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The clickstream analysis focuses on the records generated while a user clicks on 
a web page. This field is nowadays part of the Big Data phenomenon and uses 
near real-time software implementations. 
 
The aim of this thesis was the implementation of a near real-time Big Data infra-
structure that can uphold a clickstream analysis. This work limited the clickstream 
analysis implementation to mainly the user sessionization function. The infra-
structure architecture design used open-source software to enable five core data 
capabilities which are ingestion (consuming the click records), transformation 
(data cleaning, user sessionization, user agent enrichment), storage, analytics 
(insights) and visualization (for presenting accessible insights).  
 
The implementation was run interactively, moving step by step through different 
technical options. The iterations followed a simple scheme. What is easy to in-
stall, to configure, and to test? What is general enough to solve more complex 
requirements? What can be removed?  In particular, the sessionization algorithm 
implementation easiness was a benchmark to compare the various infrastructure 
iterations.  
 
There were four design iterations and four infrastructure implementations. A first 
realization was a zero-coding infrastructure. A second phase delivered a more 
capable parallel data processing component based on Apache Spark, a central 
framework in this work. The next implementation simplified the data storage and 
started the exploration of the Apache Spark streaming features. The last experi-
ment showed the possibility to process streams of clickstream data, coming con-
tinuously from a weblog, with low latency by using Apache Spark Structured 
Streaming.  
 
Spark Structured Streaming has a few SQL limitations that require adapting the 
algorithms and the processing sequence. However, Spark Structured Streaming 
is in its infancy, and there are good reasons to believe that it is going towards 
fewer limits. Besides the central place of Spark, many technologies can set new 
directions or bring improvements to this thesis; for example, specialized data-
bases as the clickstream records are a time-series and also a graph.  

keywords: clickstream analysis, streaming, sessionization, apache spark, spark 
structured streaming 
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1 INTRODUCTION 

 

 

The present master thesis deals with the design and development of a modern, 

scalable solution to analyze website users’ clicks from the web server logs. The 

focus is to deliver the information in near real-time with the tools of the so-called 

Big Data. One of these tools, Apache Spark, is central to this thesis.   

 

1.1 General Context 

 

Since the beginning of the World-Wide Web, many organizations have wanted to 

quantify or monetize the insights they can get on the audience of their websites. 

These insights can help to design a better website, measure the effectiveness of 

a marketing campaign, and “predict what products the user is likely to purchase” 

(Wikipedia, Click path) using previous purchasing data. Information is valuable; 

for example, a successful second-hand car website can also make a substantial 

profit by selling quantitative insights on people's favorite cars by model, by color 

or by demographic dimensions (such as gender, age, region). Nowadays, algo-

rithms are continuously running on the websites back-ends, for example, to guess 

someone mood or gender. Those web monitoring tools allow the business to gain 

an understanding of the nature (e.g., human, bots), the profiles (e.g., customer, 

prospect, competitor), the behaviors of the visitors of their websites. 

 

The web monitoring tool tracks which page the user request, how much data the 

web server serves, what is the previous page visited. The clickstream (or click 

path) is the path the visitor takes through a website. Clickstream analysis or click-

stream analytics is collecting, analyzing and reporting information about the click 

path (Wikipedia, Click path). 

 

1.2 Problem Description 

 

The volume of clickstream data gathered is often substantial. A publicly available 

weblog for the 1998 World Cup Web site gives 1,352,804,107 requests between 

April 30, 1998, and July 26, 1998. Today, YouTube gets 15 billion visits by month 

(Youtube, Press) with an average of 8 pages by visit (192 billion requests). As 
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data were getting bigger and bigger, processing became troublesome for con-

ventional systems (such as a relational database) and algorithms because of the 

high computation cost. Introducing distributed data processing platforms such as 

Apache Hadoop helped with the processing of a considerable amount of data 

with low fees and in a reasonable amount of time. (Google inspired the Big Data 

practice by publishing a paper on the Google File System in 2003).  

 

Today, businesses are trying to uncover opportunities to capture and respond to 

business events faster and more systematically than ever. The requirement is to 

optimize the duration between an event and its consequential action to get a 

greater benefice or value. The right-time would be that the business case speci-

fies an absolute required freshness for the data. For example, security requires 

an action within seconds when some trend information is weekly. However, the 

daily scheduling (traditionally used in data warehousing) can no longer be the 

only option to offer as today's business users emphasize a lower latency between 

the events and the decision makings (human or automated decision). 

 

This thesis presents a journey (including several software design iterations) into 

highly scalable systems for storing and analyzing clickstream data as the stream 

of clicks generates log entries on the web server.   

 

1.3 Near Real-time 

 

“A computerized real-time system is required to complete its work on a timely 

basis. Typical applications are digital control, command and control, signal pro-

cessing and communication systems” “The main characteristic of real-time sys-

tems is the behavioral predictability. Timing constraints will be met whatever hap-

pens in the system.” (J. Goossens, P. Richard, 2004) 

 

One can define real-time in a very mathematical way, but its everyday usage is 

unclear, and its meaning varies with the context. For many persons, it means 

super-fast; for others, it denotes the ability to processing the data as the system 

is receiving it. 
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The wording near real-time or even recently right-time introduces even more im-

precision. However, a commonly accepted use when the delay involved by the 

processing of the data is in the second range to a few minutes. (Wikipedia, Real-

time computing) 

 

This thesis uses the near real-time with the meaning of giving a result by avoiding 

unnecessary delays, providing the result in seconds to minutes with no guaranty 

of the execution time in case of a no favorable scenario (e.g., with a burst of visits 

on the website). 

 

1.4 Motivations and Contributions 

 

The big data journey is a difficult task because of various challenges.  

 There are several large ecosystems, each of them with many technolo-

gies: processing frameworks, storage systems, data flow languages, tools 

for ingesting the information, and non-relational databases. 

 The subject is trendy, making it hard to distinguish the core platforms.  

 There is no absolute consensus on the best solution.  

 Many solutions depend on the skills and affinity of persons.  

 Behind even the open source systems, there are significant and antago-

nistic financial interests. 

 

So big data is difficult at first sight, and it makes it an exciting challenge.  

 

1.5 Clickstream Analysis and Privacy  

 

While there are many benefits that the mining of the weblogs brings, a definite 

drawback is a potential for severe violations of privacy. The dataset used for the 

practical part of this thesis was missing the IP address of the browser, and no 

cookie information was available. Although less accurate regarding the definition 

of the user, there is still enough information to create a user footprint but not 

enough to identify an individual.  

 

1.6 Outline 
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This thesis contains the following chapters: 

 Chapter 2 presents some facts on clickstream and especially the session-

ization, which is a central concept in clickstream analysis. 

 Chapter 3 lists some considerations on Big Data architectures that led the 

implementation.  

 Chapter 4 is about Apache Spark, a massively distributed application 

framework and engine, the core of the realized solution.  

 Chapter 5 shows the iterative and suggestive process to find architecture. 

 Chapter 6 draws a few conclusions. 
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2 CLICKSTREAM ANALYSIS  

 

 

2.1 Introduction 

 

A Clickstream makes up the visible part of the user online behavior. On the web 

servers, there is a history of what human or bot click while browsing the Internet. 

Clicking anywhere on a web page saves information (such as the Internet 

browser used, the page requested) on the user client and the web server. Now-

adays, the most popular form of click tracking uses a JavaScripts tracking code, 

which is inside the web-pages. Using a client-side method is more accurate. The 

reason is that the web server can miss client requests when there is a proxy or a 

cache between the client and the web server. 

 

Modern methods of Clickstream Analysis can answer many questions, for exam-

ple: 

 What is the user gender or his/her emotional state? (Machine Learning 

Algorithms) 

 Is the user intention to buy something?  

 How do visitors travel inside of the site?  

 Which pages are loaded only sporadically?  

 What is the visit-to-purchase ratio?  

