
Helsinki Metropolia University of Applied Sciences
Degree Programme in Information Technology

James Filbert

Developing a Multi-Purpose Chat Application for
Mobile Distributed Systems on Android Platform

Bachelor’s Thesis. 5 March 2010
 Supervisor: Jarkko Vuori, Principal Lecturer
 Language Advisor: Taru Sotavalta, Senior Lecturer

2

Helsinki Metropolia University of Applied Sciences Abstract

Author

Title

Number of Pages
Date

James Filbert

Developing a multipurpose chat application for mobile distributed
systems on android platform

59
 5 March 2010

Degree Programme

Information Technology

Degree

Bachelor of Engineering

Supervisor

Jarkko Vuori, Principal Lecturer

The objective of this project was to design and implement a multi-purpose chat
application for mobile distributed systems, which support both instant messaging and file
sharing. The chat application is based on peer-to-peer network, which means there is no
need for central server for peers to meet and talk. Besides supporting real-time messaging
and file sharing, multi-purpose chat application also supports downloading files from the
remote web server, and saving the image in the local secure digital card (SD card).

The application client side implementation was done on Eclipse IDE with Android
Development Tools (ADT) plugin using Java language and the peerdroid library. A
rendezvous peer (a gathering point for peers connected on the JXTA network) was also
implemented on Netbeans IDE using Java language.

The results obtained in this project show that it is possible for multiple peers connected on
the JXTA network to communicate in real-time manner and share resources with one
another. Also users of a multi-purpose chat application were able to download images
from the remote web server and save them on an SD card for future sharing with other
peers on the network.

Keywords JXTA, peerdroid, android, JXME, P2P

3

Acknowledgments

I am heartily thankful to my supervisor, Dr. Jarkko Vuori, whose encouragement,

guidance and support from the initial to the final level enabled me to develop an

understanding of the subject.

I would like to express the deepest appreciation to the students and staff of Metropolia

UAS for their cooperation during my studies and those who gave me the possibility to

complete this project.

Lastly, I offer my regards and blessings to JXTA forum members who responded

positively to the questions I sent to the JXTA forum. Also I will not forget friends and

relatives who supported me in any respect during the completion of the project.

4

Abbreviations

CMS Content Management System

DDMS Dalvik Debug Monitor Server

GUI Graphical User Interface

HTTP Transfer Protocol

IDE Integrated Development environment

IM Instant Messaging

Java ME Java Micro Edition Platform

JXME JXTA for Java ME Platform

JXSE JXTA for Java Standard Edition Platform

JXTA Juxtapose

PDA Portable digital assistant

PNG Portable Network Graphics

P2P Peer to Peer

SDK Software Development Kit

SMS Short Message Service

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol/Internet Protocol

URL Uniform Resource Locator

5

Contents

1 INTRODUCTION ... 7

2 ANDROID PLATFORMS, JXTA and PEERDROID .. 9

2.1 The Android Stack Architecture ... 9
2.2 Android Devices ... 11
2.3 Peer to Peer Architecture .. 11
2.4 Cient – Server Architecture .. 13
2.5 Project JXTA .. 14

2.5.1 Overview.. 14
2.5.2 JXTA Protocols.. 14
2.5.3 Peer Groups.. 15

2.6 JXTA Architecture.. 15
2.7 Types of Peers... 17
2.8 JXTA Pipes ... 18
2.9 Project JXME (JXTA for Java ME).. 19

3 CHAT APPLICATIONS ON MARKET .. 22

3.1 Bluetooth Chat on Android... 22
3.2 Android Chat... 22
3.3 IMS SIP Client on Android... 23
3.4 Peerdroid Sample Chat ... 23

4 MULTI-PURPOSE CHAT APPLICATION... 24

4.1 Overview... 24
4.4 The Uniqueness of the Application... 25
4.3 Comparison to Peerdroid Sample Chat... 25

5 DEVELOPMENT ENVIRONMENT, TOOLS, AND SOFTWARE............................ 26

5.1 Eclipse IDE Installation .. 26
5.2 Downloading and Installing the SDK Starter Package... 26
5.3 Installation of the ADT Plugin for Eclipse. .. 27
5.4 Importing Peerdroid .. 27
5.5 JXTA Shell as a Rendezvous.. 27
5.6 Implementing the Rendezvous Peer on IDE...29
5.7 Implementation, Testing and Evaluation of the Result... 29

6 DESIGNING AND IMPLEMENTING OF THE SYSTEM... 31

6.1 Graphical User Interface ... 31
6.2 Class Diagram... 37
6.4 GUI Classes .. 42
6.5 JXTA Platforms .. 43

7 PERFORMANCE AND RESULTS ANALYSIS ... 45

7.1 Overview... 45

6

7.2 Connection to Rendezvous Peer ... 45
7.3 Sending and Receiving Messages with Vibration .. 45
7.4 Sharing Image Files .. 46
7.5 Limitations .. 48

8 CONCLUSION.. 49

REFERENCES ... 50

APPENDIX A: RENDEZVOUS PEER ...52
APPENDIX B: METHODS FOR SENDING AND RECEIVING MESSAGES 55
APPENDIX C: METHODS FOR SENDING AND RECEIVING FILE......................... 57

7

1 INTRODUCTION

Nowadays, Peer to Peer (P2P) based applications such as file sharing and instant

messaging systems have become most popular among the computer users. Computers

around the world are linked together and share resources in P2P systems. Every computer

on the network is equal in such a way that any computer participating in a P2P is able to

access and download resources from other computers in the system.

