

Bachelor’s thesis

Degree programme

2018

Hemmo Helminen

MEDICAL DEVICE SOFTWARE
MAINTENANCE

– Process improvement

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communication Technologies

2018 | 50 of pages, 2 pages in appendices

Hemmo Helminen

MEDICAL DEVICE SOFTWARE MAINTENANCE

-Process improvement

This thesis was commissioned by Evondos Ltd, which is a Finnish healthcare service company.

The objective of the thesis was to improve procedures and work methods in the Evondos software
maintenance. An additional objective was to analyze how well standards are followed.

In order to achieve the objectives, the work was conducted in three phases. In the first phase, the
key standards of medical software maintenance were studied. Information from the first phase
was utilized in the second phase where current work methods and procedures are analyzed.

In the second phase, the current work methods at Evondos were analyzed as a whole. Activities
and deliverables for one software release were analyzed thoroughly. Based on the findings, root
causes were analyzed and improvement proposals were created.

In the third phase, the selected improvement proposal was designed and implemented.

A missing localization process was found to be the greatest single challenge in the software
development. The purpose of the localization process is to describe the process and
responsibilities for adding and updating the Evondos service text and voice messages to the
customer languages.

As an end result, the localization process was designed and approved, the work methods and
documentation were analyzed against the IEC 62304 standard. In addition, there were many other
improvements identified and partly implemented.

The performance of the localization process will be followed and it will be further developed as
seen feasible and appropriate.

KEYWORDS:

software development, localization, software maintenance.

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

2018 | 50 sivua, 2 liitesivua

Hemmo Helminen

LÄÄKINNÄLLISEN LAITTEEN OHJELMISTON
YLLÄPITO

 Prosessien parantaminen

Opinnäytetyön tarkoituksena oli analysoida ja kehittää ohjelmistokehityksen toimintatapoja
ohjelmiston ylläpitovaiheessa. Lisäksi tavoitteena oli tutkia, kuinka hyvin ohjelmistokehityksen
käytännöt täyttävät keskeisimpien standardien asettamat vaatimukset lääkinnällisten laitteiden
ohjelmistokehitykselle. Opinnäytetyö on tehty Evondos Oy:lle, joka on suomalainen
terveysteknologiaan erikoistunut yritys. Yritys on kehittänyt automaattisen
lääkeannostelupalvelun kotihoidon piirissä oleville pitkäaikaislääkityille.

Ohjelmistoversion tekemiseen tehdyt aktiviteetit sekä aikaansaannokset analysoitiin aikaisemmin
julkaistua ohjelmistoversiota hyväksi käyttäen. Edellisen lisäksi, ohjelmistokehityksen
dokumentointia ja työskentelytapoja analysoitiin IEC 62304 standardin tarkistuslistaa hyväksi
käyttäen.

Analyysin perusteella isoimpina ongelmakohtina nousivat esiin ohjelmistoon loppuvaiheessa
lisätyt muutokset, kehitystiimin tehottomuus muutosten toteuttamisessa sekä tärkeän testauksen
painottuminen ohjelmistoprojektin loppupuolelle. Ongelmakohtia tarkemmin tutkittaessa selvisi
varsinaiset juurisyyt ongelmakohtien takana. Pitkä julkaisuväli ohjelmistoversioiden välillä aiheutti
paineen uuden sisällön saamiseksi meneillään olevaan kehitykseen. Ohjelmistokehityksen
tehottomuuteen liittyi useita selittäviä tekijöitä, mutta isoimpana ongelmana nousi esiin
käyttöliittymien käännöstyöhön liittyvät epäselvyydet. Testauksen painottuminen projektin
loppupuolelle johtui testitapausten suuresta määrästä verrattuna käytettävissä oleviin
resursseihin ja testausmetodeihin.

Löydösten pohjalta kehitettiin lokalisointiprosessi, joka kuvaa Evondos-palvelun tekstien ja
puhuttujen viestien kääntämiseen tarvittavat aktiviteetit sekä aktiviteetteihin liittyvät roolit.
Ohjelmistoversioiden julkaisuaikataulujen nopeuttamiseksi käynnistettiin laitteiden etäpäivitykset
mahdollistava projekti. Testauksen kehittämiseksi aloitettiin testiautomaation käyttöönotto, jotta
resursseja lisäämättä testausta voidaan tulevaisuudessa tehdä aikaisemmin ja nopeammassa
tahdissa.

Opinnäytetyön isoimpina aikaansaannoksina olivat lokalisointiprosessin kehitys sekä muiden
ongelmakohtien korostaminen, jonka johdosta useat korjaavat toimenpiteet saivat yrityksen
johdossa riittävän prioriteetin asioiden eteenpäin viemiseksi.

ASIASANAT:

ohjelmistokehitys, ohjelmiston ylläpito, lokalisointi.

CONTENTS

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 8

2 FRAMEWORK FOR THE MEDICAL DEVICE SOFTWARE DEVELOPMENT 12

2.1 Standards and regulations 12

2.2 Medical device software – software life cycle processes 13

2.2.1 Software maintenance plan 16

2.2.2 Feedback monitoring, documentation and evaluation 17

2.2.3 Creating problem report and change request 18

2.2.4 Problem investigation and change analysis 20

2.2.5 Modification implementation 22

2.2.6 Quality assurance and releasing 26

3 EVALUATING THE WORK METHODS 27

3.1 Study of a release 27

3.1.1 Decision to start release testing 28

3.1.2 Changes during release testing 29

3.1.3 Other findings 34

3.1.4 Release 1718 conclusions 34

3.2 Root cause analysis and improvement proposals based in 1708-release 35

3.2.1 Testing 35

3.2.2 New content: New camera lens 35

3.2.3 New content: Patient user interface renewal 36

3.2.4 New content: The date and time inserting logic 36

3.3 Localization 36

3.4 History validation feature 37

3.5 Development team resourcing 38

3.6 Review of medical device Software maintenance process 38

4 IMPROVEMENTS 40

4.1 Localization procedures 40

4.1.1 Phase 1: Process discovery – What, Why and How 40

4.1.2 Phase 2: Understanding the As-Is Process 43

4.1.3 Phase 3: Designing the To-Be Process 44

4.2 Implementation of other improvements 45

4.2.1 Shortening the release cycle 45

4.2.2 Customer feedback 46

4.2.3 Requirements management 46

4.2.4 Software development 46

4.2.5 Resourcing 46

5 CONCLUSION 47

5.1 What is the significance of the results? 48

5.2 Lessons learnt 48

REFERENCES 50

APPENDICES

Appendix 1. Identified improvements

FIGURES

Figure 1. Release candidates for 1708 release. 28
Figure 2. Software changes during release testing. 29
Figure 3. Workflow illustrated as swim lane diagram [8]. 43
Figure 4. As-Is process for changing existing text. 44

PICTURES

Picture 1. Evondos service system architecture [2]. 8
Picture 2. Evondos software development process overview [3]. 10
Picture 3. Improvement process. 11
Picture 4. Software maintenance process [4]. 15
Picture 5. Software maintenance process. 16
Picture 6. Example of defect report. 19

