

Reimagining the Shuup Admin

Dashboard
The Complex World of Frontend Design

Tamás Kertész

BACHELOR’S THESIS
May 2019

Media and Arts
Interactive Media

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Media and Arts
Interactive Media

TAMÁS KERTÉSZ
Reimagining the Shuup Admin Dashboard

Bachelor's thesis 66 pages, appendices 16 pages
May 2019

Web design and development is a complex process that has many considerations
that affect the results. Users lie at the centre of these reflections as they are the
ones who interact with the products developers and designers create. There are
tried and true principles and methodologies designers can employ to ensure a
baseline quality that boils down to user experience.

The aim of this thesis is to find out what the guiding principles of digital product
design are and how to apply them to a real-world project. The project in question
is the improvement of the admin dashboard of the e-commerce software, Shuup.
It is a relevant use-case and an accurate representation of the average work a
designer or developer toils on in the software industry.

The utilised methodologies deal with the theoretical practices that are
accomplished by user experience researchers. This sheds light on aspects that
deal with the underlying and unseen, such as information architecture,
navigation, user research, user testing, iteration and so forth. These areas of
research are the foundation for apps and websites, they answer the How, Why
and Where of development.

The work which this thesis is based on was executed in the summer of 2018 as
part of the Junior Developer role at Anders Innovations in Turku. The results were
shipped in September of the same year and is available in the latest release of
Shuup e-commerce software.

Key words: web development, UI, UX, JavaScript, design, Shuup

3

CONTENTS

1 INTRODUCTION ... 7

2 FROM IDEA TO PRODUCT: WEB DEVELOPMENT
METHODOLOGIES ... 8

2.1 Project management and planning .. 8

2.2 Strategy, goals and scope .. 10

2.3 Understanding the end users ... 11

2.4 Testing with users in mind .. 13

2.5 Mapping ideas to structures ... 14

2.6 Design patterns and systems ... 18

2.7 Prototypes, wireframes and high-fidelity mockups 22

2.8 Development & Implementation ... 25

3 REIMAGINE AND REDESIGN: THE SHUUP ADMIN DASHBOARD . 28

3.1 Background information ... 28

3.2 About the project .. 29

3.3 Redesign rationale .. 30

3.4 Project planning and identifying objectives 31

3.5 Research & Mockups ... 34

3.6 Project management & collaboration ... 37

3.7 Technical implementation... 38

3.8 User testing & project results ... 45

4 CONCLUSION ... 47

REFERENCES ... 49

APPENDICES ... 51

Appendix 1. Shuup settings panel .. 51

Appendix 2. Shuup contacts panel ... 52

Appendix 3. New product page ... 53

Appendix 4. Shuup mood board ... 54

Appendix 5. Comparison of Shopify and Shuup product filtering system
 55

Appendix 6. Admin panel dashboard mockup 56

Appendix 7. Admin panel dashboard mockup 58

Appendix 8. Shuup product table before and after 59

Appendix 9. Table empty state.. 61

Appendix 10. Dashboard main menu in open and closed state 62

Appendix 11. Mockup settings page ... 63

Appendix 12. Shuup setup wizard .. 64

4

Appendix 13. Login page subtle animation ... 65

Appendix 14. Order details page .. 66

5

ABBREVIATIONS AND TERMS

Adobe Developer of the industry standard creativity suite of

applications

Adobe Xd Adobe Experience Design is a design and prototyping

application

Bootstrap CSS UI component library that makes it easy to build

website layouts and designs

CMS Content Management System

E-Commerce Online web store

Empty State A user interface term that refers to placeholder content

when there is none available

Figma Digital design tool

Gestalt Principles of grouping objects in patterns

Git Version control change tracking system used to

collaborate in software development

GitHub Web based interface for managing projects that is based

on the Git version control system

HTTP Hypertext Transfer Protocol, the main protocol through

which the Internet is browsed

XHR XMLHttpRequest is a browser API available to

JavaScript which can send requests to web servers

IA Information Architecture

Invision Or InvisionApp, a digital prototyping software

IPO Initial Public Offering

Jira Project management and bug tracking software

developed by Atlassian

JSON JavaScript Object Notation is a data format standard

used in the communication of data between machines

LESS It is a pre-processor language that compiles to CSS and

offers programming-like dynamic features

macOS An operating system developed by Apple

Marvel Digital prototyping software

MVP Minimum Viable Product

NPM Node Package Manager

6

Open Source It is a general term under which software source code is

distributed to anyone to modify and use according to the

OSS license, usually, free of charge

Plugins Software written for specific applications that extend its

features

POC Proof of Concept

SaaS Software as a service

SCSS Superset of CSS which, like LESS, compiles down to

CSS and includes dynamic features

SEO Search Engine Optimisation

Shuup Open Source e-commerce software

Slack Online communication platform for teams and

companies

SketchApp Digital design tool

UI User Interface

UX User Experience

WordPress Open Source Content Management System (CMS) that

powers many blogs and website on the Internet

YouTube Video streaming site

7

1 INTRODUCTION

The e-commerce industry is a competitive and highly profitable market with many

well-known players in the space. Amazon, Alibaba and eBay are just a few

websites that consistently post some of the highest profits in the online retail

industry. Riding on the coat of the success of these brands are small independent

stores that operate in niche international or local markets. These webstores have

special needs that the previously mentioned platforms do not cover. This includes

necessities such as cost saving measures, own branding, own online presence,

etc.

The burgeoning landscape of hosted e-commerce software are just clicks away.

Companies, such as Shopify, offer this in the form of a service where the heavy

lifting is taken care of. Like the big retailers, this is a highly competitive space

where companies vie for a share of the profits generated from the mom and pop

shops. Competitive edge is key and offering the best user experience for the

money is the focus of the e-commerce software providers. Be it ease of use,

cheap subscriptions or full custodial service, these companies want a piece of the

market share. The big players such as WooCommerce are offered as free

extension to other popular solutions, however, the giant Magento, was recently

acquired by productivity giant, Adobe (Grant, 2018). The incentive for e-

commerce software companies is clear, market dominance can be clearly

translated into profits.

Within this industry Shuup provides both an open source and hosted alternatives

for its products. As it is competing with the big players in the space, it is also

looking for ways to stand out from the pack. The stale design of the key elements

of Shuup were identified as a drawback by the team. This thesis relates the work

and decision making that went into the improvements to this aspect in the admin

panel of Shuup. These decisions are based on the principles and methodologies

outlined in the second chapter. The methodologies in question deal with all

aspects of frontend engineering. This includes the disciplines of user experience

design, user interface design, researching, planning and user testing. While it

does not offer a detailed glimpse into technical development, it is a launch point

for tackling approaches to product redesign.

8

2 FROM IDEA TO PRODUCT: WEB DEVELOPMENT METHODOLOGIES

Software development is a complex process by which individuals or professional

companies turn ideas into working products. The nature of software development

is of a constant change as it is tied to the progress of technology. Advancements

in hardware require advancements in the software that lays on top of it. The result

is reflected in the innovations that strive to provide users with products that

improve their lives.

Web development, much like general software development, is an ever-evolving

field that creates products to be consumed on the World Wide Web in the form of

web pages and web applications. It is spurred by the evolution of the web as a

whole and web technologies specifically that make it possible for anyone in the

world to participate. In 2005, there were over one billion internet users worldwide.

Since then, that number has grown by three and a half times as more parts of

Africa and China are coming online (Statista, 2017). More people translates to

more business opportunities as well as innovation which, in turn, feeds on this

cycle. These conditions make it possible for rapid progression of new ideas in the

space. That said, ideas are plentiful, and it takes a considerable amount of effort

to bring an idea to life. Web development houses and agencies are booming

across the world as traditional businesses switch their focus onto the digital arena

(VentureBeat, 2017).

2.1 Project management and planning

The number of projects that end on the plates of development companies

demands a standardized framework through which it is possible to both offer the

clients acceptable delivery time and quality. Furthermore, having an established

practice when it comes to managing projects can make or break them. It is akin

to building real world structures. In this scenario, the architects and engineers

come up with very detailed plans and specifications which are passed on to the

builders who execute it. The builders cannot do their jobs without blueprints and

in the same way, architects cannot deliver the results to customers. In the real

world, there is an established flow from idea to finished product, the principles of

which are carried over into the software world.

9

The Project Manager role is essential for ensuring that all the moving parts of a

work line up to meet expectations. In the book, Real Web Project Management,

the authors make the case that efficient handling of every phase of a project will

create the foundation on top of which the relationships between client and

company sits (Shelford & Remillard 2003, 18-19). The project manager should

take care to ensure that a given project is following a standardized flow and that

every stakeholder is on the same page. The methodologies employed should be

the same no matter the project’s scope or goals to attain an accurate bird’s eye

view of its evolution. The work methodologies should be user-centred with a clear

plan of action and end goals.

The problem with writing software is that often the agency, or the person charged

with completing the assignment ends up winging it. If builders cannot afford the

luxury of coming up with the plans on the spot, why should software be any

different? (Janetakis, 2018.) The reasons for this phenomenon can vary, one

reason is budgeting does not allot enough time for exhaustive planning. Another

explanation is inexperience on part of the developer where they make

assumptions about the work they are about to embark on.

An answer to budgetary constraints is organizing development and design

sprints. This is called agile work method and it has become the favoured way to

organize work in software projects. The idea behind it is simple, plan a sprint for

several days (usually five) that are laser focused in getting one aspect of the work

done. This is decided on a needs basis, however, the best results are had

whenever the task at hand is straightforward. For example, build a user

onboarding process for a mobile application. This encompasses user registration,

login and instruction, amongst other things. The target is to get these

implemented within five days. The success metric is measured based on the work

tickets accomplished within each respective area. At the end of the week, the

team can go over what they achieved and if testing results unfavourably, the

sprint can be restarted. Each iteration builds on knowledge from the last and the

idea is that because these last for such a short span, developer time can be safely

wasted in pursuit of better results. The knowledge and experience accumulated

at the end of the sprint can be more insightful than a drawn-out process of

perfecting one set of results. Iteration is a key principle when it comes to

10

producing meaningful work. The cycles give enough time for the software team

to cement the scope and goals of the work they are producing without losing

themselves in the implementation details. Essentially, the agile environment

forces workers on moving fast and hitting goals. There is no time to develop

auxiliary facets, therefore, common issues such as bike shedding never come

about.