JXTA is a set of open, generalized peer-to-peer protocols that allow any connected device

on the network to communicate and collaborate as peers. JXTA for Java ME, shortly

called JXME, is designed to provide P2P compatible functionalities on constrained

devices so that the devices could connect to a JXTA network, publish advertisements,

discover resources on the network, and share resources with peers discovered. There are

two versions of JXME, the proxy and proxyless. In the proxy version, the proxy do much

of the work on behalf of a peer while in the proxyless version a peer becomes a full

featured peer, does everything on its own without depending on the proxy. [6]

In 2009, researchers at Dipartimento di Ingegneria dell’Informazione, University of

Parma in Italy released a PeerDroid library, the porting for JXME protocols to enable

Android application developers to create P2P applications that use the features of JXME

system along with Android potential. Since JXME is designed for Java Micro Edition

(Java ME) platform, therefore with peerdroid Android applications developers will be

able to create P2P applications on Android platform which can interact with mobile

terminals. [7]

The objective of this project is to design and develop a multi-purpose chat application for

mobile distributed systems using a proxyless version of JXME with peerdroid on Android

platform. With this chat application, users would be able to send instant messages and

share resources such as photos with other peers connected to the P2P network. Since

most of the mobile devices have limited memory capacity, Persistent storage, limited

bandwidth, and very critical battery life, I decided to choose Android

8

Platform as it supports smart phones application development of taking into account the

restrictions above.

9

2 ANDROID PLATFORMS, JXTA and PEERDROID

Android [1] is a software stack for mobile devices running on the Linux kernel which

includes operating systems, middleware, and key applications. Initially, Android was

developed by Android Inc, later purchased by Google and recently by Open Handset

Alliance. The Android SDK offers developers the ability to develop extremely rich and

innovative applications using the Java language. Android runs on a Linux Kernel and

utilizes the Dalvik virtual machine to run the applications. Most of the Android features

are already available through other development platforms, which make Android a truly

open source development platform, meaning handset makers allowed to use and run it on

their devices for free.

2.1 The Android Stack Architecture

The Android software stack is made up of four different layers as listed below

• The Application

This is the top layer of the Android software stack which containing built in

applications like browsers, maps, calendar and others which are visible to mobile

phone users. The applications in this layer are able to run in real time means multiple

applications can be done at the same time. [1]

• The Application Framework

The applications in this layer are known as service processes which is full open

source. Developers have access to these services but are invisible to mobile phone

users. An example usage of one of these services would be an application using the

telephony manager to initiate a call. They can be applications supplied by Google or

any 3rd party developer. All applications are created equal on the platform meaning

3rd party applications get to use as much of the system resources as in house

applications. [1]

10

• The Libraries

These include the surface manager for (compositing windows), Media framework for

multimedia files, WebKit (browser engine), Media Codecs like MPEG-4 and MP3,

the SQL database SQLite, SGL, SSL, Libc, and OpenGLIES. [1]

• The Runtime

Each Android application runs in a separate process, with its own instance of the Dalvik

virtual machine. Based on the Java VM, the Dalvik design has been optimized for mobile

devices. The Dalvik VM has a small memory footprint. [1]

 Figure 1 illustrates how Android software stack layers are arranged.

Figure 1 Android Stack Architecture [1]

As can be seen from the figure 1, Android software stack is made up with several layers

from top to bottom.

11

2.2 Android Devices

By the end of 2009[2], the following devices from different vendors were on market

using Android operating system according to Google.

• HTC Dream, Magic, Hero, and Tattoo.

• Samsung Galaxy, BeholdII,Spica

• Motorola Droid ,Calgary

• Acer Liquid A1

• Lenovo

• Sony Ericsson XperiaX10

• Nexus one (Released by Google January 5 2010)

Nexus 1 Motorola droid HTC dream

Figure 2 Android devices [2]

As seen in figure 2, devices have big screen size which and can offer advanced

capabilities the same as personal computers.

2.3 Peer to Peer Architecture

Peer-to-peer networking is a network architecture which allows a group of nodes (peers)

to connect with each other and share resources, and any node can operate as either a

12

server or a client. Hence participants in a P2P network do not need a central server to

communicate like the traditional client-server architecture which has existed for many

years. Unlike client-server architecture, a P2P network is considered alive even if only

one peer is active. The network is unavailable only when no peers are active. [3]

Nowadays the most popular P2P networks file sharing system such as Napster, Ares,

Limewire, and Gnutella use decentralized topology, Instant Messaging (ICQ) and

distributed computing. [4]

Though peers all have equal status in the network, they do not all necessarily have equal

physical capabilities. A P2P network might consist of peers with varying capabilities,

from mobile devices to mainframes. A mobile peer might not be able to act as a server

due to its intrinsic limitations. The figure 3 illustrates how P2P network is made up. [3]

Figure 3: Peer to Peer architecture

13

As seen from the figure 3, peers in P2P network have equal chance in such a way that any

peer can act as a server or a client at the same time.

2.4 Cient – Server Architecture

Client-server architecture is the oldest technology where a client machine contacts the

server when the services are needed. In other words it is called centralized architecture

where the whole network depends on a central point. If the central point fails, the entire

system will collapse. With no server the network would make no sense.

The procedure is as follows; a client sends a request for a service to a server. The server

receives the request and processes the request, and then sends back the response to the

client. The client receives the response. Some of the servers existing on the Internet are

web servers, mail servers, FTP and so on. [13]

Figure 4: Client-Server architecture

Figure 4 illustrates the communication between the server and the client

• Client sends a query request to the server

14

• Server receives a query request and process the request

• Server sends the respond to a client

• Client receives a response as per request.

2.5 Project JXTA

2.5.1 Overview

JXTA is an open source computing framework for peer-to-peer specification, developed

by Sun Microsystems under the direction of Bill Joy and Mike Clary in 2001. The name

JXTA is a short hand for juxtapose as side by side. The JXTA protocols standardize the

manner in which peers

• Discover each other

• Self-organize into peer groups

• Communicate with each other

• Monitor each other

• Advertise and discover network resources

• Platform/operating system independent. [3]

2.5.2 JXTA Protocols

To handle JXTA services in a peer to peer system developers of JXTA platform modeled

several protocols which facilitate heterogeneous devices to exist and communicate. The

following are the protocols in the JXTA platform.

• Peer Resolver Protocol (PRP) – Enable peers to send a generic query and receive

a response

• Peer Discover Protocol (PDP) – Used by peers to advertise their own resources.

• Peer Information Protocol (PIP) – Peers use this protocol to obtain status

information

• Pipe Binding Protocol (PBP) – Facilitate communication path between peers.

• Peer End Point Protocol (PEP) – Used to find a route from one peer to another.

