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ABSTRACT 
 

The purpose of this thesis was to implement a Deep Learning Model to 
classify the toxicity of online comments. The main focus was on analysing 
the sentiment of sentences and on classifying this into categories. The data 
was collected from Jigsaw Unintended Bias in Toxicity Classification 
competition on Kaggle. 
 
In this thesis, we will have a look at the following concept: Deep Learning, 
what is Natural Language Processing, what is Recurrent Network (RNN), 
Long-short Term Memory (LSTM) and Gated Recurrent Units (GRN). 
Background information was mostly collected from papers and journals 
from Google Scholar.  
 
The method here was using pre-trained embeddings to represent the 
relationship of inputs from words into vectors. Then, the data went 
through Bidirectional LSTMs (GRUs) layer to extract the sentiment of 
inputs. 
 
The project was implemented successfully and the result was favourable. 
The model achieved an accuracy of 93% on the public test set and ranked 
at 1314 out of 2172 contestants. 
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1 INTRODUCTION 

This thesis discusses Machine Learning and Deep Learning. Deep Learning 
is a subfield of Machine Learning that teaches computers to learn by 
examples. Deep Learning is an important part of driverless cars, 
observation system in China, Alpha Go and Alpha Go Zero of OpenAI, etc.  
 
If we take a brief look at the history, before Deep Learning became a 
worldwide phenomenal, Support Vector Machine (SVM) was preferred 
since the limitations in the computation power and the data reduced the 
accuracy of Deep Learning. Not until 2012, when Alex Krizhevsky, Ilya 
Sutskever, and Geoff Hinton entered a submission that would halve the 
existing error rate to 16% using a Deep Convolutional Neural Network 
(AlexNet), Deep Learning has become a phenomenal, gaining back the 
interest of Data Engineers and Data Scientists. In 2014, DeepFace of 
Facebook and Generative Adversarial Networks (GAN) of Yann LeCun was 
introduced. Next, Google’s AlphaGo beat Lee Sedol, a top-ranked 
international Go player from Korea in 2016. Lastly, in 2017, Fei-Fei Li 
launched the ImageNet (a free dataset of more than 14 million labelled 
images, which is very important for training neural nets in supervised 
learning) for researchers, educators and students. 
 
In this thesis, we will focus on the Recurrent Neural Network for Natural 
Language Processing (NLP) to classify the toxicity of online comments in 
Kaggle’s competition: Jigsaw Unintended Bias in Toxicity Classification. 
 
With the development of social networks, people easily leave a comment 
online without knowing its consequences. Online comments or posts 
sentiment analysis can help to solve the problem and help us prevent some 
events such as: cyber bullying, negative news, negative feedbacks. 
 
The challenge in the competition was the computing limitation and the lack 
of diversity in the dataset. Hence, it made the model easily got overfitted 
since there were significantly more zeros than ones. In addition, labels of 
the test set and cross validation set were hidden; thus, we could not know 
how good our model performed. Therefore, adjust the model to get less 
overfitted or underfitted. 
 
However, the goal of the competition was not only classifying inputs as 
positive or negative but also predicting scores of the inputs. Therefore, it 
can later be used to predict the severity of a sentence. 
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2 BACKGROUND KNOWLEDGE 

2.1 Machine Learning 

Machine Learning is a subfield of Artificial Intelligence (AI) that is said “to 
learn from experience E with respect to some task T and some 
performance measure P, if its performance on T, as measured by P, 
improves with experience E” (Mitchell, 1998, p. 2). That is, machine 
learning is a set of algorithm, which help the performance of a task better 
through training by minimizing errors using optimization methods. Some 
famous machine learning methods are: supervised learning algorithms 
(e.g. logistic regression, linear regression), unsupervised learning 
algorithms (e.g. K-nearest neighbourhood, K-mean clustering), semi-
supervised learning algorithms (e.g. cluster assumption) and 
reinforcement learning algorithms. 

2.2 Deep Learning 

Deep Learning is a subfield of machine learning applying algorithms 
inspired by designs and functions of the brain called artificial neural 
networks. 
Deep artificial neural networks are a collection of algorithms that have set 
breakthrough for several real-world problems: image recognition, sound 
recognition, image processing, recommender systems, healthcare 
services, autonomous vehicle, Artificial Intelligence, etc. (Mital, 2017). 
 