Picture 7. Maintenance phase code line management example. 25
Picture 8. Software changes divided into categories. 31
Picture 9. Checklist for small companies without a certified QMS [4]. 39
Picture 10. Localizing the service process in the software lifecycle process 42

TABLES

Table 1. Essential standards for medical device software development. 12
Table 2. Information sources. 18
Table 3. Changes after first release candidate. 32
Table 4. Localization changes. 33

LIST OF ABBREVIATIONS

EPIC Feature or customer requirements in Agile

FTA Fault Tree Analysis

FMEA Failure Mode and Effects Analysis

HTTPS Hypertext Transfer Protocol Secure

Jira Tools for software team to plan, track, and release software

MDD Medical Device Directive

NPS Net Promoter Score

QMS Quality Management System

SMS Short Message Service

SOUP Software Of Unknown Provenance

Trac Trac is an issue tracking system for software development

UDP User Datagram Protocol

UI User Interface

8

1 INTRODUCTION

This thesis was commissioned by Evondos Ltd, which is a Finnish healthcare service

company. Evondos main office, including research & development and the factory is lo-

cated in Salo. In addition, there are sales offices in Sweden, Norway and Denmark.

Evondos employs around 60 persons.

Evondos has developed a unique solution for patients who receive home care and need

long-term medical treatment. The Evondos® automatic medicine dispensing service en-

ables patients in need of long-term medical treatment to receive the right medication at

the right time and in the right doses – completely automatically. The service improves

the patients’ medical adherence and safety while introducing significant direct cost sav-

ings and quality benefits in healthcare. [1]

Picture 1 illustrates Evondos service architecture. The Evondos Service consists of

Evondos® E300 Medicine Dispensing Robots and the web-based Evondos® Telecare

System.

Picture 1. Evondos service system architecture [2].

Telecare application servers are accessed with a browser over an HTTPS connection.

Medicine Dispensing Robots communicate with the Evondos® Telecare System over a

9

secure HTTPS connection. In addition, UDP is used, but only for non-sensitive actions

such as monitoring and keep alive messaging [2].

The software (SW) team is responsible for the software for both Medicine Dispensing

Robots and the web based Telecare System as well as the communication mechanism

in between. In addition to the software development, the SW team is supporting service

operations in a problem solving and by advising customer support organization.

The Evondos SW development process is documented in a SW Development Process

document. The Evondos SW development process is based on iterative and incremental

software development process (Picture 2). Software is developed in 2-3 week sprints.

The SW Development team is selecting user stories and bugs to the sprint backlog ac-

cording to the product backlog priority. User stories are usually split into smaller pieces

of work – tasks or subtasks. Since team members are not co-located, daily scrum meet-

ings are not part of the development practice, however, team members are actively col-

laborating via chat. A sprint ends with a sprint review and a retrospective meeting. A

sprint review is concentrating on what has been accomplished during the sprint whereas

the purpose of the retrospective is to find what went well and what potential improvement

areas are. In practice, the sprint review is taking most of the focus and a separate retro-

spective meeting seldom happens. In order to fulfill the Medical Device directive require-

ments, the software development process is extended with additional risk management

activities [3].

10

Picture 2. Evondos software development process overview [3].

The Telecare service software and the robot software are developed in separate pro-

jects. The development teams are separate and have no common team members. Also,

tools for handling tickets (user stories and bugs) are partly different. Trac is used both

for the Telecare service and for the robot software; however, Telecare service tickets are

also entered to the Jira. Actual development performed by the Telecare service devel-

opment team is followed in the Jira tickets and the purpose of the Trac is just to have all

tickets in one place to follow the software development as a whole. Trac tickets and Jira

tickets are synchronized manually.

Software deployment to the existing robots in the field is carried out by sending software

updates in memory sticks to the care organization. The care organization personnel is

updating the new software to the robots. The update procedure requires a higher level

of privileges, thus the privilege level of the person who performs the update must be

raised.

The software team is facing many challenges when developing and maintaining software

for the Evondos medicine-dispensing robot. Consequently, releases are late, deploy-

ments of new features are taking too much time, new requirements are introduced close

to the release date and there are difficulties in predicting schedule versus content.

11

The objective for this thesis is to understand the main challenges in the robot software

development more thoroughly, find the root causes of the challenges and based on the

findings, to create improvement proposals and deploy selected improvements.

In principle, the work is divided in three phases illustrated in the Picture 3.

Phase 1
Study of the

standards

Phase 2
Evaluating the work

methods

Phase 3
Design and

deployment of
selected

improvements

Picture 3. Improvement process.

In the study of the standards phase (phase 1), the key standards of medical software

maintenance are studied. Information from the first phase is utilized in the second phase

where current work methods and procedures are analysed.

In the evaluating the work methods phase (phase 2), the current processes and work

methods are studied. Two different considerations are taken into account when analys-

ing the current work methods. Firstly, one release is studied thoroughly to understand

the concrete challenges in the creation of the software release. Secondly, the overall

work methods and documentation are compared to the IEC 62304 (Medical Device Soft-

ware life cycle processes) [4] to ensure that the common framework is followed. Prob-

lems or challenges found in the evaluation are then analysed further and root-cause

analysis is performed.

In the design and deployment of selected improvements phase (phase 3) different op-

tions for improvement are studied and considered. Improvement proposals are pre-

sented to key stakeholders and an action plan is agreed. As an end result, there is list of

actions and selected improvements are implemented as part of this thesis work.

12

2 FRAMEWORK FOR THE MEDICAL DEVICE

SOFTWARE DEVELOPMENT

In this chapter the key standards of medical software maintenance are studied. Chapter

describes an example maintenance process where these standards are taken into ac-

count.

2.1 Standards and regulations

While designing and modifying processes for medical device research and development,

it is essential to ensure that legislation and regulations are followed. Medical device mar-

kets are highly regulated and while operating in European Union area, European Union

directives need to be adhered to. Manufacturers shall ensure that products meet the

requirements. The Evondos medicine dispenser and Telecare system are class I medical

devices. Medical device classification is defined in European Union Council Medical De-

vice Directive 93/42/EEC (MDD) [5].

All medical devices must comply with the essential requirements listed in Annex I of the

MDD, ensuring that they do not compromise the health and safety of patients, users, and

any other person and perform as intended by the manufacturer. Medical Devices bear

the CE mark to indicate their conformity with the MDD [6].

The standards in Table 1 are setting the framework for processes and procedures for

medical device manufacturers. For this thesis, the IEC 62304 (Medical Device Software

Life Cycle Processes) is the most relevant standard.

Table 1. Essential standards for medical device software development.

IEC 60601 Medical electrical equipment, general requirements for basic safety and

essential performance.

IEC 62304 Medical device software life cycle processes [4].

ISO 14971 Standard for the application of risk management to medical devices [7].

IEC 62366 Application of usability engineering to medical devices[11].

ISO 13485 Medical devices. Quality management systems. Requirements for reg-

ulatory purposes[10].