• Rendezvous Protocol (RVP) – For messages propagation in the network.[4]

15

Every node in a JXTA network is a peer and each peer has a unique identity called Peer

ID which is dynamically bound to its IP or TCP address by the JXTA network, so peers

are identified by their IDs rather than IP addresses .[4]

2.5.3 Peer Groups

Peers sharing common interest for example cinema lovers, can be grouped together

logically to form the peer group according to their taste to discuss and exchange songs

etc. Peers are free to create, join and leave the groups. Peers can belong to more than one

group at a time. To enable communications between peers which do not have a direct

link, a logical communication channel called pipe is used. Every peer will have at least

one end point pipe which is dynamically bound to the IP address the peer is using. [3]

2.6 JXTA Architecture

JXTA platform [4] is divided into three major layers namely The Core layer, The JXTA

services, and the JXTA applications. [4] The figure 5 illustrates how the JXTA is made.

16

SUN JXTA

APPLICATIONS

3rd Part

Applications
JXTA Shell

Core services
Sun Services

Presence etc
3rd Party

Services

JxtaSocket/

JxtaBiDiPipe
Peer Monitoring

Security

Figure 5: JXTA architecture

As seen from the figure 5, JXTA platform is made up of several layers as described in the

following subsections.

17

The core layer is where the code for protocols implementation is found in this layer. The

following are the elements that ideally would be shared by all P2P solutions.

• Peers

• Peer Groups

• Network Transport (Pipes, Endpoints, Messages)

• Advertisements

• Protocols (Discovery, Communication , monitoring)

• Security and authentication [5]

The services layer: The services in this layer are optional means not necessary needed

for P2P network to operate but are common in P2P environment. Such services include

searching and indexing, storage system, file sharing, distributed systems, authentication,

and PKI (Public Key Infrastructure). [5]

The application layer provides common P2P applications that we know such as instant

messaging; File sharing, entertainment content management and delivery. [5]

2.7 Types of Peers

Rendezvous peers are volunteers which act as a meeting point for other peers due to

absence of central service such as domain name service. Peers issue discovery queries to

a rendezvous peer, and the rendezvous provides information on the peers it is aware of on

the network. A rendezvous peer maintains a cache of advertisements, forward discovery

requests to help other peers to discover resources and keep a record of other rendezvous

peers. Therefore if one knows a rendezvous point of a friend and a friend knows his or

hers then one can find each other. [5]

Relay peers maintain information about the routes to other peers, routes message to peers

and forward messages on behalf of peers that can not directly address another peers. [5]

18

Minimal edge peers are capable of sending and receiving messages but do not cache

advertisements or route message to other peers. For example cell phone. [5]

Full featured edge peers have all minimal edge peer features plus ability to cache

advertisements, but do not forward any discovery requests. [5]

2.8 JXTA Pipes

The concept of using pipes in JXTA network is taken from the UNIX operating system

and its shell. Pipes use the concept of endpoint to indicate the input and output points of

communication. Information is put at one end and comes out at the other end. [3]

There are three types of pipes

• Unicast (point-to-point) – Connect exactly two pipe end points; an input pipe

receives messages sent from an output pipe.

• Propagate pipe – Connect one output pipe to multiple input pipe.

• Secure unicast – One way, secure and unlireliable.

Advertisement: When peers and peer groups have services that they want to make

known to P2P network, they use advertisement. JXTA advertisement is XML messages

meant to publish the availability of specific resources. The figure 6 illustrates how the

JXTA advertisement looks like. [5]

Figure 2.6: Pipe advertisements

19

As seen from the figure 6 the Id stands for unique id of the pipe in UUID format. The

Type identifying the pipe type whether is a propagate pipe or a unicast pipe. The Name is

for pipe name.

Discovery: Before they can exchange contents in P2P network, peers must discovery

each other. To search for peers in the same group, peers use discovery protocol. For peers

runs in different network should contact the rendezvous and request that it perform

search. The rendezvous cache all the peers it comes into contact with. Always discovery

depends on the number or rendezvous in the network, large discovery takes place if there

more rendezvous peers on the network. [16]

2.9 Project JXME (JXTA for Java ME)

The idea behind to create a project JXME popular JXTA for Java ME was to provide

JXTA compatible functionalities on constrained devices (mobile phones, pagers and

PDAs) so that devices could connect to JXTA networks. [6]

The following are two types of JXME. JXME proxy and JXME proxyless.

JXME proxy : In JXME proxy version , peers talks to JXTA relay (a message relaying

peer) ,which in turn bears most of the message processing (XML authoring for

advertisements, sending, search messages across the JXTA network and so forth) and

relaying burden. The situation is quite similar to the client-server architecture. A peer

sends a request to the JXTA relay for certain service (creating pipe/groups etc), the JXTA

relay process the request and send back the response. The figure 7 below illustrates this

procedure.

20

Figure .7 JXME proxy

JXME proxyless: The case is different for peers using JXME proxyless. In JXME

proxyless peers became full featured peer. A full featured peer just needs a rendezvous

(meeting point) for peers to discovery each other and share resources. Peers in proxyless

version do not depend on proxy for pipes and groups creation, relaying messages etc. A

mobile device is now able to:

• Describe and publish advertisements

• Discover network resources

• Establish direct and virtual multicast connections to other nodes

• Use a datagram like asynchronous bidirectional JxtaBiDiPipe [15]

21

Figure .8: JXME proxyless [15]

Figure 8 illustrates how the JXME proxyless network is work.

Peerdroid is the porting of JXME protocol to Android platform developed by researchers

in Italy in 2009 to enable Android application developers to create P2P applications that

uses the features of JXTA system along with Android potential. PeerDroid support both

HTTP and TCP/IP protocols. Since JXME is designed for P2P applications on J2ME

platform, Peerdroid become a solution for P2P applications on Android platform.

JXTA CMS (Content Management Service): To retrieve and share files contents within a

peer group a Content management Service (CMS) is used. [9] CMS allow peers to search

for files within a group and allow downloading for available files from remote peers. All

this is possible through advertisements. Peers must advertise file contents to be shared to

make it known in the peer group.

AndExplorer is a file manager for Android devices. With AndExplorer users are able to

browse files and folders stored on the device and SD card. Files and folders are sorted

according to size, name and the date of arrival.

