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Abstract—In energy production, peat extraction has a
significant role in Finland. However, protection of nature has
become more and more important globally. How do we solve this
conflict of interests respecting both views? In peat production,
one important phase is to drain peat bog so that peat production
becomes available. This means that we have control over how
we can lead water away from peat bog to nature without water
contamination with solid and other harmful substances. In this
paper we describe a novel method how fouling of water bodies
from peat bog can be controlled more efficiently by using
weather forecast to predict rainfall and thus, minimize the
effluents to nature.

Keywords—Internet of Things, open data, predictive control,
rain prediction

L INTRODUCTION

Today, nature protection has become a more and more
important issue. All technology solutions to help avoid nature
resource overconsumption are welcome.

In Finnish peatlands the peat production area is
approximately 68,000 hectares. In 2016, there were 45,000
hectares of energy peat production and 5,000 hectares of
peatland in the production of environmental peat. During the
2000s, the production of energy peat has averaged about 400
megawatt hours per hectare. The total output of energy peat
has varied from 8 terawatt hours to 35 terawatt hours in the
2000s [1].

Peat production is seasonal. The peat season is in normal
years from mid-May to early September. The average summer
lasts 40-50 days, when production is possible. The production
is also weather dependent, and the yield per hectare varies
both at the annual and regional levels [1].

Views on the harmfulness of peat production on
watercourses are based on obsolete data and beliefs about peat
production. These beliefs are bolstered by the fact that peat
production has been accused of water contamination [1].

The central part in avoiding fouling of water bodies is
predictable control of runoff water. An important role in this
process is the ability to filter in significant quantities solid and
other harmful substances before water accesses water bodies.
The present method in Finland is based on pumping of the
water from drainage reservoirs (pump pool) to filtering field
by measuring the water height in reservoirs.

In this research paper, we introduce a novel method to
powerfully filter solid and other substances from water. Our
solution is based on using IoT technology with weather
forecast and rainfall measurement locally in peat bog. It
stabilizes the flow of water from the drainage reservoirs
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significantly and thus notably reduces the load on the peat
production area.

II.  COMBINING SENSOR DATA AND WEATHER FORECASTS
IN IOT SYSTEM

There are some experiments of using weather forecasts for
prediction in the IoT systems, for example in different
agricultural systems and applications. Reference [2] proposes
a smart water dripping system for the farmers to irrigate the
farms efficiently. It is mainly based on local sensors like soil
temperature, moisture and pH. The systems also collect the
weather forecast information from websites and use its
information to decide if the watering is needed. Due to
possible forecast inaccuracy, the system gives for the operator
possibility to manually override the system suggestion [2].

A farming automation system for plants watering which
uses the weather prediction based on fuzzy logic algorithm has
been introduced in [3]. The system is based on sensor data and
forecast from the weather service provider. The system uses
fuzzy logic algorithm to calculate if the plant should be
watered. Sensor data includes the soil moisture data and rain
sensor data. Weather prediction data is collected from two
different weather service providers (WSP Open Weather and
Weather Underground) [3].

Rainfall forecasts have been used in cyber physical
systems for predicting and preventing flood hazards. Yang et
al. [4] have used an ensemble numerical prediction system to
get more reliable rainfall forecast. The ensemble numerical
system used is based on 20 ensemble units. These ensemble
units are various numerical weather prediction models with
different configurations. The system is based on worldwide
observation data of weather parameters. This data is obtained
from various sources like satellites, atmospheric sounding
devices, buoys, aviation routine weather reports, ships, and
other sources. The ensemble system provides a 72-hour
rainfall forecast every six hours with 5 km spatial resolution.
Then the statistical artificial neural network method has been
used to combine the 20 ensemble rainfall forecasts to
improved 24-hour forecast. To further improve the short-term
rainfall forecasts the real-time radar data has been included for
the model [4].

