
UML Based Requirement Management Process

in Mobile Multimedia Software Projects

Jarno Kallio

Master's Thesis

 Degree Programme in Welfare Technology

SAVONIA-AMMATTIKORKEAKOULU
Koulutusohjelma, suuntautumisvaihtoehto (jos on)
Hyvinvointiteknologia

Tekijä
Jarno Kallio

Työn nimi
UML Based Requirement Management Process in Mobile Multimedia Software Projects

Työn laji
Opinnäytetyö

Päiväys
18.10.2010

Sivumäärä
42

Työn ohjaaja
Yliopettaja Ari Suopelto

Toimeksiantaja
PacketVideo Finland Oy

Tiivistelmä
Vaatimushallinta on tärkeä aliprosessi ohjelmistojen kehityksessä. Sen tarkoituksena on varmistaa,
että projektin tuotos vastaa asiakkaan ja muiden sisäisten ja ulkoisten projektiin osallisten sovittuja
odotuksia. Ilman toimivaa vaatimushallintaprosessia projektit eivät onnistu pysymään luvatuissa
aika, budjetti, laajuus ja laatukehyksissään.

Vaatimuksiin liittyvien haasteiden ratkaisemiseksi tutkittiin viimeaikaisia laajennuksia UML
kuvauskieleen. Näitä UML laajennuksia käyttämällä voidaan mallintaa asiakkaan
liiketoimintaprosessit ja vaatimukset. Nykyisin UML:ää käytetään laajasti
ohjelmistonsuunnittelussa. Mutta kun sitä käytetään myös mallintamaan liiketoimintaprosesesseja ja
vaatimuksia siitä seuraa useita parannuksia perinteiseen tapaan hallita vaatimuksia: vaatimusten
jäljittäminen toteutukseen on paljon helpompaa, ongelmallisten asioiden ja niiden vaatimusrelaation
kommunikointi on tehokkaampaa, järjestelmän kokonaisuuden hahmottaminen on jakautunut
laajemmalle projektitiimissä ja toimitettavaa järjestelmää kuvaavasta mallista tulee kattavampi,
integroiduimpi ja enemmän todellisuutta vastaava.

Tutkimuksen tuotoksena on uudentyyppinen vaatimushallintaprosessi. Tämä aliprosessi on
sulautettavissa ja sovellettavissa mille tahansa ohjelmointikielelle. Se sopii monentyyppisiin
ohjelmistonkehitysprosesseihin ja projekteihin. Organisaation täytyy myös hallita UML ja siihen
liittyvien työkalujen käyttö.

Asiasanat
UML, SysML, vaatimukset, vaatimushallinta, projektinhallinta, ohjelmistotuotanto, mallinnus

Julkisuus
Julkinen

SAVONIA UNIVERSITY OF APPLIED SCIENCES
Degree Programme, option
Welfare Technology

Author
Jarno Kallio

Title of study
UML Based Requirement Management Process in Mobile Multimedia Software Projects

Type of project
Thesis

Date
18 October, 2010

Pages
42

Supervisor of study
Mr Ari Suopelto, Principal Lecturer

Executive organisation
PacketVideo Finland Oy

Abstract
Requirements management is an important sub-process in software development lifecycle. Its
purpose is to assure that the project outcome meets the expectations of the customers and other
internal or external stakeholders. Without a proper requirement management projects will certainly
fail to deliver within the promised time, budget, scope and quality.

To better cope with the requirement related challenges extended Unified Modeling Language (UML)
methodologies were studied. These UML extensions can be used to model the business processes
and requirements. Currently the UML is extensively used in the industry to design software systems.
But when used also to model the business processes and requirements a number of benefits over the
tradional way of managing requirements result: tracebility from requirements to design and to
implementation is much easier, communication of complex issues and their relation to requirements
is much enhanced, understanding of the system behaviour is distributed in the project team and the
system model describing the product is more complete, integrated and accurate.

As a result of this thesis new type of requirement management process was created. This process is
embeddable and applicable to any implementation language and many types of development
processes and projects. To succesfully deploy such a process one has to have the necessary tool
support and the organisation must be UML literate.

Keywords
UML, SysML, Requirements, Requirement Management, Project Management, Modeling

Confidentiality
Public

4

ACKNOWLEGDEMENTS

I want to thank the two supervisors of this thesis: Mr Ari Suopelto, Principal Lecturer

from Savonia University of Applied Sciences for both enthusiastic and at the same

time patient support during the long process and Mr Pekka Lyytinen, Vice President

of European Product line, for granting the possibility to study this topic and deploy it

into practice as a part of project work inside PacketVideo.

18 October, 2010.

Jarno Kallio

5

1 INTRODUCTION

The motivation to study this topic comes from the experiences gained over ten years

of professional career on demanding multi-site mobile multimedia software projects in

two leading companies of the industry. I have had the opportunity to work in various

roles: As a Developer, Tester, Test Manager, Quality Manager, Release Manager,

Requirement Analyst, Senior Architect and Project Manager. Based on my

experiences I share the opinion of many other professionals in the industry that

managing the outcome of software development is always very difficult. There are

many methods and processes developed that have improved the way engineers work

in project teams. However, I have personally felt that there is a lack of methods and

processes to nit the complex requirements into actual practical implementation work.

There is all too wide a gap between typical requirement specification and architecture

not to mention code and test cases.

In the process of narrowing this information gap, as this thesis will present, that by

extending the use of UML as a way to design the software to model business

processes, requirements and use the advanced capability to link different diagrams in a

sophisticated way, significant improvements are achieved. When this process has been

piloted in project teams they have better managed the complexity of building

demanding software applications. This has led to improvement in the predictability of

the achievable outcome, leading to better products, on time and with increased

customer satisfaction.