Jesse James Garrett wrote what is essentially the bible of meaningful design and

development, The Elements of User Experience. He elaborates on five different

planes that rely on each other and improve on what the previous plane brings.

Garrett’s methods are a tried and true way of organizing the phases of

development to maximize production value.

2.2 Strategy, goals and scope

A crucial first step in the lifecycle of web development is doing the necessary prep

work to understand the end users, the product and the niche in which it is being

launched in. This involves identifying the problems of the chosen niche, the

demographic in general, and the individual personas specifically of the target

market. Furthermore, elaborate on the challenges and potential difficulties, risk

analysis, creation of the business plan and agreeing to achievable goals that will

drive the work forward. Garrett emphasizes a need for creating specific

measurements of success and failure. These metrics will make it possible to

identify problems and mend them in a timely manner. To tack on that, the author

argues that ambiguous specifications lead to moving goal post effect where there

is no conclusion to a project. That is a dangerous predicament for the company

to be in which will cause a dip in morale among the developers, thus entering a

vicious cycle of negativity. In the end, the product’s chances of success diminish

(Garrett 2011, 39-41, 78). The strategy can be distilled into two schools of

thought, understand what users want and what clients want. Marrying the

answers will provide the necessary scaffolding to base any further inquiry into

how to conduct further investigations.

Putting together a comprehensive strategy will be the guiding light for a product’s

lifecycle. The key areas that need to be considered are the value proposition, i.e.

11

how does this solution improve the user’s life? How will that generate profit for

the company providing the solution? By answering these two questions, you open

paths that will eventually define what the product is and, most importantly, what

it is not. The latter of which is also important to identify as early as possible.

Specifying in concrete terms what it should not be will impose clear limitations

that simplify the result down to a Proof of Concept, or POC. At its heart, the

product should do one thing and do it well enough for it to still make business

sense. Bells and whistles can be added afterwards, however, a Swiss Army Knife

solution will do little to improve on the core concept.

Garrett, calls out the lack of strategy in a product development cycle as the single

cause of failure in the software world. A badly defined product will never stand a

chance in the free market so long as the value proposition is not clear (Garrett

2011, 36). How do we prioritize our tasks and know what to target to maximize

our chances of success? Go straight to the source, the users.

2.3 Understanding the end users

Before the Internet, researching users was a hectic endeavour. To get accurate

results, an advertising agency, for example, had to employ hundreds of

individuals for the task. These people would have to be a representative slice of

the market, therefore, laboriously vetted. Afterwards, they would have to be

organized into groups and given tasks. Not to mention the costs of paying them

for the time they sacrifice. All but the biggest companies could afford to do

extensive studies in this fashion. The findings and knowledge could end up saving

these companies millions and would net them enough data to fix issues that may

arise around their product. With the advent of the Internet, test groups can be

spread out across the world and best of all, subjects do not have to leave the

comfort of their home or even be paid. Methods such as focus groups still have

their benefits, however, internet-based testing is considerably cheaper and has

the possibility of aggregating data many times the size of traditional methods.

Therefore, there really is no excuse not to test any new idea from even before

the beginning of the product cycle.

12

Reaching users through the internet to glean information about a product idea is

as easy as uploading a video to YouTube. What is usually the case when

targeting a specific user problem, the users themselves do not know of it until it

is pointed out. Once the users are conscious of the problem, you have their

attention. As was the case with the founders of Dropbox, they knew that their

product solves a real-world problem, but they were not the first company to

market, they needed critical mass right off the bat to succeed. Drew Houston, one

of the founders of Dropbox, created a short video that showed off what the service

could do in 3 minutes. Essentially, overnight his video managed to create

awareness and excitement that ended up validating the assumptions that were

made (Reis 2011, 99-101). Today, Dropbox is worth more than 12 billion dollars

(Tarver, 2018).

In The Lean Startup, Eric Reis argues for bringing this idea into the building phase

as soon as possible in order to test the validity with actual users. Afterwards,

collect data, analyse and iterate as soon as possible. This cycle should be

repeated until the results point to something worthwhile (Reis 2011, 81-83).

Success metrics should be agreed upon previously. Following this, developers

should have a clear idea of what exactly they must build and, likewise, sales and

marketing can come up with their own supporting materials. Thus, you end up

with a unified vision that will guide the project to completion. However, user

testing is not put on hold. User-centred design means that the users are kept in

the loop throughout the lifecycle. Politics can get in the way of great ideas being

fleshed out and subsequently diluted. User feedback is the single source of truth

that can end disagreements over design and development decisions (Krug 2014,

108-109). Facebook synergized this best in their former motto, “Move fast and

break things”.

Other valid metrics that provide general insight into user behaviour are analytics.

For instance, Google Analytics is a platform that, once installed on a website, can

gather detailed information about each visitor’s session. How much time they

spent, which pages they preferred viewing, what website they originated from. All

kinds of metadata are available at a glance that should inform any website

project’s strategy. Other tools such Hotjar, a heat map app, paints a clearer

picture of what the users did on the website or mobile app. Which areas were

13

more favoured compared to others, based on mouse pointer activity. The strength

of metadata collection is that it is done passively. The user does not necessarily

have to be aware unless specifically approached. The sheer amount of data that

is possible to collect can provide a general overview of not only the website’s

health but also how the users interact and experience it.

2.4 Testing with users in mind

Leading digital user experience experts, including Jesse James Garrett, Steve

Krug and others, agree that user testing in the information age is cheap and

valuable. How cheap? Steve Krug in his much-lauded work, Don’t Make Me

Think, recons that it can be as low as 10-dollar cents per day (Krug 2014, 113).

How valuable? Testing one user is better than not testing at all (Krug 2014, 115).

Clearly, the author is arguing that testing should never be an afterthought to any

project. In this phase of the software development, we should be testing for errors

in usability, as well as keeping an eye out for potential issues with the strategy.

Now, we have a target market and a good idea of who the users are, we move to

test the concrete application itself. By continuously testing our ideas at every step,

we ensure that we are staying true to user expectations and are providing the

tools for them to complete their objectives. Every design decision will carry a

weight in favour or against the users and there is no way to find out which case it

is, unless the ideas are trialed. One way to think about it is a small MVP within

the application itself. Steve Krug’s theory describes something he calls the

reservoir of goodwill. When presented with an interactive application, users have

a certain amount of good disposition which can go up or go down based on the

faced obstacles (Krug 2014, 167). By way of example, I would like to look at an

imaginary user browsing an online clothing store and see what kind of user

experience patterns can influence goodwill.

The objective in this scenario is to find the correct section, filter by colour and

size, and finally initiate the checkout process. The user finds the women’s section

and that increases goodwill, though once there, she is bombarded by newsletter

popups which lowers goodwill. After selecting a suitable option, she is taken to

the product page. There, she is presented with relevant information about the

14

trench coat including size, manufacturer, colours, shipping details and price.

Having all the data in one place and easily digestible increases her goodwill and

she decides to go ahead with the checkout process. During this process, she

finds that additional charges were tacked on to the final price and the selected

colour is out of stock. Therefore, goodwill is lowered just above what she would

consider unacceptable and, ultimately, decides to pick a different colour and

continue the checkout process. The payment page consists of dozens of forms

which proves too much for the user. Finally, the goodwill drops below the tipping

point and the user abandons the cart. Ensuring a pleasant user experience goes

hand in hand with establishing trust, credibility and loyalty with customers,

particularly with e-commerce customers.

Setting up roadblocks for users in the name of satisfying a business requirement,

in this case inflating the newsletter subscription count, may have consequences

that are hard to determine without proper testing. Other problems, like hiding the

full price and stock information, evokes the sense that the shop is employing

dishonest tactics to trick users (Krug 2014, 168). On the one hand, testing flow

with actual people would have uncovered these issues well before this scenario

went into production. On the other hand, Jesse James Garrett views user testing

as a part of a more complex investigation.

Garrett argues that users cannot be expected to provide insightful feedback

during tests unless the user experience professionals know the ins and outs of

their product. That is to say, asking the wrong questions will provide the wrong

answers, thus, meaningless results. Knowing the problem before setting out to

fix it is conducive to progress (Garrett 2011, 177).

2.5 Mapping ideas to structures

Once our requirements and strategy are written out and we have a good idea

about what our application should do, we must consider setting these notions into

stone. Giving structure to supposition is the first actionable step in the

development cycle that will have an immediate impact on the end results. The

way information is grouped, ordered and organized is called information

architecture. Applications or websites are, more often than not, text based. Users

15

with a goal or task in mind will want to sift through as much data as possible in

the shortest time possible. The way information architecture helps users to

achieve this purpose is by introducing clarity to otherwise disjointed data

(Rosenfeld & Morville 2002, 16-17). A simple example to illustrate this concept is

an e-commerce website’s categories. Large webstores such as Amazon or

Alibaba have hundreds of thousands of items, each with its own page and

descriptions. Consider the following two examples gathered from the

aforementioned websites in their respective order (picture 1; picture 2).

PICTURE 1. A screen capture from Amazon’s department list.

PICTURE 2. Alibaba’s categories list.

Note the phone book approach of ordering all the categories within each

taxonomy for easier access. The screen caps only show a sample size, however,

the taxonomies as well as the categories go from A through Z. As a result, items

in these two stores must occupy one or many categories for ease of use by both

users and internally by the system. In the real world, this is akin to browsing in a

16

bookstore and finding desired books on the shelves. These examples of

information architecture abide by a universal ruleset which is expected by users

through experience, namely the alphabetical order. Amazon’s item categories are

placed in alphabetical order within the taxonomies. However, information

architecture is not always as cut and dry as in these cases. There are examples

where grouping information in ascending order does not bring clarity about the

content itself, as each section might have a contextual or a meaning-based

relationship. For instance, how news sites group their articles by topics, foreign,

business, politics, etc. (Garrett 2011, 97).

