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While the LoRa equipment was provided by the company, nearly everything else had to be 
purpose-built. The device was programmed in C. JavaScript, PHP and Python were used 
on the web server, and MQTT was used as the messaging protocol. 
 
Ultimately the project was completed successfully, and all the specified requirements were 
met. The device and the source code of all the parts in the architecture were delivered to 
the company, along with detailed technical documentation. The company was prepared to 
immediately begin using the system. 

Keywords LoRa, IoT, Internet of Things, MQTT, project  



 

 

 

Contents 

Abbreviations 

1 Introduction 1 

2 Project Description 1 

3 IoT Architecture 2 

3.1 Layers 3 

3.1.1 Device layer 3 

3.1.2 Network layer 4 

3.1.3 Service support and application support layer 5 

3.1.4 Application layer 6 

4 LoRa 6 

4.1 LoRa and LoRaWAN 6 

4.2 Three main LPWAN technologies 7 

4.3 Network architecture 7 

4.4 LoRa frequencies 9 

4.4.1 Data rates in LoRa bands 10 

4.5 ALOHA method in LoRa 11 

4.6 Security 12 

4.7 Joining a LoRa network 13 

4.7.1 Over the Air Activation 14 

4.7.2 Activation by Personalisation 14 

4.8 End-device classes 14 

4.8.1 Class A end devices 15 

4.8.2 Class B end devices 16 

4.8.3 Class C end devices 16 

5 MQTT 16 

5.1 Versions 17 

5.2 Model 17 

5.3 MQTT Server 17 



 

 

5.4 MQTT clients 18 

5.5 Topic 18 

5.6 Security 19 

5.7 Quality of Service 20 

6 Project Solutions 20 

6.1 Project architecture 21 

6.2 Project technologies 21 

6.2.1 Device 22 

6.2.2 MQTT 22 

6.2.3 Python backend 22 

6.2.4 Web server 22 

7 Sensor Device 23 

7.1 Design requirements 23 

7.2 Hardware 23 

7.3 Environmental light 25 

7.4 Device program 26 

7.5 Code Flow 26 

8 Network Infrastructure 26 

8.1 LoRa 26 

8.2 MQTT server 27 

9 Application 27 

9.1 Backend 27 

9.2 Database structure 28 

10 Front end 29 

10.1 Map 30 

10.2 Table 31 

10.3 Log 31 

10.4 Issues 31 

10.4.1 Map 32 

10.4.2 Table 32 

11 Conclusions 32 



 

 

11.1 Future Improvements 33 

References 34 

 

  



 

 

Abbreviations 

IoT Internet of Things, the concept of a massive amount of interconnected 

physical “things”, such as the temperature of a room or the controls of a 

larger device. 

MQTT MQ Telemetry Transport or Message Queuing Telemetry Transport, a light-

weight publish-subscribe based messaging protocol. 

LDR Light Dependent Resistor, an electrical component whose resistance 

changes with light intensity. 

WAN Wide Area Network, a network that extends over a large geographical area. 

LoRa Long Range, low power modulation technique developed by Semtech.

LoRaWAN Long Range, low power network protocol owned by LoRa Alliance.
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1 Introduction 

This Bachelor’s thesis project was completed for a customer company. The project goal 

was to create a prototype of an end-to-end Internet of Things (IoT) system to monitor a 

large number of devices. The system should use Semtech’s low power, long range wire-

less network technology LoRa as the device network and public internet for the backbone 

network to reduce the need for new infrastructure. The system should also be designed 

in a way where it could be used in a wide variety of situations. The LoRa stack was 

provided by the company and was outside of the project’s control. 

The rise in demand for IoT solutions has led to the development of a massive number of 

new technologies. Choosing the correct technology for a specific use-case is not always 

clear with the number of new cases and new technologies, and one of the goals of this 

project was to provide an example of an IoT system built around a LoRa network. 

IoT can be generally thought of as a network of interconnected objects that exist in the 

physical world, such as an industrial robot or the temperature of a room, and objects that 

exist in the virtual world, such as software applications and digital files. An IoT system 

generally consists of sensing or actuating devices, a network to transfer the data, an 

aggregator to gather the data, and applications that leverage the data. 

A common problem that IoT solves is the need to connect a large number of nodes to 

the Internet for monitoring and remote control. While a single IoT system is nearly iden-

tical to a traditional remote-monitoring or remote-control system, the possibility to inter-

connect these systems allows for more complex applications. 

2 Project Description 

The project was completed confidentially through Metropolia University of Applied Sci-

ences for the customer company. The work area and computers were provided by 

Metropolia while the hardware for the prototype was provided by the company. All project 

files and hardware were treated as confidential and the project was worked on in lockable 

areas with limited access at Metropolia’s Leppävaara campus. 
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The goal of the project was to create an IoT remote monitoring system where a simple 

device would be used to monitor the state of the target and transmit the state for visual-

ization at remote points. The customer requirements were:  

• That optical sensors be used for the measurements. 

• That LoRa be used for the device connection. 

• That the measured states could be visualized with coordinates on a map. 

• That the visualizing application be a web application that can be opened 
on multiple stations simultaneously. 