6

TABLE OF CONTENTS

 ACKNOWLEGDEMENTS...4

1 INTRODUCTION...5

2 INTRODUCTION TO SOFTWARE ENGINEERING ...8

2.1 Software Engineering Process...8

2.2 Requirements Management...9

2.3 Design...10

2.4 Implementation ..11

2.5 Testing...11

2.6 Maintenance..12

2.7 Configuration Management ...12

2.8 Software Engineering Management ...13

2.9 Methods, Tools, and Quality ..13

3 INTRODUCTION TO USE OF MODELS IN SOFTWARE ENGINEERING.......15

3.1 Introduction to Unified Modeling Language ...16

3.1.1 UML Diagrams...17

3.1.2 UML Extensions by Profiles..18

3.2 Introduction to SysML Language ..18

3.2.1 SysML's Extensions and Omissions to UML...19

4 MODELING BUSINESS PROCESSES...21

4.1 Introduction...21

4.2 Selection of Modeling Language..22

5 MODELING REQUIREMENTS..25

5.1 Definition of Requirement..25

5.2 Requirements Relationships and Rationale...26

6 UML ELEMENTS AND THEIR RELATIONS TO REQUIREMENTS.................29

6.1 Use Cases..29

6.2 Sequence Diagrams...30

6.3 Allocations and Callout diagram...31

7 CONCLUSIONS...32

7.1 UML Based Requirement Management Process..32

7.1.1 Elicitation..32

7.1.2 Analysis..34

7.1.3 Validation...35

7

7.1.4 Change Control ..36

7.2 Perceived Benefits of the UML-RM Process..37

7.3 Limitations of the UML-RM Process...38

 REFERENCES..39

8

2 INTRODUCTION TO SOFTWARE ENGINEERING

"Software engineering is the engineering discipline through which software is

developed." [1] Commonly the development of software product involves following

activities (i.e. tasks): finding out what the customer needs are, composing this into

requirements, designing these into a new or existing architecture, programming (i.e.

coding or implementing), testing (i.e. verifying or validating), deploying and

maintaining the software. These activities are controlled by means of a software

development process, which gives development a structure. There is a multitude of

process models to choose from, each describing approaches to a variety of activities

that take place during the development process. Used terminology is different between

process models. For example, depending on the used software development process,

activities are grouped into different phases (i.e. stages or steps) in the lifecycle of a

project.

To give an overview on topic of software engineering and remain neutral to used

development process, categorization found in the Software Engineering Body of

Knowledge (SWEBOK), which is closest of being authorized source of defining what

software engineering is, is used. SWEBOK divides software engineering into ten

knowledge areas: requirements (management), design, construction (i.e.

implementation), testing, maintenance, configuration management, engineering

management, engineering process, tools and methods, quality. [2]

2.1 Software Engineering Process

Each organization should adopt the most appropriate development process for their

line of business and projects. Each process model has its advantages and

disadvantages. Discussion on the subtle and not so subtle differences between the

various software development processes is out of the scope of this thesis.

The sub-process defined in this thesis to manage requirements with UML based

methods can be embedded to be part of any development process, which gives

emphasis on defining requirements. One particular example of iterative development

process could be Rational Unified Process (RUP) or any evolution of that model (e.g.

9

OpenUP, ICONIX) [6]. An example of the approach selected in the RUP is presented

in Figure 1.

Figure 1: RUP phases and disciplines [6]

As can be seen in Figure 1 the RUP project starts ('Inception' phase) with business

modeling and requirements and it is continued with analysis and design activities,

followed by implementation, testing, and deployment tasks. Each continuing

concurrently and having their natural resource usage peaks in different phases of the

project.

2.2 Requirements Management

Requirements management is the process of eliciting (i.e. gathering the requirements

from stakeholders), analyzing (i.e. checking for consistency and completeness),

documenting (i.e. specifying), and validating (i.e. making sure the specified

requirements are correct) requirements and then controlling the change and

communicating it to relevant stakeholders. It is a continuous process throughout a

project. The purpose of requirements management is to assure the organization meets

the expectations of its customers and other internal or external stakeholders. [3], [4]

Proper requirement management is vital for project success. A widely referenced

CHAOS study on software project failures revealed that a half (48,1%) of a project's

primary causes of failure link directly to requirements management. Top three reasons

10

were 'lack of user input', 'incomplete requirements and specifications' and 'changing

requirements and specifications'. Table 1 lists the requirement related reasons out of

top ten reasons for project failure revealed by the CHAOS study.

Table 1: Requirement related reasons for project failures [5]

1. Lack of User Input 12.8%

2. Incomplete Requirements & Specifications 12.3%

3. Changing Requirements & Specifications 11.8%

7. Unrealistic Expectations 5.9%

8. Unclear Objectives 5.3%

The primary focus of this thesis is to apply advanced UML methodologies and

provide requirement process that aids the organization to overcome these challenging

factors. It is dealt extensively in following chapters. A description on one practical

approach to model business processes is described in Chapter 4. MODELING

BUSINESS PROCESSES. The visual modeling of requirements using the selected

technique is described in Chapter 5. MODELING REQUIREMENTS. The advantages

of using the requirement model tightly integrated with structural and behavioral

aspects of the system model is described in Chapter 6. UML ELEMENTS AND

THEIR RELATIONS TO REQUIREMENTS and the advantageous results are

expressed in Chapter 7. CONCLUSIONS.

2.3 Design

Design is defined as both "the process of defining the architecture, components,

interfaces, and other characteristics of a system or component" and "the result of [that]

process." Viewed as a process, software design is the software engineering life cycle

activity in which software requirements are analyzed in order to produce a description

of the software's internal structure that will serve as the basis for its construction.

More precisely, a software design (the result) must describe the software architecture -

that is, how software is decomposed and organized into components - and the

interfaces between those components. It must also describe the components at a level

of detail that enable their construction [2]. All this can be accomplished with UML

modeling which is introduced in Chapter 3 INTRODUCTION TO USE OF MODELS

IN SOFTWARE ENGINEERING.

11

Software design plays an important role in developing software: it allows software

engineers to produce various models that form a kind of blueprint of the solution to be

implemented, analyze and evaluate these models to determine whether or not they will

allow us to fulfill the various requirements. Furthermore, it makes it possible to

examine and evaluate various alternative solutions and trade-offs. Finally, the

resulting models can be used to plan the subsequent development activities, in

addition to using them as an input of implementation and testing.

In this thesis the linking of the design model into the requirement model is studied at a

detail level in Chapter 6 UML ELEMENTS AND THEIR RELATIONS TO

REQUIREMENTS.