Classification of information should be an invisible aspect of a website to the end

users. Proper IA is present below the content and it manifests itself in the form of

usability (Rosenfeld & Morville 2002, 24-26). Rosenfeld, Morville and Garrett in

their books reach an agreement that IA differs from graphics design in the way

that graphics designers are not necessarily information architects. Graphics

designers use their tools to decide how a given information is presented for visual

consumption. Interfaces, for example, have the main role of suggesting to the

user how they can interact with the given product. IA lies somewhere below the

interface in a more abstract way. Rosenfeld and Morville propose three

components that make up IA, Context, Content and Users. In essence, Context

is an organization’s philosophy, strategy, goals, resources, and so forth that are

unique and lie at the foundation of the brand. Content is a broad term for whatever

the organization outputs in the form of assets such as text, videos, brand, culture

and other metadata that are in direct influence of the Context. Finally, Users are

the ones that make use of the content for their own end (Rosenfeld & Morville

2002, 37-39). The authors theorize that these three components form the

framework through which IA can be articulated.

Jacob Ruiz, a design consultant, takes a more semantic approach to defining IA,

a collection of nouns and verbs. Nouns are how the information is organized

within an application or website and the verbs relate to what the user can do, i.e.

actions (Ruiz, 2017). He argues for a pattern-based design that organizes data

in these two categories. Users have a clear picture of what the app can do for

them based on the actions, while the nouns provide a top down view of structure.

17

Take for instance, the photos application on macOS (picture 3).

PICTURE 3. Photos application on macOS Mojave.

Right off the bat, we can ascertain all the sections of the application by looking

for the nouns on the sidebar and in the application’s header. The actions are

presented in the empty state in the main panel. Consequently, the user can make

a mental map of the structure as shown in the following figure (figure 1).

FIGURE 1. Structure of the Photos applications.

18

In this example, the context of the application is photo management. The primary

nomenclature is based around nouns such as images, photos, albums and

collections. These are terms lifted from real world conventions and are used

metaphorically to convey familiarity. These form the general level of information

architecture that lays down the sections of the application and conditions the

users to create mental paths. When completing tasks, users will go to the general

section and look for a specific action (Garrett 2011, 88-90). For instance, a user

wanting to edit a holiday picture from 2016 will go to the photos section and

browse by year. Once the image is located, the user is presented with the list of

verbs (show metadata, like, share, rotate, edit) where the subject picks edit. Thus,

the user went from the generic level (photos section) to the specific action (edit)

during the completion of their task. All the while information architecture was not

playing an active role in guiding the user, however, it was present throughout the

journey. Giving a form to the structure brings the product one step closer to

production. At this point in the lifecycle, we have gathered market and user

research, formed a strategy and limited our scope, tested the idea with users and

iterated upon it and, finally, came up with a structure. The next phase in the

process deals with everything that is visual and user facing.

2.6 Design patterns and systems

When facing the challenge of creating user interfaces, Jesse James Garrett

insists that adhering to conventions is less risky than experimenting with new

concepts (Garrett 2011, 111). Indeed, even Steve Krug’s book on the subject is

called “Don’t Make Me Think”. It is a cornerstone approach to successful

application and web design because it eschews creativity in favour of tried and

true methods. The gist of it is that the more time users must spend understanding

and learning the controls, the more frustrated they become (Krug 2014, 24). As

a result, usability takes a hit along with user goodwill. This leads to abandoned

sessions and potential losses in profits, not to mention bad experience on part of

users will dissuade them from returning in the future. From this point of view,

following trends in user interface design cuts down on research time, as someone

else already did the heavy lifting. Standards were put into place and thousands

of web apps adopted these patterns and in turn taught their users. Consistent

experience on different applications or websites creates a sense of security in

19

that users feel that they do not have to exert additional effort to use the service.

By relying on past experiences, users can develop reflexes that save many hours

of needless problem solving (Garrett 2011, 110).

Steve Krug explains that users do not read as much as they scan for familiar

looking words that might lead them to what they are looking for. If that fails, users

will then expand energy by reading content that is tangentially related to their

goal. That occurs because users know that they do not have to comprehend

everything about a certain page or application to complete their task. They can,

as Krug calls it, “muddle” through until they get what they want (Krug 2014, 32-

33). He rationalizes by pointing out that users in general do not educate

themselves enough about technology and will elect to not read instructions,

instead, find their own way. In this scenario, experience plays a central role in the

way these types of people approach problem solving in the digital space. In this

context, the role of the user interface designer and user experience engineer is

to accommodate the muddler tendency. This is achievable by upholding industry

standards and patterns set by the big players in the space such as Google, Apple,

Microsoft, etc.

Digital design patterns can range from the high-level vague specifications to exact

dos and don’ts. Garrett and Krug elaborate on the importance of navigation and

giving visual cues to users about what the content is about (Garrett 2011, 118-

123; Krug 2014, 64-65). Navigation design has a direct connection with the

underlying information architecture and is a jumping point from which users orient

themselves on a given web page or application. As a result, this is a highly

recurring element in web design, to the tune that you would be hard pressed to

find a popular website without some form of navigation. Other key patterns

include heading and content hierarchy. Krug defines this is as visual organization

of content through the prism of Gestalt principles. For instance, highlighting key

information in a body of text by increasing the size of the heading and adding

more white space (Krug 2014, 50-51). Another example he submits is dividing a

page into multiple sections that content or interaction wise accomplish different

things. That way users can decide at a quick glance if that particular area is

relevant to their needs. Website brand or logo is a key area that should make its

appearance around or near the navigation. That identification marks sits at the

20

top of the information hierarchy which is why it makes sense to include it in the

navigation (Krug 2014, 78). Other recurring elements include mission statements

that lie generally above the fold and have the role of defining what the website is

and what the very first step can be, i.e. a call to action area. Beyond these

universal patterns there are specific standards that relate to usability and

accessibility.

Big tech companies like Google, Shopify, IBM and others have through the years

come up with a set of well-defined pattern and component libraries, otherwise

known as design systems. While highly specific to each company’s products,

there is a lot to glean off these efforts. Design systems follow the atom, molecule,

organism, templates and pages paradigm, where each element can live on its

own (atoms), however, when composed together they form pages (Fanguy

2017). The value of a design system is a cohesive brand language which is the

single source of truth for the organization. This consistency comes from a need

to provide users with predictable experiences when they interact with the

company’s products. For the company, keeping a consistent face makes life

easier when developing new products and pages. Designer’s creative liberty is

curtailed in favour of efficiency. The atomic design paradigm meshes well with

modern web development techniques, whereby a web app or site is sectioned

into building blocks that are made up of atomic pieces. Hence, it is designed to

bring together designers and developers while putting the needs of the users to

the fore.

Google’s own Material Design was created to give their Android Operating

System a common visual language and to unify the (at the time) highly disjointed

user experience of third-party applications. Google gave developers a set of

building blocks that allows design and UX disinclined developers with battle

tested components to build with. The hope is that developers would not have to

focus on reinventing the wheel, rather they can put all their energy into their ideas.

Google relies on the metaphor as a driving force and explains that Material

Design is a collection of principles based on science and technology, meaning

through motion, and meaning through flexibility (Google 2018). Other design

systems, such as Polaris by Shopify, Carbon Design System by IBM, follow the

same principles that make up Material Design. The result of applying atomic

21

thinking to the web and app environment is an improved interface consolidation,

noise reduction that stamps out inconsistencies. The end-users will receive a

predictable experience each time they use applications that belong to the same

suite.

Visual design is not strictly aesthetics in the sense of what looks pleasing. Garrett

asserts that good design does not stand in the way of the site’s stated objectives

(Garrett 2011, 143). If the design does not support the underlying content, it

should be discarded. That said, design is not an exact science, it is based on

creativity. One of the pitfalls of approaching a website design is treating it as an

art piece. The temptation is apparent as it is a visual medium without boundaries.

Sometimes it is warranted, however, most times there are practical needs to

consider. For instance, if a drawn-out animation of critical content is taking too

long to finish, and thus be visible, that poses a hindrance to users who are forced

to wait it out even if they are disinclined. The results can be measured in bounce

rates from users who value their time more than what the perceived worth of the

content may be. Final designs can and should be user tested well before taking

it to production. That is the only way to objectively measure the success of not

just aesthetics but also functionality.

Once again, user-centred design lies at the core of interfaces and visual

communication. Design systems abstract away the research and testing efforts

lead by the teams that create the frameworks, however, using something like

Material Design in a project will not absolve the developer from testing. If a team

elects not to use Material Design components in their application, but decide to

engineer their own solution, the base principles that are presented by Google and

others are still valid. The aim of creating custom brand design language is that it

is more in tune with company core values and aesthetic choices than something

that is generic and off the shelf, as is the case with Material Design.

Creating design systems from scratch at any level would mean a lot of time would

be wasted on development and iteration cycles on top of that. What if there was

a way for programming unaccustomed designers and user experience engineers

to get a visually functioning product to the users faster? That would allow them to

control all the testing variables without writing a functioning application and

22

wasting developer time. Prototyping application suites from Invision, Marvel,

Adobe, Figma and others have introduced tooling that is meant to solve this

problem niche.

2.7 Prototypes, wireframes and high-fidelity mockups

In recent years, the prototyping world has seen an explosion of programs meant

to speed up design and testing even before committing any developer time. This

takes the shape in a suite of applications developed by established companies

and startups alike. In the past, prototyping applications did not necessarily include

design tools and vice-versa, however, recently that line has been blurred.

SketchApp, Figma, Adobe Xd, Framer, Invision Studio and others all ship design

tools for creating mockups and wireframes. Additionally, prototyping

functionalities baked into the same applications. With the first version of

SketchApp which was released in 2013, designers switched en masse from the

Adobe sphere of influence of Photoshop and Illustrator (bin Uzayr, 2016). This

opened the door to competing design and prototyping software that brought

innovation into the user testing realm. That leads to the question, what are

prototypes and when to utilise them?