The customer provided the project with: 

• A LoRa gateway 

• An STMicroelectronics STM32 Nucleo pack (includes an STM32L073RZT6 
board and an SX1272MB2DAS LoRa expansion board) 

• An STMicroelectronics Nucleo multi-sensor expansion board 

• A testing environment for the measurement target 

The LoRa stack was outside the project’s control. Excluding it, the project was responsi-

ble for the overall system architecture. Major tasks included designing and implementing 

the sensor device, connecting the device to the LoRa network, designing and implement-

ing the network after LoRa, and designing and implementing the monitoring application. 

3 IoT Architecture 

IoT can be generally thought of as a network of interconnected objects that exist in the 

physical world, such as the temperature of a room or an industrial robot, and objects that 

exist in the virtual world, such as software applications and digital files. These objects 

should be identifiable and connectable to the network [1]. For virtual objects this is sim-

ple, but with physical objects sensing or actuating devices must be used. By leveraging 

the interconnection of these objects, a wide variety of advanced services can be realized. 

Examples of common applications include predictive maintenance and smart transpor-

tation. It is important to note that systems of interconnected devices or classical automa-

tion systems are not IoT by themselves but can be connected to become a part of IoT 

[2].  
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3.1 Layers 

Since there is currently no one commonly agreed architectural model for IoT, the model 

varies by the project goals. The design of this project and this document used the four-

layered architecture model outlined by International Telecommunication Union (ITU) Tel-

ecommunication Standardization Sector (ITU-T). This model is shown in Figure 1. It was 

chosen as its layers match the goals of this project. 

 

Figure 1. IoT reference model introduced by ITU-T [1]. 

This model divides IoT into four layers: application layer, network layer, service support 

and application support layer, or service layer, and device layer. Required management 

and security capabilities are also outlined by this model but were outside the scope of 

this project. The device layer contains the devices that interact and measure physical 

objects. The network layer contains the infrastructure and protocols that facilitate the 

transfer of information between devices and applications. The service layer provides 

middleware and services for applications and devices. The application layer contains IoT 

applications. [1], [3]. 

3.1.1 Device layer 

Responsibilities of this layer include measuring, gathering and processing information 

from sensors, interacting with physical objects through actuators or other means, 



4 

 

identifying and tracking the devices and connecting the devices to a communication net-

work. This layer contains IoT devices and gateways [1]. [4], [5], [2]. 

Devices are directly connected to the sensors and actuators of the system [6], and can 

connect to the network directly or through a gateway [1]. Important considerations for 

these devices include their power usage [7], complexity and resources such as compu-

ting capabilities and storage [2]. These considerations affect the cost of these devices, 

and as it might be necessary to have a very large number of them, even small reduction 

in cost can be important. In the case of battery-powered devices low power consumption 

will directly affect the maintenance required by these devices [7].  

Gateways are used to connect devices to the network. They include interfaces for device 

connections and a connection to the wider network, such as the Internet or the publicly 

switched telephone network [1]. Gateways are also responsible for any protocol transla-

tions necessary between the networks [1]. The important considerations with gateways 

are similar to devices, but as they are often used to compensate for device limitations, 

they are usually less limited than devices [6]. Their role also means that there are less 

gateways than devices, as one gateway should be able to support multiple devices. This 

makes it less important for them to be extremely cheap and means that it is more feasible 

to install them in such a way that they have easy access to power. 

3.1.2 Network layer 

Network layer responsibilities include the transport of IoT data and control information, 

network resource control, and mobility management [1]. This layer is composed of het-

erogenous networks and includes both the connections between devices and gateways, 

and the networks connecting them to the service layer [2]. The areas that are specific to 

IoT are the networks connecting devices and gateways, the access networks used to 

connect gateways or devices to the internet and the application protocols that define the 

communication process. An important note for these networks is that IoT traffic is gen-

erally uplink-dominant, most traffic generated by IoT is sent from the device layer rather 

than being received by it [8]. 

Device-to-gateway connections are used to connect low power or resource constrained 

devices to more capable gateways. Depending on the system’s needs the device-to-
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gateway connection type can vary wildly, from short-range Personal Area Network (PAN) 

technologies to long-range Low Power Wide Area Network (LPWAN) technologies. Be-

cause network connections make up a major part of a device’s power consumption [7], 

most technologies here focus on being less power and resource intensive. It is also im-

portant to consider that while a single device rarely needs a large amount of network 

capacity, there can be a massive amount of them. This is reflected in the scalability of 

the different technologies, where the number of devices each gateway can support and 

how complex the gateways need to be must be considered. Other considerations are 

interoperability with other technologies and already existing infrastructure.  

Access networks connect gateways or devices to wider networks, such as the internet 

or company intranets. These include wireless and wired broadband technologies and 

some Local Area Network (LAN) technologies. Because many of these technologies are 

existing infrastructure, the needs of IoT were not considered when they were designed, 

and so gateways need to be designed to fit the available access networks instead.  

Application protocols are used for communication and other services. The word refers to 

Open Systems Interconnection model (OSI model) layer 7 and not the IoT architecture 

layer. These are protocols that work over Transmission Control Protocol/Internet Proto-

col (TCP/IP) or User Datagram Protocol/Internet Protocol (UDP/IP) and carry data from 

device layer to the service layer or provide other functions such as name resolution and 

service discovery. The important considerations for these protocols are protocol over-

head, power consumption and latency [9], [10]. 