Deep refers to the quantity of layers in a neural system. A shallow system 
has one purported concealed layer; on the other hand, a deep systems has 
multiple. Different concealed layers enable deep neural systems to adapt 
better highlights of information, since basic highlights recombine starting 
with one layer then onto the next, to frame increasingly complex 
highlights. Nets with numerous layers pass input information and highlight 
their attributes better than nets with less layers. However, Deep Learning 
requires a large amount of data to achieve a decent accuracy and avoid 
overfitting. Moreover, since Deep Learning takes matrices as input, it 
requires lots of computational power to make it faster; therefore, the 
deeper the network is, the more computational power it needed. 

2.3 Neural Networks 

Neural networks (Sarle, 1994) are a group of algorithms, imitating the 
human brain, translating sensory information using computer perception, 
classifying or clustering raw input; As a result, recognize a pattern and 
embedded the pattern as vectors or matrices; as a result, all real-world 
information such as: images, sounds, texts or statistics, have to be 
translated. 
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Neural networks facilitate us cluster and classify. They assist to cluster 
untagged information in keeping with similarities among the inputs, and 
classifying information after their labelled of training dataset. Neural 
networks may also extract features that are fed into learning algorithms 
for clustering and classification.  
 
Deep Learning is the name we tend to refer to networks are composed of 
many layers; each layer is built from nodes. A node is the core where 
computation happens, imitating a neuron cell in a human brain, that 
activates once it encounters adequate impulses, combining inputs from the 
information to form a collection of coefficients (weights), that either 
magnify or lessen that input, thereby applying the trained matrices to 
inputs with relation to the task correspond to the algorithmic rule; e.g. that 
input is most useful is classifying information while not error? These input-
weight product are totalled then the sum is responded to a node’s 
supposed activation perform, to work out whether or not and to what 
extent that signal ought to progress additional through the network to 
have an effect on the final word outcome, say, associate degree act of 
classification. If the signal passes through, the neuron is considered as 
“activated.” 
 
 

 
Figure 1: A node (Skymind.ai, n.d.) 
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Figure 2: Simple neural networks layers 

 
• Input layer: where data is fed into the network 
• Hidden layer: containing activation functions, at this layer, the 

output of the previous layer is being processed (activated). In this 
case, the output of the input layer. A neural network can have more 
than one hidden layer. 

• Output layer: where output from hidden layers is turned into 
probabilities of the target label. 

2.4 Natural Language Processing (NLP) 

Natural language processing (NLP) is a branch of Artificial Intelligence that 
helps computers understand, analyse and work on natural language. NLP 
follows many disciplines, including computer science and computational 
linguistics, in order to fill the gap between human communication and 
computer understanding. (Skymind.ai, n.d.). 
 
Some applications of NLP are: Information Retrieval, Information 
Extraction, Machine Translation, Sentiment Analysis, Spam Filter, Speech 
Recognition, Natural Language Generation, etc. (Skymind.ai, n.d.).  
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2.4.1 Basic classification techniques 

2.4.1.1. Naïve Bayes Classifier 

The most basic and simple probabilistic classifier in machine learning based 
on Bayes’ Theorem. Theoretically, naïve Bayes is a conditional probability 
model: probability of an event (some particular situation occurring) given 
that another event has occurred (Naïve Bayes Classifier, 2019). 
 

• Bayes Theorem: 
 

𝑝(𝐶$|	𝑥) = 	
*(+,)*-𝑥.𝐶$/

*(0)
                   (1) 

 
 

• Gaussian Naïve Bayes  

𝑝(𝑥 = 𝑣	|	𝐶$) = 	
2

3456,
7
𝑒
9(:;<,)

7

7=,
7  (2) 

 

2.4.1.2. Logistic Regression 

Logistic Regression is a machine learning algorithm for classification. In this 
algorithm, the probabilities describing the possible outcomes of a single 
trial are using a logistic function (Logistic Regression, 2019). 
 

• Linear Regression 
𝑓(𝑥) = 	𝑤@𝑥        (3) 

 
• PLA 

𝑓(𝑥) = 𝑠𝑔𝑛(𝑤@𝑥)   (4) 
 
  

In the formula, the activation function, the matrix w and the inputs x 
output a graph. Then, using a threshold, we can classify the input. 