Ben Coleman and Dan Goodwin, authors of Designing UX: Prototyping, assert

that prototyping is not limited to wireframes and high-fidelity mockups but it is

more than that. Clickable prototypes are interactive mockups which help bring the

end-users into the design process and shed more light on how the attributes of

the final product will function (Coleman & Goodwin 2017, 1-2). More importantly,

designers receive constant feedback on the quality and effectiveness of their

ideas, while stakeholders can prevent straying from the overall scope and

strategy of the project. In short, the sooner users can get their hands on the

product, the faster designers can iterate.

A prototype can consist of wireframes, high-fidelity mockups or even pen and

paper sketches. The beauty of these techniques is that valuable user data can

be accessed regardless of the medium in which testing occurs; be it digital, in the

case of clickable prototypes, or in the physical world, crudely drawn paper

mockups. Coleman and Goodwin emphasise that more complete knowledge can

23

be learned if test subjects are presented with real looking data within the

prototypes. The tasks that can be given to users should be achievable within the

prototype itself. They go on to suggest that prototypes, that only offer limited

functionality, will lead to feedback based on opinion that cannot be measured

against a list of success metrics (Coleman & Goodwin 2017, 10-11).

Wireframes are made to the specifications laid out in the information architecture

research. That can be a starting point where prototyping can baked into the

testing phase. Such mockups should, at this point in the process, offer a one-to-

one picture of what the final product will look like. Prototyping should consider

interaction design, animation and other finer details that will be present in the final

product. These can be page or screen transitions, sliding navigation bars,

carousels, and other elements that will find their way into the product and require

user action. Ultimately, there is no one way to create prototypes, however, the

value they offer is such that it cannot be avoided in modern web development

projects. Tools, such as InvisionApp and Marvel, offer the possibility of testing

individual screens with minimal interactive elements and moving parts, however,

it is meant for simplicity and fast paced iteration cycles. Fully featured prototyping

apps, like Framer X, offer deeper nuances. In this case, with Framer X, a designer

can implement both mockups and interactions necessary for a realistic mimicry.

Ben Blumenfeld, in an opinion piece for Fast Company, writes that the new wave

of prototyping applications is not necessarily bringing key innovations into the

space. The learning curve is increasing and choosing one design tool over

another is based on whim rather than features that best supports frictionless user

interaction testing (Blumenfeld, 2018). Designers must effectively communicate

their vision with project stakeholders and provide a visually functioning

application schema. That is how modern digital development agencies tackle

projects and concurs with agile work methodologies. Choosing the suitable

design and prototyping app is a task in and of itself.

The landscape of prototyping is continuously shifting as the industry has not yet

settled on a clear winner. Framer X is versatile but with a steep learning curve.

InvisionApp and Marvel are not useful for prototyping complex interactions. Flinto

and Principle require too much time to set up motion prototyping. Adobe Xd and

24

Figma combine design and prototyping, however, do not yet make a compelling

case for the design community to switch away from battle hardened SketchApp.

The prevailing strategy is using a combination of applications to craft wireframes

and organize them into prototypes. For example, the designs can be laid out in

SketchApp and uploaded to the InvisionApp service where the screens can be

combined into an interactive flow. Though, the details of choosing the most

efficient combination of prototyping and design tools is very much up to the

designer. It should be noted that the result should be the same: interactive

mockup of the end-product for the purposes of user testing and dissemination to

project stakeholders.

With high-fidelity mockups, the final visual design of an app or website can be

brought to life. In the previous subchapter, I put forth the idea that visual design

ideas should be user tested. Prototyping applications are a solution to this niche

problem. Designs do not have to be implemented into the app codebase before

it can be tested. Furthermore, the arguments surrounding aesthetics can be laid

to rest once solid data can be gathered from users. Questions, such as a button’s

colour, can have a definitive answer. Moreover, through A/B testing designers

can iterate as many times as necessary to meet stated project goals while making

sure that the design does not block goals but supports it. In one fell swoop,

interface and user experience designers can test interactivity and visuals to craft

the most effective version of their product.

By way of example, designers can jump into SketchApp and have prototyping

tools available as a secondary context of the application. With the goal of making

an onboarding wizard, the designer creates an artboard per page with all the

expected elements. Copy, buttons, decorative and helpful illustrations. Here, it is

encouraged to include the brand’s design guidelines or design system for the

sake of realism. Colours, fonts, spacing and dimensions are atomic details that

make up the application interface. After completing all artboards with the

necessary information and suggestions for interactivity, the designer can create

links in the prototyping context. Buttons can be hooked up to point to subsequent

artboards that are effectively the reaction to the click action. A tree of choice can

be designed with all artboards put into their logical place. Thus, SketchApp can

generate a prototype application from the linked artboards that can be shared

25

and tested. Functionality wise, the prototype behaves like the subject website or

application but with limitations. For example, button hover and pressed states

cannot be represented, animations are limited to screen changes, UI sections

cannot be overlaid, etc. The result can be likened to a slideshow that conveys the

general aspects rather than the specific implementation details. That said,

utilising these tools improves the eventual product as big iterations can be

performed faster and easier than with already implemented code. This flexibility

allows for the exploration of many creative paths that otherwise cannot be

afforded due to the inherent risk of untestable ideas.

The value of prototyping is apparent during the implementation phase. Software

developers can recreate the prototype into the accurate bona fide deliverables.

The details in the blueprints are not left up to the developer for interpretation and,

therefore, prototypes facilitate an improved hand-off experience over vague

screen shots and spec sheets. That said, during the prototyping phase the

designer can add trivial looking details on the surface that can prove challenging

to implement. This brings up the question of should designers code? On the

flipside, should developers know how to design? The idea here is that to increase

empathy and knowledge both ways, designers who have a clue about

programming can adjust their designs so that it does not pose an obstacle during

development. Likewise, developers with some knowledge of design can

understand the reasons behind choices made by designers (Follett 2017). Finally,

prototypes strengthen designer and developer relationships as well as bring in

the project stakeholders early in the game. It is a marked improvement over static

images as well as leads to better user testing and faster iteration cycles.

2.8 Development & Implementation

The place in which the visible layer is implemented is referred to as the “frontend”.

The implication of the term nods to the existence of a “backend”. In web

development nomenclature, the backend comprises the unseen yet vital part of

any useful web application, website or service. The business logic, database,

API, cache, algorithms, etc. are invisible to the end user, however, this is where

the backbone of a given product lays. It is where functionality is defined that

allows for users to interact with the system and complete their objectives.

26

Therefore, backend development is a specialisation with its own world of

complexities that, in some cases, are far removed from frontend development

duties. In short, the backend provides the means on which the frontend relies on

and sets the expectations of what a web page or application should contain.

On the flipside, the frontend is interlocked with the backend via APIs or server

side rendered templates. The former is a popular paradigm through which

applications, such as Facebook and Twitter, are built on. It emphasises reactivity

to user input, efficient data loading, client side rendering, and more. The latter is

the traditional server request-response approach. In short, as a user on a website

clicks a link, the server responds with the fully rendered page with all the data in

place, for example, a typical WordPress website. This happens for each

subsequent interaction and each action is always broken up by the wait time of

the server’s response. Each time the server receives a request, it runs through

its internal logic and gathers the necessary data, populates the pages, and sends

it back to the user, including all JavaScript and CSS scripts.

The duty of the frontend developer is to create and manage the frontend assets

and templates. Furthermore, the visual and user experience design is carried out

on this end. The user will interact with the backend through the frontend,

therefore, the product lives by what the frontend can accomplish. As such, the

importance of the job rivals that of the backend engineer. The frontend

developer’s skillset includes HTML, CSS and JavaScript knowledge as often the

case is that the designer’s work is implemented with these technologies.

With API driven frontends, developers are increasingly expected to create full

blown applications that not only sport good design, but must perform complex

tasks. Web apps such as Google Docs and Dropbox are but few examples of

how much is possible to accomplish with frontend technologies. As user

expectation is constantly conditioned upwards by popular web apps, developers

must rise to meet them. This is done by adopting cutting edge software that

enables such apps to exist. As a result, to stay competitive, frontend developers

should continuously learn and adapt to change. Whereas backend development

is based around battle tested tried and true methods, the frontend is a struggle to

27

maintain relevance in a rapidly evolving digital space. The latter thought is a

cornerstone theme of this thesis’ project.

The methods for going about bringing prototypes into existence can vary

depending on the scope of the project, the chosen technology stack and other

factors. Broadly, programming and design are different roles that require different

types of individuals with those skills. Since there is little overlap in these

disciplines, the development process needs to be lead accurately by the

prototypes or mockups. Communication and empathy takes on an even bigger

importance as designers need to pass on their vision and make sure it lines up

with the expectations set forth in the previous phases of the lifecycle.

Consequently, development methodologies are not specific and cannot be

pinned down. This thesis only explores the development path for the undertaken

project — reimagine and redesign the Shuup Admin Dashboard.

28

3 REIMAGINE AND REDESIGN: THE SHUUP ADMIN DASHBOARD

In the previous chapter, I delved into the nature of web development projects.

How to implement a plan and execute it while ensuring that the goal is always

within sight. Steve Krug, Jesse James Garrett and others offer the advice and

techniques. This chapter is about how that knowledge is applied to a real-world

project. Real in the sense that it encompasses all aspects of professional web

development. Namely, the frequent iterations, pivoting of ideas, scrapping and

replanning, team work, communication, design and so forth.

3.1 Background information

Primarily, Shuup is a company that offers online ecommerce solutions for

companies. More specifically, Shuup is a piece of software that powers online

marketplaces. It features an inventory system, curation, customer facing website,

tools for managing multiple shops, plugin system, campaign management, and

many other components. Furthermore, the company’s business model is based

on offering two packages of Shuup, commercial and free. The former is supported

and hosted by the company themselves, while the latter constitutes the open

source project which does not offer any extra perks. In addition, the free version

is offered as-is and thus maintenance and administration is left to the user. This

echoes the way in which the company behind the wildly successful WordPress

platform, Automattic, provides their CMS product to the world.

