
Helsinki Metropolia University of Applied Sciences 
Degree Programme in Information Technology  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 

Fidelis Nwobuwa Ololube 
 

Development of Reporter’s Video Recorder Based on 
Android 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Master of Engineering Thesis, 29 September 2010 
 Supervisor:                Kari Salo, Principal Lecturer 
 Language Advisor:   Taru Sotavalta, Senior Lecturer 
 



 2

 
Helsinki Metropolia University of Applied Sciences                Abstract
     

 
Author 

Title 

 

Number of Pages 
Date 

 
Fidelis Nwobuwa Ololube 

Development of Reporter’s Video Recorder Based on Android 
 
 
74  
29 September 2010 
 

 
Degree Programme 

 
Information Technology 
 

 
Degree 
 

 
Master of Engineering 
 

 
Supervisor 

 
Kari Salo, Principal Lecturer 

 
The main goal of this project was to develop an easy to use Android-based video recorder 
that would be capable of recording events, collecting the required meta-data automatically 
and uploading the file to the server with the availability of WLAN. This project was 
carried out for Sanoma Oy as part of  the Next Media research program. 
 
In this project, the mobile side and the server side was developed.  The Android SDK 
incorporated with Eclipse IDE was used to develop the mobile side while PHP was used 
for the server side. The application also made use of some Android-specific APIs such as 
the location-based API, the media API, and the network API. The project serves as a 
prototype. The first version has been translated into the Finnish language and published in 
Android Market on the 6 June 2010, with the name “Hyperlocal Videointi”. 
 
 
The Application was demonstrated to the Sanoma Oy staff, and a modified version of the 
application was evaluated by researchers from the Tampere University of Technology, the 
unit of Human-Centered Technology, and Managing Editor from Sanoma 
Kaupunkilehdet.  Positive feedback was given as a result of the evaluation. The project 
creates easier possibilities for future developers who might show an interest in this 
project. 
 
 
Keywords Android, Video View, Intent, Broadcast Receiver, PHP, ADT, media 

recorder, location-based, upload, download. 
 
 
 
 
 



 3

Acknowledgements 
 
This project was carried out as a partial fulfillment of the requirements in achieving the 

Master of Engineering degree in Information Technology. The project was developed 

as part of the TEKES sponsored NextMedia Research Program. 

 

I would like to thank all those who have helped me morally and otherwise in making 

this project a success. I especially want to thank my supervisor, Mr. Kari Salo, for his 

surjection and guidance in this project work, and to Mr. Matti Peltoniemi, for providing 

and configuring the school’s server which was used for the server-side development of 

the application. 

 

My deepest gratitude goes to my family for their encouragement, love and support 

towards me, especially to my father, H.R.H Eze Dr. A.O Ololube (JP) for his love 

towards all his children and his ever-ready attitude towards giving good education to 

his children. From my mother, H.R.H Mrs Comfort Ololube, I simply cannot ask for 

more, I have no words to express the love she has for her children. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4

CONTENTS 
 
Abstract 
 
Abbreviations............................................................................................. 6 
 
1 Introduction............................................................................................. 8 
 
2 Co-creations ............................................................................................ 9 

2.1 Overview ............................................................................................................ 9 
2.2 The Foundation of co-creation ............................................................................ 9 
2.3 Co-creation Business Models ............................................................................ 10 
2.4 User-generated Content .................................................................................... 11 
2.5 Citizen Journalism ............................................................................................ 13 

 
3 Application Development Environments............................................... 15 

3.1 Overview .......................................................................................................... 15 
3.2 Installations and Plug-in ................................................................................... 16 
3.3 Android Architecture ........................................................................................ 17 
3.4 Android Application Life Cycle ........................................................................ 19 
3.5 Android Application Framework ...................................................................... 21 

3.5.1 Activity Manager ....................................................................................... 21 
3.5.2 Content Provider ........................................................................................ 23 
3.5.3 Resource Manager ..................................................................................... 23 
3.5.4 Location Manager ...................................................................................... 24 
3.5.5 Notification Manager ................................................................................. 25 

 
4 Media API and Networks ...................................................................... 26 

4.1 Overview .......................................................................................................... 26 
4.2 Using the Media API ........................................................................................ 26 
4.3 Media Player .................................................................................................... 27 
4.4 Media Recorder ................................................................................................ 28 
4.5  WLAN Connectivity ........................................................................................ 30 

4.5.1 Broadcast Receiver .................................................................................... 31 
4.5.2 Background Services ................................................................................. 31 
4.5.3 Communication Protocols .......................................................................... 32 
4.5.4 Requirements to Port Files into YouTube ................................................... 33 

 
5 Reporter’s Video Recorder Based on Android ...................................... 37 

5.1 Overview .......................................................................................................... 37 
5.2 Requirements .................................................................................................... 37 
5.3 Design .............................................................................................................. 38 
5.4 Implementation ................................................................................................. 42 

5.4.1 Application Menu ...................................................................................... 42 
5.4.2 Video Recorder .......................................................................................... 44 
5.4.3 Audio Recorder .......................................................................................... 46 



 5

5.4.4 Video Player .............................................................................................. 48 
5.4.5 Audio Player .............................................................................................. 50 
5.4.6 Sending file to the server ............................................................................ 51 
5.4.7 Search for WLAN ...................................................................................... 58 
5.4.8 Deleting file ............................................................................................... 59 
5.4.9 Application Manifest File........................................................................... 60 

5.5 Feedback and Future Implementations .............................................................. 62 
 
6 Conclusion ............................................................................................ 63 
 
References ............................................................................................... 65 
 
Appendices .............................................................................................. 67 

Appendix A: Application main view ....................................................................... 67 
Appendix B: Video recording ................................................................................. 69 
Appendix C: Uploading files .................................................................................. 71 
Appendix D:  Downloading video files ................................................................... 73 
Appendix E: Playing Video .................................................................................... 74 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6

Abbreviations 

 

3G Third Generation 

3GPP 3rd Generation Partnership Project 

ADT Android Development Tool 

API Application Programming Interface 

BBC British Broadcasting Corporation 

CBS Columbia Broadcasting System 

CGM Consumer generated media 

EDGE Enhanced Data rates for Global Evolution 

GPRS General packet radio service 

GPX GPX Exchange Format 

HTTP Hypertext Transfer Protocol 

IDE Integrated development environment 

IP Internet Protocol 

JAR Java Archive 

JDK Java Development Kit 

JPEG Joint Photographic Experts Group 

KML Keyhole Markup Language 

LRU Least recently used 

MP3 MPEG-1 Standard-based lossy audio compression method 

MPEG4 Motion Picture Expert Group 
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OECD Organization for Economic Co-operation and Development 

OGG An open standard multimedia container file format 
 

OS X 
 

Mac OS X version of operating system 
 

PHP Hypertext Preprocessor 

PNG Portable Network Graphics 

SDcard Secure Digital Card 

SDK Software Development Kit 

SMS Short Message Service 

SMTP Simple Mail Transfer Protocol 

TCP Transmission Control Protocol 

UCC User created content 

UGC User generated content 

UI User Interface 

UMG Universal Music Group 

URL Uniform Resource Locator 

VM Virtual Machine 

Wi-Fi A trademark of the Wi-Fi Alliance 

WLAN Wirless Local Area Network 

XML Extensible Markup Language 

XMPP Extensible Messaging and Presence Protocol 
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1 Introduction 

 
Mobile phones are among the most used electronic devices due to their portability and 

assistance to mankind. The importance is not only for the use of calling loved ones and 

colleagues but also for the numerous applications that can be installed in it. The 

possibility of creating a quality video is one of the most interesting applications that a 

modern hand-set has to offer. 

Content generation becomes more interesting when video clips are included. 

Communicating with the audience on-line has become of great interest to 

establishments around the world. This project aims to provide a better way of making 

work easier for reporters, citizen media, freelancers and many other business sectors to 

provide and share more detailed information with their clients. Co-creation opens a new 

collaborative ideology where establishments do not only have to imagine the needs of 

their clients but also involve them in the development process. The possibility of 

effectively handling user-generated content is one of the strengths of this type of work. 

The Android mobile platform provides a media framework that helps developers 

customize and add greater efficiency to their application. Android is a software stack 

for mobile devices that run on top of Linux Kernel. Android comprises an operating 

system, middleware and key applications. It was first developed by Android Inc, which 

was later bought by Google and then by the Open Handset Alliance. The location-based 

application program interface (API), Notification API, Networking API and other APIs 

are used in this project.  