 

This thesis narrows the data source to only web server log-files. This approach 

to click-stream analysis was historically the first (before Google and others Ja-

vaScripts), and it has the practical advantage to focus on the data processing 

rather than on the complex data-collection and exchange of the modern scrips 

and cookies that track us on the internet.  Also, the discussion in this chapter 

focuses on the analysis of one crucial user dimension: the session. The session 

tells about the basic user behavior: how long the user stays on the website before 

leaving, how many times he/she comes back.  

 

The experimental data comes from seven days weblogs from a Finnish multina-

tional website, and it is worth underlining that no IPs are identifiable. (The web 

server is behind a proxy). 
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2.2 Web Server Log Format 

 

A web server records every access to a web page in its logs. A weblog record is 

a structure that follows a pre-defined format. The choice of the information in the 

log and the binary/text format of the log file depends on the web server brand and 

its configuration. 

 

Below in Table 1, an anonymized record from the Microsoft IIS server logs. 

 

2017-09-09 01:04:59 GET /folder/page.htm - 10.1.17.240 HTTP/1.1 MobileSafa-

ri/602.1+CFNetwork/811.5.4+Darwin/16.7.0 -  200 0 0 19161 426 171 

 

Table 1. IIS web logline decoded 

Field Record string Description 

Date 2017-09-09 The date on which the server received the re-
quest. 

Time 01:04:59 The time, in coordinated universal time (UTC). 

Method GET The HTTP method such as GET for requesting a 
web page. 

URI Stem /folder/page.htm The page/object requested by an HTTP method. 

URI Query - The query such as for forms or REST API. 

Client IP Address 10.1.17.240 The user IP address. (Here it is a local network.) 

Protocol Version HTTP/1.1 Protocol version for HTTP. 

User Agent Mo-
bileSafari/602.1+CFNet-
work/811.5.4+Dar-
win/16.7.0 

The browser type that the client used. 

Referrer - The site from which the user is coming. 

HTTP Status 200 The HTTP status code is the code returned to the 
client, like the famous 404 when a page is not 
found.  

Win32 Status 0 The Windows status code.  

Substatus 0 A second Windows status code. 

Bytes Sent 19161 How many bytes the server sends to the user cli-
ent. 

Bytes Received 426 The number of bytes received by the server. 

Time Taken 171 The time to complete the user request in millisec-
onds. 

 

The minus sign (-) is for an empty field. 

 

2.3 Weblog Information 

 

The information in the web access logs allows us to construct or identify specific 

levels of data abstraction: user, server session, episode, clickstream, and 
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pageview. The W3C Web Characterization Activity published the definitions of 

the terms relevant for analyzing navigation behavior. (W3C, Terminology) 

 

A user is an individual who is accessing files on web servers through a web 

browser. A user can access the Web with different computers.  

 

A pageview is all the files that make the display of a page on the user's browser.  

 

A clickstream is a temporal sequence (a series) of pageview, sometimes incom-

plete because the user request is served by his/her browser cache or proxy-level 

cache in the network provider. 

 

A user session is a clickstream for a single user across the entire Web. Ab-

stractly, a user is visiting several websites on the same time window, and practi-

cally, no private company can access all the weblogs on all websites.  

 

A server session is a set of pageviews in a user session for a particular site, 

commonly called a visit. 

 

2.4 Sessionization 

 

A session/visit comprises the time-series of the user's clicks from the moment 

that the user enters the website and clicks on the site pages, to the moment 

he/she exits. Often the users do not register on an Internet website. Therefore, 

the applications make an approximation by using some level of user fingerprinting 

(Panopticlick, Browser Fingerprinting). An approach for discriminating amid 

unique visitors is using client-side cookies, but users sometimes disable cookies 

to keep their privacy or to avoid malicious code execution. IP addresses are not 

sufficient because of the network providers that assign rotating IP addresses to 

their customers. Therefore, a user is frequently a function of several pieces of 

information available in the server log: IP address, user agent, referrer (the URL 

the user comes from). Sometimes, the user is the registered user name or a ses-

sion cookie if recorded.  
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The sessionization is a transformation that segments the pageviews of each user 

into sessions. Each session is a single visit to the website. A practical method for 

sessionization is to assume that the time spent on a single page must not exceed 

a threshold. (Osmar R. Zaiane, Jaideep Srivastava, Myra Spiliopoulou, Brij 

Masand, 2002) 

 

In many commercial products such as Google Web Analytic, two clicks of the 

same user separated by 30 minutes make up a different session for the user. 

(Google, How a web session is defined in Analytics) 
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3 A JOURNEY IN BIG DATA ARTEFACTS 

 

 

3.1 Introduction 

 

There is no surprise in the proliferation of solutions and businesses trying to ad-

dress different aspects of Big Data. The hardware and the technology to store 

and access large sets of data on commodity hardware are affordable and acces-

sible. Starting a Big Data journey is about being overwhelmed by fancy product 

names, new technologies, and terminologies, to cite a few: Hadoop, Hive, Pig, 

Spark, Cassandra, Lambda Architecture, immutability. Figure 1 shows a few of 

those Big Data solutions.  

 

 

Figure 1. Big Data Landscape 2018  

(http://mattturck.com/wp-

content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Fi

nal.png) 

 



16 

 

Big Data is not a single technology but a cluster of many techniques and tools 

that the development of various business scenarios use. There is inherent uncer-

tainty as the field is continuously expanding to new concepts and technologies.  

 

This thesis Big Data challenge, using clickstream analytics as a proof of concepts, 

is to find out which principles, technologies, frameworks, languages work bests 

and allow fast learning, quick implementation and efficient iterations towards 

base level knowledge in a growing and complex domain. 

 

3.2 Considerations on Big Data Systems 

 

Big Data starts where traditional systems, based on relational databases, break 

under the combined velocity, volume, and variety of the internet information area. 

 

Introductions to Big Data often cite the following V's as essential attributes of the 

big data: 

 Volume, the quantity of data produced and stored. The current amount of 

data is staggering as an example every day people watch over a billion 

hours of video on YouTube. (Youtube, Press) 

 Velocity, the pace at which data is generated, produced, created, or re-

freshed. 

 Variety, the structure of the data. Structured data but also semi-structured 

and mostly unstructured data (e.g., clickstream logs, sensor data, audio, 

image, video, social media, log files).  

 

Those 3 V's are the core of what define big data. Authors and experts have added 

a few more V's over the years. Best-selling author Bernard Marr says that only 

five V's matter, adding Veracity as the reliability of the data and Value as the 

ability to turn data into value (Bernard Marr, March 2015). 

 

Traditional systems handle these constraints by using different techniques such 

as queuing transactions (reducing the pressure on the back-end) and grouping 

insert/update requests (avoiding sending several single requests), sharding the 
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database (splitting tables across several databases), horizontal partitioning (re-

distribution of the load across different systems/application servers and data-

bases).  

 

Those techniques are not outdated and are even still in use in Big Data. However, 

in a traditional application, the database is not aware of its distributed nature, and 

scaling the solutions hits several issues: 

 The developer code has to manage the underlying complexity of the data-

base shards, moreover, the logic that distributed the data across several 

shards. 

 As the number of machines is going up; the event of a disk failure is in-

creasing,  

 Network bandwidth issues when processing large sets of data. 

 Mistakes are difficult to correct (it’s always challenging to restore a backup 

if the data get corrupted). 

 

The traditional systems push the complexity of handling large datasets to the per-

sons operating the database or developing the software.  

 

The big data technologies are a change:  

 The technology handles shards and data replication. Freeing the devel-

oper who can focus on the application logic. 

 Scaling is as simple as adding new machine nodes. 

 The different frameworks optimize data throughput and minimize network 

transfer.  

 The raw data are immutable, which in principle allows rebuilding every-

thing in case of a mistake. 

 

Eric Brewer’s CAP theorem is a fundamental limit of any networked shared-data 

system.  A distributed system must do trade-offs. 