3.1.3 Service support and application support layer 

This layer is responsible for collecting, exchanging and storing data, managing applica-

tion protocol connections from the device layer, providing abstraction of device functions, 

communication capabilities, technologies and applications, and providing primary and 

secondary services. [2] 

Primary services, or generic support capabilities, are common services that applications 

or devices use, and can be directly related to the functionality of devices, applications or 

the service layer itself. Secondary services, or specific support capabilities, are more 
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specialized services that are used by specific applications and can consist of primary 

services or other secondary services [1], [2]. 

The abstraction provided by the service layer means that the underlying technologies 

are not exposed in the services provided by this layer. The abstract representations of 

device functions and applications are common regardless of the actual protocols and 

hardware used achieve them.  This allows heterogenous networks, devices and applica-

tions to be used, and enables the development of applications without compatibility con-

siderations [2]. Most importantly it means that changes in one part of the system, such 

as replacing devices with ones that use different protocols, will not influence the function 

of other parts of the system.  

To interact with devices and applications the service layer must be able to manage con-

nections [2]. This not only allows the collection and exchange of data, but without 

knowledge of the device or application connection status it would be impossible to de-

termine which services are available. 

3.1.4 Application layer 

The application layer contains the IoT applications or virtual objects that are part of the 

IoT network. While this layer is mostly ignored by the ITU-T model [1], it contains much 

of what allows IoT solutions to function. The exact requirements and capabilities of this 

layer are specific to the solution and cannot easily be generalized.   

4 LoRa   

This section gives an overview of the LoRa protocol stack and its basic network archi-

tecture.  

4.1 LoRa and LoRaWAN 

LoRa is a modulation technology developed and owned by Semtech. Modulation in LoRa 

(Long Range) happens on OSI layer 1. LoRa is designed to be a simple low cost and 
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low power implementation targeting IoT applications. Using Chirp Spread Spectrum 

(CSS) for low interference can achieve a long-range, low-power, low-bitrate network. 

LoRa is often promoted as an industrial solution for the Internet of Things. Typical battery 

life for low cost LoRa applications is about 10 years. LoRaWAN is an OSI layer 2 proto-

col. It is developed by LoRa-alliance. LoRaWAN consist of a whole network stack includ-

ing end devices, servers, security and communication. [11] 

4.2 Three main LPWAN technologies 

There are multiple Low Power Wide Area Network (LPWAN) wireless communication 

technologies available. However, only a few of them are suitable for large scale IoT de-

ployment or industrial solutions. In terms of availability, cost efficiency and private man-

agement there are three technologies that dominate the market. These three are SigFox, 

LoRa and NB-IoT. These are compared in Figure 2. [12] 

 

Figure 2. Technical key differences between Sigfox, LoRa and NB-IoT [12]. 

Which of these is best suited for IoT solutions depends on its feasibility for specific ap-

plications. Technical differences and restrictions limit cases where different technologies 

could be used. [12] 

4.3 Network architecture 

LoRa networks are typically a spine-leaf architecture that can also be called a “star-of-

stars” architecture. End devices are connected to gateways and gateways are connected 

to network servers. End devices collect all the data and forward raw LoRaWAN frames 
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from devices to a network server. Servers and Gateways are connected to each other 

via an IP connection to utilize higher throughput. The IP connection is typically a cellular 

or Ethernet connection. Figure 3 shows how devices in LoRa are interconnected to each 

other. [11] 

 

Figure 3. LoRa network architecture. 

LoRa technology is optimized for energy efficiency. One gateway can simultaneously 

receive traffic from multiple end devices. The end devices can be connected to one or 

more default gateways via single hop wireless communication. End-point communication 

is bi-directional with a short receive window following transmissions and can support 

multicast with a software upgrade. If an end device is mobile or moving there is no hand-

over needed from gateway to gateway. [13] 

Communication between LoRa devices and gateways is spread to different frequency 

channels and different data rates. Data rate is dependent on two variables: distance 
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between end device and gateway, and message duration. LoRa utilizes chirp spread 

spectrum technology with adaptive data rate (ADR). Channels do not interfere with each 

other. LoRa data rates can vary between 0,3 kbps to 50 kbps. To maximize battery life 

and end device network capacity, the network server is responsible for managing RF 

(Radio Frequency) output individually by adaptive data rate. [13], [11]. 

4.4 LoRa frequencies 

LoRa operates in 433, 868 or 915MHz Industrial, Scientific and Medical (ISM) bands, 

depending on the region in which it is deployed. Network connectivity in different regions 

of the world such as the US, EU and China require different frequency channels. Both 

the gateway and the end device can use the same frequency for transmission, but dif-

ferent timeslots are used. This concept is known as Time Division Duplex (TDD). [11] 

 

Figure 4. LoRa bands, data-rates and transmit power. [13] 

As seen in Figure 4, there are ten communication channels in the EU. Eight out of ten 

are multi data rate channels, which are capable of data rates from 250 bits/s to 

5,5kbit/s. One channel operates at a higher data rate of 11kbit/s, and another Fre-

quency Shift Key channel operates at 50 kbit/s. [13] 
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4.4.1 Data rates in LoRa bands 

There are several parameters that affect the modulation and data rates in LoRa. These 

are Bandwidth (BW), Spreading Factor (SF) and Code Rate (CR).  The gross bit rate 

(Rb) in LoRa is calculated as shown in equation (1). 