The goal of this project is to develop an easy-to-use Android-based video recorder that 

would be capable of collecting the required meta-data automatically and upload the 

data to a server with the availability of WLAN. 
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2 Co-creations 

2.1 Overview 

Co-creation is a form of market or business strategy that focuses on the generation and 

ongoing realization of mutual firm-customer value. It views markets as forums for 

firms and active customers to share, combine and renew each other's resources and 

capabilities to create value through new forms of interaction, services and learning 

mechanisms. This makes a clear difference from the traditional active firm-passive 

consumer market construct of the past. Values from co-creation experiences are 

projected in the form of personalized, unique experiences for the customer (value-in-

use) and ongoing revenue, learning and enhanced market performance drivers for the 

firm (loyalty, relationships, customer word of mouth). 

 Value is co-created with customers if and when a customer is able to personalize his or 

her experience using a firm's product-service proposition to a level that is best suited to 

get his or her job(s) or tasks done and which allows the firm to derive greater value 

from its product-service investment in the form of new knowledge, higher 

revenues/profitability and/or superior brand value/loyalty [1]. An example of co-

creation includes Lego, Linux, Skype, Wikipedia, and E-bay. 

2.2 The Foundation of co-creation 

The key building blocks of co-creation for business have been identified to be the 

following: dialogue, access, risk assessment and transparency [2, 5; 3, 4]. 

 Dialogue - facilitates knowledge sharing and a shared level of understanding 

between the parties involved. The focus of the customer is not only on the 

ownership of the product but also on the access to desirable experiences. 

 Risk assessment - is a critical step in all co-creation activities to ensure that 

client input is being encouraged and utilized appropriately. Since companies 

and consumers are involved in the co-creation of values, consumers demand 

more information about the potential risks of goods and services, which also 

implies that they bear more responsibilities of dealing with those risks.  
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 Transparency – Clients need reassurance that their input and ideas will be 

considered equitably when materials and systems are being planned and 

designed. The fact that a company’s information is readily accessible to the 

consumer makes it necessary to create trust between the two parties. 

 

In view of initiating a co-creative experience to engage a site visitor or client, some 

basic principles have to be adhered to for efficiency and clarity. These include the 

following: 

 Value and acknowledge a site visitor’s input. 
 Provide easy, accessible means to communicate ensuring that he/she know 

where to respond without glitches. 
 Clearly explain what is needed from he/she, ensure that it is easy for them to 

answer the questions or give input on an idea. 
 Allow all clients to give input; the next great idea might eventually come from 

there. 
 Prove to be listening; keep them up to date on how their input is being applied. 
 Make the process enjoyable and meaningful. 
 Acknowledge their input publicly; let others know how helpful they have been. 
 Keep them engaged; respond to them, both privately and publicly [2, 6]. 

 
 
 
2.3 Co-creation Business Models 

 Business models are the way one earns revenue from customers and they are defined 

by the following principles: target market, value proposition, position in value chain 

and network, revenue model and cost structure, and competitive strategy. Putting the 

business model into the following components will allow one to analyze how co-

creation will fit the model. 

 

 Target Market 

Any market can be a target. Some markets are better fit for co-creation firms, such as 

markets with easily modifiable products. Many software manufacturers fall into this 

category, especially those that serve software as a service.  Google and Salesforce are 

examples of companies that can rapidly develop and change software depending on 

customer requirements and satisfaction.  
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 Value proposition 

The value proposition involves the firm providing the co-creation experience to the 

consumer.  Here, the customer connection, customer understanding or customer base 

can be a strong value proposition for co-creation firms.  

 

 Position in value chain and network 

Co-creation firms can be anywhere in the value chain.  This is especially true if the 

company has developed a distinct relationship with the customer.  This issue must be 

different from conventional firms.  

 

 Revenue model and cost structure 

This is the most significant factor for co-creation. Because several different participants 

literally co-create value at co-creation business models, it is not easy to calculate the 

portion of a contribution from each participant and to distribute value or revenue to 

each.  This will be examined within the administrative and software developer arm of 

an organization.  

 

 Competitive strategy 

Co-creation firms have tight relationships with customer groups through its co-creation 

experience. This relationship positively affects switching costs and lock-in of the 

customer.  Also, co-creation business tends to have strong network effects [3, 5-6]. 

 
 
2.4 User-generated Content 
 
User-generated content (UGC), also known as consumer-generated media (CGM) or 

user-created content (UCC), refers to various types of media content, accessible by the 

public, which is produced by end-users. This term entered mainstream usage during 

2005 having arisen in web publishing and new media content production circles. It is 

used for a wide range of applications including problem processing, news, gossip and 

research, reflecting the expansion of media production through new technologies that 

are accessible and affordable to the general public. All digital media technologies are 
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included, such as question-answer databases, digital video, blogging, pod casting, 

mobile phone photography and wikis. In addition to these technologies, user generated 

content may also employ a combination of open source, free software, and flexible 

licensing or related agreements, to further reduce the barriers to collaboration, skill-

building and discovery. 

 

 

Often UGC is partially or totally monitored by website administrators to avoid 

offensive content or language, copyright infringement issues, or simply to determine if 

the content posted is relevant to the site's general theme. However there has often been 

little or no charge for uploading user-generated content.  

 

User-generated content marked a shift from media organizations creating online 

content to providing facilities for amateurs to publish their own content. It has also 

been characterized as 'Conversational Media', a two-way process of publishing content. 

Conversational or two-way media is a key characteristic of the so-called Web 2.0 

which encourages the publishing of one's own content and commenting on other 

people's. The role of the passive audience therefore has shifted since the birth of the 

New Media, and an ever-growing number of participatory users are taking advantage of 

the interactive opportunities, especially on the Internet, to create independent content 

[4].  

 

According to the Organization for Economic Co-operation and Development (OECD), 

the three central ideas for UGC are specified as follows: 

 
 Publication requirement: While UGC could be made by a user and never 

published online, the focus is on the work that is published in some context, be 

it on a publicly accessible website or on a page on a social networking site, only 

accessible to a select group of people (e.g. fellow university students). This is a 

useful way to exclude email, a two-way instant message which is referred to an 

individual only.  
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 Creative effort: A certain amount of creative effort was put into creating the 

work or adding value to existing works. UGC also has a collaborative element 

to it, as in the case of website users editing collaboratively. If a user uploads 

his/her photographs, however, expresses his/her thoughts in a blog, or creates a 

new music video, this could be considered UGC. However the minimum 

amount of creative effort is hard to define and depends on the context. 

 

 Creation outside of professional routines and practices: User generated 

content is generally created outside of professional routines and practices. It 

does not necessarily require the institutional or a commercial market context. In 

extreme cases, UGC may be produced by non-professionals without the 

expectation of profit or remuneration. Motivating factors include: connecting 

with peers, achieving a certain level of fame, notoriety, or prestige, and the 

desire to express oneself [4].  

 
 
2.5 Citizen Journalism 
 
Citizen journalism is also known as public, democratic or street journalism. This 

concept is for members of the public “playing an active role in the process of 

collecting, reporting, analyzing and disseminating news and information,”. The aim of 

this participation is to provide independent, reliable, accurate, wide-ranging and 

relevant information that a democracy requires. This concept is different from the one 

that is practiced by the professional journalism (community journalism or civic 

journalism), or the form of journalism whereby professional and non-professional 

journalists work together (collaborative journalism) [5]. 

 

The idea behind citizen journalism is that people without professional journalism 

training can use the tools of modern technology and the global distribution of the 

Internet to create, augment or fact-check media on their own or in collaboration with 

others. This spans from writing a city council meeting on a blog or online forum to 

fact-checking a newspaper article from the mainstream media and pointing out factual 
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errors or bias from it, or making a video record of a similar event and post it on a site, 

for example YouTube [6]. 
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3 Application Development Environments 

3.1 Overview 

Android applications, like most mobile phone applications, are developed in a host-

target development environment. In other words, one can develop an application on a 

host computer (where resources are abundant) and download it to a target mobile phone 

for testing and ultimate use. Applications can be tested and debugged either on a real 

Android device or on an emulator. For most developers, using the emulator is easier for 

initial development and debugging, followed by final testing on real devices [7]. 

