

Bachelor’s Thesis (TUAS)

Telecommunication

Information Technology

2010

Jingxiao Zhao

THE WIRELESS APPLICATION AND
DEVELOPMENT BUILT ON JAVA 2

PLATFORM, MICRO EDITION

ii

BACHELOR’S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES
Information Technology | Information Technology
Date: 15-12-2009 Total number of pages: 75
Instructor: Ossi Väänänen
Author: Zhao Jingxiao

THE WIRELESS APPLICATION AND DEVELOPMENT BUILT ON JAVA 2
PLATFORM MICRO EDITION

This thesis is part of a project funded by Jilin University Innovation Fund.
Mobile-computing has become a part of our life today. In recent years, mobile-phone
reading has become a new reading styleJ2ME is the platform that SUN has invented for
built-in and consumer electronics production. It constitutes the Java core techniques
together with J2SE and J2EE.

After the over-platform question has been solved, we plan to design different applied
programs for different brands. One wireless application might have hundreds of terminal
versions. This became a great handicap for the management of wireless applications
update. To solve this problem, we developed several creative methods in the course of
inventing a wireless application of the WBOOK (Wireless Book).

The wireless mobile-phone reading book application is different from the general
wireless application. Compared with the traditional wireless application, the wireless
mobile-phone reading is facing more difficulties caused by the different types of cell
phones, that is, one reading program can not suit all the cell phones. Therefore, the
present reading programs are just designed for some specific cell phone brands.

The platform can generate a proper program to assure the running of the main program
based on different memory sizes of cell phones. As a result, no matter how the content
of books is changed, there will be no effect on the other models. The platform offers four
options to customers to read the book: WAP (Wireless Application Protocol), Built-in cell
phone browser, MMS (Multimedia Messaging Service), and Web download.

This thesis illustrates the developing procedure of MIDP based on J2ME and some
referent technology specifically through WBOOK service, WBOOK Server and WBOOK
Client. Our aim is that all the WBOOK users can download any eBook at anytime, and
enjoy them anywhere. This method has been put into business use.

Keywords: J2ME; value-added; MIDP

Foreword

With the continuous development of wireless communication technology, cell
phone as the most popular wireless device is already playing an important role in
our lives. The latest research and analysis in wireless applications indicate that

iii

the focus is how the wireless network in the current case of a scalable
architecture, strong stability, the terminal automatically matches the value-added
wireless data platform.

This thesis describes the development of wireless information technology
background, research trends and the J2ME platform, the basic concepts and
architecture. Based on the development of J2ME platform for wireless
mobile-based value-added data system library (WBOOK) server-side (WBOOK
Server) and mobile clients (WBOOK Client), this thesis explains in detail the
development process of the MIDP application based on J2ME and related
technologies. The focus on the wireless network in the current case is how to
structure a scalable, highly reliable, end-value-added wireless data automatically
matching system. A prototype system has given the key to the design and
implementation. Finally, the thesis evaluates the system briefly, and presents
some ideas for further work.

Turku, 26, Nov, 2009

Signature

ZHAO JINGXIAO

iv

Contents

THE WIRELESS APPLICATION AND DEVELOPMENT BUILD ON JAVA 2 PLATFORM,

MICRO EDITION .. II

FOREWORD ... II

CONTENTS.. IV

FIGURE LIST.. V

NOTATION ...VII

1. INTRODUCTION... 1

1.1 RESEARCH BACKGROUND... 1

1.2 RESEARCH SIGNIFICANCE... 2

1.3 RESEARCH CONTENTS AND OBJECTIVE ... 3

2. WIRELESS INFORMATION TECHNOLOGY OVERVIEW .. 6

2.1 INTRODUCTION OF J2ME TECHNOLOGY ... 6

2.2 WAP PROFILE ... 8

2.3 BREW INTRODUCTION.. 11

3. WIRELESS E-BOOK SYSTEMS SERVER-SIDE DESIGN ... 13

3.1 FUNCTIONS AND DEMANDS.. 13

3.2 SYSTEM DESIGN AND STRUCTURE .. 16

3.3 THE PROCEDURES FOR DEALING WITH PROCESS DESIGN .. 29

3.4 INTERFACE DESIGN ... 37

3.5 RUNTIME ENVIRONMENT ... 38

4. DESIGN OF THE WIRELESS E-BOOK CLIENT .. 39

4.1 TOTAL DESIGN.. 39

4.2 SUB-SYSTEM DESIGN.. 41

4.3 DATA DEFINITION ... 57

4.4 PROCESS DESIGN PROCEDURES .. 59

5. TEST PLATFORM .. 67

5.1 SINGLE TEST.. 67

5.2 STRESS TEST .. 67

6. SUMMARY AND PROSPECTS.. 70

6.1 SUMMARY .. 70

6.2 FUTURE WORK .. 71

v

 FIGURE LIST

Figure 1 System use case diagram ..18

Figure 2 System diagram ...19

Figure 3 The main design ..21

Figure 4 Implementation class diagrams ...22

Figure 5 Database sub-system logic ..23

Figure 6 Implementation class diagrams ...24

Figure 7 Payment Sub-system ..25

Figure 8 Implementation class diagrams ...26

Figure 9 Books, original management sub-system ..26

Figure 10 Implementation class diagrams ...27

Figure 11 Three types of service ..28

Figure 12 KJava design..29

Figure 13 The sequence diagram after DownloadAction ..30

Figure 14 The first timing diagram verification ..31

Figure 15 On-line client accesses to the root directory of online timing diagram...............................32

Figure 16 Timing diagram of obtaining books content...33

Figure 17 Payment timing diagram...35

Figure 18 Timing Diagram of Order Processing ...36

Figure 19 Case Diagram Used for offline reading ..40

Figure 20 Sub-system diagram ...40

Figure 21 The dependencies between places of various classes..42

Figure 22 Application Sub-system diagram ...43

Figure 23 JEB core classes ...44

Figure 24 RS control class...45

Figure 25 Constant Interface classes...47

Figure 26 Localized Language classes..48

Figure 27 Download Sub-system..49

Figure 28 InnerPost class ..50

Figure 29 BookIndex class...52

Figure 30 BookDBIndexFilter class ..52

Figure 31 Read Sub-system ..53

Figure 32 ExitPosition class...55

Figure 33 ExitPositionFilter class..55

Figure 34 Bookmarks class ...56

Figure 35 System startup timing diagram ..60

Figure 36 Systems exiting timing diagram...60

Figure 37 Download timing diagram...61

Figure 38 Read timing diagram ..62

Figure 39 Data sequence diagram ...62

Figure 40 Receiving data timing diagram ..63

Figure 41 Detailed flow chart...64

vi

Figure 42 Books content stored at real-time ...65

Figure 43 Location of the reading flow chart ...66

Figure 44 Test polymerization map...68

Figure 45 The results of data tables ...69

Figure 46 WBOOK platform interacting with the various system modules ...71

vii

NOTATION

J2EE Java Platform, Enterprise Edition
J2ME Java Platform, Micro Edition or Java ME
WAP Wireless Application Protocol
CLDC Connected Limited Device Configuration
MIDP Mobile Information Device Profile
SMS Short Message Service
BREW Binary Runtime Environment for Wireless
MMS Multimedia Messaging Service
CDMA Code Division Multiple Access
DB Serial Interface D
OOAD Object Orient Analysis & Design
KVM Keyboard、Video(Monitor)、Mouse
JVM Java Virtual Machine

1

1. Introduction
1.1 Research Background

No one can deny that mobile computing has become part of our basic lifestyle

and spread to all areas of people's lives. We can make use of a variety of mobile

devices to achieve the journey of information interchange. Because of the

popularity and development of mobile computing, our world has accelerated the

pace of innovation and integration, which is an unusually broad and varied field.

In recent years, using cell phones to read has become a new way of reading

among the youths in South Korea and Japan, as well as business personnel.

According to Morgan Stanley forecast, by 2008, the market gain of using cell

phones to read the wireless value-added would be more than 40 billion U.S.

dollars [1]. In 2005, the income of cell phone book for wireless value-added

market in South Korean and Japanese was 347 million. However, this market is

still blank in China. As different mobile operators take different business models,

Japan and South Korea's wireless value-added library system can not directly

import into China. Facing a huge market demand, it is urgent to set appropriate

conditions for a wireless value-added library system.

However, there are many wireless terminal device manufacturers, and they have

different technical standards. These and many other factors have led to a variety

of wireless terminal operating system versions, high and low memory capacity,

display device sizes and terminal equipment. In addition, the server connection

stability is not high, and data transmission and poor process safety problems

with the wireless value-added research and development of library systems

have created enormous difficulties.

For the wireless terminal operating system, we decide to link Java and wireless

devices. One of Java’s features is cross-platform and it could solve the wide

range of wireless terminal, especially Sun's J2ME platform has launched a

wireless terminal which is currently the most used, and most manufacturers have

2

also supported platforms. Sun’s J2ME is embedded, and the electronic products

launch of the development platform, J2SE and J2EE with Java technology,

constitute the three major branches together.

After the Cross-platform issues have been resolved, the application still can not

“write once, run anywhere”. Apart from the wireless terminal body and the

display device memory constraints, wireless applications have only one or

several different brands of wireless terminals to run. The current solution is for a

particular memory and display devices of the wireless terminal, to compile

different applications. Wireless application procedures may have hundreds of

versions for different terminals. This management of wireless applications and

upgrades cause great difficulties. On this issue, in the wireless value-added

systems in research and development process, we are given a certain

innovative solution.

This thesis relates to a wireless mobile data value-added system which has now

been put into commercial operation and there are more than 20,000 users on the

user terminal every day.

1.2 Research Significance

The best of value-added development services are in South Korea and Japan,

based on the book to download to promote the services, and have generally

achieved very good economic and social effects. And all kinds of cell phones to

read books have become very popular with young people in Japan and South

Korea. The main characteristic of this approach is on-demand anytime,

anywhere to download e-books. It will be a revolutionary change in reading

habits or in the mode of book sales.