2.4 Implementation

The term software implementation refers to the detailed creation of working,

meaningful software through a combination of coding (i.e. programming), unit testing,

integration testing, and debugging. Detailed boundaries between design, construction,

and testing will vary depending on the selected software development process. [2]

The implementation of software can be significantly aided by the system model, some

tools allow a code being generated based on the model constructs or vice versa model

being generated from the code. Maintaining the synchronization of the system model

and the actual implementation in code is an important issue but is out of scope of this

thesis.

2.5 Testing

Testing is an activity performed for evaluating product quality, and for improving it,

by identifying defects and problems. Software testing consists of the dynamic

verification of the behavior of a program on a finite set of test cases, suitably selected

from the usually infinite executions domain, against the expected behavior. Software

testing is an activity which should influence the whole development and maintenance

process and is itself an important part of the actual product construction. Planning for

testing starts with the early stages of the requirement process, and test plans and

12

procedures must be systematically and continuously developed, and possibly refined,

as the development proceeds. These test planning and designing activities themselves

constitute useful input for designers in highlighting potential weaknesses such as

design oversights or contradictions, and omissions or ambiguities in the

documentation. [2]

A Requirement model thriven project aids testing efforts by providing important

linkage of functional requirements to use cases and then further into test cases. Also,

non-functional requirements can be linked to test cases thus through this method the

test coverage can be shown. This topic is briefly discussed in Chapter 6. UML

ELEMENTS AND THEIR RELATIONS TO REQUIREMENTS.

2.6 Maintenance

Successful software development efforts lead to the deployment of a software product,

which satisfies user requirements. Accordingly, the software product do change or

evolve. Once in operation, defects are uncovered, operating environments change, and

new user requirements surface. The maintenance phase of the life cycle begins

following a warranty period or a post-implementation support delivery, but

maintenance activities should occur much earlier. [2]

The maintenance phase activities are not studied in this thesis. However, when system

model accurately represents the state of the system, maintenance will greatly benefit.

If new features are implemented they can be added to the model. Even in a case where

system under maintenance has not been modelled, doing modeling afterwords either in

part or full allows developers save time in the end. [7]

2.7 Configuration Management

Configuration management can defined as "a discipline applying technical and

administrative direction and surveillance to: identify and document the functional and

physical characteristics of a configuration item, control changes to those

characteristics, record and report change processing and implementation status, and

verify compliance with specified requirements." [2]

13

Configuration management of the model, code, test data and other items and the

dependencies between them is important activity during the life cycle of project. As

noted in the connection with implementation this is excluded on the thesis scope.

2.8 Software Engineering Management

Software Engineering Management can be defined as the application of management

activities: planning, coordinating, measuring, monitoring, controlling, and reporting.

These are performed to ensure that the development and the maintenance of software

is done in a systematic, a disciplined, and a quantified manner.

Finding the manageable scope for the project is significantly dependent on the

requirements. Management decisions are greatly aided by the easily understandable

and consistent manner in which the model present the system. This allows the

decisions makers to improve the quality of direction given to the project team whether

it concerns the scope, time, cost or quality of the project. Especially change

management benefits from detailed impact analysis made possible by the model.

The manner in which the management activities are performed depends heavily on the

development process used to guide the software engineering as discussed earlier in

sub-chapter 2.1 Software Engineering Process.

2.9 Methods, Tools, and Quality

Software engineering methods impose structure on the software engineering activity

with the goal of making the activity systematic and ultimately more likely to be

successful. Methods usually provide a notation and a vocabulary, procedures for

performing identifiable tasks, and guidelines for checking both the process and the

product. UML methodologies are extensively applied in this thesis.

Software development tools are the computer-based tools that are intended to assist

the software life cycle processes. Tools allow repetitive, well-defined actions to be

automated, reducing the cognitive load on the software engineer who is then free to

concentrate on the creative aspects of the process. Tools are often designed to support

particular software engineering methods, reducing any administrative load associated

14

with applying the method manually. Like software engineering methods, they are

intended to make software engineering more systematic, and they vary in scope from

supporting individual tasks to encompassing the complete life cycle. Model based

requirement management process is very dependent on tool support. The extent in

which this process can be applied is limited by the features found on selected tool as

stated in Chapter 7. CONCLUSIONS.

The quality benefits achieved by applying UML based requirement management

process are discussed in Chapter 7. CONCLUSIONS.

15

3 INTRODUCTION TO USE OF MODELS IN SOFTWARE ENGINEERING

"A model is a simplified representation of certain aspects of the reality, and this

simplification makes it easier to analyze the underlying reality and ultimately

understand it better" [8].

A visual model plays a similar role in software development as the blueprints and

other plans play in the construction industry. The construction of this model can be

considered as designing of software intensive systems. When this model is done those

responsible for a software development project's success can assure themselves on the

following factors: business functionality is complete and correct, end-user needs are

met, and program design supports requirements for scalability, robustness, security,

extendibility, and other characteristics. This aids project to avoid expensive and

difficult changes in the implementation phase. Other included benefits are:

• Shared understanding of system requirements and design

– Validation of requirements

– Common basis for analysis and design

– Facilitates identification of risks

• Assists in managing complex system development

– Separation of concerns via multiple views of integrated model

– Supports traceability through hierarchical system models

– Facilitates impact analysis of requirements and design changes

– Supports incremental development & evolutionary acquisition

• Improved design quality

– Reduced errors and ambiguity

– More complete representation

• Supports early and on-going verification & validation to reduce risk

• Enhances knowledge capture

[9]

16

There are number of different modeling languages available, none of them being ideal

for every domain and project. The Unified Modeling Language is the most accepted

modeling language in the software industry and ISO standard. However, for complex

systems it's modeling capabilities are insufficient [10]. To address these shortcomings

extension to UML Systems Modeling Language (SysML) was created. In this thesis

SysML and particularly it's requirement and callout diagrams to extend the

capabilities of model are studied in Chapter 6. UML ELEMENTS AND THEIR

RELATIONS TO REQUIREMENTS. Another important aspect of defining software

that meets the customer expectations is business process modeling. To have this

aspect included in model another UML extension Eriksson-Penker Business Modeling

Profile is applied, this is discussed in detail in Chapter 4 MODELING BUSINESS

PROCESSES.