13

2.2 Medical device software – software life cycle processes

In case the software is an integrated part of the medical device functionality, the manu-

facturer shall ensure that a) it is understood what software is intended to do. b) the soft-

ware fulfills the expectation without any unacceptable risks. For that purpose, interna-

tional standard IEC 62304 (Medical device software - software life cycle processes) [4]

provides a framework of processes for the medical device software development and

maintenance. This standard defines the necessary requirements for process steps in the

software life cycle.

The standard describes software development and software maintenance requirements

in separate chapters. Many areas in the software life cycle management are similar in

the development and maintenance phase. The purpose of the software development

process is to create a new software program to fulfill customer needs whereas the soft-

ware maintenance purpose is to modify an existing software. The thesis focuses on the

maintenance part of the life cycle processes.

A software program is in maintenance after it has been released to the customers, i.e.,

the software maintenance part is of the post-production activities. Software maintenance

means that the existing software is patched or upgraded to its newer version. There are

several different reasons for software updates, such as upgrade of the system to improve

current functionalities or to fulfill new customer needs, to fix defects or deploy security

patches to remove vulnerabilities.

The software lifecycle processes in the software maintenance are modification, imple-

mentation, software risk management, software configuration management, and soft-

ware problem resolution as illustrated in the Picture 4. It can be noted that inside the

modification implementation process, activities are directly referring to the software de-

velopment lifecycle processes (Activities 5.3-5.8) [4].

Risk management activities are mandatory and shall comply with ISO 14971 (Application

of Risk Management for Medical Devices) [7].

14

The software maintenance process should not only define how the activities are per-

formed but also ensure that the organization has capacity and capability to react when

issues are identified.

15

Picture 4. Software maintenance process [4].

16

2.2.1 Software maintenance plan

A manufacturer shall create a software maintenance plan as defined in IEC 62304 (Med-

ical Device Software life cycle processes) [4]. The plan shall cover all the areas from

feedback to new software release.

The following areas shall be covered in the maintenance plan [4]:

 Procedures for receiving, documenting, evaluating, resolving and tracking feed-

back arising after the release of the MEDICAL DEVICE SOFTWARE

 Criteria to determining whether the feedback is considered to be a problem

 Use of the software RISK MANAGEMENT PROCESS

 Use of the software problem resolution process for analysing and resolving prob-

lems arising after release of the MEDICAL DEVICE SOFTWARE

 Use of the software configuration management process for managing modifica-

tions to the existing SYSTEM

 Process to evaluate and implement upgrades, bug fixes, patches and obsoles-

cence of SOUP

The software maintenance can be considered as a continuous four-phase cycle and is

illustrated in Picture 5.

Picture 5. Software maintenance process.

17

Software maintenance is a continuous process where feedback and customer needs are

translated to software changes and finally a set of software changes will form a new

software release.

2.2.2 Feedback monitoring, documentation and evaluation

Both IEC 60324 (Medical Device Software life cycle processes) and ISO 13485 (Medical

Devices Quality management systems. Requirements for regulatory purposes) define

that a company shall have documented procedures to receive and handle feedback.

The purpose of the activity is to gather and monitor information to understand how well

the requirements are met and how the software system is performing in the field. A feed-

back mechanism and feedback procedures shall also make visible when there is a devi-

ation to the expected behavior. All user groups and roles who use the software should

be considered and feedback channels should be designed and implemented accord-

ingly. Both external and internal users shall be taken into account. The following proce-

dures shall take place after the software is released:

 Collect and receive feedback continuously

 Create visibility by documenting the feedback

 Analyze and evaluate feedback and update documentation for fact based deci-

sion making

 Provide input to risk management and problem resolution processes

 Provide input to continuous improvement for upcoming SW updates

A manufacturer shall define sources from where valuable feedback shall be collected.

Documentation shall answer the following questions:

 How feedback is collected?

 How often feedback is collected?

 How feedback is documented?

 Who is the responsible person for feedback collection and documentation?

A responsible person must ensure that the data is gathered and documented.

Feedback channels should cover all possible feedback sources. Table 2 provides an

example of possible information sources.

18

Table 2. Information sources.

Information Source Frequency of update Responsible person

Customer Feedback (NPS
questionnaires, direct con-
tact)

Continuous, NPS feed-
back rounds twice a year

Service Leader, Sales

Service Organization Continuous Service Leader

Customer Care – Customer
complaints and Repair data

Continuous. Critical
problem escalated im-
mediately

Service Leader

Telemetry data from robots Continuous Software Leader

National Cyber Security Cen-
ter alerts

Continuous Software Leader

Hardware Development &
Sourcing

Continuous Hardware Leader

All feedback, negative and positive, is valuable and is great source for improvement

ideas and new features. Regular reviews for all feedback and selection of the best ideas

for further consideration should be part of standard operational procedures. [4]

2.2.3 Creating problem report and change request

A problem report is created when feedback is evaluated and a problem is identified in a

software system.

A problem report is documented as a defect (Anomaly) which is created to the ticketing

system. A defect report example is shown in Picture 6. A problem report shall include

all relevant information which is needed in problem investigation, problem resolution,

problem verification as well as in risk management activities. One common pitfall is that

the problem reporter has omitted some important information. Often the case is that at

the time of reporting something is so self-evident for the reporter that information is left

out. Later, when the developer is analyzing the report, he/she does not understand the

19

case thoroughly enough due to the missing information and more information must be

requested from the problem reporter.

To improve the quality of the reports, feedback to the reporters shall be given regularly.

Picture 6. Example of defect report.

A defect report has a title, a description and many fields or criteria. An example of the

most important fields is described below:

 Summary: Title of the defect, it should describe the problem in one sentence

 Description: Describes the problem, including information such as:

o How the problem is affecting the use of software or product

o How the problem is visible

o Steps to reproduce the problem state

o How the software or system recovers from the problem state

o Possible environmental factors which may affect the likelihood of the oc-

currence of the problem.

In the example picture, the estimated probability (or likelihood) of the problem

to occur shall also be added to the description because the likelihood and the

severity need to be known in order to calculate the risk index.

20

 Severity: How seriously the problem affects the use of the software. Example

severity levels are categorized as Negligible, Minor, Serious, Critical and Cata-

strophic. Severity levels should be aligned with severity levels defined in the Man-

ufacturers risk management.

 Priority: The risk management process will set the priority for the problem. Pri-

ority levels are categorized as Low, Normal, High and Critical.

 Found in release: on which version of software the problem is found.

 Original time: When the problem was detected. This is important information

needed in the logs investigation.

In addition, there might be other fields to help to deal with the report and define respon-

sibility:

 Sprint: To which development sprint correction work is allocated.

 Owner: Person who is responsible to fix the problem.

 Fixed in release: Software version in which the fix for the problem is released.

 Remaining time: How many work hours the implementation is estimated to take.

Manufacturer shall use a problem resolution process to address the problem.

In addition to changes caused by the problems, there can be other changes as well.