2.4.2 Recurrent Neural Networks 

In deep learning, we can use Recurrent Neural Network to deal with NLP. 
The problem with traditional neural network is that they do not consider 
the relationship between inputs. Recurrent neural network can model 
dynamic systems, where to previous outputs depend on past values of 
outputs and inputs also. Ordinary neural network is a static model between 
inputs and outputs. 
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Recurrent neural networks address the issue above. They are networks 
with their own loops, allowing information to endure. 
 
 

 
  
Figure 3: Folded Recurrent Neural Network (Do., 2017) 

 
 

 
Figure 4: Unfolded Recurrent Neural Networks (Do, 2017) 

 
Explanation of RNNs: 
 

• xt: the input at the time step t (one hot vector or word embedding) 
• st: the hidden state at the time step t 

o The memory of the network 
𝑠(𝑡) = 𝑓(𝑈𝑥F +𝑊𝑠F92)  (5) 

o The function f: nonlinearity such as tanh or ReLU 
o s-1: used to compute s0 (initialized by zero) 
o ot: the output at the time step t  

§ For example: 
𝑜F = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠F) 

  With V is vocabulary 
 
A chunk of neural network, A, takes some input xt and produces an output 
ot in the figure above. A loop allows the transmission of information from 
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one network step to the following. One can think of a recurrent neural 
network as multiple copies of the same network, each passing an 
information to a successor. 
 
Recurrent networks are distinguished from feedforward networks by 
means of that it connected to their past selections, taking their very own 
previous outputs as input. It is regularly said that recurrent networks have 
reminiscence, including memory to neural networks has a reason: there is 
information inside the serie, and recurrent nets use it to carry out tasks 
that feedforward networks cannot. 
 

 Some notes on RNNs: 
 

• st: the memory of the network 
o st: captures information from previous steps 

• RNN uses the same parameters (U, W, V) for all steps 
o Performing the same task on different inputs 
o Reducing the number of parameters 

• The output ot is not necessary for all problems 
o Depending on each task 

§ Sentiment prediction: only needs the final state 
• The need of input xt: also depends on each task 
• Main feature of RNN 

o The hidden states 
o Capture hidden representation of a sequence 
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Figure 5: Long-term Dependencies (Do, 2017) 

 

2.4.2.1. Backpropagation Through Time (BPTT) 

 
Backpropagation is an optimization algorithms in Machine Learning. It 
computes the portion of the error of the output by calculating the 
derivatives of the inputs, weights and output. After that, the derivatives 
are then used to adjust the weights matrix using other optimization 
method, e.g. Gradient Descend, Adam, Adadelta, etc. (Minh-Tien, N., 
2019). 
 
Recurrent networks depend on an expansion of backpropagation called 
backpropagation through time, or BPTT. Time, for this situation, is basically 
communicated by a well-characterized, ordered series of calculations 
connecting one time step to the following, which is all backpropagation 
needs to work (Minh-Tien, N., 2019). 
 
 

2.4.2.2. Long Short-Term Memory Units and Gated Recurrent Units 

 
The problem of RNNs is Vanishing Gradients, which is happens when a 
network has too many layer and the gradients of the loss function go 
toward zero, making no update on the weights matrix even though it has 
not reached the optimal point. This is somewhat because of the 
information going through many stages of multiplication (Minh-Tien, N., 
2019). 
 
 



11 
 

 
 

  
Figure 6: The relation between the number of layers and Gradient Vanishing 

 
As a result, in the mid-90s, two German researchers Sepp Hochreiter and 
Jürgen Schmidhuber introduced the idea of Long Short-Term Memory 
Units (LSTMs) (Hochreiter & Schmidhuber, 2006) to encounter the 
Vanishing Gradient. 
 
LSTMs help prevent the vanishing gradient that can be backpropagated 
through time and layers by keeping a small amount of error, it allows the 
RNN to continue learning. The information can be stored, read or written 
from a cell. Its mechanism let important feature passes through learning 
from data. That is, cells learn when and what data allow to enter, leave or 
be deleted through learning.  
 