22

3 CHAT APPLICATIONS ON MARKET

Before developing my chat application I did a research on various chat applications

available on the market at the same time taking into consideration the technology I’m

going to use. At the beginning I considered to use a proxied version of JXME but after

doing a research and talk with some JXTA forum members I realize that JXME proxy

version is outdated technology, and no longer supported. So I decided to use JXME

proxyless version where a mobile device became a powerful peer performing all work on

its own without relaying on a proxy.

The idea behind was to create a chat application for Java micro edition platform. Those

devices with limited memory capacity, screen size etc, but due to lack of tutorials for

JXME proxyless version I decided to use a Peerdroid which is the porting of JXME

protocols for Android platform. Because Android platform support next generation

mobile devices, with no restrictions as those of Java ME platform above, I found is much

better for P2P file sharing applications. The following are some of the Android chat

applications I found on the market.

3.1 Bluetooth Chat on Android

Bluetooth chat application allows mobile devices connected over Bluetooth to carry out

two way chat. The application does the following task

• Scanning for Bluetooth devices

• Sharing of file over Bluetooth

• Establishing RFCOMM channels [1]

3.2 Android Chat

Android Chat is a location-aware chat client for Android platform which support

location-aware services and a client for Google Android platform. It allows users to

connect to centralized server and discovery other chatting users. It was initially designed

for social purposes

23

• At s sports event chatting about the game

• For business promotion purposes

• For fishing and hunting trips

• For matchmaking purposes [8]

The Android chat application has the following features.

• Switch between Windows – Users of this are able to switch from one window to

another. From the main menus that pop up, hit the open window button to switch

to the window you want to.

• Creating channels – Users are able to create their own chatting channels and join

to the channel created.

• Send a private message – Users are able to switch from a group chat to private

chatting.[8]

3.3 IMS SIP Client on Android

IMS SIP is a simple chat client for SIP instant messages over IMS run on Android

platform. Before any operation a user must sign in the application using his/her email

address. IMS SIP client has the following features

• Retrieving chat history at the end of conservation

• Support multiple buddies

• Voice signal for incoming message. [11]

3.4 Peerdroid Sample Chat

Peerdroid sample chat application is developed as a demo by researchers who created the

peerdroid library to illustrate how peerdroid is capable for P2P applications .The

application has a simple GUI to show incoming messages, network status and available

peers. [9]

24

4 MULTI-PURPOSE CHAT APPLICATION

4.1 Overview

Multi-purpose chat application is based on JXME proxyless version ported to Peerdroid.

It allows users to send asynchronous messages, and enable sharing image files with other

peers on the JXTA world. The application is designed for Android mobile phone users.

The application first connects to the JXTA world, and then discovery the peers already

connected to the network and the resources available. The peer should also publish/

advertise the resources it has.

Motivation : To develop an application based on new JXME proxyless version with

Peerdroid for next generation mobile devices. The smart phones which have greater

multimedia content capturing capabilities (voice, video, photo etc). The idea of

developing multipurpose chat application come from researching on existing chat

applications, identifying the positive and negative features also friends ideas to find out

what features do they need as they are the end users.

Features: Multipurpose chat application has a editText field which allow a user to write

the message content then press the send button to send message content out the unicast

bi-directional pipe. The editText is designed to handle a certain amount of characters.

When number of characters exceeds the buffer size, an exception occurs.Along with

message is the name of the sender. The name is included to show the receiver from

whom the message is from and the time of arrival. The Incoming messages will be

displayed in scrollable form and can be retrieved later as chat history. When a peer

received a message can reply back. First should write the message then click send. A

user will be able to download image from the remote web server and share with other

users of the system. The downloaded image files could be saved in a local SD card as

compressed files and retrieved later for the future uses.

25

4.4 The Uniqueness of the Application

As it seems my mobile chat application has many features in common as features

available on chat applications above but still all applications already on market use a

common communication technology (client-server) to work while my application is

based on P2P technology. The Bluetooth Chat uses Bluetooth to transfer data /instant

messages between devices. The IMS SIP chat uses IMS SIP protocol for communication.

In my case peer does not need a central server to discovery and talk to each other, they

just needs a rendezvous peer to enable discovery and make advertisement for resources

they have. Multi-purpose chat application downloads files directly from remote web

server then share with other peers online. When a peer has a content to share then must

retrieve it from the secure digital card (sdcard) and send the compressed file to other

peers in the JXTA network.

The device vibrates when the message received. Unfortunately one can’t notice a

vibration with virtual device (emulator) because at the moment emulator does not support

vibration but it should vibrate on real device (mobile phone).

4.3 Comparison to Peerdroid Sample Chat

Peerdroid sample chat is neither capable for file sharing nor able to switch from screen to

screen as it is not implemented for that. Multipurpose chat is capable for file sharing

while peerdroid sample doesn’t at the same time different in communication channels.

Peerdroid sample chat uses a JxtaSocket while multi-purpose chat uses a bi-directional

pipe (JxtaBiDiPipe).

Multi-purpose chat receives messages with vibration in scrollable format also application

is implemented to allow users to log out when they wish to do so, but peerdoid sample

doesn’t. Multi-purpose chat allows users to download files from remote web server and

save to local SD card. The last thing is different approach in graphical user interface

approach in both cases.

26

5 DEVELOPMENT ENVIRONMENT, TOOLS, AND SOFTWARE

5.1 Eclipse IDE Installation

The Android SDK support several different integrated development environments (IDEs)

but the eclipse IDE (Galileo 3.5) with the Android development tool ADT plug in was

used for development of this application. Eclipse IDE is highly recommended approach

to Android development. The IDE was downloaded from the download page of the

eclipse.org. Downloaded zip folder was unpacked to a known directory. Then JDK 6 or

higher and JRE was installed too for good performance of the development environment

5.2 Downloading and Installing the SDK Starter Package

In this work I used a new version of the SDK Android 2.0.1 downloaded from the

Android developer site. The SDK zip file was unpacked to a known location which was

then added to the PATH of SDK. Next step was installation of SDK components. For

eclipse with ADT just select Window>Android SDK and AVD manager

Select available components, then install selected

Figure 9 Installing SDK starter package

27

Figure 9 shows the available SDK starter package for download.