3.1 Introduction to Unified Modeling Language

The Unified Modeling Language (UML) is a family of graphical notations, which

provides system architects, software engineers, and other team members tools for

analysis, design, and implementation of software based systems as well as for

modeling business and similar processes. The UML helps engineers to specify,

visualize, and document models of software systems, including their structure and

design, in a way that meets all of these requirements.

The initial version of UML originated with three leading object-oriented methods

(Booch, OMT, and OOSE), and incorporated a number of best practices from

modeling language design, object-oriented programming, and architectural description

languages. Future revisions of UML have enhanced standard with significantly more

precise definitions of its abstract syntax rules and semantics, a more modular language

structure, and a greatly improved capability for modeling large-scale systems. [11]

In UML 2.0 it is possible to zoom out from a detailed view of an application to the

environment where it executes, visualizing connections to other applications.

Alternatively, it is possible to focus on different aspects of the application, such as the

Figure 2: UML 2.2 Diagram types

17

business process that it automates, or a business rules view. The new ability to nest

model elements supports this concept directly. [12]

Modeling almost about any type of application, running on any type and combination

of hardware, operating system, programming language, and network, is possible with

UML. It is built upon fundamental object orientation concepts including class and

operation, making it designed for object-oriented languages and environments but it

can also be used to model non- object oriented applications.

3.1.1 UML Diagrams

It is very important to distinguish between the UML model and the set of diagrams of

a system. A diagram is a partial graphical representation of a system's model. UML

diagrams represent two different views of a system model: Static (or structural) and

Dynamic (or behavioral). The static view emphasizes the static structure of the system

using objects, attributes, operations and relationships. The dynamic (or behavioral)

view emphasizes the dynamic behavior of the system by showing collaborations

among objects and changes in the internal states of objects.

UML 2.2 has 14 types of diagrams divided into these two categories. Seven diagram

types represent structural information, and the other seven represent general types of

behavior, including four that represent different aspects of interactions. These

diagrams can be categorized hierarchically as shown in Figure 2. [13]

18

3.1.2 UML Extensions by Profiles

UML profiles provide generic extension mechanism for customizing UML for

particular domains and platforms. [14] As previously mentioned, in this thesis two

extensions are used: SysML and Eriksson-Penker Business Modeling Profile.

3.2 Introduction to SysML Language

The SysML (Systems Modeling Language) is a general-purpose modeling language

for systems engineering applications that is defined as a profile of UML 2. It supports

the specification, analysis, design, verification and validation of a broad range of

systems and systems-of-systems. These systems may include hardware, software,

information, processes, personnel, and facilities. [15]

In particular, the language provides graphical representations with a semantic

foundation for modeling system requirements, behavior, structure, and parametrics.

SysML represents a subset of UML 2 with extensions needed to satisfy the

requirements of the UML for Systems Engineering as indicated in Figure 3. [16]

19

UML captures well the software aspects of the system. However, from the system

point of view also non-software components (e.g., hardware, information, processes,

personnel, and facilities) need to considered. UML cannot satisfy this need because of

its software focus only. SysML extends UML's semantics to model requirements and

parametric constraints, though only the requirement modeling of SysML is discussed

in this thesis.

3.2.1 SysML's Extensions and Omissions to UML

The most important change is that UML classes are called blocks in SysML, and the

class diagram is block definition diagram. The UML composite diagram is called an

internal block diagram in SysML [10]. Seven UML 2 diagrams are inherited from

UML and two new diagrams are introduced, these changes are illustrated in Figure 4.

Figure 3: Relationships between SysML and UML

20

SysML allocation tables support common kinds of allocations. Whereas UML

provides only limited support for tabular notations, SysML furnishes flexible

allocation tables that will support requirements allocation, functional allocation, and

structural allocation. This capability facilitates automated verification and validation

and gap analysis. This is discussed in detail in Chapter 6 UML ELEMENTS AND

THEIR RELATIONS TO REQUIREMENTS. With SysML it is possible to use

requirement diagrams to efficiently capture functional, performance and interface

requirements. If UML is solely used team is subject to the limitations of the Use Case

diagrams to define high-level functional requirements.

Figure 4: SysML Diagram Types

21

4 MODELING BUSINESS PROCESSES

4.1 Introduction

"Business processes are the activities that a commercial organisation performs in order

to carry out its business. All organisations depend for their competitiveness on the

efficiency with which their business processes operate" [17].

For any software project to achieve a commercial success over the bare technical code

complete, the solution provider must have a sufficient understanding about customer's

business processes. Unfortunately, this step is very often neglected and as a result the

software solutions are ill adjusted to support the customer's business, and instead of

being enablers in the business they tend to disable opportunities for a organisation.

This occurs because from the software provider side there is reluctance to study, so

called domain knowledge area of customer, and from customer side there is often lack

of interest to understand the software solutions [18]. Therefore, in order to narrow this

information gap and integrate the project's stakeholder's vision of the expected

outcome, modeling business processes is useful step before requirements engineering.

The extent of a needed research depends generally on the nature of the project: type,

size, complexity, criticality, and customer requirements and the chosen development

process of the software provider. For example ERP (Enterprise Resource Planning)

projects require intimate understanding of the customer's business [19]. In turn smaller

and simpler projects the time and energy spent analyzing customer's business process

can be minute [20]. Furthermore, good analyst understands that business process

model has a broader and more inclusive range than any software system being

considered. As a result, an effective business model allows clearly map the scope of

the proposed system as well as pieces of the process that must be implemented in

other ways, such as manual processes that the software system can not handle [21].

22

A business process model specification typically consist of the following elements:

• Goal of the process

• Specific inputs and outputs

• Used resources

• Events that drive or affect the process

• Activities and the order in which they are performed

Inputs and outputs often refer to data, but they can also be something that is processed

or worked upon. For example, a system requires data input and typically outputs data

in return: a report, a completed customer order, etc. Resources can be persons or parts

of a system that are involved in performing the activities. Events can be any number

of things, which trigger something that initiates a business process. For example a

deadline might trigger the start of an invoicing process. [22]

4.2 Selection of Modeling Language

When documenting the process it is very important to keep in mind that a business

process model must be in the type of a format that all stakeholders can understand it.