Some of Shuup’s competitors in the open source space are Magento, OpenCart,

WooCommerce and PrestaShop. On the commercial side, Shopify, BigCartel,

Wix, BigCommerce and Volusion emerge as contenders. As can be seen, this

niche of software products is highly competitive and highly lucrative at the same

time. Statista suggests that worldwide e-commerce sales are climbing with no

signs of slowing down in the next decade (Statista 2019). Hence, there is a lot of

incentive to innovate and capture a share of the audience. As recently as 2018,

Adobe, the maker of leading productivity applications, purchased Magento for

$1.68B (Grant, 2018). Magento is the most deployed open source e-commerce

solution in the world which stands to reason that Adobe did not so much only pay

for the software but for the users as well (Rogers 2018). Looking at these metrics

29

and the likely evolution of the industry in the years to come, standing out in the

sea of marketplace SaaS solutions is paramount to success.

3.2 About the project

The circumstances of this project and how I personally got involved in it is

straightforward. Shuup Inc., and by extension the software itself, is an offshoot of

Anders Innovations. The latter is a company based in Turku, Finland whose bread

and butter is web development for business clients. I had been employed at

Anders for a year when I was approached with this task. Namely, the task was

defined as a manifold redesign of customer facing areas of the application. Firstly,

the admin dashboard which constitutes one of the more important sections when

it comes to user interaction with the product. Here, the user can configure, update

and establish shops and inventory. Second, the accompanying application of

Point of Sale (PoS) terminals required a similar facelift to match the design

direction we were about to embark on. These are separate, yet related

applications with different contextual considerations which would later play a part

in how the project would unfold. The PoS is a mobile application designed for

tablet devices which would link Shuup shops with the physical world. This allows

for inventory interaction, payment and processing of shipment right in the brick

and mortar store.

The motivation behind the Shuup redesign is based on the wish that the product

should keep pace with the evolving world of e-commerce. Innovations brought

about by Shopify, Square and the like shape user expectations in the way that

Steve Krug wrote about. Chiefly, if users are accustomed to Shopify’s user

interface and interaction flow they will, even if subconsciously mandated, expect

the same from Shuup and others. Due to the popularity of Shopify worldwide,

they are the trend setters that less popular solutions aim to imitate. According to

the web statistics analysis tool, BuiltWith, Shopify usage represents 19% of all e-

commerce solutions, second only to WooCommerce (BuiltWith 2019). The

Canadian company boasts a $1,3B valuation at IPO with thousands of employees

around the world (crunchbase 2019). In short, they have the necessary weight

for trend setting and innovation, especially when it comes to user research.

30

A second and more relevant motivation is that Shuup’s user interface was not

updated since its inception. Throughout the years, the constant evolution of the

application’s underlying functionalities did not keep pace with the UI and with

time, cruft accumulated. This is evidenced by outdated graphics, layout and flow

when contrasted with the competition’s offerings. Whenever tests show that users

have difficulties in accomplishing their objectives, it is time to think about your

product critically.

3.3 Redesign rationale

What are the metrics by which we can decide that a redesign is warranted? I have

mentioned difficulties expressed by users, however, what are some other

reasons? Sandijs Ruluks is a San Francisco designer who shares a few

arguments. According to him, you should consider rethinking your website

whenever, your current design is not flexible anymore. When a considerable

amount of time passed before your last redesign. When your product has

changed and the current website does not represent it. When you want to stand

out (Ruluks, 2016). Of course, this is only the tip of the iceberg when it comes to

justifications. A more interesting way to look at this problem is to find reasons why

you should not redesign a website and work your way backwards.

Brent Summers from InvisionApp goes over his reasoning. There is more to fixing

apparent website problems than resorting to design overhaul. Incremental

changes can go a long way to reaching objectives. Just by improving the existing

website with small component changes, such as adjusting colours or writing new

copy, it is possible to gain as much in value as with a redesign. Furthermore, he

submits that increasing traffic, SEO rank or reducing bounce rate are not directly

measurable results of redesign, as too many variables change to be able to draw

conclusions. Again, these aspects can be enhanced without ripping out existing

solutions (Summers, 2015). In short, large overhauls are risky as they require the

intervention of many stakeholders. From developers to designers to management

and copywriters, the process is long and fraught with the danger of missing

objectives and worst of all potentially wasting time.

31

The arguments supporting a redesign for the Shuup admin dashboard are so far,

to keep up with the competition, breathe new life into the product by refreshing

the branding, and thus the design, and to fix user experience issues. This is an

effort can be put under the umbrella of increasing Shuup’s market share. At the

same time, the PoS application needs to be considered as an integral part of the

Shuup product. Therefore, the design must be suitable for both a web app and a

mobile app. As these are slightly different contexts, with different technological

backgrounds, practically these are considered as two separate yet related

projects. One aspect to note is that this project is not a complete re-authoring of

the Shuup software. Therefore, only the existing structure is improved. As a

result, the planning phase will go through a few iterations as expectations are

adjusted to realities.

3.4 Project planning and identifying objectives

The first iteration of the plan involved extensive backend re-engineering which

would have allowed for a frontend rewrite. In software engineering, backend is

used to describe the layer of software that deals with logic, data access and

infrastructure. Frontend is a keyword reserved for delineating the presentation

layer, usually a graphical user interface (GUI). Through the frontend, users can

interact with the backend and carry out tasks and other activities. Collectively this

is referred to as separation of concerns which is the philosophy of decoupling and

modularisation for the sake of flexibility (Laplente 2007, 85). Shuup suffered, and

to some extent still suffers, from a tightly coupled frontend code with the backend.

One of the big technical objectives early on was to solve the coupling issue and

create the environment in which backend and frontend can co-exist somewhat

independently. The immediate benefit would be faster iterations and feature

development. Basing the new frontend work on modern technologies means that

user experience can be elevated. Another side effect of decoupling is that the

backend can be leaner, more focused without having any strong opinions on how

the frontend should work. This paradigm shift would allow for writing the admin

dashboard as component based single page application, or SPA. The strength of

SPAs is speed and responsiveness. Traditionally, when a web browser makes a

request for a page from a server, for example hs.fi, the server responds with the

32

page and content already rendered (figure 2). Figure 2 illustrates a typical

browser request and server response. In this scenario, the server responds with

the all necessary data and page elements for the browser to render. Every

subsequent browsing action will prompt the server to construct the page and then

transfer it across to the user.

FIGURE 2. Simplistic background representation of a typical browser request.

SPAs, on the hand, once initially loaded do not reload in the same way. Instead,

only parts of the application that receive new data re-render while other areas

remain unchanged (figure 3). From the user’s perspective, this translates to an

unbroken and fluid experience.

FIGURE 3. The web application sends requests whenever new data is needed.

In figure 3, the web applications upon needed new data opens requests through

the XHR API. Upon the completion of the request cycle, new data is populated

into the components where they are necessary. The server responds with data in

33

the shape of human readable text defined in a format, such as JSON, which then

the SPA can easily reason about. Certainly, there are drawbacks when it comes

using either paradigm, for instance, SPAs can weigh significantly more than

normal web pages, the pros must be weighed against the cons. In Shuup’s use

case it would add extra steps in code maintainability, however, it would drastically

simplify the backend logic as it will not have to consider the eventual form and

design. The delegation of this task would need to be handled by the frontend.

A second and, in my opinion, more important objective is the re-organisation of

the information architecture. The addition of new features over the years

increased the number of items in the navigation and with it, cognitive load.

Appendix 1 and 2 are screen caps from the old navigation panel which shows the

contrast of available links. One the one hand, the contacts section sports only

one link (appendix 2), whereas the shops area is chock full of various options that

command the same level of importance (appendix 1). There are many such

examples that viewed separately do not pose much of a concern but when viewed

in concert create consistency issues. Moreover, each link in the list represents a

page that content wise is superfluous and does not merit a separately defined

area.

Moving along the list of grievances, the action button area that lies at the top right

of most pages require extra attention. The non-existent categorisation of action

types has led to a mishmash of meaning and layout (picture 4).

PICTURE 4. Action buttons in the product editor view.

Picture 4 is a representative case where the button layout can be confusing and

unnecessarily complex. The delete and discard buttons are prominently placed

next to a button with an opposite action (save). Furthermore, the difference

between deleting and discarding changes can be misconstrued due to their

ambiguity. On the far left, the button labelled “Actions” poses more questions as

to its functionality.

34

A common theme throughout the Shuup admin panel is the number of text fields

as can be seen in appendix 3. In this example, the text fields span throughout all

sub-views listed on the left-hand side menu. This menu acts as a tabbed

component which hides and shows the main content based on the category

description. The weakness of tabs is that it also hides important information such

as mandatory fields (appendix 3). The new entry cannot be saved until all marked

fields are completed, however, this is impossible to tell without cycling through all

the tabs. In addition, the form makes certain assumptions about the type of the

entry and tries to box it into a model that may or may not be relevant in every

scenario. Forcing users to acclimate to a wide range of suppositions leads to

subpar experience that only serves as obstacles. An audit of all forms is

necessary to optimize common tasks and fix issues that may bring about

cognitive overload.

Finally, the design needs a refresh to align with the new branding and design

system. Shuup has undergone several personality changes over the years and

the admin panel has not been considered when the improvements were

undertaken. Given the importance of the admin panel, the Shuup technical team

wished that I take charge no holds barred and design as well as implement this

vision. Along with this main goal, it became evident that the new design cannot

be enacted without modernizing the frontend software that would drive this effort.

Consequently, the skills required to tackle these tasks suppose design and

programming experience.

3.5 Research & Mockups

With the major points of the objectives defined, I set aside a couple of days for

researching the competition landscape. The problems that we are solving in the

Shuup redesign are not unique and do crop up in any suitably large software

products. What’s more, I wanted to compile a resource for common patterns that

especially e-commerce products follow. In the product editor, for instance, what

kind of features are highlighted and what do those components achieve?