However, a wide variety of types of wireless terminal devices result in many

difficulties, such as application development and , poor security and updating

management. These difficulties affect the wireless applications in the promotion

3

and popularization seriously. Traditional solutions ways can no longer satisfy the

current needs of the market. Therefore, the topic of the thesis has the practical

significance and social benefits for the automatic adaptation of wireless terminal

equipment and different applications provide terminals for that automatic match.

At the same time, wireless mobile data value-added system books also to some

extent, change people's reading habits, are attractive and really easy to read.

Anytime，Anywhere Enjoying Reading，Enjoying Life！

1.3 Research Contents and Objective

According to the requirements of system design and verification, and

considering the actual situation of the application for the design and

implementation of the platform, I have completed the following major tasks:

� To build scalable value-added wireless books’ data system architecture

� To develop a dynamic adaptation feature to fit over 95% of the market cell

phone terminal

� To develop mobile client software and set up WAP platform, provides a wide

range of terminal access

� To provided billing features and third party library management

� To create a Web mode to download the books on display interface

This thesis describes the J2ME architecture in detail. By designing and

developing the Java technology-based, wireless mobile value-added data

system library (WBOOK) server-side (WBOOK Server), client (WBOOK Client).

It describes the development of wireless applications based on J2ME and

related technologies, and proposed dynamic adaptation based on terminal type

and terminal.based applications dynamically generate a new development

model. At the same time it develops the “Java technology-based wireless mobile

4

data value-added library system” is a set of value-added wireless data system

library.

1.4 Thesis structure

The scope and sequence of the thesis are described as follows:

Chapter I Introduction

It introduces the wireless e-book future development trends and prospects,

highlights the development of such wireless applications and the existing

problems, and outlines the work of this thesis.

Chapter II Wireless Information Technology Overview

It describes the current mainstream concept of wireless technology; technical

characteristics, system structure and research focus of wireless applications

research status all over the world.

Chapter III Wireless E-book Systems server-side design

It introduces the server-side design ideas, architecture, and technical problems

of this system. It focuses on how the server-side automatically adapts to a

variety of equipment as well as a variety of access methods with the server

terminal design and implementation.

Chapter IV Design of the wireless e-book client

It describes the client off-line browser, and the on-line browser design concept

and implementation.

Chapter V Test Platform

5

Working out the issues above, the author verifies that the solution is valid, and

finally evaluates the system .

.

Chapter VI Summary and Prospects

It summarizes this work and puts forward ideas for projects and further work.

6

2. Wireless Information Technology Overview
2.1 Introduction of J2ME technology

J2ME, a consumer electronics product development platform, J2SE and J2EE

and Java technologies together constitute the three major branches of J2ME

technology. J2ME products are divided into two categories: high-end consumer

electronics equipment (Connected Device Configuration), the low-end consumer

electronics equipment (Connected, Limited Device Configuration).

There are some typical high-end consumer electronic devices: a TV set-top

boxes, network video phones, car entertainment / navigation. These devices

have rich user interaction capabilities, total memory capacity from about 2mb to

4mb, and they use a continuous, high-bandwidth network connection, usually a

TCP / IP connection.

1. In the low-end consumer electronics equipment, there are cell phones,

pagers, personal electronic assistants. Such equipment has a very simple user

interface, small memory capacity, only a few hundred Kilobytes, and low

bandwidth, intermittent network connections. This product are not the network

communication but is based on TCP / IP protocol family.

This is the line between two types of equipment with electronic technology and

entertainment and technology industries have become increasingly blurred.

Bound as a result of manufacturing cost, most of the wireless devices belong to

the majority of low-end equipment at present.

J2ME architecture is designed to be modular and scalable so that it can support

customers and the embedded device market demands a variety of flexible

deployment methods. J2ME architecture defines three basic concepts:

� Configuration: The J2ME configuration is the most concise definition of a

public platform. The configuration defines all the similar devices used in Java

7

language facilities and virtual machine features and the most basic class

library.

� Profile: The J2ME profile is a level above configuration (and thus extends

this configuration). The profile defines a specifically “vertical” market

segment (device family). The main objective of the concept of adding a

profile is for specific market segments defined by a standard Java platform,

to ensure that the equipment is within the family or the area of

interoperability between devices.

� Optional Package: J2ME is a set of API that is set up on the profile. Optional

packages include features that are independent of any particular vertical

market segment of the device family. The main purpose to design it is to

allow this API flexibility in a variety of profile above is loaded. [2]

� The core in J2ME is the CLDC and MIDP standards. They are trying to make

Java technology take advantage of resources constraints, and only have

limited Internet connectivity to wireless devices. The CLDC and MIDP

standard objectives have slight differences, but they complement each other.

CLDC attempts to act as a common minimum denominator type of platform

used in all types of small-scale, with connectivity devices - independent of

any specific device category. MIDP is built-in on top of CLDC, and focuses

on a specific device category: wireless, mobile, two-way communications

equipment, such as cell phones and two-way pagers. CLDC can also be

used to support other types of equipment such as POS (Point of Sale)

terminals, barcode scanners, audio-visual equipment, and household

appliances.

This article generally refers to wireless devices, such as cell phones, PDAs, as

CLDC devices. The features of these devices are weak computer capacity, small

memory, limited display device size, wireless connection and so on. At present,

one of the largest wireless operators in China mainly develops wireless

applications to support this platform.

8

2.2 WAP Profile

WAP (Wireless Application Protocol) technology is the world’s main standard of

the mobile terminals to access wireless information services. With the

development of mobile communication technology and the Internet technology,

WAP technology has become the mobile terminal to access wireless information

services with major global standards for achieving the mobile data and

value-added services technology base.

The protocol design goal is, based on widely used Internet standards (e.g. HTTP,

TCP / IP, SSL, XML, etc.), to provide an air interface and wireless

device-independent wireless Internet and comprehensive solution, while

supporting the future of open standards. Independent of the air interface refers

to the WAP applications (such as voice, fax and E-mail unified messaging, etc.)

that can run on top of a variety of wireless bearer networks, such as TDMA,

CDMA, GSM, GPRS (General Packet Radio System), CDPD (Cellular Digital

Packet Data Network), CSD (circuit-switched data network), SMS (Short

Message Service), USSD, etc., without having to consider the question of their

differences, and thus maximizing compatibility with existing and future mobile

communication systems. Independent of wireless devices means that WAP

applications to run from cell phones to powerful PDA and other wireless

devices on top of various devices. Manufacturers producing in accordance with

WAP should have the same mode of users operation.

The WAP protocol defines a mobile communication terminal connection to the

Internet standard and provides a unified, open technology platform, to enable

mobile devices to easily access the content in a uniform format of the Internet

and Internet information.

The communication model and protocol stack is similar to the traditional WWW

communication. The WAP server uses the client depot methods. But there is a

9

WAP gateway between the client and the server over a WAP model. The client

then communicates with the Origin server through the WAP gateway. Meanwhile,

the transitional mode between the client and the WAP gateway is also different

from the traditional delivery mode between the client and server.

WAP system is mainly composed of three parts.

1. Mobile client (Client): This means the installation of a micro-browser for

wireless terminal equipment (such as cell phones) where the WAP pages

can be displayed, interpretation, and implementation.

2. WAP Gateway: It is used to complete HTTP protocol to the wireless

Internet Transfer Protocol (WSP / WTP) conversion (Protocol Adapters),

and wireless Internet content compression (WML Encoder) and compiled

(WML script Compiler).

3. Web server: The only difference between the general Internet sites is the
web authoring language. The Web server uses the WML (WAP Markup
Language) language abbreviations.

WAP content and applications use a similar pattern definition with the WWW.
Contents delivery also adopts a set of WWW communication protocol similar to
the standard communication protocol. The WAP proxy typically includes two
functions:

1. Protocol conversion is responsible for converting WAP protocol stack

(WSP, WTP, WTLS and WDP) requesting to WWW protocol stack (HTTP

and TCP / IP) requesting.

2. Content encoding and decoding. The encoder is responsible for encoding

the content of WAP content into compressed encoding format, thereby

reducing Through the use of agent technology, mobile terminal-users

can browse a large number of WAP content. At the same time, the WAP

proxy allows content and applications to reside in a fixed WWW server,

10

and using s applications of WWW. The standar client, WAP proxy and

WAP servers. Butns. Example, the WAP proxy functionality is included in

the WAP server, so that it can acWAP protocol stack takes into account

the capacity of the network support, in particular, the capacity to support

the cell phone, mobile data services in the early stages of development.

The WAPl.X protocol does not directly use the wired Internet HTTP / TLS

/ TCP protocol, but it uses WSP / WTP / WTLS / WDP protocol, and, at

the same time, it increases the use of the WML language. These

protocols came out by referencing these fixed protocols (HTTP / TLS /

TCP). But it also causes that the cell phones could not access the Internet

directly. By the development of the Internet, especially the development

of terminals, performance differences in mobile networks and the fixed

network transmission decreased. The WAP2.0 protocol implementation is

closer to the maturity of the fixed-line protocol (TCP, HTTP). However,

in order to ensure support for the existing WAPl.2 compatible cell phones,

we must also provide support for the special WAPl.2 protocol stack, so

the WAP2.0 dual-stack architecture includes: te WAP2.0 protocol stack.

The key feature of WAP2.0 is thl WAP environment. 2.5G and 3G provide

more efficient wireless network transfer tocol than WAPl.X.