 
Figure 7: LSTM Forget Gate (Minh-Tien, 2019) 

𝑓F = 𝜎(𝑊N. [ℎF92, 𝑥F] + 𝑏N)  (6) 
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• Looks at ht-1 and xt 
• For each Ct-1, output 

o 1: completely keep the information 
o 0: completely forget the information 
o Sigmoid function 

 
  

 
Figure 8: LSTM Storing Gate (Minh-Tien, 2019) 

𝑖F = 𝜎(𝑊V. [ℎF92, 𝑥F] + 𝑏V)   (7) 
 

𝐶WF = tanh(𝑊\. [ℎF92, 𝑥F] 	+ 	𝑏+)  (8) 
 

• Deciding what new information to store 
• Two steps: 

o Sigmoid layer: calls the “input gate layer” 
§ Decide which value to be update 

o Tanh layer: 
§ Create a vector of new candidate values 

 

 
Figure 9: LSTM Update Gate (Minh-Tien, 2019) 

 
𝐶F = 	𝑓F ∗ 𝐶F92 +	 𝑖F ∗ 	𝐶WF   (9) 

 
• Update the old cell state to the new cell state 

o Multiply Ct-1 with ft 
§ Forgetting information we want to forget 

o Adding: it * 𝐶WF 
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§ A new candidate value  
§ Selected by how much we decided to update each 

state value 
• We actually drop information about the old subject’ gender and 

add new information 
 

  

 
 
Figure 10: LSTM Output Gate (Minh-Tien, 2019) 

 
𝑜F	 = 𝜎(𝑊 [ℎF92, 𝑥F] + 𝑏^)  (10) 

 
ℎF = 𝑜F ∗ tanh(𝐶F)   (11) 

 
• Deciding the output of LSTM cell 
• Sigmoid layer: 

o Deciding what parts of the cell state are going to output 
• Tanh layer: 

o Put the cell state to tanh(-1, 1) 
o Multiply with the output of the sigmoid gate 
o Only output the parts we decided to 

• The subject to the next word is a verb 
• From the output of LSTM cell 

o Know the subject is plural or singular 
o Output correct verb 

 
Using the same idea and mechanism with LSTMs, a GRU (Cho et al., 2014) 
can be consider as a LSTM with less gate and without output gate. As a 
result, it takes less computational time and fully writes the information 
from its memory cell to larger net at each time step. 
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Figure 11: GRU Update Gate (Minh-Tien, 2019) 

 
𝑧F = 	𝜎(𝑊(`)𝑥F + 𝑈(`)ℎF92)  (12) 

  
• Compute the update gate zt for the time step t 

o xt is combined with its weight 
o ht-1 is combined with its weight 

• Both the output are added together 
o Using sigmoid function 
o Between 0, 1 

 
  
  

 
 

Figure 12: GRU Reset Gate (Minh-Tien, 2019) 

 
𝑟F = 𝜎(𝑊(b)𝑥F + 𝑈(b)ℎF92)  (13) 
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• Compute the reset gate rt for the time step t. Similar to the update 

gate 
o xt is combined with its weight 
o ht-1 is combined with its weight 

• Both the output are added together 
o Using sigmoid function 
o Between 0, 1 

 
The reset gate and the update gate are computed by the 2 formulas (11) 
and (12). “When the reset gate is close to 0, the hidden state is forced to 
ignore the previous hidden state and reset with the current input only” 
(Cho et al., 2014, p. 3). This allows the hidden state to exclude information 
that is irrelevant in the future. On the other hand, the update gate decides 
how much information will be forwarded to the current hidden state. 

 

  
Figure 13: GRU Current Memory Content (Minh-Tien, 2019) 

 
ℎ′F = tanh(𝑊𝑥F + 𝑟F⨀𝑈ℎF92)  (14) 

 
• Multiply 

o xt with W and ht-1 with U 
• Hadamard (element wise) 

o Determine what to remove from the previous time steps 
• Sum up 
• Apply tanh function 
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Figure 14: GRU Final Memory at current time step (Minh-Tien, 2019) 

 
ℎF = 𝑧F⨀ℎF92 + (1 − 𝑧F)⨀ℎ′F  (15) 

 
• Need to compute ht which holds information for the current time 

step 
o Apply element wise of zt and ht-1 
o Apply element wise of zt and (1-zt) 
o Sum up two parts 

 
 
After computed all the step, the final memory sums up to give the matrix 
and the output, this is a result of the update, reset and the shared weights 
matrix.  
 