Testing an application on the emulator is almost the same as testing it on a real device, 

except for some certain features that are limited on the emulator, such as video, which 

cannot be viewed properly like the real device, location-based application, which will 

require a GPX or KML file to simulate the movement of the device, and some few 

others. In developing an Android application, the required tools will be used to set up 

an appropriate development environment on a computer. Linux, Windows and OS X 

support the development environment. This project used Windows Vista as the 

development platform. The Android SDK supports several integrated development 

environments (IDEs), but for the purpose of this project, Eclipse was considered, due to 

the fact that it is best integrated with the Android SDK and it is free. Eclipse IDE, 

Sun’s Java Development Kit (JDK), Android Software Developer’s Kit (SDK) and 

Android Development Tool (ADT) are what is needed to set up the development 

environment. 

 

 

 

 

 

 



 16

3.2 Installations and Plug-in 

 For an efficient setup of the development environment, Android SDK requires JDK 

version 5 or version 6. This can be downloaded from the list of Java products. 

Assuming that Eclipse is already installed properly in a computer, the Android SDK is 

now set to be installed. Android SDK is distributed through the Google web site. It 

needs to be reviewed and terms of the license need to be accepted to continue. Details 

of the installation are all specified depending on the platform to be used.  

 
Figure 1. Android sdk download [8]. 
 

Figure 1 shows various Android SDKs as specified on the Google website. Android 

SDK comes with some sample applications that would help developers acquaint 

themselves with the basic concepts of the programming. Developers can also build 

upon the sample application as an existing program. Sometimes, the best way to learn 

how things are done is to look at some sample codes. On the Android developers site 

the source code of some sample Android applications that are included in the Android 

SDK could also be downloaded. Each version of the Android platform available for the 

SDK includes a full set of sample applications (which may vary between different 

versions of the platform). [9] 
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3.3 Android Architecture  

Android is ship with a set of core applications including an email client, SMS program, 

calendar, maps, browser, and contacts. The applications are written using the Java 

programming language. By providing an open development platform, Android offers 

developers the ability to build extremely rich and innovative applications. Developers 

are free to take advantage of the device hardware, access location information, run 

background services, set alarms, add notifications to the status bar, among others. 

Developers have full access to the same framework APIs used by the core applications. 

The application architecture is designed to simplify the reuse of components; any 

application can publish its capabilities and any other application may then make use of 

those capabilities (subject to security constraints enforced by the framework). This 

same mechanism allows components to be replaced by the user. Android includes a set 

of C/C++ libraries used by various components of the Android system. These 

capabilities are exposed to developers through the Android application framework. 

 

Figure 2. Android Architecture [10]. 
 

Figure 2 shows Android architecture from the Kernel level to the application level. This 

also includes a set of core libraries that provides most of the functionalities available in 

the core libraries of the Java programming language. Every Android application runs in 
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its own process, with its own instance of the Dalvik virtual machine. Dalvik has been 

designed so that multiple instances can efficiently run on a single device. It executes 

files in the Dalvik Executable (.dex) format which is optimized for minimal memory 

footprint. The VM is register-based, and runs classes compiled by a Java language 

compiler that have been transformed into the .dex format by the included "dx" tool. The 

kernel also acts as an abstraction layer between the hardware and the rest of the 

software stack [10]. 

 

Dalvik Virtual Machine 

Dalvik is the name of Android’s virtual machine. It was named by Bornstein after the 

fishing village of Dalvik in Eyjafjörður (Iceland), where some of his ancestors lived. As 

explained in section 3.3, it is an interpreter-only virtual machine that executes files in 

the Dalvik Executable (.dex) format, a format that is optimized for efficient storage and 

memory-map able execution. The virtual machine is register-based, and it can run 

classes compiled by a Java language compiler that have been transformed into its native 

format using the included "dx" tool. The VM runs on top of a Linux 2.6 kernel, which it 

relies on for underlying functionality (such as threading and low level memory 

management). The DalvikVM was also optimized to be running in multiple instances 

with a very low memory-footprint. Several VMs protect ones application from being 

dragged down by another crashed Application [11]. Unlike Java virtual machine 

(Stack-based Virtual Machine) found in other desktop computers, DalvikVM is 

register-based virtual machine which suits well for mobile processors. Besides, 

registered-based VM provides faster execution time. 
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3.4 Android Application Life Cycle 

An application life cycle consists of the steps that the processes of the application must 

follow from execution to termination. Every application, regardless of the language it 

was written in, has a specific life cycle, and Android applications are no exception. All 

of the running processes are watched by Android and, depending on how the activity is 

running (that is, a foreground activity, background activity, and so forth), Android may 

choose to end the activity to reclaim needed resources. The cycle starts when an 

Android application is created, the processes are started, events are fired, processes are 

stopped, and the application is destroyed [12]. 

 
Unlike most traditional environments, Android applications have no control over their 

own life cycles. Instead, application components must listen to changes in the 

application state and react accordingly, taking particular care of being prepared for 

untimely termination. The Android application runs in its own process, this implies that 

it runs a separate instance of Dalvik. Memory and process management of each 

application is handled exclusively by the runtime. Android aggressively manages its 

resources, ensuring that the device remains responsive. This means that processes (and 

their host applications) will be killed, without warning if necessary, to free resources 

for higher-priority applications, generally those that are interacting directly with the 

user at the time [13, 50]. 

 

In Android platform, applications are run as a separate Linux process. So the 

application lifecycle is closely related to the process lifecycle. The application process 

lifecycle is handled by the system depending on the current system memory state. In 

the case of low memory, the system kills some less important process. The process 

importance is decided depending on the state of the process components [14]. The 

process at which the user is currently using is the “Foreground process”. This process is 

at the top of the stack in the activity. It begins in an activity when the “onResume ( )” 

method is been called. This priority could be giving to a Broadcast Receiver by passing 

execution to the “onRecieve ( )” method and also to a service by executing callback 

functions such as “onCreate ( )”,” onStart ( ) “or “onDestroy()”. 
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A visible process is one that does not have any foreground components, but still can 

affect what the user sees on the screen. A process is considered to be visible if it hosts 

an activity that is not in the foreground, but is still visible to the user (its onPause ( ) 

method has been called). This may occur, for example, if the foreground activity is a 

dialog that allows the previous activity to be seen behind it, and also if it hosts a service 

that is bound to a visible activity. A visible process is considered extremely important 

and will not be killed unless doing so is required to keep all foreground processes 

running. [15]. 

 

Provided there is enough memory to accommodate other processes such as the 

foreground and visible processes, the service process could be used to do other things 

that are useful to the user, such as downloading files from the Internet or playing music 

while the user is busy interacting with other process. This works in the system in a way 

that the user does not see it. An empty process is one that does not hold any active 

application components. The only reason to keep such a process in the cache is to 

improve startup time the next time a component needs to run in it. The system often 

kills these processes in order to balance the overall system resources between process 

caches and the underlying kernel caches [15]. 

A background process holds the activity that is not currently visible to the user. This 

implies that the onStop() method of such an activity has been called. In order to reclaim 

memory for other processes, the background process can be killed. Since there could 

possibly be many background processes running at a time, an LRU (least recently used) 

list is made to ensure that the most recently viewed activity process is to be the last to 

be killed. 
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3.5 Android Application Framework 

Android provides an open development platform that gives developers the opportunity 

to take advantage of for example the device hardware, access location information, run 

background services, add notification to the status bar, among others. Since full access 

to the framework APIs is given to developers and the application architecture is 

designed to simplify the reusability of the components, any application can publish its 

capabilities. Any other application may then make use of those capabilities (subject to 

security constraints enforced by the framework) [10]. 

 

3.5.1 Activity Manager 

Activity Manager is a project management tool that is simple to use, lightweight, very 

efficient and customizable. It features collaborating repository administration, tasks 

repository administration, contributions management (activity management), and an 

extensible report facility (with built-in templates). It allows one to build and maintain a 

hierarchical task tree [16]. In Android the activity manager manages the life cycle of 

the application. This is managed as an activity stack when a new activity is started, it is 

kept on top of the stack and it becomes the running activity. 

The essential states are specified as follows: 

 If an activity is on the foreground of the screen (at the top of the stack), it is 

active or running.  