There exist a variety of ways to document business processes ranging from textual

descriptions to sophisticated models [21]. Four common uses of modeling languages

in business processes context are briefly introduced here: UML Use Cases, UML

Activity Diagram, Business Process Modeling Notation (BPMN), and UML Extension

Eriksson-Penker Business Modeling Profile (EPBE).

Firstly, project utilizing Rational Unified Software Development Process (RUP) or its

variants, which gives emphasis to use cases, would model processes through user

interactions alone. This can be sufficient way to describe them in many cases [21].

Secondly, the UML activity diagram can be applied to business process modeling. As

it states in the UML standard "Activities may be applied to organizational modeling

for business process engineering and workflow" [23]. But as brought out by a study

by Eloranta, Kallio, Terho (2006), the use of an activity diagram requires the modeler

to carefully select, which elements are appropriate for business modeling and it will

require the audience to be literate on the UML activity diagram notation [24].

23

Thirdly, Business Process Modeling Notation is widely used among the business

people and being designed for this sole purpose can indeed model the processes

accurately. It has it similarities to UML activity diagram but at least while writing this

these to modeling languages have not converged even though there is growing

pressure to align these two modeling languages [25].

Fourthly, the model that is utilized in this thesis is a business processing model

extension from UML, the Eriksson-Penker Business Extensions also used in some

extent in software projects [24]. It presentation is easy-to-understand and other UML

models can be conveniently linked to it in the used CASE tool [22]. In Figure 5 is

illustrated a generic structure of process model diagram using selected notation and in

Figure 6 there is an example how this is utilized to model the process of creating

business process models.

Figure 5: Illustration of a generic structure of process model diagram

analysis Process Model Generic

Business process

Even t

«goal»
Goal

Information

«outpu t»
Output

«resource»
Resource

«resource»
Resource

«ach ieve»

«supply»

«supply»

«con tro l»

24

Figure 6 shows how the triggering event for the process is the need to understand the

domain aspects of the software project better. The principal stakeholder is a person

who acts as a Business Analyst who facilitates the process by taking the information

input (hierarchy charts, manuals, existing process definitions, etc.) and using the other

resources that contribute the process model creation (a team may consist of

department heads, experts, project leads, etc.). The goal is to accurately model the

business as it is or how the team wants it to be when the system is ready. This goal is

achieved by creating a business model diagram that contains relevant information.

analysis Process Model of Creation of Process Model

Business process of Creating Business Process Model

Requi rem ent team
needs to understand

the dom a in aspects of
the SW pro ject

«goa l»
Accurate model that
effectively describe

business logicHierarchy
charts,

Manuals,
Process

definitions,
etc. «ou tput»

Business process
model of a customer

in a form analysis
diagram

«resource»
Business Analyst

«resource»
Team that contributes

business process
modeling

«ach ieve»
«con tro l»

«supp ly»

«supply»

Figure 6: Example showing how an analysis diagram is used to describe a process
related to creating a model of business processes.

25

5 MODELING REQUIREMENTS

5.1 Definition of Requirement

In engineering, a requirement is a singular documented need of what a particular

product or service should be or do. It is most commonly used in a formal sense in

systems engineering or software engineering. It is a statement that identifies a

necessary attribute, capability, characteristic, or quality of a system in order for it to

have value and utility to a user. Table 2 defines characteristics of well-defined

requirement. [27]

Table 2: Characteristics of well-defined requirement

Characteristic Explanation
Cohesive The requirement addresses one and only one thing.

Complete The requirement is fully stated in one place with no missing
information.

Consistent The requirement does not contradict any other requirement and is fully
consistent with all authoritative external documentation.

Correct The requirement meets all or part of a business need as authoritatively
stated by stakeholders.

Current The requirement has not been made obsolete by the passage of time.

Externally

Observable

The requirement specifies a characteristic of the product that is
externally observable or experienced by the user. "Requirements" that
specify internal architecture, design, implementation, or testing
decisions are properly constraints, and should be clearly articulated in
the Constraints section of the Requirements document.

Feasible The requirement can be implemented within the constraints of the
project.

Unambiguous The requirement is concisely stated without recourse to technical
jargon, acronyms (unless defined elsewhere in the Requirements
document), or other esoteric verbiage. It expresses objective facts, not
subjective opinions. It is subject to one and only one interpretation.
Vague subjects, adjectives, prepositions, verbs and subjective phrases
are avoided. Negative statements and compound statements are
prohibited.

Mandatory The requirement represents a stakeholder-defined characteristic the
absence of which will result in a deficiency that cannot be ameliorated.

Verifiable The implementation of the requirement can be determined through one
of four possible methods: inspection, analysis, demonstration, or test.

26

In the classical engineering approach, sets of requirements are used as inputs into the

design stages of product development. When requirements are described manner

outlined in Table 2 they effectively show what elements and functions are necessary

for the particular project. [27]

In SysML standard [28] requirements are defined trough Requirement Diagram. A

requirement is defined as a stereotype of UML Class. The «requirement» stereotype

represents a text based requirement it includes id and text properties. Figure 7

illustrates this. It can be extended with user defined properties e.g. verification method

and user defined requirements categories (e.g. functional, interface, performance).

5.2 Requirements Relationships and Rationale

Several requirements relationships can be specified via stereotyped dependencies in

UML that enable the modeler to relate the requirements to other requirements as well

as to other model elements. The «deriveReqt» and «satisfy» dependencies describe the

derivation of requirements from other requirements and the satisfaction of

requirements by design, respectively. The «verify» dependency shows the link from a

test case to the requirement or requirements it verifies. In addition, the UML «refine»

dependency is used to indicate that an SysML model element is a refinement of a

textual requirement, and «a copy» relationship is used to show reuse of a requirement

within a different requirement hierarchy. [29]

The «rationale» concept can be used to annotate any model element to identify

supporting rationale including analysis and trade studies for a derived requirement, a

design or some other decision. A rationale is a SysML model element that can be

req sysML Example Require...

«requi rem ent»
Requirement name

+ text = Description of ...
+ id = 112

Figure 7: Simple example of SysML requirement diagram with one requirement

27

associated with either a requirement or a relationship between requirements. As the

name implies, the rationale is intended to capture the reason for a particular design

decision. Although rationale is described here for requirements, it is a model element

that can be applied throughout the model to capture the reason for any type of

decision. [28] Example of its usage can be seen in Figure 8.