In short, it is able to provide IP connectivity loading; the WAP2.0 protocol stack

takes the WP-TCP instead of WAP1.2 in the WSP / WTP / WDP. Some

carriers which can not provide IP connectivity still use the WSP / WTP / WDP

co-Instrument Stack Therefore, it also can be said that WAP2.0 returns to the

original HTTP / TCP protocol. As far as protocol stack supporting is concerned

the WAPl.X is based on the WAP protocol stack. WAP2.0 increased its Internet

protocol stack based on common support and services, including TCP TLS and

HTTP support. With these two protocol stacks, WAP2.0 can use larger range of

network and wireless carriers to provide a connection model. In addition, WAP

gateways do not have to implement HTTP / TCP and the WSP / WTP / WDP

11

protocol conversion; phones do not perform side WSP / WTP / WDP parsing; it is

necessary to do HTTP / TCP in wireless configuration. In order to avoid

carrying out many protocol conversions, the same hardware devices are used to

support more concurrent users. A result of using theWAP2.0 protocol, is that

compatible language with the wired Internet is used, which, therefore, achieves

a more broad-based support; more applications can more easily be used in

mobile Internet. The above mentioned advantages do not apply in the WAPl.X,

and this compatibility offers WAP2.0 a longer lifespan and stability of the product

than WAPl.X (without the protocol and markup language on frequent upgrades),

enabling mobile users to enjoy rich Internet cable content.

2.3 BREW Introduction

BREW (Binary Runtime Environment for Wireless), created by Qualcomm, is a

“wireless Internet launch platform,” and value-added services can be developed

to run on the basic platform. It provides an efficient, low-cost, scalable, and

familiar Application Execution Environment (AEE), focuses on the development

and can be seamlessly embedded in any actual handheld device applications.

BREW is different in the establishment in the memory space, processor speed.

The related hardware has high requirements of the operating systems on top of

the high-end products. BREW runs on the type of existing equipments. Now, the

BREW environment has the same functionality provided by the operating system

on a PC, and it is possible to download specified types of applications or games

of the service providers. At the same time, through the BREW interface functions,

the supplier can provide a complete package of information, business and

entertainment functions. In a future version, BREW core classes will be able to

provide Bluetooth technology, Global Positioning System (GPS) and data-based

business phone services.

BREW provides a set of Application Program Interfaces (API). The

manufacturers and developers can extend the operating environment at any

12

time; provide a variety of applications require additional performance modules,

such as “wireless Internet launch platform” contained in the multimedia, multi -

connectivity, location-based services, user interface, network and other

functions suite.

The disadvantage of BREW platform is that, the current BREW development

tools are not mature, primarily using C for developing it. In addition, there are 34

operators using Java all over the world, while only eight operators use BREW,

so it has a small scope of application.

13

3. Wireless E-book Systems server-side design

3.1 Functions and demands

It is a huge challenge to create a framework for a wireless electronic book

system which supplies the service and the terminal to read the required client.

One of the difficulties is there are many brands of wireless terminals. The current

developer re-developed a suitable version manually for different terminal

devices. This method could deal with one-to-many in the wireless business and

entertainment applications, but for a few tens of thousands of books, the

many-to-many method is basically impossible with the traditional development

mode. In this system design, our team adopted a “terminal automatically adapts”

approach to solve this problem On the other hand, as the mobile operators use

different platform techniques, the client must support two kinds of common

platform requirements: the mobile data value-added platform requirements

(J2ME), and Unicom's value-added data platform requirements (BREW). The

server must provide all different types of data acquisition methods that the client

needs. Including e-book on-demand services, MMS, WAP e-book on-demand /

download service, common platform for online services, a common platform for

offline reading packages automatically generates and downloads services.

These business need to complete all the service requests with the uniform

contents. In the traditional design and development of wireless applications, the

data and procedures are not isolated but this does not apply here. We need a

new approach. As WBOOK platforms need to provide a variety of ways to read

books, the contents will be packaged into a variety of data forms. It is important

to deal with the contents of books. We save the books’ information in a database.

Each module automatically assembles the electronic books to achieve that, the

users could enter one time, but use multi-time. The system architecture must

include books content entry, copyrights management and user management,

system manage subsystem and other modules. These modules are relatively

simple, and are, therefore, covered only briefly below.

14

Here are the mentioned basic needs of WAP, Web, and MMS. The client

software, due to both the off-line and on-line versions of the demand, will be

introduced in detail in the fourth chapter.

3.1.1 WAP Demands

Customers use cell phones via WAP to access the WBOOK platform that can

perform the following actions:

� Online search required books (It supports a variety of ways to search,

including the author, book name, book type, main character name and so on,

it also supports fuzzy queries, and list queries)

� Selection of books to read online

� On-line download models fit their own off-line reading packet

� On-line download models fit their own on-line reader

� Cost of inquiries, as well as payment service.

3.1.2 Web Demands

Customers through the web client can access the WBOOK platform that can

perform the following actions:

� Book a more user-friendly interface to search

� On-line download models to fit their own off-line reader

� On-line download cell phone models to fit their own online reader

� WAP download via the selected books was required ID

� The cost of inquiries, as well as online bank card payment service

� Custom MMS e-book service

3.1.3 MMS needs

After the multimedia message e-book service has been customized, the

following services can be received:

� Access to the SMS subscription services, unsubscribe services, query the

cost

15

� Mode selection of books via SMS

� Receiving and reading the selected books with MMS(Multimedia
Messaging Service).

� Other value-added services

3.1.4 CS USER Demands

Customer Service uses the user management system to perform the following

actions:

� View the user's personal information; web on-line, WAP on-line, reader

connection status.

� View the user's payment of premiums, orders

� View the cost of books

� Alter the cost of books, by request

� Alter of the cost of the user's request

3.1.5 CS Upload Demands

Customer Service uses books management system to do the following:

� See all the book information

� Add new book information

� Modify their own information on the book entry

� Request the removal of the own book input from the information input.

3.1.6 System Management Requirements

The System management

� Records the operation of customer service use in the user management

subsystem

� Records the operation of customer service use in the books management

subsystem

� Records the operation of management staff using the system

� Records the customer web access to the logs

� Records the customer WAP access records

16

� Records the customer search keywords

� Records all the anomalies that occur

3.2 System design and structure

The system uses the J2EE framework to construct a system, which uses the

standard J2EE containers (Web container and EJB containers) to complete the

searching, registration, wake-up call and destruction of the WBOOK

components Client software and the WBOOK server communicate through the

HTTP protocol; the Web server and the WBOOK application servers

communicate via RMI. The WBOOK components connect to the server through

the spatial data to communicate with the map data server, and then complete

the database access. The integration of legacy systems is completed by the

Message Service (JMS) infrastructure.

As shown below, the system is composed mainly by the client-side software,

Web server, WBOOK application servers, WAP servers and data servers. The

client software is responsible for issuing service requests to the WBOOK

platform and receiving the return data of the WBOOK platform. Based on HTTP,

the Web server performs session management, status management, log

management and other functions. The WBOOK application server is an

application based on J2EE. As a service running in the background, it is

composed of the WBOOK Servlet engine, session components and entity

components. It is used to complete WBOOK business logic, including automatic

terminal pairing, a variety of data storage, data query, and user personalization

analysis and other services.

Server-side WBOOK session component (Servlet): The WBOOK session

components behave as a single WBOOK object executed by a client; as a

WBOOK entity component object client, the WBOOK session component can

access a number of different types of WBOOK entity components to complete a

17

session. The prime responsibility is communication with the client (hand-held

devices, Web client, WAP client), and parsing incoming requests, and then

sending them to the WBOOK entity components; receiving the response of the

WBOOK physical components, and generating client-side responses. The

server-side WBOOK entity components (EJB): parsing and generation services,

the implementation of spatial data query logic, according to customer's WBOOK

request, generate a collection of specific information and other services. Multiple

clients can share at the same time, and access the same WBOOK entity

component. Through the transaction of accessing or updating the underlying

data, data integrity can be guaranteed.

In system-level architecture for distributed modular architecture, the overall level

is divided into three levels: interface (boundary), control, and entity. Each

subsystem has its own implementation of these three categories. In order to

have a good scalability, that is, the expansion of a complete sub-module, the

interface of each module can be distributed to the other.

18

The overall structure of the system is shown as follows in a case diagram:

Figure 1 System use case diagram

As shown in the diagram, the entire system is divided into several sub-systems

to achieve these use cases of the rules. The next figure is the sub-structure

diagram:

Consumer

Create Jar package

for Jave phone

Consumer

pc interface

Create MMS

Cell-phone

interface

Consumer payment

Provide online reading

for cell-phones

Send MMS book to phone

Download terminal online reader to phone

?

Push to cell-phone

Background service

It does not

support different

 ,types, includes Java, BREW,

Symbian platform, PPC2002

platform terminals.

Wap down Jar package

WAP online reading

Provide online service for wap

The data format is

User-defined, and
Compressed

Payment system

19

BookService
<<subsystem>>

PayService
<<subsystem>>

DBLayer
<<subsystem>>

OfflineAutoMake
Service

<<subsystem>>
MMSlayer

<<subsystem>>

WapService
<<subsystem>>

CustomerService
<<subsystem>>

CoreWirelessSer
vice

<<subsystem>>
AuthorityService
<<subsystem>>

Figure 2 System diagram

The system is divided into nine sub-systems:

1. The Off-line Auto Make Service is automatically generated by off-line

terminal subsystem,

2. The MMS Layer is a multimedia e-book generation subsystem,

3. The Pay Service is the online payment subsystem,

4. The CoreWirelessService is the client online subsystem,

5. The Authority Service is to empower the sub-system,

6. The WapService: Wap downloads and online services is a subsystem,

7. The DB Layer is the database layer; each subsystem is responsible for

providing a unified database interface, and providing an expanded base

class.

20

8. The WBOOK Service is a book management subsystem.

9. The Customer Service is a customer service subsystem.

These 9 sub-systems follow the object-oriented design principles.

The design tool is Rose2003 which is created by Rational, so there are many

class diagrams, and timing diagrams to carry out the detailed design, as can be

seen from the figure illustrating the relationship between the various classes, as

well as the principles.