 If an activity has lost focus but is still visible (that is, a new non-full-sized or 

transparent activity has focus on top of your activity), it is paused. A paused 

activity is completely alive (it maintains all state and member information and 

remains attached to the window manager), but can be killed by the system if the 

system is in extreme low memory situations.  
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 If an activity is completely obscured by another activity, it is stopped. It still 

retains all state and member information, however, it is no longer visible to the 

user so its window is hidden and it will often be killed by the system when 

memory is needed elsewhere.  

 If an activity is paused or stopped, the system can drop the activity from 

memory by either asking it to finish, or simply killing its process. When it is 

displayed again to the user, it must be completely restarted and restored to its 

previous state [17].  

Figure 3 below shows the Activity life cycle.  

 

 

Figure 3. Activity life cycle [17]. 
 

Figure 3 shows the flow chart of an activity life cycle from the point of start to the 

point of termination. 
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3.5.2 Content Provider 

In the Android application, data can be stored in files, in the SQLite database or in an 

other mechanism. Classes that implement a standard set of methods letting other 

applications store and retrieve the type of data they handle are known as content 

providers. This is useful when there is need for an application to share data with other 

applications [11, 18]. 

In view of providing an avenue for data to be shared across an application, Android 

ship a number of content provides for common data types such as audio, video, images, 

and personal contact information. They can be queried for the content they hold or they 

can be modified, and it is also possible to create once own content provider. In any case 

some content providers demand that proper permission be taken before they can be 

accessed [18]. 

3.5.3 Resource Manager 

The resources required in an application development are handled by the Resource 

Manager. The Application resources are stored under the “res” folder of the project 

hierarchy. In this folder, each of the available resource types can have a subfolder 

containing its resources. There are seven primary resource types that have different 

folders: 

 Simple values 

  Drawables 

  Layouts 

  Animations 

  XML 

  Styles 

 Raw resources 
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When the application is built, these resources will be compiled as efficiently as possible 

and included in the application package. This process also creates an R-class file that 

contains references to each of the resources that are included in the project. This helps 

for an easy reference to the resources in the code, with the advantage of design time 

syntax checking [13, 53]. 

 

3.5.4 Location Manager 

The possibility for Android to access the Google Maps infrastructure is one of the 

strengths of the platform. Location-based services in Android works exactly as one 

would expect them to work with only minor exceptions. Android allows developers to 

specify which location lookup method to use. This allows one to customize the power 

consumption, cost, and accuracy based on the specific use one has in mind for the 

application [19, 75]. 

Android’s location-based services are based on two pillars: the map APIs which are 

contained in the “com.google.android.maps” package, and the location APIs which are 

in the “android.location” package. The map API provides the facilities to display and 

manipulate a map such as zooming, changing the mode of the map for instance, street 

view, satellite view and traffic view. This project uses the location API to extract the 

longitude and latitude coordinates of the device’s position and incorporate it into the 

Geocoder class to obtain the address of a specific location. 

Geocoding is a concept whereby latitude/longitude pair is converted into an address or 

location, and the “android.location.Geocoder” class provides this facility. The class 

provides both forward conversion (converting a given address to its latitude and 

longitude pair) and backward conversion (translating a latitude and longitude pair into a 

list of addresses) [20,249]. 
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3.5.5 Notification Manager 

Nowadays cell phones do not only serve the purpose of making phone calls alone but 

also as a personal assistant. It has now reached the level where every feature in a 

computer is inclusive in a mobile phone. With all these applications running on mobile 

phones, there is need for an application to notify the users of some certain events or to 

get the use’s attention [21,192]. In Android programming, the notification comes in 

different ways, such as a pop up message indicating the arrival of a new e-mail or SMS, 

weather notification, flashing LED, or vibration of the phone. There is also persistence 

notification that shows in the status bar until the user attends to it, among others. All 

these actions are represented by the notification class [21,196]. 
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4 Media API and Networks 
 
4.1 Overview 

The ability to produce a video file and also to communicate with the server using the 

Android technology are the focus of this chapter. Figure 2 on page 17 showed the 

media framework, which is one of the libraries that Android uses to support its exciting 

functionalities. Until the time of writing this, Android supports the following 

multimedia formats: JPEG, OGG, Mpeg4, PNG, Bitmap, MP3 and 3GPP. Most 

Android applications such as the media application requires that the developer obtain 

permission to use some facilities, such as permission for audio recording (<uses-

permission android: name=”android.permission.RECORD_AUDIO”/>), or 

permission for video recording (<uses-permission.android: name =”android. 

permission. RECORD_VIDEO”/>) . This is done in the manifest file of the application. 

Figure 2 also showed the Wi-Fi driver, which is situated in the Linux kernel. This 

creates the possibilities for this project work to communicate with the server through 

the wireless connection and send files and other metadata across. More details of the 

practical implementation will be given in chapter 5. 

 
4.2 Using the Media API 

Android offers a fairly straightforward way in accessing the media platform. It has 

built-in encoding/decoding of some common media types. Audio and video can be 

played from different types of data source, such as playing audio or video files from 

media files stored in the resources folder, stand-alone files in the file system or from a 

data stream arriving over a network connection. Data streaming, refers only to files that 

support streaming to Android device. The MediaPlayer Class is the class used for 

implementing this process. The platform also provides the possibility to record audio 

and video too with the help of the MediaRecorder class [22]. 
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4.3 Media Player 

The MediaPlayer is easy to use. For example if a supported audio file is kept in the 

res/raw folder in a project, that file can be found by using the R-class to make reference 

to it. Then an instance of the MediaPlayer is made and the file is parsed to the 

“MediaPlayer.create” method, the create method loads the audio file from the resource, 

next the prepare method is called, then the start method. Figure 4 shows the code 

snippet. 

 

Figure 4. Playing from a raw file 
 
 
Playing a media file from the file system directly is almost similar to playing it from 

the resource folder. The MediaPlayer instance would call the setDataSource method, 

which takes a string that point to the file to be played. It also has an overloaded version 

that can be used to customize the data source to a specific need [20,306]. Figure 5 

below shows a sample format. 

 

Figure 5. Using the setDataSource method 
 

Playing video files is more involved with the media player than playing audios. Since 

the surface view for the video has to be provided. Android provides a VideoView 

widget that handles that. This view can be used in any layout manager and it provides a 

number of display options [21, 245]. Chapter 5 gives a more detailed explanation of 

how this was used in this project.    



 28

4.4 Media Recorder 

Multimedia recording is handled by the “MediaRecorder class “. In the Android 

application recording audio or video can be done by creating an instance of the 

MediaRecorder, configuring the video and audio sources (generally the camera and the 

microphone), output format, video size, frame rate, and the video and audio encoder to 

be used [13,318]. 

 

Figure 6. Sample audio recorder 
 
 
Figure 6 above configures the Media Recorder so that it records audio from the 

microphone and encodes it using the default format. The “setOutputFile” method sets 

the new file called filename.mp3 to the “SDcard”. Chapter 5 showed more detailed 

explanation. 
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Figure 7. Media Recorder state diagrams  [23]. 
 

Figure 7 shows the media recorder state diagram which gives an idea of how the 

audio/video recording methods relate to one another. Video recording was not possible 

with the older version of the SDK until the advent of version 1.5. Capturing video using 

the media framework began with the 1.5 version. This version demands that the video 

recording application be tested on a real device because the required hardware-encoder 

module is not available in the version’s emulator [20,385]. 

 

 

 

 

 

 

 



 30

4.5 WLAN Connectivity 

 

The Android platform, like most modern mobile device platforms, offers developers a 

wide range of ways to make use of the Internet access. Some offer high-level access, 

such as the integrated WebKit browser component. It is also possible to use a raw 

socket or to leverage APIs (both on-device and from 3rd party JARs) that give access to 

specific protocols such as HTTP, XMPP, and SMTP. The three main connection 

techniques for Internet connectivity provided by Android are offered transparently to 

the application layer:  

 GPRS, EDGE, and 3G: Mobile Internet access provided by carriers that offer 

mobile data plans. 

 Wi-Fi: Wi-Fi receiver and mobile hotspots are becoming increasingly common. 

 

It is compulsory to obtain “Permission for the internet” from the application manifest 

file for any application that would make use of the Internet [13,142; 24,207]. The basic 

pattern for opening an Internet data stream is shown in figure 8 below.  

 

 
Figure 8: Basic network connection 
 
Better form of java-related connection to a file in the server could be used to replace 

this if there is need. 
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4.5.1 Broadcast Receiver 

 

In Android, the message-passing mechanism that lets one declare an intention for an 

action to be performed is known as Intent. Intent can be used to support interaction 

between any of the application components available on an Android device, no matter 

which application they belong to. It can be used explicitly, by using Intent to start a 

new Activity, which is implemented by calling the class to be loaded or implicitly, by 

requesting an action to be performed on a piece of data. 