This line of questioning is related to the scope of rethinking the convoluted

information architecture in Shuup. The simplification of the interaction flows can

35

be achieved by determining a common thread between all “create new” actions,

such as creating new products, categories, contacts, orders, etc. I wanted to see

how products like SquareSpace, Shopify or Square handle these aspects. At the

same time, I paid special attention to the quality of the design and user

experience of these wizards and components to spot trends. Similarity of user

interfaces can suggest user experience patterns that are good to follow, once

again pointing to Steve Krug’s Don’t Make Me Think mantra (Krug 2014, 11-12).

In essence, familiar experience breeds comfort in users.

Mood board is a great tool for collecting and displaying data from which you can

springboard your own ideas. I looked at four SaaS products that solve different

pain points in e-commerce. Shopify for storefronts, Stripe for payments,

SquareSpace for marketing site building, and Square for brick and mortar PoS

interface. This collection of products, I picked consciously for their design,

metaphor and business similarities to each other and to Shuup. Refer to appendix

4 to get a sense of how this mood board looks like.

In addition to identifying common traits, I wanted to have a well of material to

draw inspiration from for the new Shuup design language. The key here is to

target a general feel or emotion based on choice of colour palette, contrast,

typography, layout, copy, and so forth. As no design happens in a vacuum, my

approach down the line is to remix and create a spinoff of certain components for

their UX and UI. This is later evidenced in the update of the table filter system in

Shuup (appendix 5). Moreover, I needed to document how Shopify et al. handle

common e-commerce tasks that are by nature repetitive. For example, fulfilling

orders, editing product images, interacting with analytics and chart data, etc. By

breaking down and analysing individual components with regards to how they

work and look, I can draw conclusions that will influence the design down the line.

A strong wish early in the project was to create low fidelity mockups and test them

thoroughly before committing a single line of code. As the original plan

commanded for a clean slate for the admin dashboard, the design and layout can

take a large departure from the existing solution. Therefore, breaking or

neglecting existing features is undesired and the new dashboard should have

feature parity with the old one. To this effect, we elected to use InvisionApp as

36

the team already had prior experience with it. This product is designed for quick

and easy prototyping by simply collating static mockup images into a living device

screen. The way it works is the user uploads ready-made images that describe

every section, interface element and element state in the application. Within

InvisionApp, the images can be ordered and connected by defining “hotspots”

that are clickable areas to trigger the loading of the relevant images. This

technique allows for building powerful prototypes that can mimic the ready-made

application without writing any code. The time is cut between idea and testing,

and we can get the prototypes into the hands of users at lightning speed.

For Shuup, I created two prototypes over the span of a few weeks. One for the

PoS application and one for the dashboard. In appendix 6, you can compare the

old dashboard design with the mockup. At this stage, I have collected enough

design resources and inspiration to tackle the task of coming up with my own

layouts. I felt confident that in the mockup stage I could go for more precise

copywriting to give it a more real feel. Furthermore, it is generally encouraged to

include real content as soon as possible in the design process (Prototypr 2018).

This gives legitimacy for testers when interacting with the prototype, something

that a standard Lorem Ipsum would not be able to accomplish.

With the PoS app, I went to the farthest possible length to capture every single

user flow and present the exact way in which the UI would react to input. These

include slide-out components that show and hide when accomplishing a wizard

type action. For instance, when going through the checkout process there are

certain steps that must be broken up into logical order. Scanning/adding items to

the list, editing customer details and accepting payment were given a good

amount of reasoning to make it seamless (appendix 7).

Feedback was received through InvisionApp from the team which made for

frictionless collaboration. Working remotely, this allowed us to be on the same

page at all times. Each morning I set aside time for catching up with messages

and creating tickets to appease the feedback. As a result, iteration was a daily

occurrence which kept me consistently looking out for problems and fixing them

before they became a larger design issue.

37

3.6 Project management & collaboration

Shuup is composed of a local team in Vancouver, Canada, however, the rest are

spread out globally. One of the biggest challenges in this project is coordination

and real-time communication. The 10-hour time zone difference meant that most

of the back and forth happened through Slack messages left during the previous

day. The team lead suggested that I leave them a daily assessment at the end of

the work day. This solution worked for the most part, however, any questions or

feedback understandably could not be dealt with immediately.

On my part, the work required planning and foresight. At Anders we use Jira for

project management and time logging. I was given carte blanche to write and

break down my work into as many tickets and epics as was necessary. This gave

me the possibility of employing Kanban principles and be able to plan and reason

about my work. Furthermore, the Shuup team was also able to track what I was

working on at any given point. I divided my work into Backlog, In Progress and

Finished sections, the most basic Kanban setup. Every big feature entailed its

own “epic” which, in turn, had its aspects broken down to tickets that are laser

focused in nature.

Time wise we were constrained to three months from the start of the project to

delivery, preferably, as soon as possible. However, the design and research were

just one aspect of a larger body of work that accomplishing it within this period

would not have been realistic. The Shuup team’s insistence on meticulous

wireframing and prototyping ate a large portion of the allotted time and, thus, the

project plan required revision. In software development, time is always the enemy

and in this case, it was no different.

The original plan called for a clean slate redesign. Rewriting the dashboard from

the ground up in modern frameworks and methodologies would have entailed

rewriting of a large portion of the backend. As a result, this was quickly scrapped,

and we settled on simply updating the existing stack and giving the old dashboard

a paint job. Crucially, this would save a considerable amount of time and would

put us back on track to meet the deadline. This cost us the chance to bring Shuup

up to user experience parity with the competition and serves only to kick the can

38

farther down the road. It is not an ideal solution, however, in this business pivoting

is an essential tool in the developer’s arsenal. The PoS app work was

rescheduled for a later date and, thus, all effort was focused on the dashboard.

Consequently, a tentative deadline was set for late August. The dashboard

rewrite project was pushed far into the future, however, this update could be a

spring board for that cause.

3.7 Technical implementation

With the change in the plans, we elected to keep the existing system for the time

being. This decision made a few ripples in the project. First, all existing JavaScript

plugins, libraries and packages needed to be brought up to date. In some cases,

such as the date picker component, alternatives had to be found as the existing

solution had been abandoned by the author. The delicate balance of the more

than 30 scripts was disturbed and invariably many broke. Furthermore, we moved

away from using Gulp task runner to using Parcel. Gulp is a JavaScript task

runner for which Shuup had custom functions written that dealt with minifying

JavaScript files, compiling LESS markup into CSS, concatenating multiple files,

etc. Parcel is a new asset bundler that is faster and does not require separate

configuration. Second, the styles were moved from LESS to SCSS in order to

make way for upgrading Bootstrap 3 to Bootstrap 4. The latter upgrade was

challenging as the version 4 is a large enough departure from the previous that it

broke most of the layouts across the board. The dashboard is composed of

dozens of partial HTML templates and all of them needed to be combed through.

During this process, I removed a lot of cruft from deprecated software. I

completely removed Bower package management software from the project as it

is deprecated. JavaScript packages installed with Bower were reinstalled through

NPM and configuration files were removed. This change simplifies package

administration to the current standards. Next, Parcel was introduced and as a

result, Gulp was eliminated as it was slow and clunky for the Shuup’s use case.

During Shuup’s installation, a step in the CLI wizard is to compile and make the

frontend code available for production. This involves creating bundled JavaScript

files that are transpiled from ES6 to ES5 standard, this is minified and placed in

the appropriate production directory. Previously, this stage took a considerable

39

amount of time to complete using Gulp, with Parcel it was reduced to 7 minutes.

The transpilation process involves a JavaScript tool called Babel that effectively

translates new JavaScript (ES6) standard to the older and more supported ES5.

Only newer browsers understand ES6, while older browsers, such as Internet

Explorer 11, are missing language features which prevents code written in ES6

to function in such environments. Having Babel in the chain means that the

transpiled code will be module scoped and many of the global methods will be

unavailable for certain plugins and scripts to consume. This caused many of the

JavaScript code to malfunction and prevented many of the UI components to

work. These were manually fixed by giving access to the local scope as was

necessary. Where that failed, I assigned the necessary functions to the global

scope which is a Band-Aid solution at best.

Most of the legacy libraries and even new ones that we are using, e.g. JQuery,

are written in such paradigms that it does not take advantage of ES6 features like

module imports and tree shaking. Meaning to say, if only one method is

necessary from jQuery to complete a task in a separate script, we must import

the whole jQuery object to have it available. That is the case with older libraries,

another example being Lodash. The result is a larger than necessary final (after

transpilation) file size. Though, this is mitigated by chunking the code into

individual files that are loaded only on pages that require them. The other side of

the coin is increased difficulty in the maintainability of the scripts. In the future,

Shuup’s scripts will go through new modernization efforts and all the same issues

will crop up in new ways.

Some dependencies could not be updated at all since they rely on old version of

libraries whose APIs have changed in such significant ways that they do not offer

backwards compatibility. Such is the case with Shuup’s own table and file

browser scripts. They are based on an old version of the Mithril JavaScript

framework. Updating Mithril to the latest version was not an option, therefore, it

had to be kept as it was. The table and file browser components are essential to

the admin dashboard and would need to be rewritten from the ground up. That

would have needed a decent amount of time for which there was no plan. Thus,

edits to the functionality of the table were made within the constraints of the

available version of Mithril.

40

The Bootstrap update task was straightforward as the tool made resources and

guides available to make the transition as smooth as possible. That did not pose

a challenge, what was more difficult was going through each class name and

determining if it was dead or active. That is to say, if Bootstrap 3 class names

were deprecated in the latest version. The sheer number of template files

complicated the process and bogged it down. The redesign touched many of the

template files and consequently I had to learn my way around relatively swiftly.

With no previous experience developing in Shuup, this process felt like learning

to swim in the deep end.