Weather forecasts together with local weather data have
been used to forecast crop frost. If the frost occurs in the
growth season, the economic losses can be very significant for
the farmers. The weather forecast accuracy to predict actual
temperatures in the field has been researched by using several
regression techniques. According to the different regression
techniques used, it is not possible to predict the actual
temperature in the field from the weather forecast with the



accuracy needed for predicting the frost. More advanced and
complex techniques have been proposed to be tested like
genetic algorithm and neural network [5].

Weather forecasts have been also used for predicting the
heat load for family houses [6][7]. Heating systems based on
hot water circulation have the disadvantage and challenge of
the long response time. It cannot react quickly enough for the
outside temperature changes. By using the weather forecast as
one input, it is possible to react proactively to weather changes
and it can improve the comfort and reduce energy
consumption.

Weather and especially rainfall forecasting is a
challenging task locally. There is a lot of research done in that
field. There are several methods to weather forecast. One of
the most used methodologies is complex time series [8][9].
One of best-known methods for time series analysis are
Exponential Smoothing [10] and Autoregressive Integrated
Moving Average (ARIMA) [11].

Prediction of rainfall is a rather complex physical
phenomenon. For this reason, methods such as machine
learning are used today. Examples of such methods are among
others Artificial Neural Network (ANN) [12], k-closest
neighbor (knn) regression [13], Radial Basis Support Vector
Regression (RBSVR) both separately and in combination as a
hybrid model [14].

III.  SMART PUMPING SYSTEM

Water treatment in the peat production area is a very
important and challenging task. For production, the peat needs
to be dry. Water is flowing via ditches to the separated
reservoirs. From the reservoirs, the water is pumped to the
filtering field where the vegetation and soil is filtering the
water. Water is filtered through the field that restrains the
solids and nutrients before the water is flowing to the
watercourses [15].

The filtration through the filtering field is more effective
if the pumping and water flow through the field is as constant
as possible. In traditional pumping systems, the pumping
starts when the water level is high in pump pool and stops
when the water level is rather low. The pumping takes place
in constant speed. Therefore, the pumping and water flow is
not smooth but occurs more in bursts.

With the frequency converter, it is possible to even out the
pumping by slowing down the pumping speed as the water
level in the pool is lowering. This is a very simple and
effective method to even out the water flow through the field.
It is also possible to program to the frequency converter a
ramp-up time for soft starting and to lower the starting burst
in water flow.

The next step to even out the pumping even more is to use
the predictive pumping. When the weather forecast is
predicting rain or if the rain has already started, but the water
is still flowing to the pool, it could be possible to start pumping
while the level in the pool has not yet reached the pumping
level. This way the pool could buffer more water and the
pumping of the raining water would take more time and the
filtering field should filter the water more effectively.

There is a delay in water flow from the peat production
area to the reservoirs. The field from which the raining water
is flowed via ditches to the pool can be several tens of

hectares. The flowing speed depends on, for example how dry
the soil is. Dry soil can absorb more water thus lowering and
slowing the water flowing to the pool.

This paper presents the implementation of the smart
pumping control and the algorithm for the predictive
pumping. The predictive pumping is based on the weather
forecast for the area and the local weather station data together
with the actual water level in the pump pool.

The construction of the IoT pump control can be seen in
Fig 1. The decision is made in the ThingsBoard.io Open
Source [oT platform, which is located in the cloud server. The
data gathered to the IoT platform are the weather forecast
(rainfall prediction from open data) data, local weather station
data and the actual water level information.

The water level in the pump pool is measured with the
hydrostatic level transmitter (water level transmitter). Its
output signal is 2-wire 4-20 mA traditional current loop,
which is widely used in automation technology due to its
immunity for electromagnetic disturbance. The current loop
level is converted to the digital 12C-bus with separate
converter and connected to the Raspberry PI Linux computer.
The Raspberry PI sends the water level data to the IoT
platform (cloud) via 3G/4G cellular network.