𝑅𝑏 = 𝑆𝐹 𝑥 
𝐵𝑊

2𝑆𝐹  𝑥 𝐶𝑅   (1) 

 Rb is the bit rate of the channel 

 SF is the Spreading Factor of the communication channel 

 BW is the bandwidth of the communication channel 

 CR is the code rate of the communication channel [14] 

Higher BW and SF affect the minimum sensitivity of the receiving device. Higher values 

would decrease receiving sensitivity. As an example, sensitivity values for Semtech 

SX1276 as affected by bandwidth and spreading factor are shown in Figure 5. [15] 

 

Figure 5. Teceiver sensivity of SX1276/77/78/79. 

Higher bandwidth doubles the bit rate as seen in Figure 6 below, but it also decreases 

receiver sensitivity as seen above in Figure 5. LoRa functions better with narrower band-

widths and lower spreading factors.  
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Figure 6. Data rates with different BW and SF calculated using formula 1. 

A LoRa end device may choose any channel available at any time if the following re-

quirements are met:  

The end-device changes channel in a pseudo-random fashion for every transmis-
sion. The resulting frequency diversity makes the system more robust to interfer-
ences. 

The end-device respects the maximum transmit duty cycle relative to the sub-band 
used and local regulations. 

The end-device respects the maximum transmit duration (or dwell time) relative to 
the sub-band used and local regulations. [16, p. 8] 

4.5 ALOHA method in LoRa 

ALOHA is a system for multiple device to share the same communication medium. 

ALOHA defines ways of handling collision errors and interference in the communication 

medium.  ALOHA is a random-access protocol and operates at the datalink layer (OSI 

Layer 2). The ALOHA method and its variants are shown in Figure 7. [17] 
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Figure 7. Collisions in different ALOHA methods. 

In regular ALOHA, also called pure ALOHA, devices transmit frames as needed with no 

synchronization with each other. If a frame is received with no errors, it is acknowledged, 

and the transfer is done. If the sending device does not receive an acknowledgement 

the frame is assumed to be destroyed and a new one is sent after a random wait time. 

With no synchronization between the sending devices a common reason for frames to 

be lost is frame collision occurring due to multiple devices transmitting simultaneously, 

an example of which is shown in Figure 7, with only two frames surviving intact. [17] 

An improved version called slotted ALOHA splits the channel into timeslots. Devices still 

choose to transmit on their own but must transmit their frame within one of these 

timeslots. As shown in Figure 7 this maximizes the channel utilization and doubles the 

efficiency of pure ALOHA with four surviving frames, but requires time synchronization 

between the devices, losing the advantages of an entirely unsynchronized network. [18] 

4.6 Security 

Security is an essential aspect of communication networks. LoRaWAN has two layers of 

security: one for the network layer and another in the application layer. Application layer 

security ensures that the network operator does not have access to the end user appli-

cation data. Network layer security ensures that the traffic is secured. AES (Advanced 

Encryption Standard) encryption is used. Figure 8 represents these two layers of security 

as they are implemented in LoRaWAN architecture. [19] 
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Figure 8. Two-layer security in LoRaWAN. [20] 

These layers differ in which encryption keys are used and which devices use them: 

• Network layer security is implemented with a Network Session Key 
(NwkSKey). 128-bit AES encryption is used. It takes place between end 
devices and the network server. [19] 

• Application layer security is implemented with an Application Session Key 
(AppSKey). 128-bit AES encryption is used between end devices and the 
application server. [19] 

4.7 Joining a LoRa network 

There are two methods by which Nodes are allowed to join a LoRa network. These meth-

ods are called Over-The-Air-Activation (OTAA) and Activation by Personalisation (ABP). 

OTAA devices must have a DevEUI (Device Extended Unique Identifier) stored in the 

device, and it is recommended but not necessary for ABP devices to do the same. The 

DevEUI is a globally unique identifier for every end device. [16] 
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4.7.1 Over the Air Activation 

Devices can be allowed to join a LoRa network through OTAA. Each device is deployed 

with a unique 128-bit app key (AppKey) which is used when the device sends a join-

request message. This message is not encrypted, but it is signed using the AppKey. The 

device then sends its AppEUI, DevEUI and DevNonce signed with a 4-byte Message 

Integrity Check (MIC). The server re-calculates the MIC with the AppKey. If the result is 

valid, the server may respond with a join-accept message. The device calculates the 

NwkSKey and AppSKey based on the values sent to it in the join-request message. [19] 

4.7.2 Activation by Personalisation 

ABP differs from OTAA as the devices are shipped with a DevAddr and both session 

keys (NwkSKey and AppSKey), which should be unique to the node. As these devices 

already have the information and keys they need, they can begin communication with 

the Network Server without the need for join messages. [19] 

4.8 End-device classes 

End-devices serve different kinds of applications. Applications have different latency re-

quirements. Communication methods of LoRa devices fall in three categories. Classes 

and their place in the LoRa protocol stack are shown in Figure 9. 

