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ABSTRACT 

Chhabin Pokhrel 
Determination of Strength Properties of Pine and Its Comparison with Birch and 
Eucalyptus, 53 pages, 4 appendices 
Saimaa University of Applied Sciences, Imatra 
Unit of Technology, Degree Programme in Chemical Engineering 
Bachelor’s Thesis, 2010 
Supervisor: Mr. Esko Lahdenperä, Lic.Tech. Senior Lecturer and Mr Jarkko 
Männynsalo, MSc, Senior Lecturer, Saimaa University of Applied Sciences 

 
The purpose of this bachelor’s thesis was to analyze the strength properties of 
pine (Pinus Sylvestris) Kraft pulp required for paper making process. This thesis 
also compares the result with the earlier study done on birch (Betula pendula) 
and eucalyptus (Eucalyptus Grandis) which were part of an ongoing research 
on different wood species and their properties by Saimaa University of Applied 
Sciences, Imatra. 

In the experimental part, two different types of Kraft pulp were studied; one with 
low lignin content and the other with high lignin content. These pulps were ob-
tained after pulping fresh pine chips in liquid circulated batch digester by Kraft 
pulping process. Screened pulps were beaten in PFI mill to different degrees. 
Handsheets were made with Rapid Köthen equipment. Different strength and 
optical properties were measured from the prepared sheets.  This study on pine 
is compared with the earlier studies done on birch and eucalyptus. The result 
reflects basic comparison of pine with birch and eucalyptus but does not deal 
with details.  

Although these species could not be compared directly due to various pros and 
cons of individual species, general conclusions were derived. Long and strong 
fibres of pine pulped by Kraft process provides possibility to manufacture strong 
and durable end product, whereas birch and eucalyptus are well known for 
good formation, superior opacity and in addition to that, they could be bleached 
to higher brightness level compared to pine. If these species are combined, the 
end product will be much better compared to one particular species. 

Keywords: Comparison, Scots Pine, Silver Birch, Eucalyptus, Strength, Kraft, 
Sulfate pulp, Beating, Chemical pulping. 
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1 INTRODUCTION  

The purpose of this thesis is to determine the strength properties of pulp and 

paper made from Scots pine (Pinus Sylvestris), pulped by Kraft process. In ad-

dition, the purpose is to find the behaviour of different properties of pulp, which 

changes with increasing beating degree. Later the comparison would be done 

with the initial studies done on birch (Betula pendula) and eucalyptus (Eucalyp-

tus Grandis). 

In the theory part, softwood is introduced. Pine from the aspect of physical and 

chemical properties is explained and later focus is shifted to Scots pine. Then, 

general comparison is made among pine, birch and eucalyptus to point out the 

differences among these species in terms of growth properties, process proper-

ties, physical characteristics etc. Chemical pulping is described, whereas more 

emphasis is given on Kraft pulping, as our entire experiment is based on Kraft 

pulping method. Theory part is concluded with brief explanation of beating and 

its effect on fibre properties.   

The experiments required for this study were carried out in the facilities of Sai-

maa University of Applied Sciences in Imatra. The standards followed for this 

study are listed in appendix 4. 
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2 SOFTWOOD 

 

2.1 General 

 

Forests of the world contain a great number of species, which may be divided 

into two groups: coniferous trees, usually called softwood, and deciduous trees, 

or hardwood. Conifers are cone-bearing seed plants with vascular tissue; all ex-

tant conifers are woody plants, the great majority being trees with just a few be-

ing shrubs. Typical examples of conifers include cedars, douglas-firs, cy-

presses, firs, junipers, kauris, larches, pines, redwoods, spruces, and yews. 

With seven extant families, 68 genera, and 545 species, classification of the ex-

tant conifers remains controversial. (Britannica 2010) 

 

The term softwood is used as opposed to hardwood, which is the wood from 

angiosperm trees. Softwoods are not necessarily softer than hardwoods. In both 

groups there is an enormous variation in actual wood hardness, with the range 

in density in hardwoods completely including that of softwoods. Some hard-

woods (e.g. balsa) are softer than most softwood. This is not surprising as there 

are about a hundred times as many hardwoods as there are softwoods. The 

woods of longleaf pine, douglas-fir, and yew are much harder in the mechanical 

sense than several hardwoods. 