A composite requirement can contain sub-requirements in terms of a requirements

hierarchy, specified using the UML namespace containment mechanism. This

relationship enables a complex requirement to be decomposed into its containing child

requirements. A composite requirement may state that the system shall do A and B

and C, which can be decomposed into the child requirements that the system shall do

A, the system shall do B, and the system shall do C. An entire specification can be

decomposed into children requirements, which can be further decomposed into their

children to define the requirements hierarchy. These relations ships are illustrated in

Figure 8.

The “derive requirement” relationship relates a derived requirement to its source

requirement. This typically involves an analysis to determine the multiple derived

req Example Requirement Relationships

Cl ient sha l l
download l i ve T V
m etadata from
ded icated server

Requi red
m etadata for
cl ien t l ive T V
service

Channel re la ted
m etada

Channel
logo

Channel
ti tl e

Program re la ted
m etadata

Program
ti tle

Program
genre

Program tim es (i .e .
start and end tim e)

Program
descrip tion

<<rationa le>> L ive T V M etadata is
log ica l to sp l i t in to Channel and
Program parts. Channel representing
the provider (e .g . broadcaster) o f flow
d i ffe rent program s. Program s present
e .g . part o f T V series that wi l l be
ava i lab le for viewing over certa in
dura ta ion.

Figure 8: Composition of Live TV EPG client requirements and use of Rationale

28

requirements that support a source requirement. The derived requirements generally

correspond to requirements at the next level of the system hierarchy.

The satisfy relationship describes how a design or implementation model satisfies one

or more requirements. A system modeler specifies the system design elements that are

intended to satisfy the requirement.

The verify relationship defines how a test case or other model element verifies a

requirement. In SysML, a test case or other named element can be used as a general

mechanism to represent any of the standard verification methods for inspection,

analysis, demonstration, or test. Additional subclasses can be defined by the user if

required to represent the different verification methods. A verdict property of a test

case can be used to represent the verification result. The SysML test case is defined

consistent with the UML testing profile to facilitate integration between the two

profiles.

The refine requirement relationship can be used to describe how a model element or a

set of elements can be used to further refine a requirement. For example, a use case or

activity diagram may be used to refine a text-based functional requirement.

Alternatively, it may be used to show how a text-based requirement refines a model

element. In this case, some elaborated text could be used to refine a less fine-grained

model element.

A generic trace requirement relationship provides a general-purpose relationship

between a requirement and any other model element. The semantics of trace include

no real constraints and therefore are quite weak. As a result, it is recommended that

the trace relationship not be used in conjunction with the other requirements

relationships described above.

29

6 UML ELEMENTS AND THEIR RELATIONS TO REQUIREMENTS

After modeling business processes, use cases and requirements are usually

concurrently modeled. After this developers need to extend the design with diagrams

describing the structure of system i.e. architecture and other design aspects such as the

dynamics using e.g. sequence diagrams.

6.1 Use Cases

Use case diagrams are useful for requirements management when kept in mind that

they are good for capturing interaction between external user and the system.

However, there are not enough to describe exhaustively the non-functional

characteristic of the system.

The core of a use case description is about answering to a simple questions: who,

what, when and how, and being able to communicate this to the relevant stakeholders.

The who refers to one or more actors that interact with the system. The what describes

the actor's goal. The when refers to the pre- and post-requisites. When it can be started

and when it's completed. Finally, the how describes the scenario of events that are

needed to accomplish the goal. Figure 9 describes an example use case where 'Mobile

TV application downloads EPG information on it's start-up'.

Figure 9: Use case diagram describing intial download of EPG information

30

As can be seen in Figure 9 it is the user who starts the application which then triggers

the initial EPG download use case. Download of ongoing live TV show's metadata

information is accomplished (for reference see also Figure 8. Composition of Live TV

EPG client requirements and use of Rationale). Case is executed at the application

startup and it is completed when necessary EPG information has been downloaded. To

further define how this accompished, the expression power of use case can be

extended with a nested diagram such as sequence diagram.

6.2 Sequence Diagrams

A sequence diagram is an interaction diagram that shows how processes or objects

operate with one another and in what order. In parallel are vertical lines (lifelines),

they are different processes or objects that live simultaneously, and, as horizontal

arrows, the messages exchanged between them, in the order in which they occur. This

allows the specification of simple runtime scenarios in a graphical manner. Figure 10

is a nested sequence diagram that describes the interaction needed to download initial

EPG information. It describes how application components: main, user interface,

storage, EPG client communicate with EPG server to accomplish this goal.

Figure 10: Sequence diagram (nested element of use case) defining details of initial
EPG download

31

6.3 Allocations and Callout diagram

Allocation is the term used by systems engineers to denote the organized cross-

association (mapping) of elements within the various structures or hierarchies of a

user model. The concept of “allocation” requires flexibility suitable for the abstract

system specification, rather than a particular constrained method of a system or a

software design. System modelers often associate various elements in a user model in

abstract, preliminary, and sometimes tentative ways. Allocations can be used early in

the design as a precursor to more detailed rigorous specifications and

implementations. The allocation relationship can provide an effective means for

navigating the model by establishing cross relationships, and ensuring the various

parts of the model are properly integrated. The callout notation is used when

requirements do not appear on other kinds of diagrams, or when other model elements

do not appear on a requirement diagram [28]. Figure 11 presents an example of this

where in the use case presented earlier is associated with the requirements that it

realizes.

Figure 11: Callout diagram describing how 'initial EPG download' use case
implements the two sub-requirements of EPG download

32

7 CONCLUSIONS

7.1 UML Based Requirement Management Process

A typical requirement management process consists of several sub-processes:

elicitation, analysis, documentation (i.e. specification), validation, and change

control. This is valid also for the UML-RM process with the exception that

documentation is not really a separate activity, since in this UML-RM process the

model is created from beginning and updated constantly.

A requirement analyst is the main responsible for documentation efforts and the

principal owner of the requirement model [31]. Therefore, typically the analyst would

be the person that implements business process, use case, and requirement diagrams.