“The CAP theorem states that any networked shared-data system can have at 

most two of three desirable properties: consistency (C) equivalent to having a 

single up-to-date copy of the data; high availability (A) of that data (for updates); 

and tolerance to network partitions (P)” (Eric Brewer, February 2012) 
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Figure 2. CAP Theorem trade-offs 

 

“The “2 of 3” formulation was always misleading because it tended to oversimplify 

the tensions among properties (Eric Brewer, February 2012)”. A representation 

such as Figure 2, can misinform on the pivotal role of P. More precisely, the the-

orem states that when a network partition (P) arises and for example, cuts off the 

network link between 2 nodes, the system can be consistent (C) or available (A) 

but not both.  

 

Example of arbitration implied by the CAP theorem: two users who do the same 

search on the same search engine can get different results. The search engine 

business considered that this disadvantage is less severe than not having any 

results at all. 

 

3.3 High-Level Architectures 

 

Presentations of Big Data are often from the angles of environments like Spark 

or Hadoop, or platforms such as Hortonworks or Cloudera. There are always con-

siderations specific to each of these technologies, but the question that arises, is 

if there are any reusable practices in Big Data, regardless of the particular (com-

mercial or not) environments? 

 

A classic architecture comprises an incrementally updated central database. 

Even without large datasets, this architecture is often problematic because: 

 At a certain point, scalability is challenging to get. 

 There is a risk of data loss because of unavailability or human errors. 

 The complexity of maintenance and use increases with time. 

 There is significant latency before getting the data ready to be consumed 

with simplicity and adequate performance. 

 It is hard to get the same scalability, robustness, and simplicity in one 

place. 

 



19 

 

Because the centralized approach to storage and processing is no longer 

enough, it is then necessary to use a distributed method on clusters of machines. 

There is a functional need to separate storage, consumption, and complex pro-

cessing. Several pioneers designed Big Data architectures, such as the Lambda 

architecture, to solve complex problems requiring the intervention of several tech-

nologies. These architectures are something similar to design patterns in object 

languages that ensure the reusability and the sustainability of the code. 

 

The following Big Data architectures address the processing, storage and data 

analysis: 

 Lambda architecture 

 Kappa Architecture 

 Data Lake Architecture 

 

3.3.1 Lambda architecture 

 

The programmer Nathan Marz wrote a popular blog post (Nathan Marz, How to 

beat the CAP theorem) and book (Nathan Marz, James Warren, 2015) describing 

what he called the Lambda Architecture. Not all information is equal, as most of 

the time, a program derives data from another piece of information. At the root of 

the data lineage, the master dataset is the rawest data, and it gets the benefice 

of being immutable.  In case of error leading to data corruption, all views are 

rebuilt from the master dataset. The Lambda architecture performs batch pro-

cessing and real-time processing simultaneously, making it possible to merge 

batch processing with streaming input (real-time) processing.  

 

The Lambda architecture (see Figure 3) transmits entering data (1) in two differ-

ent routes simultaneously: a batch-oriented path (2) and a real-time circuit (4).  A 

query result (5) is the merging of the indexed data (3) coming from the batch layer 

and available until time T minus some delay δ and the real-time data available for 

that period T - δ to T. A batch can process a big chunk of data with a more accu-

rate algorithm. Its setback is the latency (slowness), which is why the speed layer 

provides recent data. 
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Figure 3. Lambda Architecture (http://lambda-architecture.net) 

 

Lambda architecture aims to get a complete view of the data. 

 

Batch layer 

 

The batch layer stores a replicated copy of the master data set. The copy is im-

mutable and continually growing (= store everything and capture all changes). 

Keeping the data in a raw format ensures that there is no data loss, as there is 

the possibility to redo calculations and to recreate views. Another advantage is 

greater flexibility because, if an algorithm improves, the reprocessing of the raw 

data gives results of a higher quality. This opportunity is impossible if someone 

preserves only the results. The batch layer deals with the calculation of the batch 

views. These views result from the transformation and derivations of the raw data, 

continuously rebuilt or updated as new data arrives. 

 

Service layer 

 

The service layer indexes the batch views as soon as the batch layer finishes the 

computation. As for the batch layer, there is the distribution on the machine clus-

ters to ensure scalability. There must be, therefore, a balance between the 

amount of calculation in the batch layer and the performance of the service layer. 
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Performance layer 

 

There may be latency during storage and pre-calculation of batch views before 

new data becomes available.  The purpose of the performance layer is to make 

new data available as fast as possible.  The performance layer is a kind of batch 

layer that produces real-time views updated as it receives new data. Using incre-

mental algorithms (e.g., approximate counting algorithm) is sometimes necessary 

to comply with the complex latency constraints. Although, this complexity is for a 

few hours of data only. Once the data ages a few hours, they are available in the 

batch and service layers and are not more required in the performance layer. 

Typically, service layer queries that require low latency combine the batch and 

real-time views to run. 

 

In sum, the Lambda architecture is a Big Data architecture practice that separates 

storage, consumption and the complexity of getting low latency. The approach 

does not require specific software, and with some variations in the detail of its 

implementation, the software engineer can use different Big Data technologies.  

 

3.3.2 Kappa A Streaming Architecture 

 

The Kappa architecture (Figure 4) overcomes the complexity of the Lambda ar-

chitecture by merging the real-time and batch layers. It is less complicated than 

the Lambda architecture that requires synchronization and simultaneity of the 

batch and streaming capacities. Jay Kreps introduced it in his article "Questioning 

the Lambda Architecture" (Jay Kreps, July 2014). 

 

 

Figure 4. Kappa Architecture 

 

Kappa architecture is when the processing to carry out is whenever batch and 

the streaming layers are the same. Misuse of the architecture is when streaming 

generates poor results because of approximation algorithms or when complex 
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quality tradeoffs are necessary to avoid large processing operations. In those 

cases, having a batch layer is a more versatile solution.  

 

3.3.3 Data Lake Centered Architecture  

 

The data lake is an architecture that emerged with Big Data technologies, allow-

ing cheap storage of large volumes of data. Businesses get with it, storage sys-

tems to accommodate many types of data: structured (e.g., data with rows and 

columns), semi-structured (e.g., JSON documents), unstructured (e.g., videos). 

Unstructured is a word for something that the relational data model cannot define 

easily. In fact, “There’s no such thing as unstructured data” (Chuck Densinger, 

Mark Gonzales, 2016). Although not the only one, Hadoop (based on the distrib-

uted file system HDFS) remains the most used reference framework of a data 

lake, especially when systems are on the company data center premise.  Solu-

tions storage services such as Microsoft Azure Data Lake and Amazon S3 are 

accessible when a company is not reluctant to a cloud solution.  

  

In a data lake architecture (Figure 5), the data can come from multiple sources 

like logs, web services. The different ingestion systems are consuming the data, 

then inserting them into the data lake (Hadoop, Azure Data Lake, and Amazon 

S3). Once the data is saved, upstream processes can ingest or make queries.  

 

 

Figure 5. Zone-Based Data Lake Reference Architecture  

(https://resources.zaloni.com/cloud/the-data-lake-reference-architecture) 
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3.3.4 Conclusions 

 

Choosing the ideal data architecture is difficult, and the answer to specific prob-

lems is sometimes to merge several architectures.  Likewise, the choice is subject 

to the answer to questions about scalability, learning curve, reduction in produc-

tion times and costs.  

 

3.4 Business Intelligence and Big Data 

 

Big Data does not replace but extends (see Figure 6) the so-called data ware-

housing and business intelligence (BI). 