5.3 Installation of the ADT Plugin for Eclipse.

Android Development Tool (ADT) is designed to give a powerful environment for

integrated environment for application development. The ADT extends the capabilities of

eclipse to create an application user interface, debugging application, and adding

components based on the Android Framework API. [1]

 Once eclipse is installed as described above ADT plug in should be installed in respect to

eclipse environment. Start eclipse then select help>Software updates>available software.

Click add site then add this URL in location https://dl-ssl.google.com/android/eclipse/.

Back in the available software view you should see plugin listed by URL with Android

DDMS and Android development tools then next.

Read and accept the license agreement then install. Finally restart IDE.

5.4 Importing Peerdroid

Peerdroid is piece of software library available for free on Google projects websites. A

developer should download and save the library file in a certain directory. The

Importation of this library to the project is done from the eclipse IDE, file->properties

then Java Build Path. Add external Jars. Add peerdroid from the directory you saved.

5.5 JXTA Shell as a Rendezvous

As I section 2.5, in order for peers to communicate, a rendezvous is needed to facilitate

the discovery in the JXTA system. There are two options to make a rendezvous peer. The

first option is to use a JXTA shell. The shell is available for download on JXTA website

then should be installed in the computer with public IP; in this project I used a JXSE-

shell-20080909 nightly version. The second approach is to implement a rendezvous peer

in any suitable IDE using java language. [4]

28

The next step was to configure a JXTA shell to act as a rendezvous. My intention was to

use public ready configured rendezvous peers for testing purpose but during the

development of this application Sun Microsystems router was down and unreachable.

After finishing a rendezvous setup I tested to see if it was active for peers to discover

each other advertise and communicate. This was made possible by typing some useful

commands on the shell as you can see in the figure 10 and 11 below. To discover peers

connected to rendezvous I used ‘peers’ command and ‘rdvstatus’ to check the status of

rendezvous.

Figure 10. JXTA shell: Rendezvous testing

Figure 10 shows the status of the rendezvous peer when clients connected.

Figure 11. JXTA shell: Peers View

Figure 11 display the names of peers connected to the JXTA shell

29

5.6 Implementing the Rendezvous Peer on IDE

Instead of using a JXTA shell as a rendezvous, another approach which is better, is

implementing a rendezvous on any suitable IDE using java language. With this kind of

rendezvous one doesn’t need to clear the local cache for previous advertisement.

Advertisement history is deleted automatically every time the IDE started. But if a

developer is using a JXTA shell as a rendezvous then must clear the local cache by

deleting the CM directory otherwise the old peer advertisements will be discovered. In

this project a rendezvous was developed on Netbeans IDE 6.5 using java language. [17]

 The figure 12 below shows how this rendezvous works and the peer-rendezvous

connection.The sample code for this kind of rendezvous peer is shown on appendix A

Figure 12. Connections to Rendezvous Peer

Connection to the rendezvous peer as can be seen from figure 12. The Ip address of the

client connected to the rendevous peer is shown as well as the time the peer get

connected.

5.7 Implementation, Testing and Evaluation of the Result.

Application will be developed based on JXME proxyless version using peerdroid library

on Android platform. This is somehow far from a normal chat familiar to many people

because apart from chat, a user will be able to download photos from a remote web server

30

and share with his/her friends. I have tried to make the application a user friendly, so no

need for a user to have any extra knowledge to use it. Multiple screens/dialogs will be

made to enable a user to switch from one dialog window to another.

When the application is ready, it will be tested on different emulators run on different

computers to see if the user could be able to chat /share resources with other peers

connected to Rendezvous. If I will succeed to communicate using emulators then final

test will be on the real device mobile phone which is the target of my project.

31

6 DESIGNING AND IMPLEMENTING OF THE SYSTEM

6.1 Graphical User Interface

User interface should be taken in mind when a software developer creates an application.

A friendly user interface was the first thing I considered when doing this project. The

Android platform enables applications developers to create GUI easily using XML

layout. The XML files are stored in the layout directory of the project. This chat is

designed to have several screens/dialogs where a user will be able switch from one screen

to another according to what task he/she wants to perform. Here below are dialogs

existing in this application.

The greetings screen: This is the first screen when the application starts. The greetings

dialog window has a chat image indicating it’s a chat application together with progress

bar indicating connection to the rendezvous. The dialog window dismiss when the

application gets connected to JXTA network. Connecting to rendezvous peer basically

means that the rendezvous peer is added to the querying peer’s list of known rendezvous

peers. There are two ways to connect to rendezvous peer: sending raw connects

advertisements or via a method of RendezvousServeice. If the rendezvous peer is

unreachable then the greetings dialog will not disappear, the progress bar will run

forever.

32

 Figure13. Screenshot: Greetings Screen

The figure 13 illustrate the first screen appeared when the application is launched.

The main screen: Once the application gets connected to the rendezvous, the welcome

window dismisses and the main window appears. The screen has several buttons and the

editText field where a user writes the text message. After finishing writing the text on the

text field a user click button “send” to send the message content to the unicast pipe. Apart

from send button there are also folder button which when clicked it display the list of

saved files. The button image switches the window to download screen. The sfile button

for sending files to remote peers. The clear button clears the conversation text on the

screen.

33

When a user clicks a main menu, three options appear. The first option is for buddyList, if

clicked the buddy List dialog window which display peers connected on the JXTA

network appears. The second option is the button “download” icon. When pressed a

download dialog window appear. Here a user will be able to write the URL of the remote

web server where he/she can download image file. The last option button is “Quit”

button.

Figure 14. Screenshot: main screen

Figure 14 illustrate the main screen appeared when the application get connected to the

rendezvous peer.

The FileImage screen: The screen contains a editText field where a user will be able to

enter the photo URL to download image from a remote webserver.User type the URL on

34

the editText field, then click the load button to download the image and display it on the

screen as a bitmap.

Figure 15. Screenshot: File image (Bitmap)

The figure 15 illustrates the image downloaded from the remote web server and display

on the screen as a bitmap

Saving the image file: Downloaded image file should be compressed, saved and

renamed in local secure digital card (SD card) before can be sent to other peers. The

reason is that Android stores pictures and video on the SD card. The SD card is created in

the folder where android plugin files are located. From the command prompt go to the

35

tools directory then type command mksdcard [specify the size and the name of the SD

card]. To browse the compressed files stored on the SD card, AndExplorer file manager

was used. [10]

Figure 16. SD card creations

Figure 16 shows how to create the local storage device (sdcard) from a command line.