 
Figure 15: GRU vs LSTM (Minh-Tien, N., 2019) 
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Table 1: Comparison table between GRU and LSTM 

GRU LSTM 
An Update gate which decide whether to 
pass previous information to the next 
cell 

Two more gates for forget and output 

A Forget gate is nothing but has a new 
set of weight (Wt) 

Two additional math operations with 
two new sets of weights 

3 PROPOSED METHOD 

3.1 Task Description 

Kaggle is an online network of data scientists and machine learning, 
claimed by Google LLC. Kaggle enables clients to discover and distribute 
public datasets, investigate and fabricate models in an online information 
science condition, work with other information researchers and AI designs, 
and enter rivalries to unravel data science challenges. Kaggle got its start 
by offering AI competitions and now likewise offering an open data 
platform, a cloud-based workbench for data science, and short structure AI 
training. 
 
The challenge of the competition was to detect toxic comments and 
minimized unintended model bias.     Unintended bias in Machine Learning 
can be seen as systemic differences in performance for different 
demographic groups, potentially compounding existing challenges to 
fairness in society at large. 

3.2 Model Architecture 

Due to the kernels time limitation and the hidden test set labels. We are 
unable to make a complex models. Therefore, I made tests on different 
basic models to get the overview which model give the best result. 
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Figure 16: An illustration on the RNNs model (Solomon, n.d.) 

 Model Architecture 

⎩
⎪
⎨

⎪
⎧

𝐼𝑛𝑝𝑢𝑡	𝑙𝑎𝑦𝑒𝑟
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑙𝑎𝑦𝑒𝑟
𝐿𝑆𝑇𝑀𝑠, 𝐺𝑅𝑈𝑠	𝑙𝑎𝑦𝑒𝑟𝑠

𝐷𝑟𝑜𝑝	𝑜𝑢𝑡
𝐻𝑖𝑑𝑑𝑒𝑛	𝑙𝑎𝑦𝑒𝑟
𝑂𝑢𝑡𝑝𝑢𝑡	𝑙𝑎𝑦𝑒𝑟

 

 
Firstly, comments are taken through pre-processing function to remove 
punctuations and emoticons. The return text is cleaned and lowercased. 
Secondly, comments are converted into sequence using 
keras.prepocessing library. Finally, they are sliced and padded to fit the 
input length. 
 
After that, inputs went through a pre-trained embedding layers, so their 
relationship can be better represented. In this thesis, I used Facebook’s 
Fasttext with 600 billions tokens embedded in a square matrix of size 300 
and Stanford’s Glove embedded in a square matrix of the same size using 
6 billions tokens. In addition, for model using both word embedding and 
char embedding, I used Standford’s char embedding using 840 billions 
tokens embedded in a 300 dimension matrix. Then, the input will go 
through the LSTMs or GRUs to extract their features. Bidirectional 
recurrent networks allow the networks to extract sentiment from the word 
before and after of the input. Next, drop out layer removes an entire 1 
dimension feature map randomly, preventing model from overfitting. After 
going through two hidden layers using ReLU activation function, the 
sigmoid, tanh or softmax function outputs the probabilities of the inputs. 
 

3.3 Word Embedding 

Word embedding is one of the most popular representations of document 
vocabulary. It is capable of capturing context of a word in a document, 
semantic and syntactic similarity, relation with other words, etc. “A 
fundamental problem that makes language modelling and other learning 
problems difficult is the curse of dimensionality.” (Bengio et al., 2001, p. 1). 
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In word embedding, each word mapped to one vector illustrate by a real-
value vector, often tens or hundreds of dimensions. This is contrasted to 
the thousands or millions of dimensions required for sparse word 
representations, such as a one-hot encoding and its value learned through 
training. 
 
The representation is learned based on the usage of words. This allow to 
represent words are used in a similar ways to have similar representations; 
therefore, capture their meanings. This could be summarized as: words 
that have similar context will have similar meanings; as a result, have the 
similar representations. 
 
Many NLP systems and traditional techniques treats words as atomic units, 
that is, there is no consideration between similarity of words since they are 
represented as indices in vocabulary (Mikolov et al., 2013, p. 1); therefore, 
in 2013, Tomas Mikolov introduced the Word2Vec. 
 
 

3.4 LSTMs and GRUs 

 
As mentioned earlier, when dealing with sequence data, people prefer 
RNN over CNN (Convolution Neural Network) since it can preserve the 
history information. And the most common RNNs networks in NLP are 
LSTMs and GRUs. 
 