 

 

Figure 6. Business Intelligence vs Big Data  

(https://www.linkedin.com/pulse/differentiating-business-intelligence-big-data-
analytics-nedim-dedić) 

 

 

3.4.1 Integration approach 

 

The development of a traditional ETL (Extract, Transform, Load) data warehouse 

is lengthy and costly. An element of explanation is that perfect knowledge of the 

data is essential to store a piece of information in a database table. Conversely, 

the ELT (Extract, Load, Transform) approach significantly eased the trouble by 

dividing the processing into two parts. Data are first integrated into their raw state 

and kept in a structured environment. A second optional step may then transform 

the saved data into a consumption structure.   
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ELT permits an integrated and consistent approach but also allows faster storage 

of the raw data in the warehouse. A close concept is schema-on-read which is 

delaying data modeling and schema design until long after a process started the 

load the data and only when there is a valid business case. A data lake can over 

the years become bloated with never used data, as always, some governance 

principles are not harmful.  

 

A benefit of the ELT approach is the possibility of adding new extractions quickly. 

However, it can lead to multiple extractions and replications of the same. ELT 

alone is neither a unified vision (according to the needs of the moment, the de-

veloper adds an extraction) nor a harmonization process.  

 

3.4.2 BI Integration Opportunities 

 

There are different ways to integrate big data into the existing BI environment. 

The Big Data is most often experienced as an extension of current BI environ-

ments to enjoy a higher speed of treatment, a more significant variety of data, or 

merely to take advantage of a low-cost, flexible environment as a point of entry 

into a data warehouse.   

 

Parallel integration (Figure 7): all conventional sources continue to feed a tradi-

tional data warehouse. While Big Data sources feed a big data environment in 

parallel, subsequently, the integration takes place either in a conventional con-

sumer-oriented data warehouse or directly with the consumer tools.  

 

 

Figure 7. BI & Big Data, Parallel Integration 

 

This approach is less intrusive and therefore easier to implement. In return, inte-

gration is less functional because there is over one way to interface with sources 
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and more inclusion for downstream consumption. An organization that already 

has a substantial investment in a traditional BI environment and wants to merge 

it by incorporating Big Data sources often prefer this integration.  

 

Serial integration (Figure 8): it integrates all sources into the Big Data platform, 

which makes the integration of sources better. However, ETLs from conventional 

sources are to convert to ELTs; This kind of integration requires more compo-

nents but allows for consumption from a more traditional environment. It can be 

a transition to a possible Big Data architecture alone.  

 

 

Figure 8. BI & Big Data, Serial Integration 

 

Full BI Integration (Figure 9): At the limit, it is possible to use only the big data 

environment as a data warehouse and consume directly from it. Most known con-

sumer tools now have connectors that make queries to data lake more or less 

transparent compared to a typical data warehouse. In principle, it is the best in-

tegration possible, but it involves the additional conversion of existing consumer 

treatments. Besides, the maturity of the BI connectors remains a factor to con-

sider. 

 

 

Figure 9. BI integrated in Big Data 
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3.5 File Formats/Data Storage 

 

In the Big Data context, there are many technical solutions for storing data. As 

needed, data can be stored in files on a distributed file system (DFS) or managed 

by a specialized tool (e.g., Hive, HBase, Cassandra). The choice between all 

these solutions depends on the data access profile (random access, sequential 

reading, append updates, row-level updates), desired performances for the criti-

cal operations and the richness of the proposed functionalities. For example, a 

Parquet file provides excellent performance for sequential reads but does not al-

low row-level updates.  

 

The file format used has a significant impact on query performance. Some for-

mats include compression support that decreases the space occupied on the oc-

cupied disk and consequently the I/O readings and CPU utilization required to 

deserialize the data. The amount of needed I/O and CPU resources can be a 

limiting factor in terms of the performance of running a query.  The most used 

formats are: 

 Row Columnar File (RCFile), Facebook initially developed it to add an 

SQL data warehouse system (Apache Hive) on top of their Hadoop cluster. 

RCFile aims to offer fast data loading, quick query processing, efficient 

use of storage, adaptability to dynamic workloads 

 Apache Avro is a file container and a schema-oriented binary data serial-

ization format. This file format can be split and compressed. The programs 

can save data in an Avro file with its schema and the data type descrip-

tions. 

 Optimized Row Columnar (ORC) combines the performance of RCFile 

with Avro's flexibility. Hortonworks initially developed it to overcome the 

perceived limitations of other available file formats. 

 Parquet results from the combined efforts of Cloudera, Twitter, and Criteo, 

then donated to the Apache Software Foundation. Google Dremel docu-

ment (Sergey Melnik, 2011) inspired its design. Parquet allows the devel-

oper to work with complex and nested data structures and allows efficient 

column-level coding. 
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3.5.1 Parquet file format 

 

Parquet is a binary and column-oriented file format for large analytic queries. This 

file format (see Figure 10) is particularly suitable for projections (selecting fields) 

and aggregation operations such as SUM and AVG that must process all data for 

a given column.  

 

A parquet file is, in fact, multiple data files. Each of the single files contains the 

values for a series of rows (row groups). Within a file, the structure organizes the 

values of each column to be adjacent, thus allowing a good compression and 

CPU cache optimization. Although Parquet is a column-oriented format, it keeps 

all data related to a row in the same data file, to ensure that all the columns of a 

row are available for processing on the same node.  Queries launched on a Par-

quet table can retrieve and analyze column values quickly and with minimal I/O. 

 

 

Figure 10. Parquet, File Format Detailed Structure  

(https://parquet.apache.org/documentation/latest/) 

 

A column store is a file or in-memory structures optimized for the analytical que-

ries, which is typically the selection of a few columns/dimensions along which the 

result aggregates some amount or quantity (e.g., average salary by department). 
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As an example, the following logical table (see below Figure 11) can be stored 

differently.   

 

 

Figure 11. A Row Table 

 

Traditional “database” storage of tables is a row store. They store each row of 

data one after the other in a perfect sequence as follows. A column-oriented 

structure arranges them one column at a time (Figure 12). 

 

 

Figure 12. The Table Column Storage 

 

There are several advantages: 

 A better compression, as similar data usually have a better compression 

ratio. 

 Better I/O because of smaller files (compression) and also because often 

queries select only a subset of the columns.  

 Effective use the modern CPU as the data have a higher probability of 

being in the CPU caches, instead of branching to retrieve the data from 

the main memory.   
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3.6 Logical Architectural Pattern 

 

The following paragraphs compose a holistic view on big data which try at first to 

be products and services agnostics.  

 

Data usually goes through a life cycle, and Big Data is no exception. Challenges 

are not only inherent to the characteristics of data (e.g., volume, variety, velocity) 

and how to process it, but also at the level of the information management such 

as security and privacy (see Figure 13). 

 

 

Figure 13. Data Lifecycle  

(https://doi.org/10.1016/j.jbusres.2016.08.001) 

 

A robust architecture addresses data challenges and processing capabilities. 

Further, it must provide:  

 The components to support the data life-cycle from data creation and its 

organization through transformation, integration, consumption and finally 

archive or deletion. 

 Accountability on the data flows through an organization which has to en-

sure sharing, privacy, and security. 

 An efficient cost. 

 

For the components of a Big Data architecture, most of the reference architec-

tures are from the well-known names (Facebook, Uber, LinkedIn, Netflix to cite a 

few) and based on their product developed internally (then open-sourced and 
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proposed to the Apache organization). Another source is the Lambda and Kappa 

architectures.  

 

The ideal reference framework would be a “technology independent reference 

architecture for big data systems, which is based on analysis of published imple-

mentation architectures of big data use cases. An additional contribution is clas-

sification of related implementation technologies and products/services, which is 

based on analysis of the published use cases and survey of related work. The 

reference architecture and associated classification are aimed for facilitating ar-

chitecture design and selection of technologies or commercial solutions, when 

constructing big data systems.” (Pekka Pääkkönen, Daniel Pakkala, February 

2015)  

 

The Figure 14 shows Pekka Pääkkönen (2015) ideas with a comparison with well-

known data warehouse functions.  