The disconnect screen: When a user wants to log off the system then he or she clicks the

Icon button Quit from the main screen, a disconnect dialog window will appear. The

dialog asks the user if he or she really wants to sign out, and if the answer is yes the

disconnect dialog disappear then disconnect method is called. If the answer is no, the

application goes back to the main screen.

36

Figure 17. Screenshot: logout dialog

As can be seen in the figure 17, the application asks the user if he or she want to log off

the system.

The buddylist screen: Peers connected to the rendezvous are listed on buddylist screen.

The first peer to connect on JXTA network will be the first and vice versa. The screen has

a chat buddy icon just for user interface decoration.

37

Figure 18. Screenshot: buddylist dialog

As seen on the figure 18, discovered peers connected to the rendezvous peer are display

on buddylist dialog.

6.2 Class Diagram

The prototypes and the implementation of the system consist of several classes and

functions which perform different tasks independently or sometimes in collaboration.

Classes of the system, their inter-relationship and the methods and attributes of the

classes are illustrated in the following figures though not in a good order due to lack of

spacing.

38

Figure 19. Class diagram part 1

Figure 19 illustrates the attributes and methods of two classes StartingWindow and
RecvfileData and their interactions with other classes.

39

Figure 20. Class diagram part 2

Figure 20 Illustrates the methods and attributes for classes BuddyList and MyBuddy as
part of the system.

40

Figure 22. Class diagram part 3

Figure 22 illustrates the attributes and methods for two classes the fileWindow class and
the StartingWindow class .

Figure23. Class diagram part3

Figure 23 illustrates methods and attributes of RecvFileData and RecvMsgData classes.

41

Figure 24. Class diagram part 4

The main activity of the system as illustrated in the figure 24.

42

6.4 GUI Classes

The AboutWindow is a dialog window which gives the information about the chat

system, why it is developed and the developer name. The dialog has one button

backButton.

Figure 25. Screenshot: About dialog

As seen on the figure 25, the dialog shows what for the application was created.

The BuddyList class is a dialog window which shows the list of peers discovered from

the rendezvous peer. All peers connected to the rendezvous peer will be listed in this

dialog.

The FileWindow is a dialog window which allows a user of the application to download

image files from remote web server. The window has editText field where a user can

enter the URL of the web server and several buttons. The sendButton for sending

downloaded image, the saveButton which compress the downloaded image, rename and

43

save the image file. The backButton calls the method dismiss() then go back to main chat

dialog.

The WelcomeDialog: This is the first dialog window when the application starts. The

dialog dismiss when the applications get connected to the rendezvous peer.

6.5 JXTA Platforms

The BIDiPipeClient class is the main class which associates the peer with the JXTA

platform before any operation can be invoked in the system, which means it handles all

communication with the rendezvous peer. The class has several methods from peer

configuration to peer advertisement, publishing peer advertisements and discovery

methods for advertisements. The class implements DiscoveryListener, to enable peer

discovery in the network.

The BiDiPipeServer class is the class where communication channels (JxtaBiDiPipe) are

created and published to the network. The JxtaBiDiPipe created is the one for sending

and receiving data in the P2P network. I decided to choose this type of socket rather than

normal pipes because sockets are bidirectional pipe, reliable and secure than pipes. When

one decides to use normal pipes then must create two pipes, OutputPipe for outgoing data

and the InputPipe for incoming data

The MsgProcessing class is the class handles the messages processing to the destination.

The class implements the Runnable interface. The run method keeps the process running

for listening outgoing messages and data as long as peers are connected on the

rendezvous. The class has a method for sending messages which bears the name of the

sender and the content of the text messages.

The RecvMsgData class is the class responsible for polling the incoming messages. The

class extends thread class .The RecvMsgDataclass has a method which returns the current

44

time for incoming messages in Hours: Minutes: seconds’ format.The sample code for

sending and receiving message elements is illustrated in appendix B.

The DiscoveryController class is the same as MessageSender class and Message

receiver class. The discovery controller also implements runnable interface listening for

advertisement published by BiDiPipeClient. The class is listening to both local and

remote advertisements.

45

7 PERFORMANCE AND RESULTS ANALYSIS

7.1 Overview

The objective of this project was to design and implement a chat application based on the

P2P technology, which allows sending and receiving instant messaging and sharing

image files among peers connected to JXTA network. The application client side was

implemented on the Android platform using the Java language and the peerdroid library

file downloaded from peerdroid project site, while the rendezvous was implemented on

Netbeans IDE 6.5 using a Java language. [17]

7.2 Connection to Rendezvous Peer

This was the first part of the application before other operation of the system invoked.

The idea behind connecting peers to the rendezvous is to facilitate peer advertisements

and discovery before they can share resources. The connection worked as expected

though at the beginning it was difficult but after certain trials finally I succeeded to

connect. The reason I did not connect is that in the Android security model, all

applications have no permission to the internet by default. Therefore I added to

AndroidManifest.xml file the following line of code <uses-permission android :name

=”android.permission.INTERNET”/>

7.3 Sending and Receiving Messages with Vibration

A user was able to write the message in the editText field then click a send button, the

message successful sent through the unicast pipe. The message has 3 elements. The name

of sender, time in Hh:Mm:Ss format and the message content. This part was first tested

on emulators run on different PCs connected to a rendezvous peer. Message was

successfully sent through the socket. The vibration method was well implemented to

notify the arrival of the message but unfortunately at the moment the Android virtual

device (emulator) did not support vibration, so it was not possible to notice the vibration.

46

Figure 26. Screenshot: Instant messaging in scrollable form

As it seen on the figure 26, the received messages are in scroll form showing the sender

name and the time of arrival.

7.4 Sharing Image Files

The idea was to have an application which enables downloading image files from a

remote web server. To make this possible a user writes the website URL where an image

is located then clicks the button “load” . When the image is downloaded, it is displayed

on the imageDataScreen as a bitmap, and then the file must be compressed and saved on

the SD card. The test went perfectly as required, and I was able to download images from

47

various internet sources and save them to the SD card. Also sending and receiving files in

P2P style was fine as expected. The received files were stored in the SD card the same as

those downloaded from the remote web servers.