The most significant change I have contributed was the update in the UI and UX

of the table component used across the admin panel. I identified a few UX

problems that I wanted to rectify. In appendix 8 the old table design featured

filtering text fields underneath the table headers. As far as information

architecture goes, having them in that place links them with the headers and,

therefore, by association it is obvious as to what they control. That said,

functionality wise it immediately applied the filters as the fields received text which

caused the table to freeze while the logic in the background worked. The non-

responsive nature of this scenario creates the illusion of slowness and jank. I

opted to move the filters into a separate menu as seen in appendix 5. Additionally,

to solve the unresponsive issue I created a loading UI state to communicate to

the user that there is something happening in the background (picture 5).

PICTURE 5. Table loading state.

41

This shows up any time the table is loading new information from the Shuup

backend, however, not when there is filtering in progress. This, I did not have time

to properly address. Furthermore, design of the skeleton loading state is twofold,

first as stated before, the progress indication for users. The time it takes for the

data to load depends on the quality of the connection the user has to the server

where Shuup is hosted on. The skeleton stays in the loading state up until the

data is ready to be presented. Second, the skeleton takes up the shape that the

eventual data will be in. As a result, the user has a good idea of what the eventual

screen will contain. This serves as a role to prime or to condition users which

lowers the perceived wait time of UI loading (Chung, 2018).

In the cases where there is no data to display, previously the table loaded without

any content. I designed an empty state that instead of showing nothing, it

rendered text that guides the user into committing an action through which data

can be populated. This can be seen with the campaign section used as an

example in appendix 9. The focus area is the message that is displayed where it

prompts the user with a task to follow. The implication here is that by going

through with the task, the user will see the result on that very page.

With regards to the filters, depending on the available table columns, the filters

appear under the namesake menu. Name and general text filtering are extracted

to the top of the table as those are frequently used. With the general layout of

these elements, I took inspiration from Shopify and moulded the existing

components and functionality accordingly. I also added a checkbox to each row

as the original table design lacked a visual representation of the selection action.

Before, the rows were highlighted whenever a user selection took place.

I detailed the page action buttons problem previously and in picture 4, the old

button layout can be seen. In the next phase, I consolidated the button layout and

brought clarity to the meaning based on context and proximity. Actions that deal

with page state are grouped into one dropdown with clear delimitation of the type

of action. In picture 6, the dropdown menu features a discard function that is

grouped separately as it is a destructive option. All variants of the save are placed

closely together. Button design wise, I elected to highlight the affirmative action

42

with the primary colour, whereas the delete button is deemphasized to avoid

doubt about the nature of the action.

PICTURE 6. Product page action buttons.

Next, I focused my attention on laying down the ground work for a simplified

navigation bar. The old navigation solution can be viewed in appendices 1 and 2.

The slide out style stacked menu featured grouping that visually decluttered the

links at the cost of taking up a great deal of horizontal space. My mission

throughout the project that did not get realised is the restructuring of the

information architecture. With this in mind, in the new menu I opted to go with a

simpler more straightforward design. Each dropdown expands and reveals a set

of links with minimal wait in between. Later, through testing I learned that users

could navigate more rapidly than before, however, the number of links proved to

be hindrance when searching for a specific page. The problem is illustrated in

appendix 10 where the open and closed states of the menu can be seen. The

open state with a dozen links can stretch the height of the menu below the

viewport of the browser. With the number of pages all pushed into the main menu

this is bound to happen. The solution is far more complex than adding more white

space or sections to the menu. The underlying cause will persist until a large

information architecture overhaul project can be launched. Appendix 11 offers a

view into how I propose to move around the pages. Instead of having multiple

pages with one option, it would be possible to combine related settings on a

handful of pages. Each setting would receive its area in sequential order. Going

further, to limit the amount of options on a page, we can categorise them into tabs

43

or accordion type UI elements. Thus, we limit the cognitive load that user face

without straight up limiting the options for customisability.

The majority design changes that remained were quality of life fixes and details

that brought the whole design up to the new standard. The last phase of the

redesign took up much of the remainder of the time as there were dozens of areas

that required fine tuning. The search bar received new animation additions that

were meant to create a delightful experience.

PICTURE 7. Search bar.

What cannot be seen in the upper image is the animation when a search function

is being undertaken. Moving along, I took care of the finer UI details wherever it

made sense. For instance, for the upload area I reworded the prompt to

communicate the available options more clearly to the user (picture 8).

Also, I redesigned the drag state to react when files are being moved with the

pointer over the area to indicate that the UI is ready to receive the item.

44

I improved the visual style of the Shuup setup wizard. It is the area of the admin

dashboard that guides new users through the necessary steps to successfully set

up their shop (Appendix 12). The steps indicator, conveys the complete and

unfinished tasks more prominently. Since it is the first screen the user sees after

installing Shuup, the team felt that it needed to be eye catching and easy to follow.

For the login page, I brought the design in line with the rest of the dashboard and

added an additional small animation. Usually, after the user enters their email

and password and hits the login button there is a slight wait until the server

responds with results. This period of time is undeterminable as it depends on the

user’s bandwidth among other things. Similar to the table UX solution, I added a

loading state indicator that appears in place of the clicked button (Appendix 13).

The immediacy of the UI response carries the natural meaning that the action is

being processed. It is a trivial addition that can make a big difference in the

perceived user experience.

I continued improving elements wherever I ran into them. This includes areas that

are nested within pages, such as the individual tabbed content of the order

creator. I focused on readability of tabular data within these areas and

endeavoured to lift important information to the top (Appendix 14). Appendix 14

relates the order details page where the contextual information is at the top of the

tabular data. Furthermore, I emphasized the data headings for improving

scanability. I did not have the chance to rework the presented information,

however, for future consideration I would omit unnecessary headings. I am

referring to scenarios where the content’s formatting already alludes to the type

of data it belongs to. Email, phone number and date, as an example, headings

are superfluous and can be removed. Such considerations would go a long way

into cleaning up and reducing parsing fatigue.

Throughout the project, I synched my changes on a forked copy of the official

Shuup repository hosted on GitHub. Occasionally, I rebased on top of the new

changes that were added to the upstream repository. The rules in place for

commit history for Shuup are strict in the way that it must be easy to view changes

being made. The acceptable format is one commit per feature or change so that

it can be easily reverted if necessary. I did not manage my own commit history

45

as carefully as was mandated and I had to go back and forth squashing together

past commits and editing the general history. After I ordered my git history I

submitted the final Pull Request, which is a terminology in git that refers to

synching up my Shuup branch with the original. That is to say, I formally ask the

maintainers of Shuup to accept the proposed incoming changes. In this phase,

the project leaders can request changes to be made to individual files which falls

on the PR submitter’s shoulders to amend. Finally, the redesign was merged into

the main source code which marked the end of the Shuup redesign. Additional

changes and improvements will go through the same process. This practice is

the standard way in which collaboration happens in the software development

industry.

3.8 User testing & project results

There is not much said about user testing in this project as the nature of this

endeavour was insisted to be closed. The project leader and Shuup CEO,

described it as a sensitive matter that must not be shared even with co-workers

within the mother company, Anders. As a result, broad user testing was not a

viable option, however, I still recognized the need for validation. Moreover, there

was no usage data collected by Shuup that I could have relied upon. Things like

heat maps, page usage statistics or user feedback were unavailable to me. That

said, I will re-iterate and paraphrase what Steve Krug champions in his book,

testing with one user is better than not testing at all (Krug 2014, 115). In my case,

it is more poignant and clearer than ever. I chose to test the bigger changes I

introduced as those areas are the ones I can refine. I made use of two users, one

who had prior knowledge of Shuup and another who did not.

The first user expressed uncertainty about the navigation menu’s functionality

where only one submenu is revealed at once. Upon opening a different item, the

previous one closes. With regards to the table, the user had less trouble sorting

through items and perusing the selection system than previously. The marked

improvement seemed to be the easily available main sorting textbox, the

prominently placed text field.

46

The second user, with no working knowledge of e-commerce, had difficulties with

understanding the scope of the tasks I gave. For instance, when creating new

products, the abundant options seemed to have had a confusing effect. The user

indicated a lack of awareness as to how the varying options would affect the

result. This points to ambiguity with the product creation wizard, therefore, my

suggestion remains steadfast, Shuup requires an overhaul with its information

architecture and information hierarchy. Furthermore, performing extensive user

research on current usage would go a long way into understanding how the

product is being used and in what circumstances.

The inability to test the redesign did not cripple the goal. After pivoting from the

initial plan, the scope was adjusted to improving the design without resorting to

backend disruptions in any significant way. There is little new user experience to

fully test that was not there before the project was started. It made little sense to

test these areas as the acquired data would be of little use in case of an extensive

overhaul.

Large changes cannot be committed under such constraints as a lot of the issues

can be traced back to decisions made during the planning of the underlying logic.

Time constraints prevented meddling with the backend in a meaningful way, as

such changes need to go through testing, review and iteration. The mockups

made during the initial phase can be further refined in the future to shed new light

in this regard. Moreover, the initial research is as relevant as ever if Shuup

decides to fuel the rewriting process outlined in the first version of the plan.

47

4 CONCLUSION

Chapter 2 of this thesis provides an ideal scenario in which a software design

proposal is turned into deliverables. From research, planning, mockups and

testing to implementation there is a clear path informed by decades of collective

experience outlined by established experts in the field. Steve Krug and Jesse

James Garrett are prominent figures when it comes to User Experience and

Information Architecture. The insight they provide is based on decades of

hindsight that holds true regardless of technological evolution. The principles they

delineate are as applicable in software as they are for other types of products

physical or digital. That is because they consider the user first and foremost

through what is known as user-centred design. It is the study of how users use

the products, how it affects them and what can be done to improve these events.

It is learning by observing to understand your work from multiple angles. This

leads to incremental betterment which translates to satisfaction, increased

statistics, customer loyalty and, at the end of the day, higher profits.