3.2.1 Off-line terminal automatically generated subsystem

This sub-system is the core platform, which enables automatic adaptation to

different cell phone functions. Different models of cell phones support Java

differently, and cell phone memory also limits the executable packet with the

extension is “.jar” size. For example, Nokia 7600 supports a maximum of 64k, of

jar package while the Motorola A760 supports up to 512k of the jar package. The

off-line terminal automatically generates a system to collect the front-office and

cell phone models, find a matching Java support type from the database, and a

right-to-read automatic generation e-books for cell phones.

21

JarMakeInterface

control : JarMakeControl

JarMake

JarMakerInfoJavaSupportInfo
JarBookInfo BookInfo

JarMakeControl

jarMaker : JarMake

getJarFile()

BookDBInterface JarBookDBInterfaceMobilePhoneDBInterface

NotSupportJavaException

JarMakeException

Figure 3 The main design

From the design figure, we can see that the core control class is JarMakeControl,

which is responsible for automation. There are three database interface layers

thrown to the outside interface class is JarMakeInterface and four entity classes.

JarMake is the auxiliary sub-category of control class JarMakeControl; it is the

work class of the actual control auto-generated off-line terminal package.

The following diagram gives a concrete realization:

22

JarChapterInfo
(from dbentity)

JarMakerControlException
(from control)

JarMakerInfo
(from enti ty)

JarMaker
(from control)

-jarInfo

JarSplitChapter
(from entity)

JavaSupportInfo
(from enti ty)

Log
(from util)

MD5
(from util)

H S

AutoMakeJarServlet

(from uimanager)

H S

MakeJarServlet

(from uimanager)

MobilePhoneDBInterface
(from dbinterface)

JavaSupported
(from dbentity)

JarBookDBInterface
(from dbinterface)

JarBookUploadDBInterface
(from dbinterface)

JarBookInfo
(from dbentity)-chapterInfos[]

BookDBInterface
(from dbinterface)

JarMakeControl
(from control)

-jarMaker
-control

-jarDB
-jarUploadDB

-phoneDB
-bookDB

Figure 4 Implementation class diagrams

We skip the detailed logic of the UI layer, and used two edge interfaces of

interface layer to represent the UI needs. Here the figure records the system log

and error log carried out by Log class. Log is a lightweight logging of tool

classes; it is used for various sub-systems under the util package. JarMaker

actually packages, and the entity class is JarMakerInfo. JarMakerInfo is

necessary for packing ageing information, while the other four entity classes are

used for logic control.

23

3.2.2 Database sub-system

BookDBInterface

DBConnectionMana
ger
clients

-$instance

DBAccess

-dbcm

BaseService

#dbAccessInstance

CashCardSupplyDBInterface
JarBookDBInterface

MobilePhoneDBInterface

SystemInfoDBInterface

DataNotFountE
xception

DBOperationEx
ception

Figure 5 Database sub-system logic

Figure 5 above shows the design logic of the database layer. It has a DB (Serial

Interface) Access instance for the outside world inherited base

class—BaseService. DB Access encapsulates common operations for the

database, including the implementation queries, change, delete, etc., and it

provides an interface to prepared statements. The Class of DB Connection

Manager is responsible for establishing the connection with the database,

including a buffer pool. When a new connection is requested, it obtains a

connection from the built buffer pool. If it is not free, it then re-creates a new

connection. In this way, other modules just need to inherit BaseService, and can

then automatically initialize the connection with the database, use a variety of

examples of DBAccess interfaces without having to re-implement the

24

database-related detail operations, such as reconnection, etc. This thesis deals

with the logical operation.

Here is the implementation class diagram:

DBConnectionPool
(from DBConnectionManager)

dbentity dbinterface

DataNotFountException

BaseService

DBAccess

#dbAccessInstance

DBOperationException

DBConnectionManager

-$instance

-dbcm

Figure 6 Implementation class diagrams

Figure 6 shows that, in the operations of database, two kinds of exceptions may

occur: DBOperationException and DataNotFountException whereas the other

modules just need to create a subclass of BaseService, and packaging-related

logical operations. Its subclasses can choose to be placed in DB interface

Package. The package can also be self-contained with its modules, which are

used in whichever the entity class the db entity package is placed or it can be

25

self-contained with its modules. So it is consistent with the principles of interface

segregation.

3.2.3 Payment subsystem

CashPayException

CashCardSupplyInfoCashCardType

CashCardSupplyDBInterface

PayParam

CashPayControl

H S

CashPayRes
ultManage

Figure 7 Payment Sub-system

The payment sub-system design figure shows the business logic sub-systems,

including control class which is CashPayControl, entity class which is

CashCardType and CashCardSupplyInfo.The database interface class is

CashCardSupplyDBInterface: the exception class is CashPayException, the

edge interface class is CashPayResultManage, and parameter type is

PayParam. The outside world contacts the whole payment subsystem with the

edge class.

Here is implementation class diagram:

26

PayParam

H S

CashPayResultServlet

H S

CashPayServlet

PaymentMsg

PayMsgHelper

-paymentMsg[]

CashCardSupplyInfo

CashCardType

CashCardSupplyDBInterface

CashPayControl

-payControl
-payControl

-supplyDB

Figure 8 Implementation class diagrams

From the above figure we can see that there is a CashPayServlet acting as a

competing interface classIts auxiliary class is PaymentMsg and PayMsgHelper.

3.2.4 Management Subsystem original book

BookNotFountEx
ception

AuthorInfo

BookClassInfo

BookDBInterface

BookInfo

BookChapterInfo

BookVolumeInfo

Figure 9 Books, original management sub-system

27

From Figure 9 it can be seen that there are five entity classes. They provide the

external interface class, that is, the edge type which is BookDBInterface. The

entity classes here are based on the database level of service. The actual

control class inherits the interface class, and the realization of all interfaces.

Here is the specific implementation class diagram:

AuthorInfo
(from dbentity)

BookNotFountException
(from control)

BookClassInfo
(from dbentity)

BookChapterInfo
(from dbentity)

BookVolumeInfo
(from dbentity)

-bookChapters[]

BookDBInterface
(from dbinterface)

BookUploadDBInterface
(from dbinterface)

Log
(from util)

BookDownInfo
(from dbentity)

BookNameAndID
(from dbentity)

BookInfo
(from dbentity)

-bookClass

-bookChapters[]

-bookVolumns[] -authors[]

BookService
(from dbinterface)

AuthorManager
(from dbentity)

Figure 10 Implementation class diagrams

From Figure 9, we can see that the core control class is BookService and the

two edge interface types are BookDBInterface and BookUploadDBInterface. The

control class implements interface class for all interfaces, external calls two

interface classes to perform the task. There are seven entity classes used to

control the class. The Log of this sub-system is still recording all kinds of

information.

28

The detailed class diagram information is no longer listed.

3.2.5 Hand-held Terminal Online Service

The services are divided into three types:

KJAVA
<<subsystem>>

BREW
<<subsystem>>

UNI-JAVA
<<subsystem>>

Figure 11 Three types of service

The three types of design principles and structures are similar, here we highlight

the KJava design, and its design as follows:

J2MEComServlet J2MECheckServlet

Constants

J2MEComControl

J2MEBookContentObj
J2MEBookIntroObj

J2MEObj

J2MEDataControl

J2MEComDBInterface

29

Figure 12 KJava design

As can be seen from Figure 12, the two interface classes; J2MECom and

J2MECheck, are respectively used for exchanging and testing data. The

J2MEComDBInterface is the database interface. There are two control classes;

the Core control class is J2MEComControl and the data control class is

J2MEDataControl. The data control class is mainly used for data management

and cache management, while the logical implementation is achieved by

J2MEComControl which has three entities classes.

The above figures demonstrate that each subsystem has its own control class,

interface class, and the entity class, which is the basic requirement for OOAD

(Object Orient Analysis & Design).

3.3 The procedures for dealing with process design

Here we use the timing diagram to illustrate the procedure of a process design.

Due to the complexity of the system, we will first explain a number of core

processes.

3.3.1 Off-line terminal automatically generated subsystem

Here is a sequence diagram from a user requesting after DownloadAction.

30

 :
DownloadSelectAction

 :
JarMakeControl

 : JarMaker :
MobilePhoneDBInterface

 :
JarBookDBInterface

 :
BookDBInterface

new

getJarFile

findForward

checkParam

getJavaSupportInfo

getJarFile

getJarFiles

checkNeedUpdateif need not ,
then return.

deleteJarFile

if need, then
go on

checkJavaType

makeJarFile

getBookDetailInfo

autoMakeNeededJar

ModifyJarBookPrice judge the file size and auto split
the larger file into more little
files

Figure 13 The sequence diagram after DownloadAction

When outside action generates the request, the system will set an instance of a

JarMakeControl object, and then obtain the generated objects by getJarFile

interface to, finally return to the end-users.

Here when the calling interface is generated, the control class firstly determines

whether the phone model has been generated over the same book. If the phone

model has been generated before, and does not require replacement, it directly

goes back to this book. If it needs to be updated, it then deletes the previous

records. Then it deals as “no” and it continues to generate the book package.

First, it checks the types of phone's java supports, and then it obtains the books

contents bases’ ID. After that, it uses JarMaker to generate the final package.

Before the generation, it needs to split the large packet into a suitable size

31

packages, and then the record is saved to the database. Finally, the record will

be back to the latest results package.

3.3.2 -Java On-line Service

The on-line services need to verify the client version information and are divided

into two cases. One is while the client is visiting, that is, accessing the

information version and then client-side validation. The other situation is when

the client request with version information is validated by the server-side. The

system uses both of them for convenience. Every time the client enters the

procedure, first it processes the validation, and then the certificates on the

specified interface.

Here is the first verification timing diagram:

 : mobilephone

H S

 :
J2MECheckServlet

doGet

checkJarVersion

makeVersionInfo

writeVersionInUTF

return info

Figure 14 The first timing diagram verification

On-line services need to provide a user name and password. It is convenient for

statistics and management for the user. The password here uses MD5

32

encryption for transmission. Due to the irreversibility of the MD5 encryption

algorithm, it ensures that the user's private information is not leaked.

