used in the sample script. /6/

Table 8. Sqlio parameters

Parameter Description
-o The number of outstanding I/O requests. Increasing the queue

depth may increase total throughput. Common values are 8, 32

and 64.
-t Number of simultaneous threads that issue I/O to the testfile

specified in param.txt. The –o parameter specifies per thread

queue.
-LS Record latency information of the storage subsystem. It is

recommended to capture this in the testing.
-k Select either R or W(Read or Write). It is recommended to

simulate a mix of reads and writes in the testing.
-s Duration of test in seconds. It is recommended to run 5-10

minutes per I/O size to get a good idea of I/O performance.
-b Size of the I/O requests in bytes(block size).
-f Type of I/O. either random or sequential It is recommended to

simulate a mix of random and sequential I/O in the testing.
-F param.txt file which contains location and size of the file,

where the I/O will be issued to.
Testfile.dat File, where the I/O will be issued. Consider the right size of

this file, should be at least 2 times bigger than the storage

subsystem cache (SAN cache, NAS cache or hard drive cache).

This file will be created to a location specified in param.txt
Timeout /T Time duration to wait between tests. Lets the storage subsystem

“rest” before running another I/O pattern. This esures more

reliable results

32

5.3 Sample Script

This is a sample script of Sqlio to be copied to the run.bat file. This script contains tests

for both write and read operations in random and sequential pattern when different

block sizes are used (2, 4, 8 and 16kB). Every line represents a certain I/O pattern, all

lines output performance metrics to the output file. The time parameter –s should be

sufficiently large in order to get more accurate results from the testing, this is because

some disk subsystems need time to tune for different I/O patterns.

sqlio -kW -s360 -frandom -o2 -b2 -LS -Fparam.txt
timeout /T 10
sqlio -kW -s360 -frandom -o2 -b4 -LS -Fparam.txt
timeout /T 10
sqlio -kW -s360 -frandom -o2 -b8 -LS -Fparam.txt
timeout /T 10
sqlio -kW -s360 -frandom -o2 -b16 -LS -Fparam.txt
timeout /T 10

sqlio -kW -s360 -fsequential -o2 -b2 -LS -Fparam.txt
timeout /T 10
sqlio -kW -s360 -fsequential -o2 -b4 -LS -Fparam.txt
timeout /T 10
sqlio -kW -s360 -fsequential -o2 -b8 -LS -Fparam.txt
timeout /T 10
sqlio -kW -s360 -fsequential -o2 -b16 -LS -Fparam.txt
timeout /T 10

sqlio -kR -s360 -frandom -o2 -b2 -LS -Fparam.txt
timeout /T 10
sqlio -kR -s360 -frandom -o2 -b4 -LS -Fparam.txt
timeout /T 10
sqlio -kR -s360 -frandom -o2 -b8 -LS -Fparam.txt
timeout /T 10
sqlio -kR -s360 -frandom -o2 -b16 -LS -Fparam.txt
timeout /T 10

33

sqlio -kR -s360 -fsequential -o2 -b2 -LS -Fparam.txt
timeout /T 10
sqlio -kR -s360 -fsequential -o2 -b4 -LS -Fparam.txt
timeout /T 10
sqlio -kR -s360 -fsequential -o2 -b8 -LS -Fparam.txt
timeout /T 10
sqlio -kR -s360 -fsequential -o2 -b16 -LS -Fparam.txt

5.4 Sample Output of Sqlio

Below is a sample sqlio output. In the first line the used parameters can be seen. After

"CUMULATIVE DATA:” is the most important performance data. This data shows the

number of I/O operations, total throughput and latencies that can be achieved with given

parameters.

When examining sqlio output some trends in performance can be noted. Usage of small

block sizes (-b parameter) typically results in lower overall throughput, when

mechanical hard drive systems are tested. This is also true if the testfile fits in the RAID

controller cache (Figure 9). This scenario is called a "cached run", where the actual data

is not read or written to the disk but accessed from the faster cache-RAM. This is an

unwanted situation, which will result in too high performance data.