 

 

Figure 14. Meta Reference Architecture (Markus Maier, 2013) 

 

Still, The Big Data landscape below (Figure 15) provides a sharp view of the most 

relevant technologies at one moment. 
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Figure 15. Organized Big Data Products 2019 

(https://github.com/qaware/big-data-landscape) 
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4 APACHE SPARK 

 

 

4.1 Introduction 

 

Apache Spark is a fast and general engine for large-scale data processing 

(Apache Spark, Unified Analytics Engine for Big Data). 

 

Apache Spark is an open source cluster framework initially developed in the AM-

PLab of the University of Berkeley, now under the umbrella of the Apache Soft-

ware Foundation. Unlike Hadoop's MapReduce paradigm, spark primitives pro-

vide up to 100 times faster performance because of the use of memory buffer for 

intermediate results.  However, pure performance on disk is already ten times 

faster than classical Hadoop MapReduce jobs.  

 

In 2012, Matei Zaharia created the Spark project in the course of his Ph.D. stud-

ies. Spark was a response to limitations of MapReduce, which with its linear pro-

cessing of the data flow, cannot handle efficiently the different workloads needed 

in machine learning, graph analysis, near real-time streaming. (Matei Zaharia, 

2014). 

 

“In 2015, Spark project has more than 1000 contributors and is now one of the 

most active open source projects” (Hui-Huang Hsu, 2017). Nowadays, it has over 

1500 contributors, 1000+ companies (Openhub, Apache) and can run clusters up 

to 8000 nodes (Matei Zaharia, Spark Summit, 2014) 

 

Apache Spark is:  

 Fast because its advanced data flow execution engine (like a query exe-

cution optimizer in a database) and its in-memory computing (can use the 

disk as well); resulting in speed "100x faster than Hadoop MapReduce in 

memory, or 10x faster on disk” (Dmitry Timofeev, 2015). 

 Polyglot. The APIs are available in Python, Java, Scala, R and provide 

SQL access. 
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 General. Spark is commode because it combines SQL, streaming, and 

sophisticated analytics like machine learning, graph processing, and opti-

mization tasks. 

 

4.2 Fundamentals  

 

The developer writes an application in Spark in terms of operations on distributed 

data. The principal (and historically the first) building block is the Resilient Dis-

tributed Dataset (RDD).  

 

An RDD is: 

 A collection of objects spread across a cluster (JAVA objects) 

 Immutable, so it cannot change once created 

 Built through parallel operations (filter, add a column) 

 Automatically recovery on failure 

 Able to intermediary cache results in memory 

 

An RDD is an immutable object once create; operations are like a recipe to create 

a new one. 

 

There are two kinds of operations on an RDD: 

 Transformations which are lazy activities to build RDDs from other RDDs 

 Actions that return a result to store on a data sink (storage) 

 

Spark optimizes the physical plan of execution like a database does for a query. 

It uses lazy evaluation, which is a technique that queues all transformations until 

the code wants to execute an action. This approach allows in-depth optimization 

of the execution flow.   

 

Besides the RDD, Spark has several other APIs on top of which the most elegant 

and efficient is the DataFrame. 
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4.3 Architecture 

 

Spark can work both in a single node and a cluster. In the general case (Figure 

16), there are several running processes for each Spark application: a driver and 

multiple executors. The driver is the one who manages the execution of a Spark 

program, deciding the executor processes to perform the tasks. In the main pro-

gram of a Spark application (the driver program), there is an object of type Spark-

Context, whose instance communicates with the cluster resource manager to re-

quest a set of resources (RAM, core) for executors. 

 

 

Figure 16. Spark Cluster View  

(https://spark.apache.org/docs/latest/cluster-overview.html) 

 

The system supports several cluster managers: 

 A local and standalone, useful for development purpose. 

 Apache Mesos, a general cluster manager. 

 Hadoop YARN, the resource manager of the Hadoop software stack. 

 Kubernetes, a general cluster manager for containerized applications. 

 

4.4 Spark SQL and DataFrame 

 

Spark SQL is a module for working with data structured as a sequence of identical 

lines (RDD allows the lines to be different). The code can mix relational and pro-

cedural operations, permitting complex analyzes through the DataFrame API. 

The DataFrame execution uses a highly efficient query optimizer, Catalyst. 
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4.5 Spark Streaming 

 

Spark Streaming (Figure 17) is a component for the processing of data streams. 

Spark Streaming periodically creates a mini-batch containing the streaming input 

data and transforms stream processing into a sequence of Spark batch jobs. 

 

 

Figure 17. Spark Streaming 

(http://spark.apache.org/docs/latest/streaming-programming-guide.html) 

 

Spark Streaming provides the object DStream (Figure 18) for manipulating data 

streams, but today Structured Streaming is a more modern and the latest API to 

handling data streams. 

 

 

Figure 18. Spark DStream Micro-batches  

(http://spark.apache.org/docs/latest/streaming-programming-guide.html) 

 

Structured Streaming filled the gap with a higher API just like the DataFrame API. 

As of SPARK 2.0, there is a promise that code can work with little maintenance 

in streaming and batch. “The Spark SQL engine will take care of running it incre-

mentally and continuously and updating the final result as streaming data contin-

ues to arrive” (Apache Spark, Structured Streaming Programming Guide).  
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In the example below (Figure 19), continuous counting of words is possible be-

cause SPARK maintains an unbounded table, on which the Spark Structured 

Streaming engine appends the new data coming from the stream.  

 

 

Figure 19. Spark Counting Word with Structured Streaming  

(http://spark.apache.org/docs/latest/structured-streaming-programming-

guide.html) 

 

There is a certain conceptual elegance to the unbounded table that contains all 

data past and present. The system achieves this by storing intermediate states. 

However, the API requires enough information that practically the unbounded ta-

ble can be restricted to keep only the necessary data. “Note that Structured 

Streaming does not materialize the entire table. It reads the latest available data 

from the streaming data source, processes it incrementally to update the result, 

and then discards the source data. It only keeps around the minimal intermediate 

state data as required to update the result.” (Apache Spark, Structured Streaming 

Programming Guide) 
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5 ARCHITECTURE DESIGN AND SOLUTION 

 

 

5.1 Introduction 

 

The key idea is doing some big data magic in a real-time way (Figure 20). The 

input is the web server access log, which is a semi-structured file, and the magic 

must handle batch and stream ingestion at scale. Out, something must show 

some analytics.  

 

 

Figure 20. Architecture First Naïve Idea (Input, Processing, Output) 

 

Despite not knowing the implementation path, one can already define some fa-

vorite options. The journey started with a set of preferences: 

 No coding is better than coding 

 Configuration over coding 

 Declarative over procedural language 

 SQL ready with window functions. 

 Infrastructure must be fast to build/test (iterations). 

 

The iterations through a final architecture followed a simple, lazy scheme. These 

questions can summarize the decision-making process: 

 What is easy to install, to configure, and to test? 

 What is general enough to solve more complex requirements? 

 What to remove? 

 

The items below (Docker, Python) helped substantially being agile and learning 

quickly. 

 

WWW.

Web Log

Some 
Big Data 

Magic

Analytics
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5.1.1 Docker 

 

Docker was central in the capacity to be agile and experimental in the quest of a 

Big Data infrastructure.  Docker defines and runs artifacts called containers that 

are very similar to virtual machines but use resources isolation instead of virtual-

ization (Figure 21).  

 

 

Figure 21. Comparing Containers and Virtual Machines  

(Docker, What is a Container) 

 

“A container is a standard unit of software that packages up code and all its de-

pendencies, so the application runs quickly and reliably from one computing en-

vironment to another. A Docker container image is a lightweight, standalone, ex-

ecutable package of software that includes everything needed to run an applica-

tion: code, runtime, system tools, system libraries and settings.” (Docker, What 

is a Container) 

 

The software application and the dependencies are tightly packaged together 

through the use of a recipe file, the Dockerfile. The final user needs not to worry 

about installing specific software with specific versions, possibly crashing the sys-

tem.  