 

Intent can also be used to broadcast messages across the system. For example Android 

uses broadcast Intent to announce system events, such as changes in the Internet 

connection status or battery charge levels [13,114]. In monitoring Wi-Fi connectivity, 

the Wi-Fi manager broadcasts Intent whenever the connectivity status of the Wi-Fi 

network changes [13,348]. To receive the intents and using them is done in the 

Broadcast Receiver [25]. This implies that in a given developer’s intention to 

implement an action, there has to be a registered receiver that listens to and puts such 

an action into use.  

 

4.5.2 Background Services 

 

A Service is code that is long-lived and runs without a UI. A good example is a media 

player playing songs from a play list. In a media player application, there would 

probably be one or more activities that allow the user to choose songs and start playing 

them. However, the music playback itself should not be handled by an activity because 

the user will expect the music to keep playing even after navigating into a new screen. 

In this case, the media player activity could start a service using Context.startService( ) 

to run in the background to keep the music going. The system will then keep the music 

playback service running until it has finished. However one can connect to a service 

(and start it if it is not already running) with the Context.bindService( ) method. When 

connected to a service, one can communicate with it through an interface exposed by 

the service [11, 18].  
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This project made use of a process that runs in the background, by connecting and 

writing a specified file and strings to the server while protecting the foreground with 

another thread that runs the progress bar. Chapter 5 explains the practical 

implementation. 

 

4.5.3 Communication Protocols 

Every mobile provider supports both voice and data networks, of one or more types. A 

data network is one of the interesting parts for Android-enabled devices: the ability to 

link the available data on the Internet to applications and vise vassal. It is the 

combination of a platform, hardware capability, software architecture and access to 

network data that makes Android more interesting. 

Android provides several ways to access network data: mobile IP networks, Wi-Fi, and 

Bluetooth. A network is a group of interconnected computers. Networking has grown 

from something that was once available to governments and large organizations only to 

an amazing Internet linked to hand-held devices that we can carry about in our pockets 

and handbags. The basic idea behind a network is that data is sent between connected 

devices with particular addresses. Connections can be made, for example, over wire, 

and radio waves. Each addressed device is known as a node and each node can be a 

mainframe, a PC, or any other device with a network stack and connectivity, such as 

Android-enabled devices. Nodes in a TCP/IP network are identified by their IP 

addresses. Each protocol in this family has a specific role; these roles are often 

described as layers. 

A server socket is a stream that developers can read or write raw bytes to, at a specified 

IP address and port. This allows one deal with data, without worrying about media 

types, packet sizes, and so on. This is yet another network abstraction intended to make 

the job of the programmer easier. The philosophy that everything should look like file 

I/O to the developer, comes from the early UNIX days but has been adopted by all 

major operating systems in use today such as Windows, Mac, and Linux [21,150-155].  
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In order to take advantage of the existing server products to send data, this project used 

a web server and leverage HTTP. It is a stateless protocol that involves several different 

methods that allow users to make requests and get responses from the server. PHP, an 

efficient and flexible server side script was also used here for a reliable productivity. 

 

4.5.4 Requirements to Port Files into YouTube 

YouTube is a video sharing website in which users can upload, share, and view videos. 

Three former PayPal employees created YouTube in February 2005. In November 

2006, YouTube, LLC was bought by Google Inc. for $1.65 billion, and is now operated 

as a subsidiary of Google. The company is based in San Bruno, California, and uses 

Adobe Flash Video technology to display a wide variety of user-generated video 

content, including movie clips, TV clips, and music videos, as well as amateur content, 

such as video blogging and short original videos. Most of the content on YouTube has 

been uploaded by individuals, although media corporations including CBS, BBC, UMG 

and other organizations offer some of their material via the site, as part of the YouTube 

partnership program [26]. 

This project work was to create videos with Android mobile phone and upload them to 

a dedicated server for further uses. One of the uses of the uploaded file could possibly 

be to re-direct them to other video sharing websites. YouTube offers several 

possibilities to upload files to their server. In a situation where files are already seating 

in a server, the best way of sending them to YouTube is by the use of “Resumable 

uploads”. It has the ability to continue the file transfer from where it stopped, in the 

case of any interrupt while uploading to YouTube. 
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Figure 9. Data flow to YouTube 
 
 
When a file is uploaded from the phone to the dedicated server, the server side script 

sends an API request to upload video to YouTube. This request contains the video 

filename and the metadata of the video. 

 

Figure 10: Example format of an API request. 
 
Figure 10 is an example of the API request that uses the AuthSun authentication 

scheme for resumable uploading. 

 authentication_token:- This value contains the authentication token for the 

request. The token will either be a ClientLogin token, an AuthSub single-use 

token, an AuthSub session token or an OAuth access token. 

 developer_key:- This value uniquely identifies the application that is submitting 

the request to upload the video. This is received by registering a Google 

Account. 
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 content_length :- This value contains the length ( in bytes) of the entire body of 

the HTTP POST request. 

 Video_filename :- This value contains the file name of the source video that one 

is uploading. 

 API_XML_Request :- This value contains information about the uploaded 

video file in the form of an Atom XML entry, such as the media: group, title 

category, keywords. 

 

Figure 11. Sample API response to a request 
 
 
Having sent the API request to YouTube server, the API returns an HTTP response that 

contains a location header, which identifies the URL that will be used to upload the 

actual video file. This is shown in figure 11. The URL must be extracted and used for 

the actual sending process. 

 

Figure 12. Format for video uploading to Youtube 
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Figure 12 shows the format on how to upload the actual file. The highlighted variable 

must be provided to the HTTP PUT request. The following list explains how to 

populate each value: 

 upload_url :- This value is the URL that was extracted in step 2 from the 

Location header of the API response for the metadata upload request. 

 video_content_type:- This value specifies the MIME type of the uploaded video 

file. The MIME type can be a video media type, such as video/mpeg or 

video/mp4, or it can be application/octet-stream. 

 content_length:- This value specifies the length, in bytes, of the entire body of 

the HTTP PUT request. 

 Binary File Data: - This value contains the binary code for the video file that is 

being uploading. 

Completing the upload process 

When a request to upload the video content for a resumable upload is submitted, one of 

two scenarios could occur: 

 If the upload completes, then the API returns a response indicating whether the 

upload succeeded or failed. 

o For a successful upload, the API returns an Atom entry that contains 

information about the uploaded video. 

o For an unsuccessful upload, the response contains an error response that 

helps to explain the cause of the upload failure. 

 If the upload fails because the network connection between the dedicated server 

and the YouTube server, then the server-side application will not receive an API 

response. In this case, one may be able to resume the upload from the point of 

the interruption [27]. 
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5 Reporter’s Video Recorder Based on Android 
 
5.1 Overview 

The goal of this project was to develop an easy-to-use Android-based video recorder 

that would be capable of collecting the required meta-data automatically and upload the 

data to a server with the availability of WLAN. It is a prototype that can be customized 

to the need of organizations that require videos of events that took place in different 

geographical locations. 

 

The application also triggers the system to show the user the available wireless network 

connections at any given location that mobile phone is used. The meta-data, such as the 

file name, file category, date, present location address, user name and others are sent to 

the server along with each file. Geo-coding was used to convert the latitude and 

longitude coordinates into a specific address. 

 

 
5.2 Requirements 
 
What is required of the application was to ensure that a video file is created and sent 

along with some necessary data to the server efficiently, and also the possibilities of 

downloading video files from the server. These requirements are stated as follows: 

 An easy to use Android-based video recorder 

 Collection of the required meta-data automatically (filename, category, date and 

time, and present location address). 

 Using Geo-coding to convert latitude and longitude coordinates into a specific 

address. 

 Uploading the video file and metadata to a server with the availability of 

WLAN 

 Database containing the details of all the files sent 

 Downloading the video file from the server. 
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5.3 Design 
 
Based on the requirements specified, the application used the Android’s 

“MediaRecorder” class and its vital methods, surface view and a toggle button. 