Figure 27. Screenshot: File list

The figure 27 shows the listing of the downloaded /received image files from various

sources.

48

7.5 Limitations

P2P architectures are naturally suitable for implementing asynchronous messaging and

file sharing systems. Developing P2P applications for mobile devices on the Android

platform is a new and promising research area, rising with a new mobile technology.

JXTA is a highly complex P2P framework with many protocols and concepts. For newbie

applications developer needs both resources and enough time to deal with this platform.

Since it is an open-source project, changes on platform source codes occurs in a very

short period of time but unfortunately the JXTA platforms lacks the tutorial guide for

mobile applications development. The JXTA tutorial guide released in 2007 just

discusses the P2P applications development on personal computers (JXSE), so it is very

difficult for a P2P mobile applications developer to get started.

49

8 CONCLUSION

The goal of this project was to design and develop a multi-purpose chat application for a

mobile distributed system on Android platform using JXTA technology. Since the JXTA

technology is neither a platform nor programming language dependent, I found that

JXTA is an appropriate technology for P2P instant messaging and file sharing

applications.

It was discovered in the project that it is possible for multiple users to send instant

messages and share the resources in a P2P manner without depending on the central

server. However, the size of a message or file to be sent must be 64 KB or less since the

JxtaBiDiPipe used as a communication channel does not provide message chunking.

One point to keep in mind is that it’s not possible for rendezvous peer to differentiate

multiple peers with the same login name. In such a case no peer could be able to get back

a peer discovery response from the rendezvous peer. There fore peers in the JXTA

network must have different login names to allow peers to discover each other.

I studied the JXTA Content Management Services (JXTA-CMS) which allow users of

JXSE to search discover and download the resources within the JXTA network. Since

new smart phones devices offer advanced capabilities the same as computers, users can

for example create and delete directories, add, delete or modify files, add the access

permissions to files in directories. Therefore, a P2P applications developer on a JXTA

platform who is interested in working with the Android platform should look for a

possibility to develop P2P applications which use CMS features thus users will be able to

search for and download resources within the JXTA network rather than wait for the

owner of the resources to send them.

50

REFERENCES

1 Android Platform [online] 26 September 2009,

URL: http://developer.android.com/guide/basics/what-is-android.html Accessed 1
march 2010.

2 Android Devices [online] 20 February
2010,URL:http://androidcommunity.com/18-android-devices-on-market-by-end-
of-2009-says-google-20090528/ Accessed 1 march 2010

3 Joseph D Gradecki, Mastering JXTA: Building Java P2P Applications, USA:
John Wiley&Sons: Wiley Publishing Inc; 2002.

4 Brendon J Wilson, JXTA, United States of America: New Riders Publishing;
2002.

5 Sun Microsystems Inc, JXTA Java Standard Edition v2.5 Programmers Guide,
United States of America: Sun Microsystems; 2007.

6 JXTA for Java ME [online] 25 September 2009,URL:
http://developers.sun.com/mobility/midp/articles/jxme/ Accessed 3 march 2010.

7 Project PeerDroid [online] 25 October 2009 , URL:
http://code.google.com/p/peerdroid/ Accessed 2 March 2010.

8 Android Chat [online] 12 October 2009, URL:
http://code.google.com/p/androidchat Accessed 2 March 2010.

9 Daniel Brookshier, Darren Govoni, NavaneethKrishnan, Juan Carlos Soto,
JXTA: Java P2P Programming, United States of America: SAMS Publishing;
2002.

10 AndExplorer [online] 2 March 2010,
URL:http://www.lysesoft.com/products/andexplorer/index.html Accessed 6
march 2010

11 IMS SIP [online] 12 October 2009, URL: https://labs.ericsson.com/apis/mobile-
java-communication-framework/blog/develop-ims-sip-client-android-part-1
Accessed 6 March 2010

12 JXTA [online] 25 September 2009,
URL:http://tim.oreilly.com/pub/a/p2p/2001/04/25/jxta.html Accessed 6 March
2010

51

13 Client-server architecture [online] 27 September 2009, URL:
http://www.javaworld.com/javaworld/jw-10-2001/jw-1019-jxta.html Accessed 15
April 2010

14 JXTA architecture [online] 20 September 2009, URL:
http://www2002.org/CDROM/refereed/597/ Accessed 15 April 2010

15 JXTA proxyless [online] 15 April 2010, URL:
http://weblogs.java.net/blog/2008/02/02/new-jxta-micro-edition-cldcmidp-20
Accessed 15 April 2010

16 Rendezvous [online] 15 April 2010, URL:
http://www.developer.com/java/j2me/print.php/1464091 Accessed 15 April 2010

17 Netbeans IDE [online] 15 April 2010, URL: http://netbeans.org/ Accessed 15
April 2010

18 Project JXTA [online] 15 April 2010, URL:http://jxta.dev.java.net Accessed 15
April 2010

19 Java ME [online] 15 April 2010, URL:http://java.sun.com/javame Accessed 15
April 2010

52

APPENDIX A: RENDEZVOUS PEER

package metropolia.cap04;

import java.io.File;
import java.io.IOException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.logging.Level;
import java.util.logging.Logger;

import net.jxta.exception.PeerGroupException;
import net.jxta.id.IDFactory;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupID;
import net.jxta.platform.NetworkConfigurator;
import net.jxta.platform.NetworkManager;
import net.jxta.rendezvous.RendezVousService;
import net.jxta.rendezvous.RendezvousEvent;
import net.jxta.rendezvous.RendezvousListener;

/**
* Responsible for the connection to the rendezvous peer.
*/
public class RendezPeer implements RendezvousListener {
 private boolean connected;
 private String Rend = new String("rend");
 private RendezVousService peerGroupRendezvous;

/**
* Constructor for rendezvous peer
*
* @param peerGroup
*/
 public RendezvPeer(PeerGroup peerGroup) {
 peerGroupRendezvous = peerGroup.getRendezVousService();
 peerGroupRendezvous.addListener(this);
 }