Feedback evaluation may conclude that a change to the software system is needed to

address, for example, customer feedback, regulation changes or information security

alerts. In addition, there can be an innovation which causes a change request for a soft-

ware system. The IEC 62304 standard does not explicitly define when feedback shall

raise a change request if feedback is not found to be a problem. However, manufacturer

feedback evaluation and product management activity shall be such that the process

ensures regulation changes and customer-related needs are taken into account also in

the post-production phase. [4]

2.2.4 Problem investigation and change analysis

The main purpose of the problem investigation and change analysis phase is to utilize a

problem resolution process to investigate problems further and identify possible root

causes. In addition to the problem investigation, each change request shall be analyzed

to understand the effect on the existing software system, including the interfaces.

21

The problem report is analyzed. A risk management process is utilized to evaluate the

problem’s relevance to the safety of the software system. Risks are recorded in a risk

management file. Fault tree analysis (FTA) and/or failure mode and effects analysis

(FMEA) are utilized and mitigation suggestions collected. The results of the risk analysis

determine the priority for the problem. The results might also trigger a new change re-

quest to the backlog for risk mitigation. [7]

Depending on the local legislation, the relevant parties including regulators shall be in-

formed about the found problem.

The defect shall be allocated to a developer for further investigation. Based on the in-

vestigation result, the next actions are agreed. A decision can be, for example:

 More information is needed from problem reporter.

 A test request to the test engineer (or other role) who is expected to reproduce

the problem.

 The Defect is approved for fixing by setting a target milestone (Release) and is

set to defect backlog according to the priority.

 After analysis, if the defect priority is lower than current bar for release under

development, the defect is left lower in the backlog.

 The defect is found to be duplicate for an already known defect. The report will

be closed as duplicate. The closed ticket will be linked to the original defect. The

original defect priority is set higher if the new defect report has impact on the

severity or occurrence. The work will continue on the original defect.

 The cause is found to be user error where the software or device had been used

improperly or environmental factors have been out of the specifications. How-

ever, since it is a medical device in question, a risk assessment is needed to

understand the severity and the probability of the harm. If the risk index is high,

mitigation actions are needed even though the device and the software itself work

as specified.

Change requests are analyzed by the software team. Often more information is needed

to thoroughly understand the expected outcome. The risk management process shall be

utilized to identify if a change can potentially contribute to a hazardous situation. The

work estimate is updated. There shall be an agreed procedure to approve a change

22

request for implementation. This can be carried out, e.g., by setting a target release by

an authorized party. [4]

2.2.5 Modification implementation

All modification implementations are based on approved changes. These changes are

defects, anomalies or user stories of new or changing features or functionalities. The

software development process will be applied when designing, implementing, integrat-

ing, and verifying the software.

Different methods can be used for an architecture specification, a user interface design,

and a detailed design, depending on the scale and complexity of the change. The soft-

ware development or maintenance process shall define which documents shall be cre-

ated and maintained.

Software units are developed according to the specifications. It is good practice to review

the code changes with peer developers before progressing further. There shall be a unit

verification process which defines methods, procedures and acceptance criteria for soft-

ware unit verification. Conducting a unit test is one approach to verify the software units.

Unit test cases and procedure shall be evaluated for correctness before they are ap-

proved as an accepted verification method. The software units shall fulfill the acceptance

criteria before they are integrated to the software.

The accepted software units are integrated to the software system. Software integration

is verified to ensure that the accepted changes have been integrated to the software as

planned. The software shall be integration-tested with verified procedures to ensure that

the software item performs as intended. Regression testing shall be performed to ensure

there are no defects introduced. The risk control measures shall be verified.

The problem resolution process shall be utilized for anomalies found during the testing.

The test report shall include information about a) person who executed tests b) test re-

sults c) list of anomalies d) information needed to repeat the tests.

All changes to user interface texts are translated to supported languages and developers

are updating translations to the software. Similar to other changes, there shall be a

23

method to verify the user interfaces after the translation changes to ensure texts are

correct and shown properly in the user interfaces.

Software configuration management and version control shall be performed systemati-

cally. Software configuration shall be identified and version controlled. All changes to the

software shall be traceable to the approved change request and accordingly each soft-

ware change shall be traceable to a requirement or to a defect. The configuration shall

also include SOUP configuration items. This covers all third party software, including

standard libraries, and documentation.

The maintenance of a software system has some additional challenges compared to the

situation where the software is developed for the first time from scratch. All existing de-

vices in the field shall be taken into account. There can be several device or hardware

versions having different versions of software. The software for a device shall work with

all hardware versions or there shall be different versions of the software for the different

hardware versions. The latter option runs the risk that effort needed to maintain several

software versions in parallel increases over time. In addition, the software update pro-

cess shall not add any unacceptable risk to the usage of a medical device.

Picture 7 illustrates an example of the code line management in the maintenance phase.

Changes are implemented in sprints and integrated to the software mainline in a contin-

uous integration mode. Unit and integration testing are performed to ensure quality of

the mainline. In the example, there is separate branch for new Epics, meaning that the

new feature is developed in its own branch and only merged to the mainline once the

feature is completely coded and passes tests.

Once all new features and changes are implemented, verified and acceptance tested in

the mainline, a release candidate will be created. After the release candidate for the

software is created, it shall be ensured that the software is isolated from changes. This

means that if the new release candidate is needed, it includes only changes which are

absolutely mandatory and have been formally accepted to be included in the software

release. In the example, this is achieved by branching the software from the mainline to

the release branch. In parallel, development for the later releases can continue in the

mainline without adding regression risk to the software in the release branch.

In case there are changes implemented directly to the release branch, it is an extremely

important task to merge the changes to the mainline. Otherwise, the coming releases

may be missing an already implemented change.

24

The manufacturer shall have the codebase for all releases stored (without changes after

releasing). These can be used as a basis if there is an urgent need to have a critical

defect fixed or security patch deployed at short notice. [4]

25

Software Codeline Management – Branch Plan
N

ew
 E

p
ic

s
So

ft
w

ar
e

M
ai

n
lin

e
So

ft
w

ar
e

R
el

ea
se

B

ra
n

ch
Em

er
ge

n
cy

R

el
ea

se
/P

at
ch

Hemmo Helminen 8.10.2016

Merge

Mainline- Continuous Development and verification of changes

Merge

Feature branch

Critical Defect
corrections

cherry picked
Release Candidate

Release (NAME)
Release (NAME)

Merge
Verified feature

Merge

Merge fixes done
To release branch

Previous releae branch

Released
SW

(NAME)

Release (NAME)
Release (NAME)

Branch for emergency release

Critical Defect
correction

Merge changes

Picture 7. Maintenance phase code line management example.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

2.2.6 Quality assurance and releasing

The purpose of the quality assurance and releasing phase is to ensure that the modified

software product is working as expected and can be re-released. Software system test-

ing shall cover all software requirements. Testing can be combined to a single plan to-

gether with the integration testing. If there are software changes carried out during the

system testing, tests shall be repeated, tests shall be modified or additional tests shall

be added as seen appropriate. Similarly to the integration testing, the test report shall

include information about a) person who executed test b) test results c) list of anomalies

d) information needed to repeat the tests. Software system testing shall be verified to

ensure that the test procedures are appropriate, the test cases can be traced to the re-

quirements and all the software requirements are covered by the test cases. Accordingly,

it shall be ensured that all the test cases have been executed and the results meet the

required pass/fail criteria.