 

5.1.2 Python 

 

A goal was the coding effort minimization. However, this thesis author learned a 

new language because of the use of the massively parallel application framework 
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Apache Spark. Spark is polyglot regarding the programing language: Scala, Py-

thon, R, and Java. The choice of Python was straightforward since the program-

ming language has exploded in popularity over the last few years, and it is easy 

to learn. It can do many things, basic scripts, basic and advanced statistics, and 

machine learning. 

 

5.2 Architecture Experiments 

 

5.2.1 The Search Engine Architecture 

 

ELK is a favorite software stack to efficiently manage a large amount of data on 

which a process wants to search. The company Elastic (https://www.elas-

tic.co/about/) delivers handy Docker documentation, ensuring that the developer 

can enjoy many functions fast. The stack strength is the interoperability of the 

several programs that make it.  

 

Figure 22 below shows the first data pipeline implementation with ELK. Filebeat 

monitor the logs for recent appended information, then the tailed information is 

sent to Logstash for decoding and enrichment. Subsequently, these inputs are 

output to Elasticsearch, which takes care of indexing the data. Finally, Kibana 

provides a web user interface that simplifies searches within Elasticsearch in-

dexes, allows data aggregation and a display under various out of the box dia-

grams and charts. 

 

 

Figure 22. ELK Architecture 

 

Components Descriptions 

 

LogStash 

LogStash is a log parser and open source event manager developed mainly be-

cause of the total lack of a defined standard for writing files Log. Its peculiarity 
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lies in the possibility of configuring it by using a simple text file. The data pro-

cessed by LogStash follow a well-defined flow divided into three parts: Input, Fil-

ter, and Output. It starts by defining the input plugins that represent the various 

sources from which to draw data. Next, the events are filtered and parsed. Finally, 

the events, filtered or not, go to the output section, which is to direct the various 

events to the defined outputs.  

 

 

Figure 23. Logstash 

 

Logstash makes available to developers, through Ruby language, the ability to 

create and use custom plugins. However, it has already over 80 standard plugins. 

 

Elasticsearch 

Elasticsearch is a document indexing and search engine based on Lucene with 

full-text capabilities and support for distributed architectures (Lucene is an open 

source API for information retrieval). The documents managed by Elasticsearch 

are in JSON format, which is a format suitable for the interchange of data between 

client-server applications. It subdivides indexes into fragments or shards. 

 

Kibana 

Kibana is an open source platform designed to interact with Elasticsearch. With 

Kibana it is possible to search and view the data stored by Elasticsearch through 

queries made available by a very intuitive web graphic interface. The program 

allows to aggregate the data present in the chosen Elasticsearch cluster and to 

visualize different charts (pie, column). Searches are done efficiently (like a web 

search) for a specific indexed field, such as the IP client in a weblog, and return 

a list of the documents where there is an occurrence.  
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Conclusions 

 

The ELK stack has excellent potential and is often upgraded. It is worth noting: 

 That it is entirely free. However, a commercial featured pack exists and 

brings enterprise security integration and advanced display for time-series.  

 The availability of Docker images and extended documentation 

 The real-time monitoring features in Kibana.   

 It provides compelling tools to perform full-text and real-time analytics. 

 

In terms of cons:  

 Elasticsearch automatically guesses the field types when receiving its first 

document: it is schemaless. However, it is not 100% accurate, and there-

fore the schema needs to be specified. The task is tedious because Elas-

ticsearch schema can contain hundreds of fields. 

 Modeling data with the document concept is missing extensive academic 

or practitioner reference literature.  

 Elasticsearch’s query DSL is not SQL (although recently added has a com-

mercial feature) 

 It can retrieve a few to thousands of records but not suited to massive data 

processing. 

 

Conclusion: ELK stack is not appropriate for intense data processing. The author 

kept it as user serving layer and added Apache Spark as a parallel data pro-

cessing engine.  

 

5.2.2 Toward A Lambda Architecture 

 

This iteration tests the batch layer of a Lambda architecture (Figure 24). Usually, 

different environments implement the batch and the real-time layer, which also 

duplicate the code in two places. Apache Spark stack promises a lambda archi-

tecture compliant system with a unified development that supports both batch 

and streaming operations. In principle (the conclusion chapter is going to say that 

is not true), with little effort, the batch and streaming code are interchangeable. 
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Figure 24. Batch architecture 

 

Components Descriptions 

 

Kafka 

Apache Kafka is a distributed and high-performance open source message bro-

ker based on the writing of logs. Each operation adds a message to the queue, 

technically an append of a line in a distributed log file. Kafka presents a publish-

subscribe architecture that allows the subdivision of messages into topics, the 

parallelization of readings and writes on several machines, the management, and 

deletion of messages based on a key or a timeout. Besides this, it offers redun-

dancy through a system of replicas so that the content is always available even 

after failures.  

 

NiFi 

Apache NiFi is an open-source software developed by the NSA. It uses compo-

nents called processors, which allow operations such as capturing data from 

sources, transforming and publishing the data flow on external systems. To date, 

in the framework, there are over 200 different processors available. A processor 

usually has three outputs: 

 Failure: If the data flow cannot be processed correctly, it routes the original 

data to this output.  

 Original: It routes the original data to this output. 

 Success: It routes successful data to this. 

 

Key aspects of this framework are: 
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 real-time control to manage the movement of data between multiple sys-

tems; 

 the possibility of working in cluster mode, guaranteeing properties such as 

scalability, fault tolerance, and availability 

 source of data traceability,  

 a web-based user interface, 

 back pressure support and buffering essential for managing different fre-

quencies of data arrival within the system.  

 

NiFi can be used for a simple event processing, as it allows simple operations on 

data. However, it does not enable complex event processing. It integrates well 

with Kafka through the appropriate processors. 

 

HBase 

HBase stores the results obtained from the processing phase. Apache HBase is 

a distributed, scalable, NoSQL database that runs on a Hadoop cluster. It can 

host huge tables with billions of rows and millions of columns.  Random read/write 

access is possible.  

 

Conclusions 

 

NiFi UI is a real advantage over configuration file-based tools (such as Logstash). 

Data-flow programming is done visually by assembling boxes and arrows, writing 

zero lines of code. However, it is over-engineered for the routing of a simple web 

log file. NiFi requires a load balancer (HAProxy), a synchronization service 

(Apache Zookeeper), and a service to share the dataflow design (NiFi-Registry).   

 

HBase is efficient when inserting new data and allows relatively low latency on 

random data access if the query uses the full key. It is a schemaless NoSQL 

database, so data schema design is very flexible (two rows can have different 

schemas). The lack of an SQL interface is a minus. Also, it is not trivial to get 

even a small fully distributed HBase running. As it is a master-slave architecture 

built on top of the distributed file system HDFS, itself a master-slave architecture, 

the setup includes many components. 
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HBase is not a ‘self-sufficient' technology for data storage and management; us-

ing a Hadoop cluster is necessary.  Apache Ambari used in Docker containers 

made the full setup easier. Although this method works, a conventional container 

approach would avoid installing too much software inside a container and rely 

more on an original recipe (Dockerfile). The initial Hadoop framework was histor-

ically fundamental and still very important for on-premise installation, but it is also 

notoriously difficult to get it right (Alex Woodie, 2017, 2019). 

 

5.2.3 Toward A Kappa Architecture 

 

This step assessed the Kappa architecture (Figure 25), which is a simple stream-

ing solution. Kafka or any messaging/queueing system is a significant component 

of such architecture, and as it also has its place in a batch-oriented system, it has 

been part of the testing from the beginning. It also introduced a data lake to sim-

plify the previous iteration made with Hadoop/HBase. There was no focus on the 

Service layers except the intention of challenging it in the next iteration. This trial 

is about the streaming module of Apache Spark. 