The following diagram illustrates the online client access to the root directory of

the on-line timing:

 :
J2MEDataControl

 : mobilephone

H S

 :
J2MEComServlet

 :
J2MEComControl

 :
J2MEComDBInterface

doPost(HttpServletRequest, HttpServletResponse)

checkParam

judgePrivilage

new

manageParams

writeByUTF

checkBeRoot

getRootObj

getDirObj

convertJ2MEObj

getRootObj

getFromCache

saveToCache

Figure 15 On-line client accesses to the root directory of online timing diagram

The client access to sub-menus, as well as books profile information, content,

information flow is similar. As seen from the figure above, after the platform gets

the root directory information, it is saved to the cache. The platform has a

separate management thread for the cache. In accordance with the prescriptive

time (half an hour) the cached content is updated. When accessing the book

33

content, the contents will not be saved to the cache inside because of the huge

amount of data.

The following sequence diagram shows the procedure of accessing the books

contents:

 : mobilephone

H S

 :
J2MEComSe...

 :
J2MEComControl

 :
J2MEDataControl

 :
J2MEComDBInterface

doPost(HttpServletRequest, HttpServletResponse)

checkParam

judgePrivilage

writeByUTF

new

manageParams

convertJ2MEObj

checkBeBookContent

parseBookID

getBookContentObj

makeObjInfo

getBookContentObj

SplitChapters

if need

Figure 16 Timing diagram of obtaining books content

In on-line services, all the information the client can see is specified by the

server, and the server can increase, delete, change the menu information, chart

34

information, books profile information, book recommendations information, book

friends’ reviews information, and book content. In this way if there are no major

changes in the provision contents, it is not necessary to update the client, but

just only the services.

3.3.3 Payment of sub-processes

The sub-system is responsible for parsing the customers’ payment request and

records, and sending the customer to a separate payment platform which

connects to a bank network platform. Due to the payment platform security and

confidentiality and stability requirements, the payment platform uses the SSL

mechanism, and is independent of this system. We have described the payment

subsystem here which does not include payment platform.

The following figure is the payment timing diagram:

35

H S

 :
CashPayServlet

payControl :
CashPayControl

 :
CashCardSupplyDBInterface

PayFlat

new

paramCheck

manageOrder

forwardPayFlat

saveOrder

new

createForwardInfo

sendInfo

Figure 17 Payment timing diagram

First, the client sends a payment request, and then the interface layer initializes

the control class. It passes the examined payment parameters to the control

class, the control class orders processing, and then saves the information to the

database, and builds the payment information of the payment platform. Finally

the interfaces forwards to the payment platform.

After that, the payment platform processes the order, and guides the user to

select banks and enter customer information. When the payment has been

completed the sequence diagram is as follows:

36

PayFlat
H S

 :
CashPayResultServlet

payControl :
CashPayControl

sendpayinfo

checkIPAndFormat

if pay fail

 :
CashCardSupplyDBInterface

if pay
success

new

manageOrderResult(String, String, String, String, String, String)

logandreturn

new

updateSupplyRecord(String, String, String)

addUserVirtualPoint

log and return

Figure 18 Timing Diagram of Order Processing

After the user finishes the payment, the payment platform will return the

appropriate result information; the interface layer obtains the results information,

and creates a control class. The information is passed to the control class; the

control class analyzes the results. If the payment fails, it then updates the

database, order records, and the user record. If the payment is successful, it

updates the database record to be successful payment orders, and increases

the relevant bonuses into the database.

37

Here the number of gold coins can be changed dynamically by customer service

through the customer service system. The customer service system can check

the real-time status of every order, and the changes in the number of gold coins.

3.4 Interface Design

3.4.1 Web interface design

The WBOOK Server Web interface adopts an easy-to-extend Struts framework

for design. Struts is an MVC(Model View Controller) implementation. MVC

weakened the coupling between the business logic interface and the data

interface. It allows a more varied view layer. In Struts, the Controller is a Servlet,

called ActionServlet. ActionServlet is a generic control component. The control

component provides all the entry points of processing HTTP requests sent to

Struts. It intercepts and distributes these requests to the corresponding action

class (these actions are a subclass of Action). Otherwise, the control component

is also responsible for filling the Action From with the corresponding request

parameter (often called FromBean), and passing to Action Class (called

ActionBean). Action Class is at the core business logic. It can access Java Bean,

called EJB. Finally, Action Class passes the control power to the follow-up JSP

file, which generates the view. All of these control logics use the

Struts-config.xml file for configurations. The configuration file can add the front

functional modules and modify the logic-orientation easily.

3.4.2 WAP Interface Design

The WAP interface dynamically generates wml page by using jsp. As there are

some differences in the current phone supporting the wml mark, WAP uses the

wml1.1 standards. So the WAP cell phones have a better way to browse the

Internet. The WAP station directly connects to the terminal off-line automatically

generated subsystem to complete the book production and downloads.

38

3.4.3 MMS Design

MMS services are mainly performed by the server-side. As long as the cell

phones support MMS, the client/user can connect to accept our e-books. The

MMS assembles the SMIL approach for adoption. The contents of books are

obtained by the BookService system, and then assembled into a sub-system

which sends a MMS. This step is done by a front action called MMSBookHelper

class assembly MMSBookNode, and sent to the MMS sending subsystem to

complete.

3.5 The system requires Runtime Environment

� The configuration of system requirements are: PIV2G microprocessor or

higher, more than 2G of memory to run the server

� The server's operating system is Windows2000 (SP4), Window2003 (SP1),

Unix, Linux

� The server database system uses SQL Server 2000

The software which could be supported: development tools for Jbuilder2005;

Version control tool is VSS 6.0 (SP5);

Design tools: Rose 2003;

Database design tool: Power Designer 9.5;

39

4. Design of the wireless e-book client
Compared with WAP, MMS, and Web mode, the terminal can provide the user

with more convenient ways of browsing books. The terminal is also very easy for

the client embedded inside the phone to be a value-added service for the

manufacturer or operator. From a market point of view, the terminal reader can

be used easily. It does not need to enter the address to browse all kinds of books

on the download platform.

4.1 Total design

The off-line version is divided into two sub-systems: the Application sub-system,

and the Read sub-system. The content is stored in text format. The off-line

version uses stream to immediately access books content when reading. It does

not load too much content into memory and is suitable for wireless terminal types

of small memory devices.

The on-line version is divided into three sub-systems, Application, Read, and

Download. Since the standard J2ME does not support the file creation and write

operations, Persistence Storage only supports database format, it can not be

used to keep books in text format.

Here is the system use case diagram:

40

KVM

User

WBook

Download Book

Read Book RecordStore manage

Figure 19 Case Diagram Used for offline reading

There are three use cases: download books, reading books, managing books.

Three sub-systems are thus classified. The download sub-system is responsible

for WBOOK platform to connect and access information. The read sub-system is

responsible for providing user-friendly interface for reading, application logic and

the record /store sub-system is responsible for the overall operation.

The sub-systems are illustrated as follows:

Application

Read
<<subsystem>>

Download
<<subsystem>>

Figure 20 Sub-system diagram

41

The read sub-system is responsible for the content of books related to

operations, including the user reading, bookmarks operation, the font settings,

etc. The download sub-system is responsible for downloading books from the

platform and in accordance with a definite pattern to the device which is stored in

the database. The application subsystem is the system's main logic, including

tools, midlet and so on.

4.2 Sub-system Design

The largest difference between the off-line version and the on-line version is that

the on-line version has an on-line download module, and the way that the read

sub-system obtains books content.

4.2.1 Off-line version

The operating objective of the off-line version is to produce text content in

advance on the WBOOK platform. Hence its subsystems are simpler. The

e-book client of off-line version is composed of two parts. One is the contents of

books, and the other is an off-line reader. When the two parts request to

download a server related to a book on the wireless terminal device, the

WBOOK platform automatically generates Java programs according to the

wireless terminal device type. The advantage of the off-line version is that after

downloading once; the wireless terminal equipment does not need to re-connect

to the server. Each read operation is run fast directly in the local run. The

disadvantage is that when the book content changes, it is necessary to

download the book content and reader again.

Here the class diagram shows the dependencies between places of various

classes.

42

Tools

UnicodeString
SearchListener

FontForm
CommendPage

AboutOur
Page

GotoPage

Search

-searchListener

Book

-currentPage

-book

BookList

JavaBook

$instance

-bookList

Bookmark

NewBookmark

-bmkNew

BookmarkListen
er

-bookmarkListener

BookmarkList

-bookmarkListener

CanvasBook

-canvasBook

-page

-newBookmark

-search

-changetoPage -fontForm

-commendPage

-aboutOur

-book

-cavBook

-bookmarkList

BookmarkRecordStore

ExitPosition

-book

Figure 21 The dependencies between places of various classes

Here we can see that the BookList class and the BookPage class are used to

control the books information. The interfaces are controlled by the CanvasBook

class. In the off-line version, the books have been included in the package inside

the jar. There are no classes to manipulate the database, but rather there is

direct manipulation of text files. The off-line version provides a set of functions to

read properties, such as: changing the screen background color, font size,

color, auto-scroll feature, and bookmarking.

4.2.2 On-line version

The on-line version needs to exchange information with the WBOOK platform at

any time. So its sub-systems are more complex. It achieves mainly a similar

function of the Web-browsing books in the wireless terminal.

43

4.2.2.1 Application Sub-system

The application subsystem achieves the program's logic, and leads the user to

use the system. When starting the process, firstly, a flash screen appears on the

screen, splash screen images can press any key to skip, after the splash screen

is the main menu, the user can choose to read books, or download the book,

look at help on the information, or quit.