Before releasing the software following activities need to be completed:

 Completeness of all verification activities shall be verified

 Residual Anomalies shall be documented and evaluated

 Risk file shall be reviewed

 Software version documentation shall be updated

 Procedure and environment of software creation is documented

When all tasks have been completed, the release approval shall take place. The software

development process shall define the roles and the acceptance criteria needed for the

software approval. When all items are in acceptable level, the release is approved and

the decision is recorded.

The software release along with the configuration items and documentation shall be ar-

chived for the life of the device or the time set by the regulators whichever is longer.

After software release has been approved, an engineering change note is created to

indicate that the production shall start to use a new software in the production. It shall be

ensured that software delivery to the production as well as to the customers is carried

out without adding risk for corruption or unauthorized change. The software updates to

a customer devices are started according to the software update plan. [4]

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

3 EVALUATING THE WORK METHODS

The Evondos software development processes and work methods are evaluated to un-

derstand the current status. Different sources such as self-observation, existing docu-

mentation, sprint and release reviews and retrospectives as well as interviews are used.

Evaluation is divided in to two approaches. The first approach is to study the develop-

ment work for one software release thoroughly to find concrete evidences for the chal-

lenges. The second approach is to evaluate processes and work methods against IEC

62304 (Medical device software – software life cycle processes) [4].

3.1 Study of a release

Study of release is done for the 1708-release because of the following reasons:

• It was the latest released software.

• There had been an extensive delay in releasing.

• The software had been deployed and already updated to big portion of dis-

pensers in the field.

Initially planned schedule for the release was mid November 2016, but was postponed

at early state to be released on December due to the changes in the content. To the

customers it was communicated that a software release with certain important quality

improvements will be available by the end of the year 2016. In the beginning of Decem-

ber, there was high pressure to start the release testing in order to meet December re-

leasing target, thus it was decided to create the release candidate and start the release

testing even there was still some content missing. First release candidate was created

at fifth of December and the release testing was started. Aim was to add the missing

content as soon as possible, perform the release testing in three weeks and fix possible

found defects and release the software before the end of the year. Actual progress did

not correspond with the expectation. After 13 release candidates, the software was re-

leased on 23rd of February 2017. Figure 1 illustrates the progress from the release can-

didate point of view.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Figure 1. Release candidates for 1708 release.

During the release testing period, decisions to create a new release candidate was made

based on the committed content and testing status with previous release candidate.

3.1.1 Decision to start release testing

Release candidate is a software build, which is expected to be ready for releasing to the

market. All new features and changes should have been implemented, verified and ac-

ceptance tested. All bug fixes should have been verified.

Purpose of the release testing is to ensure that all requirements are met and to detect

possible regression caused by changes to the software i.e. changes have not broken

any part of the functionality or caused any unexpected side effects and furthermore

cause a risk for the care continuity and the customer health.

Since the complexity of the robot and fact that the patient health shall not be compro-

mised due to the malfunction of the robot, relatively extensive regression testing is re-

quired to minimize the possibility of unexpected behavior. For the 1708-release, the es-

timated release testing time was three weeks with the resources available.

Verification for the already implemented features and changes had been completed.

There was known missing content: Part of the history validation functionality, Danish

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

translations and Irish Speech themes. In addition, there were ongoing discussion about

five major functional changes but no decision to include any to the release.

The missing content was analyzed and concluded that the implementation would be

ready within two weeks. Also concluded that the release testing could be started with the

tests cases which would not be impacted even the defined content would be added after

the release test start. Based on the information available, decision to create the release

candidate and start the release testing was made. The release candidate was built on

5th December 2016.

3.1.2 Changes during release testing

Work estimates for the five change proposals were reviewed on the 8th of December

and it was decided to implement the proposed patient UI changes to the release. The

other four change requests were postponed to the future releases.

To understand all the changes taken into the software during the release-testing period,

changes were listed and analysed. Software change information is available in the Git

version control system. Commits from release branch was printed to text file with git log

>> commits.txt command. Text file was imported to Excel and Excel pivot was used to

create Figure 2 chart to illustrate software changes in a calendar time.

Figure 2. Software changes during release testing.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Altogether, there were 97 changes. In the Picture 8 changes are divided into the catego-

ries to understand the portion of different type of changes. It is visible that there are four

dominating categories. The changes due to the change requests to the functionality (16

pcs), bug fixes (14 pcs), localization changes (33 pcs) and fixes to the new functionality

(23 pcs).

The fixes to new functionality means that in the release testing it had been found that

implemented functionality did not behave as initially expected or found that specification

was poor and implemented functionality did not fulfil the need. Latter one means that a

functionality is implemented according the original requirement, but when the functional-

ity is demoed it has become evident that the requirement shall be changed to make the

functionality more feasible for the customers.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Picture 8. Software changes divided into categories.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Changes due to change requests are listed in table 2.

Table 3. Changes after first release candidate.

Date of change Changed functionality

Date of change Changed functionality

7.12.2016 Medication history validation

8.12.2016 Irish speech themes

8.12.2016 Medication history validation

16.12.2016 Medication history validation

19.12.2016 Medication history validation

3.1.2017 Medication history validation

4.1.2017 New camera lens support

5.1.2017 New camera lens support

11.1.2017 Patient UI renewal

12.1.2017 New camera lens support

25.1.2017 Medication history validation

25.1.2017 Medication history validation

25.1.2017 Medication history validation

27.1.2017 Medication history validation

1.2.2017 Correction to English speech themes

3.2.2017 Unload date/time inserting change

It was known that some changes are required, even the release testing was already

started. The Irish speech themes highlighted in table 2 were included to the content as

expected. Implementation of additions and changes to the history validation functionality

took much longer than expected. In addition, there were late business decision to add

support for new camera lens, renew the patient user interface and change the date and

time inserting logic for the unload use case. In addition, a small change to the terminol-

ogy in the English speech theme was agreed.

Localization corrections and changes are listed separately since it became evident that

they form a big individual problem area. The localization related changes caused much

more work than initially expected. The missing Danish translations were added as ex-

pected, but the patient user interface changes and other localization related findings

caused lots of work and was one big contributor for the extra delay. Amount of localiza-

tion changes are listed in Table 4.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Table 4. Localization changes.

Date of change Changed functionality

Date of change Changed functionality

2016-12-08 Localization change

2016-12-12 Localization change (Danish translations)

2016-12-16 Localization change

2016-12-16 Localization change

2016-12-16 Localization change

2016-12-16 Localization change

2016-12-20 Localization change

2016-12-20 Localization change

2016-12-20 Localization change

2016-12-27 Localization change

2016-12-30 Localization change

2017-01-03 Localization change

2017-01-10 Localization change

2017-01-17 Localization change

2017-01-24 Localization change

26.1.2017 Localization change

26.1.2017 Localization change

27.1.2017 Localization change

27.1.2017 Localization change

27.1.2017 Localization change

27.1.2017 Localization change

30.1.2017 Localization change

30.1.2017 Localization change

2.2.2017 Localization change

6.2.2017 Localization change

8.2.2017 Localization change

8.2.2017 Localization change

9.2.2017 Localization change

9.2.2017 Localization change

15.2.2017 Localization change

17.2.2017 Localization change

21.2.2017 Localization change

23.2.2017 Localization change

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

In addition, Picture 8 includes nine change for test tools. The test tool changes are not

changes to actual robot software instead those are changes to test scripts or manufac-

turing tools used to configure and verify the robot in the factory. The tool changes are

visible in the commits because tools are maintained and version controlled together with

the robot software.