Softwood is comprised of two types of cells: tracheids (90-95%) and ray cells (5-

10%). Softwood fibres are by definition wood tracheids. Tracheids give the soft-

wood mechanical strength (particularly thick-walled latewood tracheids) and 

transports water. Softwood fibres are closed at both ends. The median fibre 

length of Finnish pine and spruce is approximately 3 mm. Due to their long fi-

bres, softwood pulps are often referred to as long fibre pulps. (Gullichsen & 

Fogelholm 2000)  

Here in Finland, softwoods used for paper production are pine (Pinus Sylvestris) 

and spruce (Picea abies). The same types of softwood species are generally 

used in Europe and Asia as in Finland, with deciduous species also being used 
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to a certain extent, e.g. larch (Larix). Due to its high extractives content, larch is 

not as suitable a raw material for pulp as spruce and pine. North American soft-

wood species differ from European and Asian species. In the northern regions of 

North America Douglas-fir, hemlock, ponderosa pine, white and black pine, and 

balsam fir are used as pulpwood. In the southern United States various pine 

species (southern pine) are used. In fast-growing plantation forests in, for ex-

ample, South America and New Zealand, radiata pine is commonly used. 

(Knowpulp) 

The various softwood species do not greatly differ from one another in terms of 

chemical composition. The greatest difference is the extractives content and 

composition. Extractives limit the usability of certain species in sulfite processes 

and the production of mechanical pulp, but not in sulphate processes. Pulp 

made from pine species is usually produced using a sulphate method, while 

spruce is used as a raw material in the production of mechanical pulps. 

Table 2.1 Chemical composition of various softwood species (% of dry 

wood weight). (Sjöström 1993, p.23) 

Species Common name Extractives Lignin Cellulose 

Pinus radiata Monterey pine 1.8 27.2 37.4 

Pinus sylvestris Scots pine 3.5 27.7 40 

Picea abies Norway spruce 1.7 27.4 41.7 

Larix sibirica Siberian larch 1.8 26.8 41.4 

In Table 2.1 above, it can be seen that the proportion of extractives, lignin and 

cellulose differ within softwood itself. Scots pine contains highest amount of ex-

tractives and lignin among above mentioned species. 

 

 2.2 Pine 

 

According to Pravdin (1969), pines are coniferous trees in the genus “Pinus”, in 

the family “Pinaceae”. They make up the monotypic subfamily “Pinoideae”. 

Many botanists consider the genus Pinus having been divided into two subgen-

era: Strobus and Pinus (also known as Haploxylon and Diploxylon especially in 

forestry literature). Haploxylon, or soft pines have one fibrovascular bundle; Dip-
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Figure 2.1 Scots Pine shoots 

(Wikipedia) 

loxylon, hard pines have two. The genus Pinus as now understood consist of 

25-30 species in the subgenus Haploxylon and 70-80 species in the subgenus 

Diploxylon, growing in Eurasia and North America. According to the number of 

vascular bundles P.sylvestris belongs to subgenus Diploxylon Kohene. 

The pines occupy a prominent place in the plant kingdom. Though with a little 

over one hundred there are not nearly as many species as in some other gen-

era of plants, pines constitute a group which has proved to be remarkably suc-

cessful in adaptation to very different environments. As a result of this success, 

we can find species of pine in almost every terrestrial habitat, growing naturally 

in the northern hemisphere or being introduced (and often naturalised) in the 

southern hemisphere. In some region pines are the dominant trees in extensive 

forests and in many other parts they co-dominate, usually with conifers and 

sometimes with angiosperm.  (Farjon 2005) 

 

Pines are woody plants and usually trees, some-

times shrubs (with more than a single steam), 

which contain resin in their parts and have “ever-

green” foliage leaves in the shape of linear nee-

dles. Pines are gymnosperms, meaning plants 

with ‘naked seeds’, as opposed to angiosperms, 

which have seeds enclosed in carpels, forming a 

fruit. Among gymnosperms, the conifers, to which 

pine belongs, are natural groups, i.e. they are de-

rived from a single common ancestor.  In pines 

both male and female reproductive organs are 

found on the same tree (trees are monoecious). 