LocaleStrings

AboutOur

Constants

MenuScreen

HelpScreen

RSControl

-rsControl

Tools

WaitCanvas

JEB

$instance

-aboutOur

-helpScreen

-menuScreen

rsControl-waitCanvas

Figure 22 Application Sub-system diagram

JEB is the program entry point as well as the MIDLet class. J2ME hides the main

method replacing the MIDLet class startApp as entry point. JEB data initializes in

the constructor function, and begins to run the program in startApp. JEB has a

static variable instance to store its own pointer. In this way, the other

sub-systems could use KVM directly and easily. KVM is also due, and deals

directly with some of the interfaces that need to use the MIDLet pointer, so here

JEB provides the main logic of the program. MenuScreen is the main menu, and

provides processing logic; RSControl provides access to the RS. It also provides

Tools to encapsulate the method used in some systems, Constants packages

44

some constants, and LocaleStrings provides the local language. A help interface

has also been placed here to download and the read interface is a separate

interface for the two sub-systems.

Details of the main class diagram are shown as follows:

Entry categories:

JEB
inReading : boolean
currentMainMenu : int

JEB()
startApp() : void
pauseApp() : void
showLogoScreen() : void
showMenuScreen() : void
startReading() : void
startDownloading() : void
showSearchScreen() : void
showLogOnScreen() : void
showHelpScreen() : void
showAboutScreen() : void
setWaitCanvas() : void
setWaitCanvas(waiting : Logical View::java::lang::String) : void
stopWaitCanvas() : void
getCurVersion() : Logical View::java::lang::String
destroyApp(p1 : boolean) : void
quitApp() : void
DoSafeExit() : void
showBook(dbName : Logical View::java::lang::String) : void

Figure 23 JEB core classes

DoSafeExit is the interface for safe exiting. This interface releases all occupy

system resources and memory. This will not lead to the collapse of the

hand-held devices.

StartApp (), pauseApp () and destroyApp () are called by KVM. startApp () is the

entry point, which is the first entry in the program, but it is also called when the

resumption by KVM occurs automatically when calls, SMS and so on have been

interrupted. PauseApp () is the interface when a running program was

45

interrupted by KVM. Here it saves the program to run on-site, in the startApp () to

determine whether it has been stored on-site for recovery. After the program has

sent out the quit message, KVM calls destroyApp () to release system

resources.

JEB has an inner class LogoScreen because the flash screen has nothing to do

with the other; it only appears when the program starts, then it enters the main

interface, and JEB appears as an internal class.

The flash screen is a separate thread. FILES [] are saved a series of pictures

that the flash screen needs. When some key responds, it display the next flash

screen picture, the last one shows the main interface.

The main menu class is MenuScreen. It adopts depiction to increase up to the

Canvas control. At the same time, all the menu buttons perform the

corresponding program logic.

The figure below shows the RS control class:

RSControl
indexName : Logical View::java::lang::String = Constants.JEB_BOOK_RS_NAME

RSControl()
hasBook(id : Logical View::java::lang::String) : boolean
getChapterContent(dbName : Logical View::java::lang::String, pos : int) : Logical View::java::lang::String
saveBookMark(bookDB : Logical View::java::lang::String, marks : Vector) : void
loadBookMark(bookDB : Logical View::java::lang::String) : Vector
release() : void
deleteBook(bookDB : Logical View::java::lang::String) : void
deleteBookmark(bookDBName : Logical View::java::lang::String) : void
deleteBookmark(bookDBName : Logical View::java::lang::String, mark : Logical View::java::lang::String) : void
loadBookCata(sortType : int) : BookCataItem[]
loadBookIndex(dbName : Logical View::java::lang::String) : BookIndex
newBook(heads : Logical View::java::lang::String[]) : void
addChapter(content : Logical View::java::lang::String, pos : int, heads : Logical View::java::lang::String[]) : void

Figure 24 RS control class

46

In order to operate the hand-held device and have the database facilitated, it is

necessary to establish the RSControl class to encapsulate their respective

operations and store and read data in accordance with the defined data formats,

so that outsiders do not have to know the data format. As the hand-held device

database is only a simple database table, here the operations are operated for

byte stream. The byte stream facilitates the definition of a variety of data formats,

so it is necessary that the entity classes have achieved the Serialize interface.

Help interface class: HelpScreen. The help interface provides a variety of

solutions to the problem, so there is an internal class HelpInfo. It has only two

properties, quest, and answer, while the HelpScreen lists a variety of questions.

And, when clicked, it displays answers to questions. The problems here are built

in the system, and can be updated on-line, when the user has new questions, it

is possible to connect to the requested WBOOK, and then update the issue.

Tools Class: Tools packages many unrelated logic operations. The greatest goal

of the Tools class is to re-use, so the unrelated logic operations functions will be

added to the tool class.

The figure below shows the Constant interface class:

47

Constants
DEBUG : boolean = true

IMAGE_DIRECTORY : Logical View::java::lang::String = "/images"
JEB_BOOK_RS_NAME : Logical View::java::lang::String = "JEBIndex"

EXIT_POSITION_RS_NAME : Logical View::java::lang::String = "ExitPosition"
BOOK_MARK_RS_NAME : Logical View::java::lang::String = "BookMarks"

ADD_NEW_BOOK_TYPE : int = 1
SORT_BY_DEFAULT : int = 1

SORT_BY_BOOK_NAME : int = 2
SORT_BY_AUTHOR_NAME : int = 3

SEARCH_BY_BOOK_NAME : Logical View::java::lang::String = "book"
SEARCH_BY_AUTHOR_NAME : Logical View::java::lang::String = "author"

SEARCH_TYPE : Logical View::java::lang::String = "search"
STR_SERVER_ADAPT_VERSION : Logical View::java::lang::String = "version"

CUR_VERSION : Logical View::java::lang::String = "0.8"
MENU_DISPLAY_ITEM_NUM : int = 10

FREE_USER_NAME : Logical View::java::lang::String = "free"
FREE_USER_PWD : Logical View::java::lang::String = "AA2D6E4F578EB0CFABA23BEEF76C2194"

Figure 25 Constant Interface classes

This is another usage of Interface. By defining a number of static constants we

can achieve the overall use. The DEBUG parameter can determine whether

print debug logs in the system. FREE_USER_NAME and FREE_USRE_PWD

are the system built-in free of charge user’s user name and password, where

password is encrypted by MD5, but the official users will ignore these two

parameters.

Localization Language classes:

48

LocaleStrings
buttonBack : Logical View::java::lang::String = "返返"
buttonRead : Logical View::java::lang::String = "阅阅"
buttonMainTitle : Logical View::java::lang::String = "哇哇哇哇阅阅"
buttonStartReading : Logical View::java::lang::String = "我我我我"
buttonDownloadBook : Logical View::java::lang::String = "新我新新"
buttonLogOn : Logical View::java::lang::String = "登 陆"
buttonSearch : Logical View::java::lang::String = "搜搜搜我"
buttonCredits : Logical View::java::lang::String = "关关我关"
buttonHelp : Logical View::java::lang::String = "使使使使"
buttonExit : Logical View::java::lang::String = "退退退退"
buttonMainMenu : Logical View::java::lang::String = "主主主"
buttonSelect : Logical View::java::lang::String = "确确"
buttonEnter : Logical View::java::lang::String = "进进"
buttonDown : Logical View::java::lang::String = "新新"
buttonNext : Logical View::java::lang::String = "新下下"
buttonPrev : Logical View::java::lang::String = "上下下"
buttonBookClass : Logical View::java::lang::String = "分分新新"
buttonHotDown : Logical View::java::lang::String = "热热新新"
buttonNewDown : Logical View::java::lang::String = "新我上新"
buttonDeleteOne : Logical View::java::lang::String = "删删删删"
buttonDeleteAll : Logical View::java::lang::String = "全全删删"
buttonYes : Logical View::java::lang::String = "是"
buttonNo : Logical View::java::lang::String = "否"
buttonReadThis : Logical View::java::lang::String = "阅阅阅阅我"
buttonReturnMain : Logical View::java::lang::String = "返返返返下"
buttonViewCommend : Logical View::java::lang::String = "查查查查查查"
buttonSearchBook : Logical View::java::lang::String = "作作我作作搜搜"

Figure 26 Localized Language classes

In order to modify the system language conveniently, here we establish a

LocaleStrings class along Windows System Character Map. All the localized text

is placed inside, so when the user changes the language version, only one class

needs to be changed.

To wait for the screen type, we use WaitCanvas and Animate:

Animate is the WaitCanvas inner class.

It needs to emerge??? animation in the waiting interface. Animation control is

achieved by internal class Animate, and the animation speed is specified in the

external class. The animation here is just a painted progress bar. Waiting for

49

screen requires a new screen called WaitCanvas, the stop interface to stop the

animation thread work. Otherwise, there will be more than one threads running,

multi-consuming system resources.

4.2.2.2 Download Sub-system

The download sub-system leads users to download content from the WBOOK.

After entering, it shows “download the root directory first”. Downloading the root

directory includes new books download, classification download, list

information, etc. After the users select the appropriate content, they could

access to books lists or sub-menu, and then the users select their book of

choice and the book’s profile information is displayed. Users can also choose

whether to check the recommended information, the book friends’ comments,

and then confirm whether to download. If the phone has downloaded the book, it

will be asked whether it would like to download the cover off of the original book.

The download speed may be affected by the speed of the local network.

BookDBIndexFilter

BookIndex

DownBookValidPage

DownBookNodeControl

SearchWeb

DownBookList

-nodeControl

DownBookNode

WhetherDownCanvas
(from DownBookList)

InnerPost
(from DownManager)

DownManager

-downManager

-nodeControl

-downBookList

-downManager

RSControl
(from Application)

-rsControl

-rsControl

JEB
(from Application)

-downManager

$instance

rsControl

Figure 27 Download Sub-system

50

The download sub-system still needs to use RSControl to save the downloaded

data information to the database, but the menu information, as it is a small

amount of data,is stored in the cache to speed up the run rate. The connection is

completed by the DownManager internal class InnerPost.