 

Figure 9. Classes in LoRaWAN stack. [16] 
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Categories are defined by different end device downlink receiving slots and availability 

to send data. At the lowest service level, battery life is maximized, and latency is at its 

highest. 

4.8.1 Class A end devices 

Bi-directional end devices of Class A allow for bi-directional communications where each 

end device’s uplink transmission is followed by two short downlink receive slots. The 

server communicates with end devices (downlink) after the end device has transmitted. 

Every uplink transmission is followed by two short downlink receive windows. This com-

munication sequence is shown in Figure 10. 

 

Figure 10. LoRa class A end device and gateway communication. 
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Transmission slots scheduled by the end device are based on its communication needs. 

Class A end devices are pure ALOHA type devices, and they have the lowest power 

consumption. Class A can be used in end devices where downlink communication is a 

low priority. In LoRaWAN every device must support the class A communication method. 

[16] 

4.8.2 Class B end devices 

Class B consists of bi-directional end devices with scheduled receive slots. In addition to 

the Class A random receive windows. there is one scheduled receive slot called a Bea-

con period.  The Beacon period is scheduled by the gateway. Class B end devices can 

send unicast and multicast messages, and they are considered to be very low latency. 

[16] 

4.8.3 Class C end devices 

Class C is for end devices with bi-directional communication and maximal receive slots. 

These end devices will receive almost continuously, except when transmitting. Class C 

end devices can send unicast and multicast messages. Class C devices are considered 

as no latency devices, and they usually have a fixed power supply because of high en-

ergy consumption. [16] 

5 MQTT 

MQTT (MQ Telemetry Transport or Message Queuing Telemetry Transport) is an ISO 

(International Organization for Standardization) standard (ISO/IEC PRF 20922:2016) 

[21]. MQTT is a client/server publish/subscribe messaging transport protocol. MQTT is 

designed to be light, open and easy to implement. [22] 

It is ideal for use in machine-to-machine (M2M) situations and Internet of Things (IoT) 

solutions. MQTT messages are lightweight and require little bandwidth. The protocol is 

used over TCP/IP or others that provide ordered, lossless, bi-directional connections. 

[22] 



17 

 

5.1 Versions 

The original MQTT was designed in 1999 by Dr. Andy Stanford-Clark of IBM and Arlen 

Nipper of Acrom. Initially, MQTT was designed for use in TCP/IP networks [23]. The 

previous standard of MQTT was 3.1.1. A new version of MQTT 5.0 was launched in 

2017, and it was published as a standard in March of 2019. [24] 

5.2 Model 

MQTT uses a publish / subscribe model which requires central server. Figure 11 repre-

sents a simplified MQTT model [22]. 

 

Figure 11. MQTT end-to-end connectivity model. 

In MQTT, a data collecting end device is connected to a server. The server distributes 

messages onwards to subscribed clients. The MQTT protocol is bidirectional. One ser-

vice or device can act as a publisher and a subscriber. [22] 

5.3 MQTT Server 

The MQTT server is the counterpart to the MQTT client. The server is responsible for 

accepting network connections from clients, receiving all messages, filtering them and 
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sending them to all subscribed clients. It holds data of all persisted clients including sub-

scriptions and missed messages. Another responsibility of the server is the authentica-

tion and authorization of clients. [22] 

5.4 MQTT clients 

An MQTT client is a device or application which is connected to an MQTT server with 

subscribe/publish messages. An MQTT client can act as a publisher, subscriber or both. 

The client can be a small device or a full-fledged server as long requirements to connect 

to the MQTT server are fulfilled. When a client publishes a message belonging to a topic, 

the server will then distribute that message to any client that is subscribed to the topic. 

[22] 

5.5 Topic 

An MQTT server is usually centralized for serving multiple different areas and running 

multiple different cases. Topics are used to separate and organize by different areas. 

Topics are simple, hierarchical strings, in UTF-8. A forward slash is used to separate 

different levels of topics. [22] 
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Figure 12. MQTT topic structure. 

As seen in Figure 12, there is a root directory with different special areas. The root di-

rectory can be named arbitrarily. It is worth noting that ‘/root’ is different from ‘root’. Under 

the main topic there can be multiple subtopics which categorize and specify where a 

message belongs. When a client subscribes to a topic, different special characters can 

be used to modify subscribing paths. The most used characters are “+” and “#”. Any topic 

level can be replaced with the “+” character, while the “#” character is used subscribe to 

every subtopic under a topic. Topic names are not permanent, as they only exist on a 

server when someone has subscribed to that topic. [22] 

5.6 Security 

Because MQTT solutions are often deployed in hostile environments where devices or 

network traffic could be compromised by different attacks, additional security should be 

implemented.  