However, all users of the system model are applying, extending, and connecting to

these diagrams and their elements. Connecting the requirement model to a design

model is an essential to provide added value on understanding the problem to be

solved. The model that is one of the project outcomes owned by whole project team.

7.1.1 Elicitation

Gathering the requirements from stakeholders is one of the first activities that happen

in R&D projects. Figure 12 presents such a sub-process where the requirement analyst

together with the requirement team compiles an initial requirement in place. Typically

this would happen in a manner where the analyst would meet the customer in a

(series) of meetings where new product features or use cases would be discussed. [31]

33

An existing product's requirement specifications, market studies, customer requests

can help the analyst to determine what are the initial requirements for a software

product. A good analyst acts pro-actively to help the users to articulate the system

capabilities they need to meet their business objectives. Users naturally emphasize the

system’s functional requirements, but discussion is needed to include quality

attributes, performance goals, business rules, external interfaces and constraints.

A well done elicitation can significantly reduce the need for costly change requests

later in the project.

An organization must select how many times the elicitation sub-process happens in

the lifetime of the project: only once in the beginning of the project or at the start of

each iteration of development. If the development process is similar to the waterfall

model then it would be natural to try to describe all the requirements in one-time

effort and handle possible changes through a change control process. On the other

hand, if the selected process has relatively short iterations, then elicitation would be

happening in the beginning of each iteration.

Depending on the project complexity an output contains a varying number of business

processes, use case and requirement diagrams.

Figure 12: Requirement elicitation process diagram

34

7.1.2 Analysis

When elicitation is completed requirements need to be checked for completeness and

consistency. This sub-process is effectively a review process where the team inspects

the requirement model. Experts from development, testing and other functional areas

of project are involved in auditing and approving the requirement set.

In practice, this could be a scheduled meeting with given material (initial requirement

model) and time to give review comments that are discussed in the review meeting

where analyst could act as a chairperson and a secretary.

Review participants should look for derived requirements that are a logical

consequence of the customers requests, as well as hunting for those implicit

requirements that they expect but haven’t verbalized. Attention should be placed on

vague, weak words that cause ambiguity and confusion. Auditors should point out

conflicting requirements and areas that need more detail. Functional requirements

should be described in a suitable level of detail for the developers.

Figure 13: Requirement analysis process diagram

35

After one or more review meetings and approval from the customer and project

management the requirement model should be stable enough to be 'frozen' i.e. all the

new requirements or changes to existing ones are implemented under change control

process.

7.1.3 Validation

Analysis and validation sub-processes aim for the same goal: Ensuring that the

documented requirements satisfy the customer needs and that they are clear, complete,

correct, feasible, necessary, traceable, unambiguous, and verifiable. The subtle

distinction of the two sub-processes is in the time line of the activity. An analysis

needs to happen after elicitation without the existing design diagrams, code and test

cases. Whereas validation happens when the design model, implementation and test

model are at least partially ready. Figure 14 describes such a process.

In practice, the requirement model is validated by creating the development model

based on the analyzed requirement model. This is a joint effort of the developers,

Figure 14: Requirement validation process diagram

36

analyst, and project manager. Furthermore, there might arise a need to involve

customer or other stakeholders to support the process and adjust certain aspects.

This mapping of requirement model and development is discussed in Chapter 6. UML

ELEMENTS AND THEIR RELATIONS TO REQUIREMENTS. Typically

developers would create embedded sequence diagrams to use cases, testers would

create (system) test cases from use cases and UI designers would create flows based

on use cases and user interface related requirements, etc. Diagrams that describe

structural aspects (i.e. architecture) would be traced into requirement elements so each

module would be responsible for fulfilling the required to functionality. If those

connections were not to be found than either there would be a missing requirement or

redundant code in a system

A validated model accurately pictures the system and in the process of update the

project team can learn many things. Such as that the whole team can intimately

understand the relation between the implementation and the customer requirement.

Having a project team to work integrated for the same cause and avoiding duplicate

work is a challenge in all projects especially in multi-site and technically demanding

ones [32]. The requirement validation sub-process contributes enormously to the

integrity of project.

Furthermore, a properly validated model gives a strong promise that the product can

be built and delivered or if it actually reveals severe challenges it aids the project

management to realize the risk of failure earlier in the project.

7.1.4 Change Control

There are entire books on this topic alone, managing change in a controlled manor is

demanding in the pressures of project life. In the industry there is widely spread

culture for NOT accepting the self-evident fact that change causes impact. Typical

phenomena of this is a scope creep where for example customer pushes for scope

changes and would not accept the affect on the delivery time and budget. These can be

avoided if the agreement for the project specifies a change control process. An

example of such a process is presented in Figure 15.

37

The activating event for change control process is e.g. customer's realization that there

is valid reason to add or remove or change some of the initial requirements. Typically

meeting for such purpose would be arranged and the impact of the change is

estimated. Actually, UML-RM process way of working gives project team a

significant help on making sound decisions. This is because requirement are mapped

into use cases and software components thus change in one case/requirement can be

traced into module level and the work needed to accommodate the extra work can

estimated.

Also, to ensure that change can be implemented in proper fashion basic arrangement

for version control over the requirement model needs to be in place.

7.2 Perceived Benefits of the UML-RM Process

The used UML-RM process solves many common problems occurring in traditional

requirement management processes such as traceability. For example list based tools

rely on requirement ids to be attached to design and implementation components but

these ids have to be manually inserted into design documents making linking prone

for breaking. UML-RM has strong and easy to follow inter-connectivity between

Figure 15: Requirement change control process diagram

38

requirement, design, and software components. This allows managers to check which

implementation component is responsible of what requirement. This again reduces

wasted effort on the project and makes teams and product more integrated.

Modeling also allows team to check the design before costly implementation work is

started reducing risk and wasted effort.

7.3 Limitations of the UML-RM Process

Since this process is based on UML notation it requires a project team to understand

the relevant diagrams. For example a customer is required to understand only simple

use case and requirement diagrams. Addition to these two diagrams project

management should also understand basic structural diagrams describing the

architecture. Whereas the developers should know how to apply for example sequence

diagrams to model interaction between components and class diagrams to specify the

system. UML is widely taught in universities so many professionals are familiar with

it. As a practical note requirement analyst might still need to act as a instructor to the

customer about the use case and requirement diagram notation when performing

requirement elicitation.