3.1.3 Other findings

The developers had many simultaneous responsibilities disturbing the development

work. The development work was interrupted due to the request coming from Customer

support, Production support and Hardware team.

In addition, following problems were identified:

• Many tasks are dedicated to certain developer, it is not possible to share work

• Same developers are taking care of tools and development environments

• No back-up persons, during the absence tasks will be on hold

• The team is not co-located, which is making communication more challenging

• Many various and simultaneous tasks are ongoing

• Handling tickets in the parallel ticketing system is time consuming

• Team velocity is not known and used, the current Trac implementation does not

support agile estimation

3.1.4 Release 1718 conclusions

The software team time was consumed to the following development and testing tasks

during the release testing phase:

1. Implementation and testing of the new content

a. Support for the new camera lens

b. The patient user interface renewal

c. The date and time inserting logic for the unload use case

2. Implementing and testing of the localisation related changes and corrections

3. Implementing and testing of the history validation feature additions

4. Implementing and verifying of the bug fixes

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

The workload for above tasks together with the workload for all other tasks was the total

workload. The total workload, team capability and velocity was not understood well

enough to give reliable schedule estimate for the decision making.

3.2 Root cause analysis and improvement proposals based in 1708-release

In this chapter, the challenges identified in the 1708-release study are analysed further

to understand root-causes. When the causes are known, actions for the improvements

are identified. The improvement actions are mentioned in each chapter and in addition,

listed in the Appendix 1.

3.2.1 Testing

One of the four values in the Agile manifesto is to value responding to change over fol-

lowing a plan [9]. The value welcomes changes also in a late phase of the project. The

Evondos integration and system testing process and capability does not support this

value very well. There are hundreds of test cases and the test cases are not automated.

The current work methods and testing capacity makes it difficult to respond late changes

especially if big changes are happening in the release testing phase. In the analysis it

was noticed that quite many bugs were found in the release testing. Most of these bugs

should had been found before the release testing.

A nightmare scenario is that important testing is only performed at the end of a release

or project, and if at that point a significant problem is found nothing can be done about it

without extending timescale and costs [9].

Test automation along with process improvements should be introduced to improve the

integration testing so that bugs are found earlier.

3.2.2 New content: New camera lens

Support for new camera lens was required because a new lens type was replacing the

old lens. The factory did have a buffer of lenses for a certain time, but estimated releasing

date for the next release was so far in the future that it was not possible to postpone the

lens support to the next release.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Better product management and requirement management processes should ensure

that the requirements are added to the product backlog in an earlier phase. A shorter

releasing cycle shall enable postponing similar late requirements to the next release.

3.2.3 New content: Patient user interface renewal

According to the customer feedback, the patient user interface in the robot was not opti-

mal for the users. Improvement needs were documented and the new user interface was

designed to address the feedback. The Company leadership decided that the change

must be included in the release.

A better customer needs process should ensure that important requirements are added

to the product backlog earlier and with higher priority. With a shorter releasing cycle and

an easier software update procedure, late requirements could be postponed to the next

release more easily.

3.2.4 New content: The date and time inserting logic

When the new functionality included in the release was demoed, it was found out that

the date and time inserting logic for a last sachet was not aligned with the similar func-

tionality in the other use cases. The modification of other use cases had been made to

the release but this use case had been left out from the design. Due to the consistency,

decision was to change the functionality as well.

The requirements analysis and software design phase should have more focus to take

whole functionality and interfaces into account when modifying the software functionality

and the user interfaces. Agile practises should be improved so that functionalities are

demoed earlier to a larger audience. Development team collaboration and information

sharing should be improved by introducing daily scrum meetings.

3.3 Localization

Localization for the 1708-release meant only translation related tasks since there was no

a new market area nor a new language added. More than ten update rounds for the

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

translations in the 1708-release was performed. Brainstorming the localization work

methods generated the following list of challenges:

• Responsibilities are unclear

• Varying methods to get feedback from the country organizations

• Cases where the translated text does not fit to a user interface component

• Cases where translator does not understand the context and a wrong translation is

used

• Source texts are not up to date, causing that the English translation file must be used

instead

• The QT-translation files are difficult to use since QT-linguistics tools is needed

• Different people have different opinions for wording and it is not clear who will do the

final decision

• Risk that the wording is changed only for certain UI’s and not aligned with other sim-

ilar UI’s

• Texts started to variate between different languages i.e. meaning of the phrases not

aligned between the languages

• Country organizations are proposing fundamental changes within translations

• Mistakes when modifying the translations files with translation tool (QT-Linguistics)

• Difficult for the test team to generate the UI screenshots with all possible screen and

text combinations

Responsibilities between different roles should be clarified. There should be a common

way to collect feedback from the country teams. The user interface pictures should be

available for the translators. The source texts should be updated. There should be a

vocabulary for terms used in the Evondos system. Summarizing all above together, the

whole localization process should be re-designed and documented.

3.4 History validation feature

The implementation of the medication history validation feature lasted eight weeks in-

stead of initially estimated two weeks. The history validation feature had been specified

in September and implementation started in October. The implementation was com-

pleted in the end of November and reviewed in the 2nd of December. In the review, it

was found that the original requirements had not been complete and all use cases had

not been taken into account.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

More focus to the requirements analysis and software design is needed to ensure that

the overall functionality and the interfaces are taken into account when modifying the

software functionality and the user interfaces. Since it was difficult or even impossible to

demo the feature after the sprints, the design documentation could have been used to

explain functionality after each sprint. A better template for functional and design speci-

fications should be created.

3.5 Development team resourcing

In the small team with dedicated competence areas a dynamic work allocation and shar-

ing of tasks was found to be difficult. An increasing and a varying workload coming out-

side of the development project caused un-planned interruptions and delays in the de-

velopment work.

The overall capacity of the team should be better aligned with the increasing workload.

Additional resources would enable a better competence sharing and improve the team

productivity. A shorter releasing cycle and an easier software update procedure would

enable quicker deployment of bug fixes, which would decrease problem investigation

and debugging workload accordingly.

3.6 Review of medical device Software maintenance process

The Evondos software maintenance process was reviewed against the Checklist for

small companies without a certified QMS, Picture 9. Checklist is available in the Annex

D of the Medical device software life cycle processes [4].

Checklist was created to Microsoft Excel where it was easy to record evidences and

deviations. Each activity in the checklist was analyzed from two perspectives. Firstly,

how the activity is described in the documentation and secondly how the actual work

method follows the standard.