There are two ways of protecting MQTT messages: TLS/SSL (Transport Layer Secu-

rity/Secure Sockets Layer) security or payload encryption. TLS/SSL security is done be-

tween the client and the server and is called secure-mqtt. With payload encryption the 



20 

 

subscribing device will encrypt the payload, which is then decrypted on the application 

level. This means that no changes to the MQTT server are necessary for payload en-

cryption, and even if the server is compromised, the payload will remain secure. [22] 

MQTT has two ports for traffic. Port 1883 is for unencrypted traffic where messages and 

passwords are transmitted as plaintext. Port 8883 is used for encrypted traffic where TLS 

and SSL are used for encryption. This protects the whole message, not only the payload 

section. SSL/TLS provides data encryption, data integrity and authentication. [22] 

5.7 Quality of Service 

MQTT defines three levels of Quality of Service (QoS). QoS defines how the server and 

client ensure that the message is received. Higher levels of QoS are more reliable but 

involve higher latency and bandwidth requirements due to increased overhead. 

• QoS value 0: The Server/Client will deliver the message once, with no con-
firmation. 

• QoS value 1: The Server/Client will deliver the message at least once, with 
confirmation required 

• QoS value 2: The server/Client will deliver the message exactly once by 
using a four-step handshake.  

Both the server and the client have their own QoS level. If the server uses the highest 

QoS level, then the client can choose which level to use. If the server’s QoS is lower than 

maximum, the client can only use that level of QoS or lower. [25] 

6 Project Solutions 

The majority of the project design was done based on the IoT architecture research. 

Apart from LoRa the technological choices were made by the project and discussed with 

the customer to make sure they fit in their existing infrastructure. 
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6.1 Project architecture 

The IoT system comprises of an optical sensor read by the microcontroller which con-

verts the sensor data to states. The states are sent over LoRa through the LoRa stack 

to an MQTT server where all the device data is aggregated. The web server receives 

updates on the device data from the MQTT server and writes them to a database and 

serves the data on the web server to web clients. The overall architecture is shown in 

Figure 13. 

 

Figure 13. Project technological architecture. 

The architecture was designed based on research discussed in chapter 3. The LoRa 

Gateway and network controller were provided by the customer and were outside the 

project’s control. 

6.2 Project technologies 

The technological choices were made based on availability and previous familiarity with 

the technologies. This allowed for the prototype to be created faster without long acqui-

sition periods. Making choices that would be usable after the prototyping phase was an-

other large consideration. All the choices were discussed with the customer and only 

ones that they had previous experience with or were willing to adopt were chosen.  
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6.2.1 Device 

Light dependent resistor (LDR) circuits were chosen as the optical sensors due to their 

simplicity, comprising only of a simple LDR and a generic resistor, both of which were 

readily available to the project. An LDR is a resistor which experiences a decrease in 

resistance as it is exposed to more light, allowing it to transmit light intensity changes as 

voltage changes in the circuit. [26] 

The STM32 Nucleo pack was recommended by the customer and already at hand. As 

the pack came with a LoRa board and middleware it was an ideal choice for the prototype 

development board.  

6.2.2 MQTT 

MQTT was chosen as the data aggregator as both the project and the customer had 

previous experience with it. There was also ready support for it in the LoRa stack which 

made it a good choice even past the prototyping phase. 

6.2.3 Python backend 

Python 2was chosen as the programming language for the backend program because 

the project was already familiar with it and because it is designed for quick integrations 

[27]. A more complex MQTT implementation could have been used instead, but a Python 

based solution was deemed as the best option to cut down on the amount of technologies 

that had to be learned. 

6.2.4 Web server 

CentOS as the operating system, Apache as the Hypertext Transfer Protocol (HTTP) 

server and MariaDB as the database software were chosen because they are free and 

the team already had prior experience with all of them [28], [29], [30]. PHP and JavaS-

cript were more difficult to choose because the project had no prior experience with web 

development, but they were chosen due to their popularity and the amount of readily 

available material online [31]. 
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7 Sensor Device 

The sensor device uses sensors to take measurements and uses those measurements 

to make decisions on the state of the measuring point. The state information is periodi-

cally communicated upstream. 

7.1 Design requirements 

The sensor should be a generic solution and be easy to install. Installing the sensor 

device shouldn’t obstruct any previous operations. A single sensor device should be able 

to measure three to five different points simultaneously and distinguish between three 

different states. The device should connect to the rest of the system using LoRa. 

7.2 Hardware 

The device was built using an STMicroelectronics 32-bit NUCLEO-L073RZ development 

board and a fitting SX1272MB2DAS LoRa expansion board that functions as an RF 

transceiver and LoRa modem. Both are shown in Figure 14. These were included to-

gether in the STM32 Nucleo pack [32]. 
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Figure 14. The STMicroelectronics NUCLEO-L073RZ development board on the left and 
MBED SX1272MB2DAS LoRa expansion board on the right. [33], [32]. 

The sensors were light dependent resistor circuits. The circuit is show in Figure 15. The 

LDR used was a 1M ohm Advanced Photonix NSL 4962. The resistor was a generic 1k 

ohm resistor.  
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Figure 15. Sensor connection diagram. Two additional sensors can be connected using the 
CN7.36 and CN7.38 pins. 

The sensor circuit was connected to the board’s 3,3V output, Analog-to-Digital Converter 

(ADC) inputs and ground. Unused ADC inputs were connected to the board’s Input Out-

put Voltage Reference (IOREF) pin CN7.12 to anchor the reading and prevent false state 

changes when all five sensors were not used. 