Combining these components together logically, and obtaining a permission to use the 

system’s camera helped to achieve the goal. The video file that is to be created would 

be stored locally with a file name in the SDcard. Since other documents were possibly 

kept in the SDcard of a mobile phone, the Java “FileNameFilter” interface was 

implemented to filter all the files with the extension name “.mp4”. The 

“System.currentTimeMillis( )” method will be used to extract the current date and time 

which a file is sent. Android has software framework called the location manager, 

which is capable of extracting the mobile phone’s longitude and latitude coordinates 

with its “getLongitude( )” and “getLatitude( )” methods respectively. These coordinates 

will be parsed into the Android’s Geocoder class which built strings of address from 

them. 

 

All the metadata will be extracted as strings and parsed to the “HttpURLConnection” 

class, to be sent to the server. Before the application can connect to the network, the 

mobile phone WLAN will be activated. In such a case the application will parse 

“ACTION_WIFI_SETTINGS” to an intent variable, to open the system’s network 

settings. This will let the user choose from the list of available hotpots and enter the 

user name and password. A PHP script will be used to handle the file and metadata in 

the server side. This will be implemented so that feedback will be sent back to the 

phone to notify the user whether the sent file was successful or not. If successful, the 

file will be kept in a directory and the metadata will be saved in the database. 

 

Another PHP script will be written to roll out all the file names in the database and their 

sizes. The file will also use a hyperlink to point each file name to the directory where 

they are saved. The URL path of the PHP file will be used by the downloading part of 

the mobile application. Using Android’s “WebViewClient” to show the file on the 

phone, the “InputStream” class to read byte data from the connection and the 

“FileOutputStream” subclass to write the data to the SDcard will help to achieve the set 

goals. 
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Table 1 shows details of the functional units of the application. It specifies part the of 

the program where users can communicate with the internal functionalities of the 

application to achieve specific results. 

 

Table 1. Descriptions of the system functionalities 
 
(1)  Application Icon 

 
This icon was designed using Adobe 
Fireworks and saved as .png file in the 
drawable folder of the application. The 
icon has to be clicked to start the 
application. 

(2)  Application Menu Record Video:  This menu leads to the 
video recording part of the application. 
Play Video:  Click on this button to play 
recorded videos from the sdcard. 
Send Video:  To send file to the server. 
Record Audio:  This button takes you to 
the audio recording part of the 
application. 
Play Audio:  To listen to the recorded 
audio from the sdcard. 
Delete Video: - For deleting videos. 
Search for WiFi:  Used to search for 
wireless connection. 
Download File(s):  Used for 
downloading file from the server to the 
sdcard. 

(3)  Video recording interface Start/Stop buttons. 
Save button. 
Delete button. 

(4)  Video/Audio play interface Video view (for video only). 
Play button. 
Stop button. 
Pause button. 
Back button. 
Forward button. 
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(5)  Sent to server  interface 
 

Select file from file list. 
Click on file. 

(6)  Delete file interface Select file from file list. 
Click on file. 
Accept to delete or cancel deleting. 

(7)  Download File(s) Select file from the web view. 
Click on file. 
Click on “Download” button. 

 

Table 1 gives the basic understanding of how the application can be used. The icon 

appears where all the programs in the device are kept. Clicking on it triggers the 

application to be lunched. This brings the user to the main Activity that contains the 

menu that leads to other Activities. From this point users can navigate to any of the 

views specified in table 1. 

In Android, all applications are said to be of the same hierarchy. Figure 13 below 

shows the internal system view of this application. The Activities have their different 

purposes. In this application videos are recorded straight to the device “sdcard”. Files 

can be deleted from the “sdcard” if needed. They can also be downloaded from the 

server to the “sdcard”. Videos can also be played or sent to the server. The files have to 

pass through the file filter mechanism to the list of files to be sent to the server or to the 

play list. 

 

The file filter mechanism is important because the user also has other file formats 

stored in the “sdcard”. However this application only focuses on dealing with files that 

has the extension “ .mp4 ”. To ensure that the only file the application gets from the 

“sdcard” is .mp4 file format, the filtering mechanism has to loop the “sdcard” for 

selection. 
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Figure 13. System Architecture 
 

Figure 13 shows the flow of data from the sdcard to the various activity classes, and the 

flow of data from the server-side to the sdcard. 
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5.4 Implementation 

5.4.1 Application Menu 
 
To create a menu in an application, “Import android.view.Menu;” has to be added to 

the Activity. The onCreateOptionsMenu( ); is a Boolean method that takes the Menu 

variable as a parameter. It is called when a button is pressed. As the name implies, 

menus in Android are also known as options menus. To populate the menu with system 

menu items, the base-class of this method has to be called, thereby using the parameter 

to call the add( ) method. The add( ) method is of the form “param.add(<Group>,<item 

id>,<order>,<”title”>);” . Figure 14 shows a sample of the application menu. 

 
Figure 14. Application menu implementation 
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Figure 15. External system view 
 
 
Figure 15 illustrates how the various Activities function separately within the 

application. Android can possibly run more than one process at a time, but due to the 

limited screen size compared to a desktop computer, one Activity is shown at a time. 

An Activity can be seen as a webpage. Here it is possible to play the audio file at the 

background while using another Activity. An Activity can link to another Activity 

using “Intent”. This depends on what the application is designed to do. In this 

application the “Record Video” Activity is also implemented so that when the stop 

button is pressed, it moves to another Activity where the user decides whether to save 

or delete the file. Sending a file to the server, playing video files, and downloading files 

has various ways of linking between Activities for efficient control of data. 
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5.4.2 Video Recorder 

A video recorder in Android requires principles to follow to achieve success. It is 

implemented by creating a “SurfaceView” in an xml file (recordeaudio.xml) and linked 

to the Activity using the “findViewById( )” method. The SurfaceView provides a 

dedicated drawing surface embedded inside the view. It allows customization such as 

controlling the format and resizing. It provides a hole in the window to allow its surface 

to be displayed. A window is required to fit the SurfaceView, which is contained in the 

“android.view.Window” package. Some features in the window can be altered, such as 

the “full screen”, the “no title bar” among others. Figure 16 below shows a code snippet 

that adds a window to the application. The window is set not to have a title, and the 

orientation is set to landscape, which has a full screen and allows translucency. 

 

 
Figure 16. Sample code for the video window 
 
 
 As mentioned in chapter 3, a video recorder can be implemented using the 

MediaRecorder class, which is found in the “android.media.MediaRecorder” package. 

It is used to configure some media file features such as the video and audio encoders, 

video and audio source, video size, output format and frame rate. Figure 17 below 

shows how the application uses this class. 
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Figure 17. Sample code for MediaRecorder class 
 
 
The layout in the .xml file that contains the SurfaceView has to be set to the Activity, 

which was done by using “ setContentView(R.layout.<the_xml_file>)”. In this case, 

linking the SurfaceView to the Activity, as said above, can be implemented by creating 

an instance of SurfaceView, which takes the “id” of the SurfaceView in the “.xml” file. 

The format used is given in figure 18 below. It links the xml file and the SurfaceView 

to the Activity and also keeps the surface on, through out the duration of the process. 

 

 
Figure 18. Linking xml file to the Activity 
 
 
 
Implementing Callback 
 
The “Callback” is important for an Android video application. Having created an 

instance of SurfaceHolder, “SurfaceHolder.Callback” is used to get information about 

changes made in the surface. To let the Activity manage the “Callback” it has to be 

specified as follows: 

 public class <activity name> extends Activity implements Callback{ }; 

 

The “Callback” interface implements three methods which play their roles as the 

application is set “on”: 
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 surfaceChanged ( ):- This is called when there are changes made in the surface, 

such as size or the format of the surface. 

 

 surfaceCreated( ) :- The surface is created in the first instance, thereby calling 

this method. 

 

 

 surfaceDestroyed( ) :- This method is called whenever the surface is destroyed. 

 

For simplicity purposes these methods also contains other methods that are involved in 

successfully handling the data flow. For example the “prepare( )” and 

“setOutFile(the_filepath)” methods are kept in the surfaceCreated( ) method. This 

application must obtain permission for the camera to function. 