The other data inputs for the IoT platform are local
weather forecast (from Finnish Meteorological Institute) and
data from local weather station located in close proximity to
the pump station and peat production area.

The Finnish Meteorological Institute (FMI) offers several
different data sets as Open Data. FMI offers weather forecast
for 17,000 places in Finland. Weather forecast in open data is
updated four times a day, thus every 6 hours. The rainfall
forecast for the closest offered place from the peat production
area was the main focus in this case [16].

The local weather station is located in close proximity of
the pump station. Weather station sends the data to the cloud
server (weatherlink) via cellular network and the data is
obtained from there via interface to the IoT platform. The
main factor gained from the local weather data in the
predictive algorithm is the rain during the last hour. Water
rained during last hour is still partly flowing to the reservoir,
thus it does not immediately raise the water level in the
Ireservoir.

The analytics from the obtained data is carried out on the
IoT platform. According to the analytics, it creates the
information for the current signal needed for guiding and
controlling the frequency converter. This information is sent
to the Raspberry PI via wireless 3G/4G connection and the
Raspberry PI creates a new control signal with 12C/current (4-
20 mA) converter. This current loop is connected to the
frequency converter.

The flow meters are located after the filtering field. The
flow meter data can be used to evaluate the smart pumping
effectiveness to even out the water flow after the filtering
field. It cannot be used for real time feedback to the pumping
because there is a delay when the effect of pumping can be
seen in water flow.

In a pilot case, the water level in the measuring well can
vary from 0 meters to 3 meters. The frequency converter is
programmed to keep the water level in 1.8 meters and the
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Fig. 1. The construction of the IoT pump control.

range is approximately between 1.8 m to 2.2 m. Thus, the
pumping starts when the water level has reached the 2.2
meters. The pumping starts at nominal speed and it slows
down stepless until the water level reaches 1.8 meters level.

The predictive pumping algorithm can start the pumping
before the water level reaches the 2.2 meters level. Moreover,

with predictive pumping the water level can be pumped down
to 1.5 meters level to yield to raining water.

IV. PREDICTIVE PUMPING ALGORITHM BASED ON SENSOR
DATA AND WEATHER FORECAST

The algorithm used in the IoT platform is creating the
information for control signal needed. The first version of the
pumping algorithm is rather simple but it will be developed
further in the future.

The control algorithm inputs are:

e next hour rainfall forecast from FMI open data R;
(mm).

e last hour accumulated rainfall from the local weather
station R; (mm).

e actual water level in pump station L; (mA)

The control signal L, (mA) for the frequency converter is:

water pump

_ L;,whenl; <y
La(Ly, X3, X5) = {Ll + X, +X,, whenlL; =y 1

Ly, L,y € [4,20]

X, X, € [0,16]

The X; (mA) is the effect of the rainfall forecast on the
control signal:

0,whenR; < b
aR;,whenb <R; <c 2)
d,whenR; >c

X1(Ry) =

Rl; a‘) bl c E [O, OO[

d € [aR,, 16]

Where a is just a parameter to scale the control (slope) to
the suitable level. The b is the minimum predicted amount of
rain to take account (for example 0.5 mm/h), ¢ is the limit for
the predicted rain to be used for growing the X; (thus the rain
prediction higher than c is not raising the X; anymore), d is the
maximum for X; (for example 14 mA). Maximum value for d
is 16 mA but in real situation, it needs to be much lower.

The X> (mA) is the effect of the last hour accumulated rain
measured in local weather station:



0, whenR, < f
eR,,when f <R, <g 3)
h,whenR, > g

X (Ry) =

Rz'e,f,g E [0'00[

h € [eR,, 16]

Where e is the parameter to scale the control level. The f
is the minimum accumulated last hour rain to take into account
(for example 0.5 mm/h), g is the amount of accumulated rain
during last hour to be used for increasing the X>. The 4 is the
maximum for X>.