7.3 Environmental light 

The design requirements and the use scenario gave rise to an additional major chal-

lenge. The sensor should accurately detect state changes regardless of environmental 

lighting. This is further complicated by the nonlinear nature of LDRs. Making decisions 

by comparing recent readings negates the effect of slow changes in environmental light 

and allowed the sensor to work in a wide variety of environments. Fast changes in envi-

ronmental light were filtered by comparing multiple sensor readings to each other before 

deciding on a state change. 
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7.4 Device program 

The device program was based on the STMicroelectronics STM32Cube LRWAN LoRa 

end-node code version 1.1.2. Hardware Abstraction Layer (HAL) drivers were used for 

the board. Semtech middleware was used for the LoRa stack.  

7.5 Code Flow 

The code runs in a single loop that controls two different parts, the read cycle and the 

LoRa code. The read cycle takes readings from the sensors and uses them to make 

decisions on the measurement point state. A single reading is an average of five conver-

sions made by the ADC the sensor is connected to, each 2 ms apart. The LoRa commu-

nication is handled by a state machine that is continuously ran from the main loop. The 

state machine initializes LoRa and joins the network with the configured method. Once 

the join is completed, or immediately in case of authentication by personalization, the 

state machine prepares and sends a packet. After transmission the state machine enters 

a sleep state until it wakes up according to the LoRa duty cycle.  

8 Network Infrastructure 

The network over which the system communicates comprised mostly of customer-con-

trolled infrastructure, with the public internet as the backbone. As such it was a smaller 

part of the project.  

8.1 LoRa 

The LoRa network infrastructure was controlled by the customer. The project provided 

the customer with parameter and settings information necessary for the system to con-

nect through the LoRa network and did minimal setup to join the project device to the 

customer network.   
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8.2 MQTT server 

The MQTT server that the system was designed to use was in the customer’s infrastruc-

ture, but as MQTT is an open standard the server could easily be replaced by any open 

server. The device packages sent through the LoRa network are published to the MQTT 

server with a topic structure that can be used by the customer to split the devices in 

separate sets intended for different monitoring applications. The monitoring application 

can then be subscribed to the topics that contain the devices intended for its display and 

only receives the messages of those devices. 

9 Application 

A CentOS based server was set up for the purpose of handling and displaying data col-

lected by the end devices. This includes handing MQTT messages coming from the 

MQTT server, storing them in a database, and displaying the relevant data to users 

through a browser-based frontend. CentOS was installed on a virtual machine provided 

by Metropolia. For the sake of deployment to production, instructions on how to move 

the contents of the virtual machine to the customer’s infrastructure were given to the 

customer. 

9.1 Backend 

A Python program was written to act as an MQTT subscriber and to parse the messages 

from the MQTT server for the database. The program takes the raw MQTT messages 

and parses the relevant information, such as the device’s LoRa EUI used as the unique 

identifier and the state information of the measurement points. This information is stored 

in a MariaDB database, which is discussed in chapter 9.2. If a message is received from 

a new device that is not in the database yet, it is automatically added. For every change 

in the database, the program also adds a new line to a log file. The program uses two 

external libraries, Paho and MySQLdb. Paho is used for handling the MQTT messages, 

and MySQLdb is necessary for the database connection.  
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9.2 Database structure 

MariaDB was used for hosting the database. The database consists of two tables; “de-

vice” and “measurement point”. The structure of the database is shown in Figure 16. A 

script to create an identical database was provided to the customer.  

In the “device” table, the “eui” field is used as a primary key, as the DevEUI of any LoRa 

end device should always be a unique value [16]. The “x” and “y” fields are used to store 

the coordinates of the device so that it can be displayed in the correct position on the 

map. The “heartbeat” value was initially planned to be used for storing the timestamp of 

the latest heartbeat to ensure that devices remain functional, but this feature was never 

developed. The “alias” value is used to store a fully customizable, human-readable alias 

for any device.  

 

Figure 16. Database structure. Picture has been modified to hide some technical details. 

The “measurement point” table is used for storing data about the measurement points of 

the device. The “id” value is an automatically generated identifier for each measurement 

point, and the “device_eui” is used as a foreign key to link each measurement point to 

the device that they belong to. “state1” and “state2” are used to store state information 

about every measurement point. The “modified” field is a simple timestamp that is used 

to see when the status of a measurement point has last changed. 
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10 Front end 

A web-based User Interface (UI) is used to visualize the incoming data. There are two 

slightly different versions of the UI, one of which is meant for regular users and the other 

which is meant for administrators. The administration version is functionally the same as 

the regular one, with a few buttons added for renaming, moving and deleting devices. 

Apache was used to host the UI, with most of the code being done in JavaScript and 

PHP. Bootstrap was used for CSS (Cascading Style Sheets) styles. 

 

Figure 17. User interface (administration version). 

As shown in Figure 17, the user interface consists of 3 major parts: 

• the map on the left side, 

• the table on the top right, 

• the log in the bottom right. 

The map shows the location and state of the devices overlaid on any picture. For Figure 

17, a simple placeholder floor plan was used for demonstration purposes. Individual col-

ored icons can be clicked to reveal the alias and DevEUI of that device. Additionally, 

clicking anywhere on the background displays the coordinates of that point. The map 
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can be zoomed and moved. Several measurement points on a single device will be 

clumped into a clickable cluster, shown in Figure 18. 