3.5 Training 

An important algorithm of machine learning and deep learning is the loss 
function. For this project, I used Binary Cross-Entropy loss, this is a popular 
loss function in binary classification problems: 
  

										𝐻*(𝑞) = 	−
2
{
∑ 𝑦V. log(𝑝(𝑦V)) + (1 −	𝑦V). log(1 − 𝑝(𝑦V)){
V�2  (16) 

where y is the label (1 or 0) and p(y) is the predicted probability of the point 
being 1 for all N points. 

 
Another algorithm that makes a significant impact on Machine Learning 
and Deep Learning is Optimization algorithm. In this project, we used Adam 
optimizer algorithm (Kingma et al., 2017). The method is computational 
efficiency, required little memory. The computation of the decaying 
averages of past and past squared gradients mt and vt respectively as 
follow: 

𝑚F = 	ß2𝑚F92 + (1 −	ß2)𝑔F               (17) 
 

𝑣F = 	ß4𝑣F94 + (1 −	ß4)𝑔F4               (18) 
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mt and vt are estimates of the first moment (the mean) and the second 
moment (the uncentered variance) of the gradients respectively. 
Additionally, as the mt and vt are initialize as vectors of 0’s, the author of 
Adam: Kingma and Liu Ba, observed that they bias toward 0, especially 
during initial time steps or ß1 and ß2 are close to 1. Hence, they counteract 
these biases by computing bias-correct mt and vt: 

 

𝑚�F = 	
��
29	ß��

   (19) 

 
𝑣�F = 	

��
29	ß7�

   (20) 

  
 And then use these values to update the weights matrix: 
 

𝜃F92 = 𝜃F −	
�

������	
𝑚�F  (21) 

 
 The authors propose default value for ß1 is 0.9, ß2 is 0.999 and 10-8 for ε. 
 

4 EVALUATION METRICS 

4.1 Dataset Description  

The dataset consisted of about 1.8 million online comments. Each 
comment in the training dataset had a toxicity label (target), and the model 
should predict the target of the test data. For evaluation, test set example 
with target >= 0.5 was considered as positive class (toxic) and vice versa. 
 
Beside the target, the training dataset also provided us with many subtypes 
attributes such as: severe_toxic, obscene, threat, insult, identity_attack, 
sexual_explicit. In addition, a subset of comments was labelled with a 
variety of identity attributes, representing the identities that were 
mentioned in the comment: male, female, homosexual_gay_or_lesbian, 
christian, jewish, muslim, black, white, psychiatric_or_mental_illness. 
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Figure 17: Description of the train data 

 

 
Figure 18: Identity attributes of train data 

 
 One drawback was that the data set was skewed, so that there were way 
more positive comments than negative ones. Therefore, it was easier to 
predict inputs as positive.  

4.2 Evaluation 

 Generalized Mean of Bias AUCs 
• To combine the per-identity Bias AUCs into one overall measure, 

we calculate their generalized mean as defined below: 

𝑀*(𝑚�) = (2
{
∑ 𝑚�

*{
��2 )

�
�            (22) 

• where: 
o Mp = the pth power-mean function 
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o ms = the bias metric m calculated for subgroup s 
o N  = number of identity subgroups 

• For this competition, we use a p value of -5 to encourage 
competitors to improve the model for the identity subgroups with 
the lowest model performance. 

 
 
Final metric 

• We combine the overall AUC with the generalized mean of the Bias 
AUCs to calculate the final model score: 

𝑠𝑐𝑜𝑟𝑒 = 	𝑤�𝐴𝑈𝐶^��b��� + 	∑ 𝑤�𝑀*(𝑚�,�)�
��2 	 (23)	

• where: 
o A = number of sub metrics 
o ms,a = bias metric for identity subgroup s using sub metric a 
o wa = a weighting for the relative importance of each sub 

metric; all four w values set to 0.25 
 
  

Having a set of comments on social networks, we need to build a model to 
classify the toxicity of the comments. However, the evaluation metrics is 
not just classified as positive or negative but the ROC-AUC score (Receiver 
Operating Curve – Area Under the Curve).  