//start JXTA network
 private void start() {

53

 try {
 configureJXTA();
 System.out.println("executing JXTA");
 startJXTA();
 System.out.println("startJXTA(); done");
 createPeerGroup();
 System.out.println("waitForQuit(); started");
 waitForQuit();
 }
 catch (PeerGroupException e) {
 e.printStackTrace();
 System.out.println("Exiting.");
 System.exit(0);
 }
 catch (Exception e) {
 System.out.println("Unable to start JXTA platform. Exiting.");
 e.printStackTrace();
 System.exit(0);
 }
 }
 @Override

 public synchronized void rendezvousEvent(final RendezvousEvent event) {
 PeerID rdvPeerID = (PeerID) event.getPeerID();
 switch (event.getType()) {
 case RendezvousEvent.RDVCONNECT: {
 if (!view.contains(rdvPeerID)) {
 view.add(rdvPeerID);
 }
 break;
 }
 case RendezvousEvent.RDVRECONNECT: {
 if (!view.contains(rdvPeerID)) {
 view.add(rdvPeerID);
 }
 break;
 }
 case RendezvousEvent.RDVDISCONNECT: {
 if (view.contains(rdvPeerID)) {
 view.remove(rdvPeerID);
 }
 break;
 }
 case RendezvousEvent.BECAMERDV: {
 if (LOG.isInfoEnabled()) {
 LOG.info("Node became rendezvous (NAME: "

54

 + group.getPeerGroupName() + ")");
 }
 }
 default: {
 break;
 }
 }

/**
* Get connected to a rendezvous peer.
*/
 public void waitForRdv() {
 System.out.println("Establishing connection to rendezvous peer...");
 synchronized (Rend) {

 while (!peerGroupRendezvous.isConnectedToRendezVous()) {
 try {
 if
(!peerGroupRendezvous.isConnectedToRendezVous()) {
 Rend.wait();
 }
 } catch (InterruptedException e) {

 }
 }
 }
 System.out.println("Connected to rendezvous peer");
 }

 public void setConnected(boolean connected) {
 this.connected = connected;
 }

 public boolean isConnected() {
 return connected;
 }
 //main method
 public static void main(String[] arg) throws PeerGroupException, IOException,
NoSuchAlgorithmException {
 Logger myLogger = Logger.getLogger("net.jxta");
 myLogger.setLevel(Level.ALL);
 RendezPeer myRend = new RendezPeer();
 myRend.connect();
 myRend.waitForQuit();

55

APPENDIX B: METHODS FOR SENDING AND RECEIVING MESSA GES

/*
 *
 *
 * send a series of messages over a JxtaBiDiPipe
 */
 public int sendMessage(JxtaBiDiPipe bidipipe) throws IOException {
 Log.d("P2PJXTAonANDROID"," sending the text messages..");
 long start = System.currentTimeMillis();

 Message msg = new Message();
 try{
 MessageElement sender = new
StringMessageElement("sender",peerName,null);
 MessageElement contentElement = new
StringMessageElement("content",outMsg,null);

 msg.addMessageElement(sender);
 msg.addMessageElement(contentElement);
 bidipipe.sendMessage(msg);
 }catch(IOException ex){
 ex.printStackTrace();
 }
 return Log.d("P2PJXTAonANDROID","Message sent");
 }

//Method for receiving messages

 public void pipeMsgEvent(PipeMsgEvent ev) {
 // TODO Auto-generated method stub
 final Message msg ;

 try{
 msg = ev.getMessage();
 if(msg == null){
 return;
 }
 P2PJXTAonANDROID.handler.post(new Runnable() {
 public void run() {
 msg.getMessageElement(P2PJXTAonANDROID.
 conversation.getText()+"\n"
+getCurrentTime()+msg);

56

 }
 });
 Log.d("P2PJXTAonANDROID", "received message read");
 //calling the vibrator method
 p2pAnd.notifyMessageArrival();
 }catch(Exception e){
 e.printStackTrace();
 }

 }
}

57

APPENDIX C: METHODS FOR SENDING AND RECEIVING FILE

//sending file data method
public boolean fileTransfer(String startDir) {

 int length = 0 ;
 byte[] buffer = new byte[300*1024];

 try {
 File file = new File("/sdcard/myphotos");
 FileInputStream in = new FileInputStream(file);

 while(length != -1){

 length = in.read(buffer);

 Message data = new Message();

 data.addMessageElement(new
StringMessageElement("Sender",
 peerName, null));
 //data.addMessageElement(new
StringMessageElement("fileData",fileData,null));
 data.addMessageElement(new
StringMessageElement("Filename", file
 .getName(), null));
 data.addMessageElement(new StringMessageElement(
 "FileSize", String.valueOf((Math.round((file
 .length() / 300*1024)) + 2)),
null));

 if (length != -1)
 data.addMessageElement(new
ByteArrayMessageElement(
 "data", null, buffer.clone(), null));
 else
 data.addMessageElement(new
ByteArrayMessageElement(
 "data", null, new byte[0], null));
 bidiPipe.sendMessage(data);
 }
 in.close();

 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block

58

 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return true;
 }

}

//Receiving file data method

 public void recvFile(Message data) {
 sender = data.getMessageElement("sender").toString();
 filename = data.getMessageElement("Filename").toString();
 int ImageSize = Integer.valueOf(

 data.getMessageElement("ImageSize").toString()).intValue();
 int fileSize = Integer.valueOf(
 data.getMessageElement("fileSize").toString()).intValue();

 final byte[] filedata = data.getMessageElement("filedata").getBytes(true);
 RandomAccessFile rand;
 try {
 rand = new RandomAccessFile(FILE_FOLDER+"new
file"+filename,"rw");
 if (packageSize != -1) {

 rand.write(content, 0, fileSize);
 } else {

 }
 } catch (FileNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 P2PJXTAonANDROID.handler.post(new Runnable() {
 private MyBuddy myBuddy;
 public void run() {
 //MyBuddy myBuddy ;

59

 P2PJXTAonANDROID.conversation.setText(P2PJXTAonANDROID.
 conversation.getText() +"\n"
+getCurrentTime() + filename);
 }
 });
 p2pAnd.notifyMessageArrival();
 }