UML-RM is applicable to any implementation language and fitting for many

development processes and types of projects. The presented process is a custom fusion

of existing Use Case driven (ICONIX) and SysML methodologies. It applies well in

the software development areas were complexity is high for example multimedia

system projects.

39

REFERENCES

[1] Software Engineering. March 1, 2010 [online].

http://en.wikibooks.org/wiki/Software_Engineering

[2] Alain, Abran and James, Moore. Guide to the Software Engineering Body of

Knowledge (SWEBOK 2004). IEEE. March 1, 2010 [online].

http://www.computer.org/portal/web/swebok/htmlformat

[3] Bashar, Nuseibeh and Steve, Easterbrook. Requirements Engineering: A

Roadmap. 2000.

http://mcs.open.ac.uk/ban25/papers/sotar.re.pdf

[4] Wikipedia. Requirements management. March 1, 2010 [online].

http://en.wikipedia.org/wiki/Requirements_management

[5] The Standish Group. Report: CHAOS. 1995. April 13, 2010 [online].

http://www.projectsmart.co.uk/docs/chaos-report.pdf

[6] Wikipedia. IBM Rational Unified Process. April 13, 2010 [online].

http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process

[7] Karl E. Wiegers. Requirements When the Field Isn’t Green. April 27, 2010

[online].

http://www.processimpact.com/articles/reqs_not_green.pdf

[8] Benoît Marchal. Working XML: UML, XMI, and code generation, Part 4. May

11, 2010 [online].

http://www.ibm.com/developerworks/xml/library/x-wxxm26/

[9] Sanford Friedenthal, Alan Moore, and Rick Steiner. Object Management

Group. OMG Systems Modeling Language (OMG SysML™) Tutorial. May 11,

2010 [online].

 http://www.omgsysml.org/INCOSE-2008-OMGSysML-Tutorial-Final-revb.pdf

40

[10] Tim Weilkiens. Systems engineering with SysML/UML: modeling, analysis,

design. Morgan Kaufmann. 2007.

[11] OMG Unified Modeling Language, Infrastructure. Version 2.2. February 2009.

May 11, 2010 [online]

http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/

[12] Object Management Group. Introduction To OMG's Unified Modeling

Language. July 2005. May 11, 2010 [online].

http://www.omg.org/gettingstarted/what_is_uml.htm

[13] Wikipedia. Unified Modeling Language. May 11, 2010 [online].

http://en.wikipedia.org/wiki/Unified_Modeling_Language

[14] Wikipedia. Profile (UML). May 11, 2010 [online].

http://en.wikipedia.org/wiki/Profile_(UML)

[15] SysML FAQ. May 11, 2010 [online].

http://www.sysmlforum.com/FAQ.htm

[16] The Official OMG SysML site. May 11, 2010 [online].

http://www.omgsysml.org/

[17] Peter Henderson. Systems engineering for business process change:

collected papers from the EPSRC research programme: Business Processes,

Legacy Systems and a Fully Flexible Future. Page 2. Springer. 2000.

[18] Sten and Per Sundblad. Requirements Management

Software Directory. Microsoft Architect Journal: Business Improvement

Through Better Software Architecture. May 11, 2010 [online].

http://msdn.microsoft.com/en-us/library/bb266336.aspx

[19] Štemberger, Mojca Indihar and Kovacic, Andrej. The Role

41

of Business Process Modelling in ERP Implementation Projects.

This paper appears in: Computer Modeling and Simulation, 2008. UKSIM 2008.

Publication Date: 1-3 April 2008. pages: 260-265.

[20] Mohan Babu K. Is IT-Business/Domain Knowledge overrated? May 11, 2010

[online].

http://www.infosysblogs.com/managing-offshore-

it/2007/02/is_businessdomain_knwledge_ove_1.html

[21] IBM. Slack Sally. Understanding business process modeling. August 2008. May

11, 2010 [online].

http://download.boulder.ibm.com/ibmdl/pub/software/dw/

architecture/ar-undprocmod/ar-undprocmod-pdf.pdf

[22] Sparx Systems. UML TUTORIALS: THE BUSINESS PROCESS MODEL. May

11, 2010 [online].

http://www.sparxsystems.com/downloads/whitepapers/

The_Business_Process_Model.pdf

[23] OMG Unified Modeling Language, Superstructure. Version 2.2. p. 332.

February 2009. May 18, 2010 [online]

http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

[24] Eloranta, Kallio, and Terho: A Notation Evaluation of BPMN and UML AD.

2006. May 18, 2010 [online]

http://www.soberit.hut.fi/T-86/T-86.5161/2006/BPMN_vs_UML_final.pdf

[25] IBM. Steven A. White. Process Modeling Notations and Workflow Patterns.

BPTrends. March, 2004. May 18, 2010 [online]

http://www.bptrends.com/publicationfiles/03-04%20WP%20Notations%20and

%20Workflow%20Patterns%20-%20White.pdf

[26] Gurau, Calin. Restructuring the Marketing Information System for eCRM:

An Application of the Eriksson-Penker Method.

42

[27] Wikipedia. Requirement. May 18, 2010 [online].

http://en.wikipedia.org/wiki/Requirement

[28] OMG Systems Modeling Language (OMG SysML™). Version 1.1.

November 2008. July 26, 2010 [online]

http://www.omg.org/spec/SysML/1.1/changebar/PDF/

[29] Matthew Hause. The SysML Modelling Language.

September 2006. July 26, 2010 [online].

http://www.omgsysml.org/The_SysML_Modelling_Language.pdf

[30] Sanford, Friedenthal; Alan, Moore and Rick Steiner. A Practical Guide to

SysML: The Systems Modeling Language. Morgan Kaufmann. 2008.

[31] Karl E. Wiegers. So You Want To Be a Requirements Analyst? 2003. July 27,

2010 [online].

http://www.processimpact.com/articles/be_analyst.pdf

[32] Harold, Kerzner. Project Management: A Systems Approach to Planning,

Scheduling. and Controlling. Ninth Edition. Wiley. 2006.