5 RESULTS AND DISCUSSION 

Table 2: Accuracies of different models on public test set 

Models Results 
2 GRUs with char + word embeddings layers (128 hidden 
states) 0.92264 

1 LSTM with 2 word embeddings layers (128 hidden states) 0.92281 
1 LSTM with 2 word embeddings layers (256 hidden states) 0.92308 
2 LSTMs with char + word embeddings layers (128 hidden 
states) 0.92648 

2 GRUs with 2 word embeddings layers (128 hidden states) 0.92892 
2 LSTMs with 2 word embeddings layers (128 hidden states)  0.92938 
Fine-tuned 2 LSTMs with word embedding and char 
embedding (128 hidden states) 0.92977 

 
 

Figure 19: Position on Kaggle’s public leaderboard 

 
The result of the model can be considered as successful as the author 
meets his objective for the project and broader knowledge on relevant 
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subject. Even though, on the way to get the result, I have met some 
problems, but in the end, I have successfully encountered it. 
 
To conclude, we can observe that the model works better with two word 
embeddings than char embedding combine with word embedding, except 
for the fined tuned model. As a result, we can understand the importance 
of optimization method in Deep Learning and Machine Learning.  
 
Due to the limitations of the hardware and the competition, the author 
could not test all the possibilities of the problems. XGBoost (Chen et al., 
2016), Deeper Neural Network, train a new characters embedding, words 
embedding are proposed to make improvement on the model for further 
practical application. 

 

6 CONCLUSIONS 

In this thesis, we have focused on the defining concepts such as of Machine 
Learning, Deep Learning and their applications into real-world problems, 
especially Natural Language Processing. In addition, we successfully 
implemented a Deep Neural model to extract the semantics of sentences 
and output a score for inputs. Through theoretical and empirical work, a 
deeper understanding about Machine Learning in general and Deep 
Learning for NLP in specific: was gained Techniques involving data 
processing, simple optimization methods and classification methods 
became familiar to the author as well. 
 
Further work to improve model performance was also discussed in the 
thesis such as using XGBoost, implement a new word or char embedding 
instead of using a pre-trained model, Deeper and Bigger Neural Networks, 
using Support Vector Machine (SVM) or Random Forest, which are both 
know for theirs robust characteristics and the fact that they work well for 
skewed dataset). 
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Appendix 1 
MODEL IMPLEMENTATION 

 

 
  

import numpy as np 

import pandas as pd 

import re 

from keras.models import Model 

from keras.layers import Input, Dense, Embedding, SpatialDropout1D, Dropout, add, 

concatenate 

from keras.layers import CuDNNGRU, CuDNNLSTM, GlobalMaxPooling1D, 

GlobalAveragePooling1D 

from keras.layers.wrappers import Bidirectional 

from keras.preprocessing import text, sequence 

from keras.callbacks import LearningRateScheduler 

from keras import optimizers 

 

# Input data files are available in the "../input/" directory. 

# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the 

input directory 

 

import os 

print(os.listdir("../input")) 

 

# Any results you write to the current directory are saved as output. 

 

EMBEDDING_FILES = [ 

    # '../input/fasttext-crawl-300d-2m/crawl-300d-2M.vec', 

    '../input/glove6b300dtxt/glove.6B.300d.txt', 

    '../input/glove840b300dchar/glove.840B.300d-char.txt' 

] 

 

NUM_MODELS = 2 

BATCH_SIZE = 512 

GRN_UNITS = 128 

DENSE_HIDDEN_UNITS = 4 * GRN_UNITS 

EPOCHS = 4 

MAX_LEN = 220 
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  DROP_OUT = 0.3 

 

def get_coefs(word, *arr): 

    return word, np.asarray(arr, dtype='float32') 

 

def load_embeddings(path): 

    with open(path) as f: 

        return dict(get_coefs(*line.strip().split(' ')) for line in f) 

 

def build_matrix(word_index, path): 

    embedding_index = load_embeddings(path) 

    embedding_matrix = np.zeros((len(word_index) + 1, 300)) 

    for word, i in word_index.items(): 

        try: 

            embedding_matrix[i] = embedding_index[word] 

        except (KeyError, UnicodeDecodeError, UnicodeEncodeError) as e: 

            pass 

    return embedding_matrix 

     