 
 
 
5.4.3 Audio Recorder 
 
 
An audio recorder, like a video recorder, uses the “MediaRecorder” class. It is simpler 

to implement compared to the video recorder because it does not require some complex 

aspects like the SurfaceView, Callback interface and its methods. This project 

implemented audio recorder using two buttons (Stop and Start buttons) to operate the 

application, it also shows the status of the operation while in use. Figure 19 below 

shows the application audio recording view. 
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Figure 19. Audio Recorder view 

 
 
Figure 19 is used by pressing the “Start” button, which changes the Status from “Not 

Recording” to “Recording”. At this point the application gets sound from the user 

through the device microphone to the “sdcard”. Clicking the “Stop” button while the 

recording is on triggers the “stop( )” method. This prompts the recording to be stopped 

and the status automatically changes. 
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Figure 20. Sample code for audio recorder 
 
 
From the sample code in figure 20, “beginRecording( )” method is used to start the 

audio recording proceedings. It starts by calling the “ kill_myMediaRecorder( )” 

method, which checks if the “myMediaRecorder” is equal to null or not. If it is, then 

the “Release( )” method is called to free that instance. The next step is to check if the 

given file name already exist; if it does, the existing file will be deleted from the 

sdcard. Then the vital methods for the MediaRecorder class are called. The “ 

setAudioSource( )” method is used to set to MIC, the “setOutputFormat( )” method is 

set to DEFAULT, the “setAudioEncoder( )” method is set to DEFAULT, the 

“setOutputFile( )” method is set to “.mp3” file extension, at this point the “ prepare( )” 

method is called to prepare the file, and then the start( ) method. There has to be 

permission for MIC to function. 

 

5.4.4 Video Player 
 
The video playback in Android is somewhat simplified for developers to implement 

with the provision of VideoView and MediaController, although it still requires more 

effort than the audio player. Videos can be played from the device SD card and from 

the Web server. Compared to other languages, Android SDK provides some additional 
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abstractions that take care of some complex issues in video applications. The 

“android.widget.VideoView” is a specialized view control that contains the creating 

and initializing of the MediaPlayer. If a VideoView is created and linked to the 

Activity, and the path to the video file is also set, calling the “start( )” method prompts 

the  video file to be played, provided such a file is supported by Android. 

 

 
Figure 21. Video player screen diagram 

 

 

The diagram in figure 21 shows the video player in a landscape view. The 

MediaController takes charge of the buttons shown on the screen. The buttons appear 

when the screen is touched and disappear after a few seconds. The application also uses 

the “OnCompletionListener( )” method to check for the end of the video file. When the 

file finished playing the “finish( )” method is called,  this returns back to the Activity 

which holds the list of video files. Figure 22 below shows the code snippet of this 

application. 
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Figure 22. Sample code for video player 
 
The code in Figure 22 shows part of the application video player implementation, the 

“.xml” file in the layout directory holds the VideoView. 

  
 
 
 
5.4.5 Audio Player 
 
The audio player is implemented in a similar way as the video player except that it does 

not require the VideoView. As explained in chapter 3, the audio player uses the 

MediaPlayer class. If an instance of MediaPlayer is made, it will be used to call the 

“setDataSource( )” method. This method sets the application to where the file is 

situated, (in this case, in the sdcard of the device). Then the “prepare( )” method is  

called to prepare the media player for playback. The next method after that is the  

“start( )” method which actually starts playing the file. 

 

Figure 23 below shows the audio player of this project. It has a list of audio files to be 

played, a pause button, stop button and re-start button. Pressing directly on any file on 

the list automatically triggers the process to start playing the file. The stop button is 

implemented to call the “stop( )” method while the file is playing. The pause button 

calls the “getCurrentPosition( )” method. This method, as the name implies, gets the 
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current position of the player. The Re-start button is used to start the player from the 

pause mode, which implies that while the MediaPlayer instance is not equal to null and 

it is not playing, then the “start( )” method is called. The current position obtained 

previously is passed to the “seekTo( )” method, which makes it start playing from that 

particular position. 

 

 
Figure 23. Audio player diagram 

 
Figure 23 shows the screen of the application audio player, the test file can be played 

by click on the file. 

 
 
 
5.4.6 Sending file to the server 
 
This project focus more on how the video files can be sent along with other meta-data 

to the server. In this process the application is made to get the location of the device, 

the date and time at which each file was sent, the username of the sender and the 

category assigned to the video file. All these parameters are used to identify each file in 

the server side. The server side uses PHP script to handle the files and the related meta-

data, because PHP scripts have an efficient way of taking care of server side 

applications. It also has the capabilities of binding other transcoding executable files, if 

needed. 
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Uploading process 
 
The Activity extends “ListActivity” and implements “Runnable”, which implies that 

having parsed the meta-data to the Activity, a list of all the video files is shown. The 

application then runs another thread on the background which writes the selected file 

and its meta-data to a buffer and sends it to the server. At this point the system runs a 

progress bar which mimics the idea that the process is still going on, and most 

importantly, protects the screen from the user’s interruption of the process. 

 

 
Figure 24. Connecting and uploading sample code 
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Figure 24 shows a code snippet for sending the file to the server, and the path to the 

server script. An http connection and its methods that give optimum solution to the file 

streaming are specified. For example the 

“konet.setChunkedStreamingMode(1024*1024)”  was used since the content length is 

not known in advance, the post method was used for sending the form. This concept 

also allows input and output in the connection, so that the server script can report back 

to the application on the possible outcome on how the file was handled in the server 

side. It is made for the connection to stay alive throughout this process. A ” Content-

type” header of a “multipart /form-data” was used to the get the “String” attributes and 

their values, such as filename, date and time, locations and descriptions. This header 

uses boundaries which start with two hyphens, to separate the various parts of the 

request. Writing all the properties to a buffer and closing all the contacts automatically 

sends the file and its metadata to the server side. 

 

 

 
Figure 25. Data flow to the Server-side 
 
 
The server side uses the PHP script to handle the request. Considering the diagram in 

figure 25, files A, D, E are PHP files while B is a directory in the server and C is a table 

in the database. When the file is sent, file A handles the sent video file and its metadata, 

the file is moved to the directory B, and details of the file and its metadata are 

registered in the database table, provided all the conditions are favorable. At this point 
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the phone receives the positive response of having uploaded successfully. If the process 

does not go as intended, maybe due to a connection failure, a filename already existing 

in the directory, or any possible cause that warrant the failure to upload the file to the 

server, the PHP script will send a response accordingly. File D and E rolls out all the 

files from the database table to the downloading phase and possible administrative uses 

respectively. 

 

Downloading video files to the SDcard was implemented using the Android 

“WebViewClient” and java “FileOutputStream” functionalities. Downloading of the 

video file is made open for now, but in subsequent versions of the application, security 

measures will be considered before the file can be downloaded. The URL path to the 

files in the directory B are contained in the hyperlinks for each file name in file D, 

which implies that file D has the file names of all the files in directory B and also 

points to where they are kept in directory B. File D is a PHP file that rolls out all the 

file names and sizes from the database table. It appears on the phone using the Android 

WebView. Any file name that is pressed triggers the hyperlink to extract the file name 

and parse its URL path to the “FileOutputStream” object, to possibly obtain its byte 

data and store locally in the phone as a file. Appendix D shows the download view of 

the application. 

 
 
 
Progress bar 
 
In Android dialogs are used to interact with the user, which is helpful for notification 

purposes. A dialog is a window which appears in front of the current Activity, thereby 

causing the Activity to lose focus. A “ProgressDialog” is an extension of the 

“AlertDialog class”, which displays an animated spinning wheel or a progress bar. This 

gives the user an idea that an operation is taking place within the system. 
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Figure 26. Application progress bar 

 
 

The progress bar in figure 26 above was used in this project to notify the user that the 

file is on its way to the server. Thus the user cannot interrupt the process until a server 

response is back to the user, telling him or her if the uploading process is successful or 

not. Below is the code snippet in figure 27. 

 

 
Figure 27: Sample code for progress bar. 
 
 
Clicking on the file causes the progress dialog to appear, thereby starting another thread 

which sends the file to the server. The ProgressDialog is stopped by calling the 

“dismiss( )” method. This depends on the feedback received from the server. A handler 

is created, and an integer value is parsed to its “sendEmptyMessage( )” method, to 

differentiate the response sent from the server side.  
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Figure 28. Handling the Server side response 
 

Figure 28 shows the code used for receiving and handling the server side response. 
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AlertDialog 

 

The alert dialog is used here to notify the user of the feedback from the server side and 

for confirmation purposes. This class extends the “Dialog class”, and is constructed 

within the calling Activity. The alert dialog does not need to be registered in the 

manifest file. It uses the “setTitle( )”, “setMessage( )” and the “setButton( )” methods 

to add the title, caption and buttons respectively on the alert window. 