Details of the connection are described as follows:

InnerPost is responsible for sending post and it is the internal class of

DownManager.

DownManager is responsible for the connection, and provides different external

connection interfaces.

In the J2ME platform, the connection process must be achieved with the

sub-thread, or if network is experiencing problems, it can block the main thread,

causing crashes, where the sub-thread appears as an internal class, that is

InnerPost:

InnerPost

url : Logical View::java::lang::String
params[] : Logical View::java::lang::String
rets[] : Logical View::java::lang::String

InnerPost()
run()
commandAction()

(from DownManager)

Figure 28 InnerPost class

After processing the received data, it also works in run in InnerPost. The

processing result is used to display and apply by DownBookList.

51

DownBookList displays the contents of the menu items and menu items through

the List and the Form. As for whether or not to download some menu items, it

has also a built-in confirmation screen, which is WhetherDownCanvas.

DownBookNodeControl achieves the download of data control and buffering

mechanisms are also included in this control inside the class.

Downloaded entity class: DownBookNode. The network allows s the UTF byte

stream to re-structure for such an instance in order to facilitate the application.

Similarly, in order to confirm whether the downloaded books contents of

interface as a separate class exists, here after the confirmation call,

DownManager downloads the interface again.

After downloading, the data needs to be saved to the device database, then we

can use the data interface layer of the control class RSControl, as it offers

convenience of storing the data in the byte stream. The use is a class structure,

and the class structure is the entity class, and provides an interface to serialize

and de-serialize the interface.

The class diagram of these entity classes are as follows:

52

BookIndex
bookName : Logical View::java::lang::String
authorName : Logical View::java::lang::String
comment : Logical View::java::lang::String
chapterTitles[] : Logical View::java::lang::String
chapterWords[] : int

BookIndex()
getAuthorName()
getBookName()
getComment()
getChapterWords()
setAuthorName()
setBookName()
setComment()
serialize()
toString()
BookIndex()
getChapterTitles()
setChapterTitles()
deserialize()

Figure 29 BookIndex class

BookDBIndexFilter is the filter class for BookIndex index. It should select the

records through the filter class to in accordance with a format to meet the

requirements in the numerous database records (byte stream).

BookDBIndexFilter
bookDBName : Logical View::java::lang::String

BookDBIndexFilter()
matches()

Figure 30 BookDBIndexFilter class

The matches () class is called by JVM Java Virtual Machine during the database

query according to the return value to determine whether it corresponds with the

filter conditions. Here the filter conditions are the specified book databases

names are the same.

53

To make it easier for users to find the books they are interested in, class

SearchWeb provides the search interface.

Search requirements of their on-line connections, and the search results are

displayed to the user, while the connection and display operations are controlled

by the Down Manager.

4.2.2.3 Read Sub-system

Read sub-systems:

The most important sub-system is the reading subsystem. It displays the books

directories that have been downloaded on the cell phone first, and provides the

management features of books (such as delete, sort), if there is no book, the

user is prompted to download. For each book, it displays the profile information

first, and then it reads it.

JEB
(from Application)

AuthorNameSortComparator

BookIntro

BookCataItem

BookNameSortComparator

BookItem

AutoTurn

ChapterItem

ExitPosition

ExitPositionFilter

FontForm

GotoPage

Bookmark

BookmarkListener

NewBookmark

-bmkNew

-bookmarkListener

AutoTurnPage
(from CanvasBook)

BookList
-books[]

BookmarkList

-bookmarkListener

BookReadIntroForm

-bookList

CanvasBook

-canvas

-cavBook

-bookmarkList

-bookItem

-autoTurn

-fontForm

-book-canvasBook

-changetoPage

-newBookmark

-autoTurnPage

BookManager

-items[]
-introForm

RSControl
(from Application)

-rsControl
-rsControl

-rsControl
-rsControl

-rsControl-bookManager

$instance

rsControl

Figure 31 Read Sub-system

54

The cores of this sub-system are BookManager and CanvasBook. The former is

responsible for the display of the list of books; CanvasBook is responsible for the

content of the display of books. They all use the RSControl to read the contents

inside the device database.

Book Manager is used to display the books list, and manage the list. Showing

the books list needs is based on certain rules, according to book titles to sort

BookNameSortComparator, or author name of the sort

AuthorNameSortComparator, or download the order of ranking.

The sorting algorithm is bubble sort, and it is achieved by the “compare”

interface.

In the books list, after the users select the books and then the cell phone can

show the introduction of the displayed books by using the BookReadIntroForm

function.

After viewing of the briefing of book, including author, words, relevant advertising,

then the users could browse a directory of books; it is achieved by the BookList.

Here, the chapters’ titles will be displayed, and the user can select a chapter in a

book and begin to read the books, but books are displayed in the CanvasBook

class which is responsible for reading these works.

There are two ways of scrolling text options, one is operating direction keys, or

the number keys to select a line or a page turned. The other is to select the auto

next page, e automatically by default every five seconds per page. Users can set

the page interval on page automatic settings. The auto next page is controlled

within the class AutoTurPage.

AutoTurnPage also controls the time interval through a sub-thread. The auto

next page is set by AutoTurn.

55

The reader also provides a way to modify the font from FontForm. The Font

Settings page sets the font size, foreground color, background color, and style.

The reader also allows jumping to another page, using the the GotoPage class

to achieve this function.

In order to facilitate the user to continue reading, the reader of this book has

recorded the last reading position. The following figures show what the

ExitPositionFilter class and ExitPosition class can achieve.

ExitPosition
position : int
chapter : Logical View::java::lang::String
bookDB : Logical View::java::lang::String

ExitPosition()
save(bookID : Logical View::java::lang::String) : void
load(bookID : Logical View::java::lang::String) : void
delete(bookID : Logical View::java::lang::String) : void
serialize() : byte[]
deserialize(data : byte[]) : void

Figure 32 ExitPosition class

ExitPositionFilter
bookID : Logical View::java::lang::String

ExitPositionFilter(bookid : Logical View::java::lang::String)
matches(rec : byte[]) : boolean

Figure 33 ExitPositionFilter class

ExitPositionFilter here is a filter class. It is used to look out the specified exit

location in the database. It implements the matches interface.

As a reader, bookmarks are essential. The reader has prepared a list of

bookmarks for each reader.

The Class diagram in this series of classes is as follows:

56

BookmarkList
vctBookmarks : Vector
BOOKMARKS_CAPACITY : int = 10
bookDB : Logical View::java::lang::String

size() : int
commandAction(command : Command, displayable : Displayable) : void
freeRes() : void
saveBookmarks() : void
loadBookmarks() : void
BookmarkList(bookDB : Logical View::java::lang::String, control : RSControl)
bookmarkAt(i : int) : Bookmark
addBookmark(bookmark : Bookmark) : void
show(display1 : Display, bookmarklistener : BookmarkListener) : void

BookmarkListener

newBookmark(bookmark : Bookmark) : void
gotoBookmark(bookmark : Bookmark) : void

NewBookmark
bookLength : int

NewBookmark(i : int)
commandAction(command : Command, displayable : Displayable) : void
show(bookmark : Bookmark, display1 : Display, bookmarklistener : BookmarkListener) : void

Bookmark
title : Logical View::java::lang::String
position : int
file : Logical View::java::lang::String

Bookmark(file : Logical View::java::lang::String, position : int)
Bookmark(file : Logical View::java::lang::String, title : Logical View::java::lang::String, position : int)
setTitle(s : Logical View::java::lang::String) : void
percent(i : int) : int

Figure 34 Bookmarks class

The following are several class diagrams of entities used to read sub-classes:

The BookItem class records the book file name and the file size.

The ChapterItem class records sections information

The BookIntro class records the book title, author, chapter, quantity, etc.

The BookCataItem class records the Book Classification Project.

57

4.3 Data Definition

4.3.1 Internal Data Definition

J2ME persistent storage does not support file formats. It can only be stored in

the Record/Store which is a simple database and it does not support multi-line

multi-column. It is equivalent to only one column of the table. Therefore, we need

to establish a RecordStore database to store the names of books, and each

book is to create a separate RecordStore to respond.

Here is a Database of RecordStore:

Database Name: JEBIndex

Usage: Storage of books name, one book on each line

Format: Title + author's name + book + books database name + remarks

Books database name: in the above table are defined

Usage: Storing all the contents of this book

Format:

The first line: the content index within;

Including: Title + author's name + Notes

The second line is the contents of book chapters, each row has a limited number

of words within the allowable range (tentative 40K), if a chapter does not fit, it is

split into multiple chapters, and consecutive numbers are added as marks at

the end.

Format: chapter name + content + Remarks

Exit Position Format

Database Name: Exit Position;

Each line is a record;

bookDB + chapter + position

58

bookDB is the name of the database of books, chapter is the chapter name, and

position is the row number in this chapter.

Bookmarks:

Database Name: BookMarks

Each line is a record

bookDB + num + file + title + position

BookDB is the name of books database;

Num is the number of bookmarks for this book;

File specifies the bookmark of the chapter;

Title is the bookmark name;

Position is which line of this chapter.

4.3.2 Interface Data Definition

The users could click to download, even into the server URL

Getmobileinfo

Function: The client connects to this interface, through the parameters to

download the content;

Parameter format: the first time readUTF reads the number of parameters, if it is

0, then there is no parameter, then it returns to the first level sub-menu.

The second time readUTF reads the contents of the first parameter; the third

time is the second parameter of the content, and so on.

59

Return Data:

Number of parameters (BookNode type)

BookNode.getName + BookNode.getId

Loop

The ID, is the directory id +"."+ book id. If it is only directories, it is not the books,

but only the directory id

4.4 Process Design procedures

This Section only deals with the online version sequence diagram.

We use the sequence diagram to describe the process flow. A complex process

is described by activity diagrams and collaboration diagrams.