 

 

Figure 25. Kappa Streaming Architecture 

 

Components Descriptions 

 

There is a description of Apache Spark in §5.5 and Parquet in §3.5.1.  
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MinIO 

MinIO is an object storage server compatible with Amazon S3 cloud storage ser-

vice. It can store files from a few KBs to a maximum of 5TB. MinIO server is light 

in terms of memory and CPU used and requires little configuration. 

 

Conclusions 

 

MinIO and Parquet worked like a charm. On the contrary, Apache Spark Struc-

tured Streaming turns out to be cumbersome because of a few limitations.  The 

streaming engine cannot use the previous sessionization code because it relies 

heavily on SQL analytical functions (LAG and SUM over a partition). However, it 

was too late to learn a new data processing framework, and also the author ap-

preciated the non-structured streaming version of Spark very much. 

 

5.2.4 Final Architecture 

 

The final architecture (Figure 26), unlike the classical Hadoop model, separates 

the computation from the data storage. It generalizes the usage of the data lake 

(§3.3.3) as the central data store which stores the raw data but also the final 

results such as the aggregated data. Those data are once written in data lake 

accessible to any Business Intelligence (§3.4) tool that can connect to the distrib-

uted SQL engine Presto such for example Tableau or Microsoft PowerBI. Jupyter 

is for simple to sophisticated data analysis and can use a Spark cluster for getting 

the result.  

 

 

Figure 26. Final Architecture 
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There is a second usage of Kafka as Spark Structured Streaming requires a re-

factoring of the sessionization code on a sequence of smaller queries. Here, 

Kafka is, in fact, a temporary queue/store.   

 

Components Descriptions 

 

Presto 

Presto is an Apache open-source SQL query engine designed to handle data 

warehousing and analytics: data analysis, aggregating massive amounts of data 

and producing reports. With this component, a query goes where the data live in 

the storage system. A single Presto query can combine data from multiple 

sources including standard data lake solutions, databases or even message bro-

kers such as Kafka. The targeted response time ranges from sub-second to 

minutes, and data sources size varies from gigabyte to petabyte.  Presto works 

with standard BI tools such as Tableau, PowerBI, MicroStrategy, QlikView, and 

Excel, and any program using JDBC.  

 

JupyterHub 

JupyterHub is a multi-user version of the Jupyter notebook server. It is a web-

based interface useful for rapid prototyping of data-related projects. A Jupyter 

notebook has a read–eval–print loop (REPL) approach that makes the coding 

very interactive. The notebook also contains visualizations and narrative texts. 

 

Conclusions 

 

With this last iteration comes it remains little of Hadoop. The setup is smooth, 

light and still gives powerful capabilities. The only pain point is in the restrictions 

of Apache Spark Structured Streaming. These limitations make the code a mag-

nitude more complicated, but the near real-time capacity of Spark is actual. Be-

low, §5.3 explains the limitations and workaround5.3.  
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5.3 Solution - Architectural View Model 

 

This paragraph aims to give complementary views on the software developed 

during this thesis.  

  

5.3.1 Functional view 

 

The functions depicted below (Figure 27) are the core of the clickstream imple-

mentation. From this point of view, batch or streaming iterations are precisely the 

same. 

  

 

Figure 27. Functional View of the Data Pipeline 

 

The application is a data pipeline, and it is a pure sequence of functional trans-

formation with the following items: 

1. A generator of click based on the real website logs. It adds the click records 

on the weblog, at the same time and with the same cadence as the original 

file, except for the date that the program actualizes. 

2. A file tail program sends the weblog lines every minute to an ingestion engine 

(Apache Kafka).  

3. A logic transforms the weblog lines 

3.1. Cleaning:  a code skips IIS log header lines. (no other cleaning) 

3.2. The log lines are a semi-structured text encapsulated in JSON when ex-

tracted from Kafka. So, a process decodes JSON, then parse the web 

logline, and maps the expected fields in a table like structure.  

3.3. User-agent strings are parsed and enriched with metadata such as the 

operating system of the user, the device type (desktop, laptop, 

smartphone). 

3.4. Logic computes sessionization 
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4. Then the result is stored in the data lake. 

5. Presto or Jupyter can finally access data lake stored data. 

 

5.3.2 Process view  

 

Most of the functions are very trivial except sessionization. The implementation 

followed the industry standard of 30 min (§2.4) with the last click to count a new 

user session. The table below shows a way to solve it.  

 

Table 2. An example of Sessionization 

USER ID TIME LAG DIFF > 30? CUMSUM SESSION_ID 

21 12.00  0  0 0 21_0 

21 12.01 12.00 1  0 0 21_0 

21 12.20 12.01 19  0 0 21_0 

21 12.59 12.20 39  1 1 21_1 

21 13.05 12.59 6  0 1 21_1 

21 13.40 13.05 35  1 2 21_2 

21 13.45 13.40 5  0 2 21_2 

 

A row compares the time with the previous row, which gives the time since the 

last click. If this is higher than the 30 min threshold, it is a new session. A cumu-

lative sum gives the session number. Concatenation with user ID gives a unique 

session ID. This computation is natural in SQL with the help of the analytic func-

tion LAG() and SUM() and the window operator PARTITION BY. 

 

Unfortunately, those analytic functions are not in Spark Structured Streaming (it 

is unknown when they will be available). Still, it is possible to implement the ses-

sionization by using Scala instead of Python and with the procedural API flat-

MapGroupsWithState. The sad part is that it requires Scala, and to develop with 

a robust but low-level API. Too bad to develop with a low-level API when SQL is 

so useful, and probably part of the success of Spark.  

 

To stay, with Python and with a DataFrame/SQL API, the code must implement 

the sessionization in with left outer joins and classical group by instead of the 

powerful LAG and SUM of modern SQL. Joins usually are not optimum, but at 

least it worked, and Spark SQL optimizer did a great job. Hopefully, the data were 

small and user sessions short on the website.  
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Another limit is that only one aggregation is possible at a time in Structured 

Streaming. Inevitably, the sessionization became several pieces of code running 

in several Spark Streaming processes. Figure 28 below shows how the micro 

sub-queries are run to avoid the limitation. The sessionization uses Kafka as tem-

porary streaming storage.    

 

 

 

Figure 28. A process View (Continuous Micro-Queries) 

 

The picture below (Figure 29) shows the impossibility of giving precise session 

information before the beginning of the next one. 

 

 

Figure 29. A Sequence View of the Sessionization 
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The more the web sessions are long, the more the system keeps data in the 

unbounded table (see §4.5) to compute the sessionization (Figure 30). The 

streaming solution must keep the unbounded table limited in size, which limits the 

precision of the sessionization.  

 

Figure 30. Incomplete Sessions / Unbounded Table  

https://www.slideshare.net/RamnasUrbonas/sessionization-with-spark-stream-

ing 

 

A very long session is an indicator that the user may be a program (a bot) than a 

human. If possible, memory savvy approach recommends filtering out known 

bots such as Google or Yahoo index services.  

 

5.3.3 Physical view  

 

The solution ran on a single host but with distributed components. Something 

possible to do with Docker. Below is Figure 31 with the different Docker hosts 

involved. Not cited in the rest of the thesis, but Kafka in cluster mode required the 

help of a triumvirate of Zookeeper processes. Presto requires a Hive repository 

to run because it saves metadata information there.  
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Figure 31. A Physical View of the Docker Hosts 
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6 DISCUSSION  

 

 

Web usage mining has been since the Internet become mainstream (end of the 

'90s), the cornerstone of adapting web sites to increase the profits (Chapter 1). 

The clickstream analysis (Chapter 2) is a sub-topic of the web usage data mining, 

which focuses on the records generated while a user clicks on the parts of his/her 

browser screen. Those records are typically semi-structured website log files 

growing with the Internet expansion to become gigantic. With web success, even 

the growth rate is speeding up. Eventually, analyzing clickstream data always 

had those V characteristics (§3.2), nowadays said to be the characteristics of Big 

Data: variety, volume, velocity, and value.   