The parameters used in this pilot case were y = 12 mA, a
=2,b=0.5mm/h, c=7mm/h,d=14mA, e=2,/=0.5 mm/h,
g=7mm/h, h =14 mA.

Thus the algorithm for weather (rainfall) prediction effect
X was:

0,when R; < 0.5
X, (Ry) = IZRl,When 05<R; <7 4)
14, when Ry > 7

The effect of the local weather data:

0, when R, < 0.5
X,(Ry) = {ZRZ,when 05<R, <7 )
14, when R, > 7

Lastly, the final control signal for the frequency converter:

_ L;,whenL; <12
Ly (L, X3, Xz) = {L1 + X, +X,, whenL; > 12 ©)

The control chain in the IoT platform is presented in Fig
2. The Raspberry PI sends the water level transmitter data to
the IoT platform. In the IoT platform, the effects of rainfall
forecast and the last hour accumulated rain are calculated and
added to the water level data if the water level is over a certain
threshold level. This data is sent to the Raspberry PI in the
field. If the water level is not over the threshold, the water
level data is returned back to the Raspberry PI unchanged.

V. RESULTS

The predictive pumping system has been in use during
autumn 2018 for few months. Due to exceptional rain
conditions during that period, reliably results and conclusions
cannot be drawn yet. In addition, the predictive algorithm
parameters were changed few times during the period.
Originally, the parameters were set too conservatively and the
predictive control did not activate easily.

Data from local weather station and weather forecast for
that location have been collected during autumn 2018. The
rainfall forecast and actual rainfall from local weather station
is presented in Fig 3. from 9 October 2018 to 13 November
2018 in hour on an hour basis. Measuring period is rather short
but at least during that observation period the correlation
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Fig. 2. Control chain in [oT platform.

between forecast and actual level is rather small. If the weather
forecast is predicting rain and it actually does not start to rain,
the pumping can start without the real need. Anyway, this is
not a big problem; however, it gives rise to water flow after
the filtering field. As a disadvantage, this system starts
pumping with nominal speed. In a predictive mode, it could
be better to start pumping with modest speed. This way the
water flow would be more even and the unnecessary pumping
(due to false rainfall prediction) would not cause as large burst
in water flow after the filtering field. This is one of possible
tasks in further development.

VI. CONCLUSIONS AND FUTURE WORK

By using short-term (one hour) rainfall forecast we get
quite good accuracy to the pump control. That way the rainfall
prediction and pump control are simple. Better result to the
control will be achieved by predicting rainfall using local
weather information. In addition, one possibility is to use the
rainfall forecast for the next few hours, not just the next hour.
The forecast for following hours could have a smaller effect
on the algorithm due to bigger inaccuracy.

The next step in the research will be to add the weather
forecast, local weather station information and the peat bog’s
current capability of water absorption into the pump control
algorithm. Water absorption depends on long-term rainfall
and season. With these changes to algorithm, it is possible to
get more even water discharge from the peat bog elsewhere to
the nature. By adding water flow measurement information
from the filtering field with water pumping information we get
feedback from the algorithm by regression analysis.
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Fig. 3. Actual rainfall versus rain forecast from hour to hour.

In this system, all the intelligence and calculations are
done in the cloud server (IoT platform). This kind of system
requires a reliable wireless internet connection from the field
to the cloud and back. The water level data is constantly sent
to the ToT platform and the IoT platform sends the new control
data at the same rate back to the Raspberry PI. In rural areas,
the internet connection is not always reliable enough. The
algorithm used is not very complex; thus, the calculations
could be done locally in the Raspberry PI. This kind of
approach is called edge computing. The weather forecast from
open data used is updated every six hours so in edge
computing approach there is no need for a constant internet
connection. The amount of data in weather forecast is also
rather small. It could be possible to download this amount of
data to the edge device with a rather slow internet connection.
Edge computing could also help significantly in possible
connection shortages. Local weather station data could be
connected directly to the control device without available
internet connection.
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