Now, the diagram of the system boot sequence will be explained:

60

This is a
cycle

 : KVM

instance :
JEB

logoScreen :
LogoScreen

menuScreen :
MenuScreen

 : Display Thread : User

1: startApp

2: showLogoScreen

4: start()

9: showMenuScreen

10: init

11: setCurrent

3: setCurrent(logoScreen)

5: start

6: nextFrame()

7: keyPressed
8: nextFrame()

Figure 35 System startup timing diagram

It is the diagram of the system exiting sequence:

 : User : KVM instance :
JEB

menuScreen :
MenuScreen

 :
WaitCanvas

1: pressExit
2: keyPressed

3: DoSafeExit

4: stop

5: quitApp

7: notifyDestroyed

6: destroyApp(boolean)

Figure 36 Systems exiting timing diagram

61

The download screen sequence diagram is shown below:

 : User : KVM instance :
JEB

menuScreen :
MenuScreen

 : Thread downManager :
DownManager

 : InnerPost

1: pressdownload
2: keyPressed

3: startDownloading

4: start

5: showDownScreen

6: sendRequest

7: invokeServlet

8: setWaitCanvas

9: start

10: run()

receive the result
from WBook flat

Figure 37 Download timing diagram

It shows the read interface Sequence diagram:

62

 : User : KVM instance :
JEB

menuScreen :
MenuScreen

 : Thread bookManager :
BookManager

display :
Display

1: pressread
2: keyPressed

3: startReading()

4: start()

5: run()

7: new

6: setWaitCanvas()

8: showBookList(dis, menuScreen)

10: stopWaitCanvas

9: createDisplayObj

11: setCurrent(bookCataList)

Figure 38 Read timing diagram

Figure 39 i shows sending data sequence diagram:

downManager :
DownManager

 : InnerPost hc :
HttpConnection

dos :
DataOutputStream

 : Connector

1: new(url,params)

2: start()

3: run()

4: open(url)

5: setRequestMethod(HttpConnection.POST)

6: setRequestProperty

7: openDataOutputStream

8: writeUTF(length)

9: writeUTF(params[i])

Figure 39 Data sequence diagram

63

Figure 40 illustratesthe receive data sequence:

 : InnerPost hc :
HttpConnection

dis :
DataInputStream

1: run()

3: new DataInputStream(hc.openInputStream())

2: sendData

4: readUTF

5: manageResult

6: displayInScreen

Figure 40 Receiving data timing diagram

A detailed flow chart is as follows:

64

Figure 41 Detailed flow chart

The following flow chart shows the books content details stored at real-time as

follows:

The detail

content

Books

real-time

storage

Error, pop-up

warning Alert

Not the latest

version

Get input stream

Others

Read the next two UTF strings

Read the first UTF byte stream

Number >0

None

Books list Version info

Books

info
Searching

results

Read the

brief data
Read the result

Add brief

to cache

Add dir

cache

View the

Searching result The latest version

View the book

introduction

View the

books list

Re-sent the request

to the WBook

Close the I/O steams

Judge the reading content

Judge the two reading strings

Judge whether is

the latest version

65

Figure 42 Books content stored at real-time

All above device databases use a serialized byte stream while storing.

The location of saving the last reading:

Read the index info

Read the book directory info

Insert into the index table

Read a chapter
Pop-up alert

Establish the books database

Not exist

insert the serialized

books inf

Exist

Save the contents

into database

Index into cell phone database

whether exists in the index table

Loop

Loop

66

Figure 43 Location of the reading flow chart

The key of reading the exiting location is the federalization of the data in the

equipment database.

Serialization position

Open the device database

Create a filter

Exist

Modify the record

Close database

Not exist

Add the record

Do the books’ intro records exist?

67

5. Test Platform

5.1 Single test

The purpose of testing is to discover the platform shortcomings. It is a process

for finding out mistakes to implement procedures. In order to build a scalable

wireless book value-added platform, a platform is integrated by many small

modules. So we need to make sure that each module, each class can work

normally. It is extremely necessary to carry out the monomer test. The monomer

test here is mainly fine-grained tests. In order to improve development efficiency

and achieve automated unit testing, we mainly use JUnit for testing.

JUnit is an open source code Java testing framework. It is very simple, provides

immediate feedback, and is free of charge. JUnit is used for extreme

Programming, which helps reconstruction, and there are assertions. We adopt

such basic processes as: the idea -> write test case -> compile code -> test. So

that when we find problems, we can quickly trace the cause of the problem to

reduce the difficulty of the error correction regression testing.

 The JUnit framework package includes all the classes that JUnit tests require.

TestCase class is the core part of this package. We inherited this class to

establish our own automated test unit. The other classes support the TestCase

class. Their role is to collect the result, and aggregate numerous test classes to

be a test suite, and provide assertion. We use another key Test to define the

TestCase, and a common contract with Test Suites to provide a hook at the

same time.

5.2 Stress Test

A platform may have thousands of people simultaneously accessing the case,

so it is necessary to conduct stress tests.

68

Stress tests need to simulate thousands of people simultaneously accessing the

platform, and to test if the platform functions under stress speedily and

accurately.

Here we use JMeter for testing. JMeter is an open source Apache Software

Foundation product, so it is completely free.

The following are examples of our test cases:

This is the aggregate figure.

Figure 44 Test polymerization map

The following steps are to determine the corresponding time standards:

� Users will not notice a delay of less than 0.1 seconds.

� Less than 1 second delay will not interrupt the user's normal thinking, but

some delays will be noticed by users.

� If a delay is less than 10 seconds, the user will continue to wait for a

response

� If a delay is greater than 10 seconds; the user will give up and start other

operations.

The users could find the value through looking-up the table below:

69

confidence interval
（probability）

Value
Z

0.800 ±1.28155
0.900 ±1.64485
0.950 ±1.95996
0.990 ±2.57583
0.995 ±2.80703
0.999 ±3.29053

Figure 45 The results of data tables

By the values of the table, and then calculate 95% confidence interval

[3.707-1.95996 * 3.6 /, 3.707-1.95996 * 3.6 /] to [2.796, 4.618]. The value

basically meets the requirements in simulating the real environment in the

laboratory to detect this value. We could obtain better results than the results in

the simulated environment if the system was in actual use.

70

6. Summary and Prospects

6.1 Summary

With the support of Jilin University, our team could complete the

development of the whole system.

The overall objective of this study is to establish a platform which can

automatically match a multi-terminal with the mobile e-book platform. Users can

use four ways to obtain the contents of books, namely WAP, mobile terminal

readers directly downloading applications including books content, and

then uploading the application to cell phones via the IR / Bluetooth transfer mode

as well as MMS. Indeed, the platform should include a billing module, third-party

content access and billing modules, subscribe / unsubscribe modules, an on-line

payment module, and a GPRS MMS book on-demand / subscription module.

The current platform can adapt terminals automatically for more than 1000 cell

phone models on the market and generate executable program correspondingly.

This thesis demonstrates the J2ME platform for wireless mobile library data

value-added system obtains the relevant content that is based on the. The figure

below demonstrates the interaction relationship between each module in the

system:

71

Figure 46 WBOOK platform interacting with the various system modules

6.2 Future Work

The project is going to be continued and the team is going to implement

the following:

� Extend the CDAM Unicom network and China Netcom's PHS network.

� Use the data mining technology – get prepare to put in the exact

advertisements

Each purchase will be recorded on the users use on the platform. According to

the type of books the user downloads type over time, the user's buying

preferences and interests will be determined. It is possible to analyze the areas

where the user accesses the Web interface, through the cell phone number

databases, and IP address records. It is also possible to classify different parts

of business information, and push advertisements to the e-books folder page, or

on the web page seam.

� Data “flows” between different devices

user requests

（WAP mode）

The third-party

interface

System charging

module

WBOOK

Terminal adapter

Use jar to call

the procedure

MMS vod
Embedded book

management download

Checking fees

with the billing

Add book info

Query earnings

Access
Return to the content Segmentation send

Request the book

Download

Browse

Adapt automatically

Terminal login

Query earnings

72

Since J2ME has cross-platform features, we are ready to test data between

devices in a variety of "floating" possibilities. For example: we can buy an

electronic book from the wireless terminal, and transit through our platform, that

allows users read continuously on their own PC, car DVD / electronic navigation

screen, PDA or smart home appliances. WBOOK is truly: anytime, anywhere,

enjoying reading, enjoying life.

73

References

[1] Liao Jianxin. Mobile add-valued service developmental trend, Beijing
University of Posts and Telecommunications, ISSN: 1008-5599, 2001

[2] Zhang Wei. J2MEwireless communication technology application
development, Beijing Hope Electronic Press, 2002

[3] Chakravorty Rajiv, Katti Sachin, Crowcroft Jon, et al. Flow aggregation for
enhanced TCP over wide-area wireless, Proc IEEE INFOCOM 2003,
Piscataway, NJ: IEEE Press, 2003.1754-1764

[4] China Mobile Communication Corp. China Mobile M-Dream java technical
manual, Referred on: 01-10-2004 Available at: http://www.monternet.com

[5] China Mobile Communication Corp. China Mobile MMS interface technical
file, 01-10-2004, http://www.monternet.com

[6] Roger Riggs et al. J2ME wireless equipment Programming, Mechanical
Industry Press, 2002

[7] Bruce Eckel. Thinking in Java, 2002. Prentice Hall PTR, USA

[8] Calvin Austin, Monica Pawlan. Java2 advance programming. Mechanical
Industry Press, 2001.

[9] Sun wireless development website: http://wireless.Java.sun.com/.

[10] Zhuang Yi. Wireless application development based on J2ME framework,
ISSN: 1006-2475, 2002.

[11] , http://www.joyamigo.com/cjm/, 05-11-2000.

[12] http://www.cn-java.com,11-03-2001.

[13] Demestichas P, Vivier G,Khazen K,et al. Evolution in wireless systems
management concepts: from composite radio to reconfigurability. IEEE
Communications Magazine,2004, 42(5):90-98.