 

The phenomenon of Big Data has by now taken over. There is a constant chal-

lenge to look for and optimize, always new analysis processes on the information, 

accumulated for years and years. Organizations quickly assess data that seemed 

to have no real importance to become protagonists in this new era of data man-

agement (Chapter 3). To optimize the processes and increase the profits, the 

analysis of streaming data allows companies to take the best business strategies 

in a short time, as soon as a change is occurring. It makes sense, for example, 

that a security breach gets an appropriate answer within seconds (§1.2).  

 

Clickstream analysis is a mature field with hundreds of researches in the last 25 

years. The hype behind it has long vanished, and Google Analytics has the crown 

with 58,85% of the market share (Datanyze, Web Analytics Market Share Re-

port). An initial idea of this thesis is that clickstream analysis is a natural-born big 

data challenge. Thus, it can start a journey with less risk of having a subject that 

does not fit the Big Data world. The subject also fits the streaming context (e.g., 

Amazon recommendations are covered by real-time streaming and by batch ap-

plications).   

 

This thesis elected three clickstream functions to implement: data cleansing, user 

sessionization (§2.4) and user agent enrichment. The analysis and the implemen-

tation run interactively, iterating with, as little setup as possible (Chapter 4), rather 

than theoretically comparing and motivating with different arguments the choice 
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of frameworks for each function. In particular, sessionization and the easiness of 

its implementation became a benchmark to compare the various iterations. Con-

versely, the heaviness of the different infrastructure components configurations 

was a reliable indicator too. 

 

The practical part of this thesis tested a series of open-source software solutions 

for the development of a Big Data architecture (§3.3) that would allow the follow-

ing capabilities (§3.6): 

 Ingestion pipeline for consuming the click records 

 Transformations for data cleansing, user sessionization, enrichment (user 

agent enrichment) 

 Storage of data  

 Analytics &  

 Visualization for presenting accessible insights 

 

Though the beginning was technically agnostic by necessity (not enough 

knowledge of the Big Data field), soon a preference rose around an initial set of 

tools:  

 Spark (Chapter 5) is a more advanced product than Hadoop. It is newer 

and up to 100 times faster. Also, it has been one of the most active of all 

open source Big Data applications (The Apache Software Foundation 

Blog, 2014). Spark Streaming is another element of the framework (§5.5), 

which allows applications to perform analytics on streaming, real-time 

data.  A disappointing factor is that Spark promises that the logic and the 

code base for batch and streaming would be almost the same. In fact, 

Spark Streaming, precisely Spark Structured Streaming does not support 

the SQL analytical functions (operator such as Lead, Lag, Sum), plus other 

limitations with SQL joins. The author redesigned the code of the session-

ization, previously developed for Spark batch, to continue with Spark 

Structured Streaming and the Python Language. However, even with 

Scala, the SQL limitations would have remained. 

 Because of the costs, to get flexibility and hands-on, the developments 

were on a local host instead of a cloud environment such as Amazon or 

Azure. The machine chosen is a Mac Pro 2012 with 128 GB memory and 

24 virtual cores. All the components for even a simple Big Data solution 
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are impossible to configure on the same host because of software library 

conflicts and network port issues. Therefore, a unique host requires some 

level of isolation. To achieve that isolation, Docker containers (§4.1.1) 

were a more versatile and light approach than setting up virtual machines.  

The gain was noticeable for the memory as Docker does not duplicate the 

operating systems. However, also the recipes approach of Docker allows 

high control on what is running inside the containers. 

 For coding with Spark, programming languages are Scala, R, and Python. 

All languages are very remarkable, but the balance swung in favor of Py-

thon (§4.1.2) because of its enthusiastic adoption by programmers work-

ing with Big Data and data science makes it a good investment. 

 

6.1 Achievements 

 

The implementation was using multiple trials moving step by step through differ-

ent options (Chapter 4).  

 

A first realization (§4.2.1) based on the software stack around Elasticsearch pro-

vided a knowledge of the weblog data. With zero coding, it was possible to ingest 

the weblog in streaming, clean and enrich the data with user agent information, 

store the data and visualize with high-quality dashboard/charts. User sessioniza-

tion, supposedly achievable, would have required to invest much time in the pro-

prietary request language of Elasticsearch. A need for a more general and mas-

sively parallel date engine emerged. 

 

A second phase (§4.2.2) introduced more powerful tools: Spark for transforming 

the data, NiFi for ingestion, and Kafka as a message broker. Processing the data 

in a batch made easier the elaboration and the computing the sessionization with 

Spark. This step confirmed Spark as the central component of this thesis. NiFi 

was an over-engineering regarding the simplicity of accessing a weblog, and 

HBase based on Hadoop is a too complicated infrastructure component. 

 

The main themes of the third implementation (§4.2.3) were the simplification of 

the data storage and a first glimpse of the Spark Streaming features. Hadoop 

clustering was entirely removed to the profit of a data lake approach (§3.3.3). 
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MinIO an Amazon S3 compatible filesystem was an easy to configure data lake 

layer, and Spark was reading and writing Parquet file on it (§3.5). Visualization 

was not part of the test but raised the idea, that using Elasticsearch only for dis-

playing data under use the potential of the duo data lake/Parquet.  (reference BI) 

 

The last experiment (§4.2.4) showed that it is possible to process streams of 

clickstream data, coming continuously from a weblog, with low latency by using 

Spark Structured Streaming. However, the last version (still valid in 2.4) of Spark 

Structured Streaming has so much SQL limitations that the sessionization code 

developed during the batch trial (second test) became four different pieces code 

glued together by Kafka acting as a temporary/transient data store. With the 

Scala API, it would have been possible to develop the sessionization with only a 

piece of code (still not the SQL interface), but not with Spark Python API (the 

choice of this thesis) which is more limited. On the side of the visualization, data 

stored as Parquet files, the data lake (MinIO) and Presto (a distributed SQL en-

gine) made easy the connection of and the data retrieval from, Business Intelli-

gence tools such as Tableau. Also, Jupyter notebook system allowed more ad-

vanced and interactive data queries (It uses the Spark cluster directly to get the 

data).  

 

6.2 Future directions 

 

This thesis, exploratory by nature, crossed many technologies and frameworks 

that could set new directions or bring improvements: 

 Julia: a new language (2012) a dynamic and straightforward syntax like 

Python but which is much faster, mathematical computation oriented and 

with built-in parallel processing features (Julia website, Micro Bench-

marks). Jupyter has a Julia kernel and therefore allows ad hoc analysis 

with it.  

 Kubernetes: a container platform. The implementations were sets of 

Docker containers. A natural extension would be an orchestration tool 

such as Kubernetes or Apache Mesos.  Those tools add advanced sched-

uling, deployment tools, services discovery, scaling and load balancing.  
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 Apache Kudu: A storage layer and column storage format that has com-

parable performance with Parquet. It permits fast row updates where Par-

quet is an append file scheme. It can bring different data modeling of the 

result files. 

 Alluxio: A virtual distributed storage system. It is convenient to have an 

abstraction between the data processing components and the real storage 

system. We can imagine even using several storage systems. With this 

thesis, Alluxio can lie between Apache Spark or Presto and the storage 

supported by MinIO (Amazon S3 compatible).  

 Neo4j: a graph database. Browsing one or several websites is a path in a 

graph; that is where a graph database permits a better design of the infor-

mation model and provides a powerful graph query language.  

 TimescaleDB: a time-series database. Clickstream records are irregular 

time-series where data can miss, where the spacing of observation times 

is not constant. Time-series database does an excellent job in terms of 

ingestion speed, efficient storage, and quick processing of requests such 

as re-sampling down or up (e.g., re-sampling millisecond data to second).   

 

Spark Structured Streaming in the last version 2.4 is far to have reached the ma-

turity of the non-streaming version. Some current limitations hopefully are tempo-

rary (e.g., missing SQL analytical functions or type of data joins allowed) and a 

such it is part of any future direction.   
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