According to the analysis, activities defined in the standards seems to be followed well

in the work methods and daily practices. Found deviations were mainly related to the

documentation of the responsibilities and procedures. A serious deviation, which would

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

require immediate actions, was not identified during the analysis. However, there were

some findings which are agreed to be corrected by the end of first half of the year 2019.

A better documentation of the responsibilities and activities regarding the customer feed-

back collection was agreed to be the first improvement.

Picture 9. Checklist for small companies without a certified QMS [4].

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

4 IMPROVEMENTS

This chapter concludes the proposed improvements. All improvement proposals are

listed in the Appendix 1.

4.1 Localization procedures

Localization process definition was the largest effort of the thesis. For the localization

procedures, there were no documentation describing what are activities in the process,

who is expected to perform tasks and when an activity (in which order) should be done.

Exact method for designing and describing the process was open. Internet and different

books were examined for an advice about the best approach. Methodology described in

the Workflow Modelling Tools for Process Improvement and Applications Development

book [8] was selected. The work for the process improvement was organized in three

phases as described in the book:

1. Establish process context, scope, and goals —includes identifying a set of related

business processes, and for each, clarifying its boundaries, contents, and some

aspects of the current implementation, performing an initial assessment, and set-

ting to-be goals.

2. Understand the current (as-is) process —includes modelling its workflow and

making initial observations on factors impacting process performance;

3. Design the new (to-be) process —includes finalizing an assessment of the pro-

cess, devising and assessing potential improvements, selecting which changes

(improvements) will be made, defining the important characteristics of the to-be

process required to implement the changes, and designing the new workflow [8]

4.1.1 Phase 1: Process discovery – What, Why and How

The starting point for the process development work is to understand the sole purpose

and aim of the process. The purpose of the process is to describe the localization related

procedures and responsibilities for the Evondos® service localizations. The process is

named as Localize Service. The scope of the process is to, translate, implement, verify

and release software related items which require localization. Current list of items:

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

 Texts visible in the user interfaces

 Service voice messages in the robot

 E-mail messages

 SMS-messages

 Call voice messages

User guides and hardware related items are not in the scope of the process. Currently

Finnish, English, Norwegian Bokmål, Norwegian Nynorsk, Swedish and Danish are the

supported languages.

Above described purpose and scope was added as first chapter to the process descrip-

tion document.

The Localise service process is a sub process of the modification implementation in the

software lifecycle processes as illustrated in the Picture 10.

As an input to the localize service process is the outcome of the Problem and modifica-

tion analysis process. These outcomes are either problem reports or change requests.

Outcomes of the localize service process are localized software components included in

the software release. Exception is the call voice messages, which are not part of the

software release and are updated separately to the voice call system.

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Picture 10. Localizing the service process in the software lifecycle process

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

4.1.2 Phase 2: Understanding the As-Is Process

Purpose of the understanding the As-Is Process phase is to understand and describe

the current flow of the work. As an end result there shall be a workflow diagram describ-

ing the activities and the roles performing the activities.

Instructions and examples in the book [8] proposed to draw swim lane picture of the

process. In the swim lane diagram, you have both roles and activities in the same dia-

gram. Roles are swim lanes and activities that a role is performing are drawn inside the

swim lane. Activities are in chronological order from right to left. Example in the Figure

3. Workflow illustrated as swim lane diagram [8].

Figure 3. Workflow illustrated as swim lane diagram [8].

While drawing the As-is process it became evident that it was difficult or even impossible

to use the swim lane diagram. One of the problem identified in the root cause analysis,

was the unclear roles. When trying to draw the current workflow to the swim lanes it was

impossible since one-day certain task had been performed by Service Project Manager

and next time it had been Software Manager or Development Engineer.

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Instead of a swim lane diagram, activities were drawn in the simple workflow-chart where

the activities were listed in the chronological order but the roles were not defined for the

activities. Figure 4. As-Is process for changing existing text illustrates how the As-Is state

was described.

Request to change
text

Update *.ts file Commit to Git Build software
 Localization

testing/
Acceptance

UI screenshots with
new texts

Trac ticket
Translate to target

language
Decide English text

Update english text
to ts file (Source

text left as is)

Figure 4. As-Is process for changing existing text.

As end results there were number of workflow diagrams describing the activities for dif-

ferent type of changes. Type of change here means that e.g. only translation for a lan-

guage is corrected whereas other type is that a new user interface is added and all lan-

guages as well as the source text needs to be defined. In addition, there were separate

workflows for the Robot and the Telecare system. To be noted that as a deviation to the

original target, roles were not visible in the diagrams.

4.1.3 Phase 3: Designing the To-Be Process

As an input to the To-Be process, we had: 1. The As-Is process workflow-diagrams 2.

The list of challenges identified during the assessment of the current state 3. Out of the

box thinking and willingness to improve.

The work proceeded by adding new activities to the flowcharts and by modifying the

existing activities to address the problems identified earlier. For example, UI-design cre-

ation and delivering them to the translator were added to the process along with many

other tasks. As a result, there was flowchart pictures describing the activities needed to

run the process perfectly through. Results were reviewed a couple of times and after

each review updated based on the review feedback. Few weeks’ later it seemed that

work is not progressing. In the review meetings different and partly conflicting feedback

was given comparing to the previous reviews. The question which raised was that why

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

there were so many changes requested to the process steps which were previously

agreed.

Maybe it was about the too detailed flowchart, some activities could easily be abstracted

to higher level tasks and still maintaining the needed level for process description. Then

about the roles, while designing the process, it had become clear which role should do

which task, I thought. But the roles were not visible in the process pictures, the basic

flowcharts were used, still. It would be good idea to use the swim lanes instead of the

basic flowchart, but there was hesitation since amount of work would be rather big. In

spite of the work amount the work proceeded by refactoring the process pictures to the

swim lane format and at the same time raising the abstraction level for some of the tasks.

While drawing workflows with the swim lanes, major improvements were found when the

roles and workflow between the roles was visible. For example, there was task were role

was working only as a middle-man between two roles without adding any value, only

causing possible delay. Some tasks were abstracted to a higher level tasks. The problem

list which was created in the root-cause analysis was reviewed to ensure that all the

localization process related problems had been taken into account in the process design.

The process description includes altogether eight different process workflows. Three

workflows for the robot UI-texts, three workflows for the Telecare system UIs’ and one

for both the robot voice messages and the voice call messages. The e-mail and the SMS-

message localizations are following the Telecare system UI-process as they are origi-

nating from the Telecare system.

4.2 Implementation of other improvements

In addition to the localization process improvement there were several other improve-

ments defined.

4.2.1 Shortening the release cycle

Shortening the time between software maintenance releases has been set as a target.

To achieve the target, improvements are required to the methodologies development

team is using as well as improvement in the software update is delivery to the customers.

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Enablers for shortening the release cycle are progressing. Test automation ramp-up has

been started and target is to increase automation level significantly by the end of the

year 2019.

To improve software update procedure, project has been initiated. As an outcome the

remote software update functionality is expected to be available during the year 2019.

4.2.2 Customer feedback

Importance of the customer feedback process as well as related tooling was highlighted

to the key stakeholders. The customer feedback processing and decision making has

been improved by the regular feedback reviews. Documentation of the feedback process

and responsibilities has been proposed.