 

Figure 18. A closed and an open cluster. 

The table shows the alias, status and DevEUI of each device in their own row. Addition-

ally, a tools column is visible on the administration version, with buttons to rename, move 

and delete devices. Furthermore, above the table there are several buttons that can be 

used to filter the devices that are being displayed. 

The log simply displays the end of the log file produced by the back-end Python program. 

The user interface automatically scales to always utilize the entirety of the browser’s 

viewport. The map is designed so that, when in default zoom and position, the entire 

picture will be visible in a maximized browser on a 1920 by 1080 resolution display. 

10.1 Map 

The map uses the Leaflet JavaScript library for most of the features, with the leaflet-

realtime and Leaflet.markercluster add-on libraries. The leaflet-realtime library is used 

as Leaflet does not support updating the map in real time by default, but with the library 

it can be updated at any given frequency. Leaflet.markercluster is used for clustering the 

data points as shown in Figure 18.  

A PHP script queries the database for the status of the devices and then generates a 

JavaScript Object Notation (JSON) format file that the map reads on every leaflet-

realtime update interval (3000 ms). Then an appropriately colored marker is placed on 

the given coordinates. If multiple markers would exist in the same coordinates, they are 

clustered via Leaflet.markercluster. The distance that markers must have from one an-

other in order to be clustered can be freely configured. 
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The map was designed to be easily customizable. The floor plan image can be easily 

changed by copying a correctly named image into the right folder. The bounds of the 

map will be automatically scaled to fit the new image. The icon size and update interval 

can also be changed by modifying their respective variables. More detailed instructions 

on customizing the map were given to the customer. 

10.2 Table 

For the table, the database is queried for the required data via PHP with the MySQLi 

extension and a HTML table is generated. The administration buttons in the tools column 

can be clicked to trigger a SweetAlert function, which will update the database using 

Ajax. 

There are multiple table files to accommodate for the filters and administrator status. The 

tables are loaded into a Hypertext Markup Language (HTML) div element via jQuery. 

Clicking on the filter buttons loads the appropriate table in its place. By default, the up-

date interval is 3000 ms. The update interval and icon size can also be changed by 

changing their respective variables. 

10.3 Log 

The log is simply the log.txt file generated by the Python program, loaded onto a HTML 

div element via jQuery on 3000 ms intervals. This interval can be changed. The log is 

also automatically scrolled to the bottom on a 3000 ms interval by another function.  

10.4 Issues 

This chapter explains some known issues with the frontend. The issues were unimpactful 

and could not be solved due to time limitations, but they were described in the documen-

tation provided to the company. 
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10.4.1 Map 

The leaflet-realtime and Leaflet.markercluster libraries are not designed to work to-

gether, so a workaround had to be used. The cluster layer is recreated on each leaflet-

realtime update, which causes opened clusters to close within the leaflet-realtime update 

interval time (set to 3000 ms by default). 

If using very high-resolution images as the background map, performance will be poor 

on low-end machines. The demonstration background image file (2949 by 1568 pixels) 

works well on all tested machines, but another larger map image (11149 by 8045 pixels) 

would cause the map to occasionally freeze while moving it or zooming on less powerful 

machines. A possible solution would be to use a tiled map layer with zoom layers [34], 

but this requires external software to create the tiles. 

For unknown reasons, the map will occasionally not load on the first page load, but re-

freshing the page fixes the issue. 

10.4.2 Table 

The default, unfiltered table generates a large number of Structured Query Language 

(SQL) queries as the status of the measurement points is queried separately for each 

device. 

If a device has a very long alias, a single table row might continue onto a second text 
row to make everything fit.  

 

 

11 Conclusions 

The goal of the project was to create an IoT solution within the customer company’s 

specifications to streamline the company’s production processes. To meet this goal, a 

sensor device and an application backend were developed along with the means of 



33 

 

communication between them. The company was prepared to immediately begin using 

the system in production environments. 

The project was very challenging due to its large scope, especially because many differ-

ent technologies had to be learned from scratch. However, this led to a lot of knowledge 

being gained in technologies like LoRa, C programming, JavaScript, PHP and Python 

among others.  

11.1 Future Improvements 

Despite the project being a success overall, there was still some room left for improve-

ment and some potentially useful functions were left unexplored. The most interesting of 

these was converting the device to be completely battery-powered. The code on the 

device is theoretically already quite power efficient; thus, this could have been fairly sim-

ple to implement. However, the company did not request this function as Alternating 

Current (AC) power was readily available to them, so no work was put into it. 

A heartbeat function could have been useful in some circumstances. Essentially, the 

device would periodically send a message to broadcast that it is still online. If no such 

message is received within some time, an alert could be triggered to indicate that the 

device is not fully functional. In the current implementation this is not necessary, as a 

message containing the state of every measurement point is sent periodically, regardless 

of whether anything has changed or not.  

Some improvements to the web server backend and frontend could have been made. 

For example, PHP and MariaDB were chosen mostly due to convenience, while some 

alternatives may have been better suited for this purpose. The map’s performance could 

also have been improved by splitting the background map image into tile layers. Unfor-

tunately, no free software to perform that function could be found. 
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