 

 
Figure 29. Application sample alert dialog 

 

Figure 29 shows a sample of a successfully uploaded file to the server. The alert dialog 

was called by the progress bar handler, and a string variables was parsed to the 

“AlertOn( )” methods. To make the alert dialog appear on the screen the “show( )” 

method has to be called by the instance variable. The code snippet in figure 30 below 

shows the implementation. 

 

 

 
Figure 30. Alert dialog code snippet 
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5.4.7 Search for WLAN 

 

This part of the project was to help the user check if there is any wireless connection 

available in the area. It works by scanning for a wireless connection, by accessing the 

Wi-Fi Manager using the “getSystemService( )” method and parsing the 

“Context.WIFI_SERVICE” object. The activity also contains a class that extends 

BroadcastReceiver, which gets a list of the scanned results, by calling the “alertWlan()” 

method if the size of the list is greater than one. 

 

Being greater than one implies that there is at least one connection available. The 

“alertWlan( )” method is implemented to start the 

“Settings.ACTION_WIFI_SETTINGS”, which brings the user to the point of 

connection to the wireless LAN. Figure 31 below shows the diagram of the interface. 

 

 

 
Figure 31. Application WLAN connection sample 

 

 

Figure 31 shows that there is at least one or more wireless hotspots in the area where 

the testing took place. The “OK” button takes the user to the connection point where 

further authentications will be made before connecting. 
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5.4.8 Deleting file 

 

The application is also implemented such that unwanted video files can be deleted from 

the sdcard.  Considering the code snippet in figure 32, the “onListItemClick( )” method 

holds the position of the available file names in the list. When a file name is clicked on 

the list, the position is parsed to the “get( )” method. Calling the instance of the array 

list on the “get( )” method automatically points to the file in the sdcard. The “delete( )” 

method is then used to delete the file. 

 

 
Figure 32. Code snippet for deleting files 
   

Figure 32 shows the implementation of the alert dialog which appears when a file is 

clicked for deleting.  
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5.4.9 Application Manifest File 

 

Android Manifest file is an “.xml” file where the global settings of the given project are 

made. It lets one define the structure and metadata of an application and its components 

such as Activities, Content Providers, Services, Broadcast Receivers, Icons and 

Themes. Newly created activities have to be added to the manifest file for it to function 

as part of the project. A permission required for using the Internet, device camera, 

WiFi, and Record Audio, are declared in the “AndroidManifest.xml” file. Figure 33 

shows the application manifest file. 

 

 
Figure 33. Diagram of the Manifest file 
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Figure 33 shows the application manifest file which binds the properties and 

components that constitute the application. The icon (which is kept in the “Resource 

Directory” of the application) is defined here alongside with the labels. Every activity 

used in this application is displayed within the “intent-filter” to avoid a runtime 

exception.  
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5.5 Feedback and Future Implementations 
 
The application was evaluated by researchers from the Tampere University of 

Technology / The Unit of Human-Centered Technology and Managing Editor from 

Sanoma Kaupunkilehdet. The modifications are stated as follows: 

 Changing the user interface to the Finnish Language: The entire user interface 

of the application was designed to be in the English language, but it has to be 

changed into Finnish language. 

 Collection of phone number: The number will be asked and stored when the 

application is started for the first time. This will replace the previous user name 

that was asked. 

 Creating metadata: The application records video and it collects metadata at the 

point of sending the file to the server, but it has to be modified to collect the 

metadata (phone number, coordinates from GPS, date/time and category) at the 

end of recording each video. 

 Categories: The categories for the videos have to be increased from three (3) to 

fifteen (15).  

 Downloading video: The prototype only creates the functionalities of 

downloading files from the dedicated server, but security measures hava to be 

put in place. 

 Audio Recording was not needed at this time, so it was removed from the 

application. 

The modified version was then evaluated by the above mentioned representatives and 

they gave positive feedback on the general functionalities of the application. 
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6 Conclusion 
 
Android-based mobile phones are becoming more interesting. They have an easy-to-

implement nature which makes them convenient for developers to easily transform 

helpful ideas into interesting applications. Android is open source, which implies that 

the software had been debugged by several developers worldwide, which has led to 

bug-free software. It has good APIs to be used for applications. 

 

The aim of this project was to create an easy-to-use application that would be capable 

of recording videos and send the video files along with other meta-data to the server 

side. The application created has several features such as video recording, video player, 

location-based mechanism, and wireless network functionalities. PHP was used as the 

server side script of the application with some configurations made in the server to 

accept larger amounts of file at a time. 

 

This project was a prototype that can also be customized to the needs of freelancers, 

user-generated contents, citizen media and other media and media-related 

organizations. It also sets the basis for other developers who want to continue in this 

line in the future. The application was tested and it received a positive feedback from 

researchers from the Tampere University of Technology and journalists from Sanoma 

Oy. 

 

Software development is prone to have additional implementations and modify existing 

ones as time goes by, and the Development of Reporter’s Video Recorder Based on 

Android is not an exception. The application can be extended in many ways. 

Functionalities such as taking photos can be added to it, and could be made so that 

photos could be taken alongside with metadata collection, deleting photos and its 

metadata, showing the photos that have been taken, sending photos to the server and 

also downloading photos from the server. All these could possibly be incorporated in 

the next release of the software (version 2.0). 
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The application presently supports a WLAN connection, it can be further improved to 

support a 3G connection. This will enhance the efficiency in the areas of coverage, 

faster downloading and uploading of files to the server. Also, defined rules have to be 

set in place on how to download videos or photos from the server. 

 

The application has to be integrated into the Sanoma Oy’s server. Since this work was 

done using the school server (Helsinki Metropolia University of Applied Sciences), it 

has to be moved to the company’s server for operation to start off. 
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Appendices 
Appendix A: Application main view 
 

 
Figure 34. Application desktop in portrait view 

 
 
As soon as the application is lunched, it appears like figure 33 above, this tells the user 

to press the menu and choose from the menu list. 

 

 

 
Figure 35. Application desktop in landscape view 
 
 
The phone changes to the landscape view automatically when the phone is turned 

horizontally. 
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Appendix A: Application main view 
 
 
When the menu is pressed the view show the list of ”Activities” that the system has, 

pressing on any of them takes the user to that particular activity. 

 

 

 
Figure 36. Menu view (portrait) 

 
 
 
 
 

 
Figure 37.  Menu view (landscape) 
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Appendix B: Video recording 
 
 
This illustrates the video recording of the project, is gives a very quality video, The 

view is specifically set to be horizontal. When the stop button is pressed it 

automatically takes the user to another view where the default file name can be changed 

and the file could either be saved or deleted. 

 

 

 
Figure 38. Testing the video recorder 
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Appendix B: Video recording 
 
 
 

 
Figure 39. Saving the file name 

 
 
 
Pressing the edit text view automatically brings out the key pad to type the file name 

and then save the file, or the user may even choose to delete the file at the point. After 

saving or deleting is done the application automatically take the user back to the video 

recording view again. 

 

 
 

 
 

Figure 39b.  Saving the file name 
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Appendix C: Uploading files 
 
Provided there is a functional wireless connection available, files can be sent to the 

dedicated server efficiently, the application gets the address of the location, time and 

date automatically, the user has to enter the “User Name” and choose a category for the 

file to be sent. 

 

 

 
Figure 40. Collecting meta-data 

 
 
 
 
 

 
Figure 41.  Uploading in progress 
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Appendix C: Uploading files 
 
 
The system checks for WLAN within the area of the mobile phone. Figure 41 shows 

the list of available networks in the area where this test is made. The application 

functions very well when the username and the password of the wireless connection is 

entered correctly. 

 

 

 
Figure 42. Checking for available wireless networks 
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Appendix D:  Downloading video files 
 
 

 
Figure 43.  Downloading files 

 
 
Figure 43 shows the view where files can be downloaded from the server to the 

SDcard. The view can be zoomed for clarity purposes. Pressing on any of the file 

names implies the intension to download such file, and this takes you to figure 44 

below to carry on with the downloading process. 

 

 
Figure 44.  Downloading in progress 
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Appendix E: Playing Video 
 
 

 
Figure 45.  Video files 

 
 
Videos plays automatically when the file name is pressed in figure 44, at the end of the 

file the system goes back to video file list. 

 

 
Figure 46. Playing Video. 

 
 