C:\PROGRA~1\SQLIO>sqlio -kW -s360 -frandom -o8 -b1 -LS -Fparam.txt
sqlio v1.5.SG
using system counter for latency timings, -1102787296 counts per
second
parameter file used: param.txt
file c:\testfile.dat with 2 threads (0-1) using mask 0x0 (0)

2 threads writing for 360 secs to file c:\testfile.dat
using 1KB random IOs
enabling multiple I/Os per thread with 8 outstanding

size of file c:\testfile.dat needs to be: 104857600 bytes
current file size: 0 bytes
need to expand by: 104857600 bytes
expanding c:\testfile.dat ... done.
using specified size: 100 MB for file: c:\testfile.dat
initialization done

34

CUMULATIVE DATA:
throughput metrics:
IOs/sec: 311.18
MBs/sec: 0.30
latency metrics:
Min_Latency(ms): 0
Avg_Latency(ms): 50
Max_Latency(ms): 341

5.5 Data Extraction and Analysis

If extensively long test runs are used it is useful to create some kind of scripting for data

mining. The most interesting data is after “CUMULATIVE DATA:” below is a small batch

script to extract this data and place it in a spreadsheet file for later processing. This

script finds all lines containing for example "IO/sec:", and places the whole line to a

new row to an xls-file.

@echo off > results.xls
for %%T in (output.txt) do find "IOs/sec:" <%%T>> results.xls
for %%T in (output.txt) do find "MBs/sec:" <%%T>> results.xls
for %%T in (output.txt) do find "Min_Latency(ms):" <%%T>> results.xls
for %%T in (output.txt) do find "Avg_Latency(ms):" <%%T>> results.xls
for %%T in (output.txt) do find "Max_Latency(ms):" <%%T>> results.xls
REM find something and place it to a xls-file

Understanding the results of Sqlio is important. In the output of Sqlio it can be useful to

look for a few cases, where the total throughput (MBs/sec) is the highest and the

average latency (Avg_Latency) is reasonably low. After finding these cases, record the

parameters that were used to achieve these results. In the future testing can be done with

these parameters only, shortening the time needed for test runs. /7/

35

CONCLUSION

In this project it has been noted that understanding application workflow is important,

when analyzing storage subsystem usage under different scenarios. Without studying

the application environment it is impossible to create different use-cases to simulate

database and disk activity. Studying the theory of database activity in different

application environments is important, when comparing theoretical workflow to actual

measured workflow.

Measurement tools and scripts are a crucial asset to this kind of project. Understanding

the output of different tools is as important as the results themselves. Scripting is useful

when test are run in different computers, they ensure the synchronous start of different

monitoring tools, provide way to set parameters easily, label output files and gather data

to a common location.

Finally it is important to compare theoretical data to the measured data and draw some

conclusion about it. After analyzing measurement data it can be useful to measure and

analyze the performance of some storage subsystems to put the whole data into context.

36

REFERENCES

[1] GE Healthcare website (Online) (10 April, 2010)

http://www.gehealthcare.com

[2] Passmark Software Performance Test Suite (Free Software) (10 April, 2010)

http://www.passmark.com/

[3] A. W. Burks, H. Goldstine, J. V. Neumann Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument,
1946. (15 May, 2010)

[4] Free Internet encyclopedia (Online) (6 April, 2010)

 http://en.wikipedia.org/wiki/Storage_area_network

[5] Sybase Books (Online PDF) (15 April, 2010)

http://infocenter.sybase.com

[6] Microsoft SQLIO Disk Subsystem Benchmark Tool (Online) (5 April, 2010)

 http://www.microsoft.com/downloads/details.aspx?familyid=9a8b005b-84e4-4f24-

8d65-cb53442d9e19&displaylang=en

[7] Website about Microsoft Sqlio (Online) (6 April, 2010)

 http://www.brentozar.com/archive/2008/09/finding-your-san-bottlenecks-with-sqlio

http://www.brentozar.com/archive/2008/09/finding-your-san-bottlenecks-with-sqlio

	TABLE OF CONTENTS
	ACKNOWLEDGEMENTS
	ABBREVIATIONS										
	1. INTRODUCTION
	1.1 Project Introduction
	
	1.2 Centricity
	1.3 Centricity Critical Care
	1.4 Centricity Anaesthesia
	
	1.5 General Computer System Overview
	1.6 Bottlenecks in General Computer Systems

	2. APPLICATION WORKFLOW
	2.1 Application 1
	2.2 Application 2

	3. MEASUREMENT TOOLS
	3.1 Application Workflow Monitoring
	3.2 Windows Performance Counters	
	3.3 Commands to Automate Counter Usage
	3.4 Database Internal Performance Monitoring
	3.5 Script Tooling

	4. TEST RESULTS
	4.1 The Results
	4.2 Analyzing the Results

	5. PERFORMANCE MEASUREMENT BY SQLIO
	5.1 Microsoft Sqlio
	5.2 Sqlio Parameters
	5.3 Sample Script
	5.4 Sample Output of Sqlio
	5.5 Data Extraction and Analysis

	CONCLUSION
	REFERENCES