In Chapter 3, I sought to bring all this knowledge to Shuup where there was a

lack of coherent user experience considerations. In the span of a handful of

months, I contributed a redesign with a few user interface overhauls wherever

necessary. The mockups and prototypes for the Point of Sale application and a

new Shuup admin dashboard, even though not realised, remain as a source for

future rumination. The lessons received from the performed initial competitor

research are reflected in the mockups and should be taken into account for when

the Shuup team decides to rework either interfaces, PoS and the admin

dashboard.

In the wild, often the designer does not have complete control of the given project

variables, time and budget. Every project has different constraints that the

designer must adhere to in order to meet expectations. Accordingly, apart from

technical skills, soft skills play a pivotal role. Communication, planning and team

work take precedence. Despite, missing critical elements, such as extensive user

testing, this thesis is very much a “do as I say and not as I do” situation.

Understanding these principles while still being in the position to deliver makes

for better hindsight in the future when faced with a similar scenario.

48

At the end of the day, the Shuup team was pleased with the work, albeit the

general feeling was that it ran past the deadline. This project challenged my

technical skills. With no prior knowledge of Shuup’s source code I had to wade

through a lot of code and learn many new paradigms to effectively accomplish

my goals. However, this is the general case in software development. Developers

are often thrown into unfamiliar projects and are expected to thrive and think on

their feet. The time it takes to acquiesce to new surroundings separates the senior

developers from the juniors. Experience speaks volumes and with enough

projects I expect to follow the same path in my personal development.

49

REFERENCES

Blumenfeld, B. 2018. The explosion of design tools has come at a cost. Released
on 7.13.18. Read on 27.11.2018. https://goo.gl/a7G9F4

BuiltWith. 2019. eCommerce Usage Distribution in the Top 1 Million Sites.
Released 11.4.2019. Read on 11.4.2019. https://trends.builtwith.com/shop

Chung, B. 2018. Everything you need to know about skeleton screens.
Released on 19.10.2018. Read on 20.4.2019. https://uxdesign.cc/what-you-
should-know-about-skeleton-screens-a820c45a571a

Coleman, B. & Goodwin, D. 2017. Designing UX: Prototyping. Communicate and
Test Design Ideas. Melbourne: SitePoint.

Crunchbase. 2019. Shopify. Released 11.4.2019. Read on 11.4.2019.
https://www.crunchbase.com/organization/shopify

Fanguy, W. 2017. A comprehensive guide to design systems. Released on
1.12.2017. Read on 26.11.2018. https://www.invisionapp.com/inside-
design/guide-to-design-systems/

Follett, J. 2017. The designer’s perspective on prototyping. Released on
15.3.2017. Read on 28.11.2018. https://goo.gl/njxatu

Garrett, J. 2011. The Elements of User Experience. User-Centered Design for
the Web and Beyond. Second Edition. Berkley: New Riders.

Google. 2018. Material Design. Read on 26.11.2018.
https://material.io/design/introduction/#principles

Grant, N. 2018. Adobe Buys Magento for $1.68 Billion to Target E-Commerce.
Released on 21.5.2018. Read on 10.4.2019.
https://www.bloomberg.com/news/articles/2018-05-21/adobe-buys-magento-for-
1-7-billion-to-boost-commerce-ambitions

Janetakis, N. 2018. How to Start and Finish Any Web App. Released on 6.3.2018.
Read on 9.11.2018. https://goo.gl/Zg5ENN

Krug, S. 2014. Don’t Make Me Think, Revisited. A Common Sense Approach to
Web Usability. Third Edition. Berkley: New Riders.

Laplente, P. A. 2007. What Every Engineer Should Know about Software
Engineering. First edition. Abingdon: Routledge.

Mind Matters. 2018. Facebook’s old motto was “Move Fast and Break Things”.
Released on 10.19.2018. Read on 9.4.2019.
https://mindmatters.ai/2018/10/facebooks-old-motto-was-move-fast-and-break-
things/

https://goo.gl/a7G9F4
https://trends.builtwith.com/shop
https://www.crunchbase.com/organization/shopify
https://www.invisionapp.com/inside-design/guide-to-design-systems/
https://www.invisionapp.com/inside-design/guide-to-design-systems/
https://goo.gl/njxatu
https://material.io/design/introduction/#principles
https://www.bloomberg.com/news/articles/2018-05-21/adobe-buys-magento-for-1-7-billion-to-boost-commerce-ambitions
https://www.bloomberg.com/news/articles/2018-05-21/adobe-buys-magento-for-1-7-billion-to-boost-commerce-ambitions
https://mindmatters.ai/2018/10/facebooks-old-motto-was-move-fast-and-break-things/
https://mindmatters.ai/2018/10/facebooks-old-motto-was-move-fast-and-break-things/

50

Mulder, S. & Yaar Z. 2007. The User is Always Right. A Practical Guide to
Creating and Using Personas for the Web. Berkley: New Riders.
Prototypr. 2018. Content First, Design Second: Prototyping with Words and
Adobe XD. Released on 19.09.2018. Read on 18.4.2019.
https://blog.prototypr.io/content-first-design-second-prototyping-with-words-and-
adobe-xd-c4c07cac21ef

Ries, E. 2011. The Lean Startup. How Today's Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Publishing Group.

Rogers, P. 2018. Big Brands using Magento. Released on 20.1.2018. Read on
10.4.2019. https://vervaunt.com/big-brands-using-magento/

Rosenfeld, L. & Morville, P. 2002. Information Architecture for the World Wide
Web. Second Edition. Sebastopol: O’Reilly.

Ruiz, J. 2017. Information Architecture. The Most Important Part of Design You’re
Probably Overlooking. Released on 16.04.2017. Read on 20.11.2018.
https://goo.gl/ndNgNT

Ruluks, S. 2016. When to redesign your website. Released on 13.6.2016. Read
on 12.4.2019. http://blog.froont.com/when-to-redesign-your-website/

Shelford, T. & Remillard, A. 2003. Real Web Project Management. Case Studies
and Best Practices from the Trenches. Boston: Addison-Wesley Professional.

Statista. 2017. Number of internet users worldwide from 2005 to 2017 (in
millions). Released on 1.7.2017. Read on 7.11.2018. https://goo.gl/7JHuuW

Statista. 2019. Retail e-commerce sales worldwide from 2014 to 2021 (in billion
U.S. dollars). 2019. Read on 10.4.2019.
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/

Summers, B. 2015. 9 bad reasons for a website redesign. Released on
29.1.2015. Read on 12.4.2019. https://www.invisionapp.com/inside-design/9-
bad-reasons-for-a-website-redesign/

Tarver, E. 2018. How Much is Dropbox Worth. Released on 14.10.2018. Read
on 27.5.2019. https://www.investopedia.com/articles/markets/082015/startup-
analysis-how-much-dropbox-worth.asp

bin Uzayr, S. 2016. The Rise of Sketch App in UI Design. Released on 9.4.2016.
Read on 27.11.2018. https://envato.com/blog/sketch-app-popular/

VB Staff. 2017. Demand is booming for web developers — along with need for
more tech skills. Released 15.08.2017. Read on 9.11.2018.
https://goo.gl/ZTD5qS

https://blog.prototypr.io/content-first-design-second-prototyping-with-words-and-adobe-xd-c4c07cac21ef
https://blog.prototypr.io/content-first-design-second-prototyping-with-words-and-adobe-xd-c4c07cac21ef
https://vervaunt.com/big-brands-using-magento/
http://blog.froont.com/when-to-redesign-your-website/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.invisionapp.com/inside-design/9-bad-reasons-for-a-website-redesign/
https://www.invisionapp.com/inside-design/9-bad-reasons-for-a-website-redesign/
https://www.investopedia.com/articles/markets/082015/startup-analysis-how-much-dropbox-worth.asp
https://www.investopedia.com/articles/markets/082015/startup-analysis-how-much-dropbox-worth.asp
https://envato.com/blog/sketch-app-popular/

51

APPENDICES

Appendix 1. Shuup settings panel

52

Appendix 2. Shuup contacts panel

53

Appendix 3. New product page

54

Appendix 4. Shuup mood board

55

Appendix 5. Comparison of Shopify and Shuup product filtering system

56

Appendix 6. Admin panel dashboard mockup

1 (2)

57

2 (2)

58

Appendix 7. Admin panel dashboard mockup

59

Appendix 8. Shuup product table before and after

1 (2)

60

2 (2)

61

Appendix 9. Table empty state

62

Appendix 10. Dashboard main menu in open and closed state

63

Appendix 11. Mockup settings page

64

Appendix 12. Shuup setup wizard

65

Appendix 13. Login page subtle animation

66

Appendix 14. Order details page

	1 INTRODUCTION
	2 FROM IDEA TO PRODUCT: WEB DEVELOPMENT METHODOLOGIES
	2.1 Project management and planning
	2.2 Strategy, goals and scope
	2.3 Understanding the end users
	2.4 Testing with users in mind
	2.5 Mapping ideas to structures
	2.6 Design patterns and systems
	2.7 Prototypes, wireframes and high-fidelity mockups
	2.8 Development & Implementation

	3 REIMAGINE AND REDESIGN: THE SHUUP ADMIN DASHBOARD
	3.1 Background information
	3.2 About the project
	3.3 Redesign rationale
	3.4 Project planning and identifying objectives
	3.5 Research & Mockups
	3.6 Project management & collaboration
	3.7 Technical implementation
	3.8 User testing & project results

	4 CONCLUSION
	REFERENCES
	APPENDICES
	Appendix 1. Shuup settings panel
	Appendix 2. Shuup contacts panel
	Appendix 3. New product page
	Appendix 4. Shuup mood board
	Appendix 5. Comparison of Shopify and Shuup product filtering system
	Appendix 6. Admin panel dashboard mockup
	Appendix 7. Admin panel dashboard mockup
	Appendix 8. Shuup product table before and after
	Appendix 9. Table empty state
	Appendix 10. Dashboard main menu in open and closed state
	Appendix 11. Mockup settings page
	Appendix 12. Shuup setup wizard
	Appendix 13. Login page subtle animation
	Appendix 14. Order details page