 

def build_model(embedding_matrix, num_aux_targets): 

    input_s = Input(shape=(MAX_LEN,)) 

    grn_s = Embedding(*embedding_matrix.shape, weights=[embedding_matrix], 

trainable=False)(input_s) 

    grn_s = SpatialDropout1D(0.3)(grn_s) 

    grn_s = Bidirectional(CuDNNGRU(GRN_UNITS, return_sequences=True))(grn_s) 

    grn_s = Bidirectional(CuDNNGRU(GRN_UNITS, return_sequences=True))(grn_s) 

 

    hidden = concatenate([ 

        GlobalMaxPooling1D()(grn_s), 

        GlobalAveragePooling1D()(grn_s), 

    ]) 

    hidden = add([hidden, Dense(DENSE_HIDDEN_UNITS, activation='relu')(hidden)]) 

    hidden = add([hidden, Dense(DENSE_HIDDEN_UNITS, activation='relu')(hidden)]) 
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      result = Dense(1, activation='sigmoid')(hidden) 

    aux_result = Dense(num_aux_targets, activation='sigmoid')(hidden) 

     

    model = Model(inputs=input_s, outputs=[result, aux_result]) 

    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 

 

    return model 

     

 

def preprocess(text): 

    text = re.sub(r"<[^>]>", '', text) 

    emoticons = re.findall(r"(?:|;|=)(?:-)?(?:\)\(|D|P)", text) 

    text = re.sub(r"[\W]+", " ", text.lower()) + " ".join(emoticons).replace('-', '') 

    text = re.sub(r"\n", ' ', text) 

    return text.lower() 

 

 

 

train = pd.read_csv('../input/jigsaw-unintended-bias-in-toxicity-classification/train.csv') 

test = pd.read_csv('../input/jigsaw-unintended-bias-in-toxicity-classification/test.csv') 

 

train = train.fillna(0.0) 

x_train = train['comment_text'].apply(preprocess) 

y_train = np.where(train['target'] >= 0.5, 1, 0) 

y_aux_train = train[['target', 'severe_toxicity', 'obscene', 'identity_attack', 'insult', 'threat']] 

x_test = test['comment_text'].apply(preprocess) 

 

tokenizer = text.Tokenizer() 

tokenizer.fit_on_texts(list(x_train) + list(x_test)) 

 

x_train = tokenizer.texts_to_sequences(x_train) 

x_test = tokenizer.texts_to_sequences(x_test) 

x_train = sequence.pad_sequences(x_train, maxlen=MAX_LEN) 

x_test = sequence.pad_sequences(x_test, maxlen=MAX_LEN) 
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embedding_matrix = np.concatenate( 

    [build_matrix(tokenizer.word_index, f) for f in EMBEDDING_FILES], axis=-1) 

 

model = build_model(embedding_matrix, y_aux_train.shape[-1]) 

model.fit( 

            x_train, 

            [y_train, y_aux_train], 

            batch_size=BATCH_SIZE, 

            epochs=EPOCHS, 

            verbose=2, 

            callbacks=[ 

                LearningRateScheduler(lambda epoch: 1e-3 * (0.6 ** 1)) 

            ] 

        ) 

  

predictions = model.predict(X_test, batch_size=2048)[0].flatten() 

 

submission = pd.DataFrame.from_dict({ 

    'id': test['id'], 

    'prediction': predictions 

}) 

 

submission.to_csv('submission.csv', index=False) 
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Appendix 2 
MODEL LOG 
 

 
 Using TensorFlow backend. 

 
['glove6b300dtxt', 'fasttext-crawl-300d-2m', 'jigsaw-unintended-bias-in-
toxicity-classification'] 
 
Epoch 1/4 
- 774s - loss: 0.2365 - dense_3_loss: 0.1289 - dense_4_loss: 0.1076 - 
dense_3_acc: 0.9491 - dense_4_acc: 0.8547 

 
Epoch 2/4 
- 775s - loss: 0.2154 - dense_3_loss: 0.1128 - dense_4_loss: 0.1026 - 
dense_3_acc: 0.9541 - dense_4_acc: 0.8550 
 
Epoch 3/4 
- 777s - loss: 0.2077 - dense_7_loss: 0.1061 - dense_8_loss: 0.1015 - 
dense_7_acc: 0.9563 - dense_8_acc: 0.8550 

 
Epoch 4/4 
- 777s - loss: 0.2011 - dense_7_loss: 0.1002 - dense_8_loss: 0.1009 - 
dense_7_acc: 0.9582 - dense_8_acc: 0.8550 
 