4.2.3 Requirements management

Importance of the Requirements management process improvement as well as related

tooling highlighted to the key stakeholders. Regular Product Management meetings has

been started. Requirement management tool decision is still pending.

4.2.4 Software development

A daily meeting practise has been started in cadence of two meetings per week in the

robot software development and everyday meetings for the Telecare system software.

Peer reviews has been added to the common practise. The robot software ticketing sys-

tem renewal has been added to the targets for the year 2019.

Telecare system ticketing was moved to the Jira. The Telecare system existing tickets

were closed in the Trac. To maintain the traceability, the tickets in the Trac were manually

linked to the Jira tickets by adding the Jira ticket number as reference. By implementing

this change, software lead workload decreased and unclarity due to not synched infor-

mation disappeared.

47

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

4.2.5 Resourcing

Development team resourcing was studied. Based on the identified competence and re-

source gaps, two scenarios for the resource plan was created. Implementation is waiting

for the financial decision which will also set basis for the scenario selection.

48

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

5 CONCLUSION

Target for this thesis was to improve the software maintenance processes and work

methods in the Evondos software development. The Evondos software development

was thoroughly analyzed from different perspectives. The analysis highlighted the chal-

lenges the software team is facing when creating the maintenance releases for the robot

software. Major problems in the high level were: the additional content close to the re-

leasing target date, the team capability to react to the changes, and big portion of the

important testing left to the late phase of the release project.

The additional content was added mainly by two reasons. First, the requirement man-

agement process was not optimal, causing that the important features did not get high

enough priority in the product backlog. Second, when the importance of the features was

understood the long releasing cycle caused that there was high pressure to get the

changes included to the ongoing release content. As a solution, the requirements man-

agement process was improved by introducing the regular product management meet-

ing, and activities for the enablers to shorten the releasing cycle were planned and

started.

When the team capability was studied further, several reasons was found. Disordered

localization activities were causing huge amount of extra work. The responsibilities and

tasks in the localization area were clarified by introducing a dedicated process for the

localization activities. The software development team daily practices were improved e.g.

by improving the team member’s collaboration between each other. The team resourcing

did not support a dynamic work allocation i.e. responsibilities were fixed, causing that

the implementation was interrupted if there were any absences or any tasks coming out-

side of the release project. A resource plan proposals were created to improve the re-

sourcing situation.

The study of the software maintenance process revealed that the big portion of bugs

were found during the release testing, not before as it should. The existing work methods

and testing capacity makes it difficult to increase test coverage earlier in the release

project. There are hundreds of test cases and testing is not automated. Test automation

ramp-up was started and target is to increase level of automation significantly during the

year 2019.

49

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

5.1 What is the significance of the results?

Overall the targets of this thesis were achieved with good quality. The results of the thesis

are expected to have a positive impact to the Evondos software development perfor-

mance. The localize service process alone is expected to clarify the responsibilities and

clearly improve the work methods in the software development. When tasks and respon-

sibilities are clear, it is expected that the needed effort for the localization-related activi-

ties will decrease. As iterations needed for the localizations are expected to decrease,

this will have a positive impact on many areas in the software development. Such areas

are change and configuration management, modification implementation as well as test-

ing and verification.

While some of the findings might seem self-evident, documenting the findings made

them more visible for the decision makers. The results from this thesis will be followed

and further developed as part of the Evondos software development normal procedures.

The scope of thesis was quite Evondos specific and thus the results are not expected to

give great benefit for a larger audience.

5.2 Lessons learnt

As the software maintenance for medical device is a huge area overall, it was occasion-

ally difficult to keep the scope of the thesis focused. Adding to that, the one and half year

time span which was used for thesis work.

Due to long time, the software release which was analyzed in the thesis had already

become fairly old at the time when this thesis was finalized. Two releases have been

released after that, however most of the challenges, especially in the localization area

have been similar.

As the localization related difficulties were visible from the start, localization was kept as

the major topic throughout the thesis work. The localization process is bringing new ac-

tivities which have not been performed or have only seldom been performed. One ex-

ample is the creation of UI screenshots for translators. Creating the screenshot will take

some effort, however, the expected improvement is significantly greater as it is expected

50

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

that with screenshots the translator is able to better understand the context where trans-

lation is used as well as see how much space there is for the translated text.

51

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

REFERENCES

[1] Evondos® Service Product Brief and Architecture Overview M-files ID 3642 version 4
31.7.2017

[2] Data security in Evondos platform M-files ID 14674 version 16 31.7.2017

[3] Evondos Software Development Process M-Files ID 8486 R:N_177008000 version 13
18.3.2016

[4] IEC 62304:2006 Medical device Software life cycle processes

[5 Medical Device Directive (MDD) 93/42/EEC (latest amended by directive 2007/47/EC).

[6] 2009-06-03 MDEG – 2009–12-01 MSOG Class I_Guidance Rev. 1_2009-06 Compliance and
Enforcement group

[7] SFS-EN ISO 14971 :2007 Application of risk management to medical devices

[8] Workflow Modeling Tools for Process Improvement and Applications Development Second
Edition Alec Sharp, Patrick McDermott ISBN-13: 978-1-59693-192-3 © 2009 ARTECH HOUSE,
INC. 685 Canton Street Norwood, MA 02062

[9] Peter Measey and Radtac. (2015) AGILE FOUNDATIONS Principles, practices and frame-
works. ePUB ISBN: 978-1-78017-256-9.

[10] ISO 13485:2012 Medical devices. Quality Management systems. Requirements for regula-
tory purposes.

[11] IEC 62366-1:2015 Medical devices -- Part 1: Application of usability engineering to medical
devices

Appendix 1 (1)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

Identified improvements

Improvement Actions

Localization proce-

dures

 Define localization process

 Create Evondos vocabulary

 Create UI picture library

 Update source text

 Implement automated user interface screen shot

generation

Customer feedback

handling

 Define customer feedback collection and responsibil-

ities

 Replace multiple files with one tool for feedback

Shorten releasing cy-

cle

 Introduce remote software update capability

 Implement test automation to shorten release testing

 Study other improvements for testing

Software development

process

 Introduce daily meetings

 Peer reviews shall be added to the development pro-

cess

 Consolidate software ticketing to one tool by migrat-

ing Trac to Jira.

 Improve communication towards stakeholders during

the modification implementation

 Create UI-design or mock-up every time when there

is change to the user interface

 Consider development team co-location

Feedback process

documentation

 Document feedback process and responsibilities

Requirement manage-

ment

 Improve requirement management process definition

 Deploy tool for requirement management

Specifications Create functional speciation template

 Improve architecture specifications

 Improve practise to update and review design docu-

mentation during the iterations

Appendix 1 (2)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Hemmo Helminen

System event data

visualization

 Import data to Power BI and implement needed dash-

boards

 Logs files does not include enough information about

activities performed in the UI

Defect management

process

 Update severity classifications

Telecare system tick-

eting

 Use only Jira for the Telecare system tickets

Resourcing Update development team resource plan

 Nominate dedicated person to transform customer

feedback to business cases and requirements