(Farjon 2005) 

In figure 2.1, it could be seen that, Scots Pine 

shoot in spring with two-year old seed cone 

(open, brown), one-year old seed cone (green), 

and new seed cones (red) and pollen cones (yellow). 
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The Scots Pine is an evergreen tree, when grown under optimal conditions, at-

tains a height of 35 m, but most trees are not higher than about 25 m. The bark 

is thick and scaly on the lower trunk, breaking in irregular plates, purplish brown 

turning grey, higher up towards the crown and on the branch  it is papery thin, 

flakes and orange-brown. The young shoots are green at first, later turning light 

brown, glabrous, usually rough with cataphyll bases. (Farjon 2005) 

 

The ability of the Scots pine to thrive under different ecological conditions - from 

the extreme north to the subtropics, in the long polar day and the short day of 

south, with the short growing season in the north and long one in the south, un-

der absolute winter minimum air temperature of – 60 °C and an absolute maxi-

mum of 40°C or more, at low humidity, low edaphic moisture and nutrients, in 

swamps and sands - is the cause of its wide distribution on the Eurasian 

mainland from 70° to 37° N. and  from 7° W. to 138° E. (Pravdin 1969) 

Scots Pine (Pinus Sylvestris) is an important tree in forestry. It is a popular tree 

for planting on open and poor industrial sites because it can survive on poor 

soils. A seedling stand can be created by planting, sowing or natural regenera-

tion. Commercial plantation rotations vary between 50-120 years, with longer 

rotations in north-eastern areas where growth is slower. (Forestry Commission 

GB and Scotland).  

 

In Finland and the Scandinavian countries, generally softwoods used for paper 

production are Scots pine. It was used for making tar in the pre-industrial age. 

There are still some active tar producers, but mostly the industry has ceased to 

exist. It has also been used as a source of resin and turpentine. 
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Figure 2.2 Schematic diagram of log cross section. (Knowpulp)   

2.3 Structure of pine  
 

In general, structure of pine could be described by figure 2.2.   

 

 

The above figure 2.2 describes the softwood structure in which core, heart-

wood, sapwood, cambium, bark and annual ring could be seen as layer by layer 

from inside out. The cambium is a tissue of living cells surrounding the sap-

wood. It is a thin layer of cells where cell growth takes place. The rate of growth 

varies with the season and the growth place, giving rise to the deposition of 

thin-walled fibre cells in the spring and dense thick-walled fibres in the summer. 

It is dormant during the cooler months of the year. This yearly growth cycle is 

responsible for the annual rings phenomena. The cambium is surrounded by 

bark, whose two layers can be distinguished by their colour: the living inner bark 

(phloem) and the dead, dark outer bark (cork). The sapwood inside the cam-

bium provides structural support, acts as food storage, and transports water 

from roots. The heartwood which is darker in colour compared to sapwood func-

tions only as a mechanical support. (Knowpulp) 
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From the transverse section of the trunk of a pine we can learn something about 

the growth of the tree during its lifetime. The concentric circles, usually called 

annual rings but more accurately termed increment rings, originate in the alter-

nating formation of fast-growing, thin-walled cells in the spring and summer, and 

slow-growing, small and thick-walled cells in late summer and autumn. On 

closer examination of rings in Scots pine (Figure 2.3) reveals a distinct two part 

structure. The inner lighter toned ring is that laid down during early spring 

growth, and is known as “spring wood”. This is relatively soft and the cells (tra-

cheids) are thin walled and carry sap. The outer ring, sometimes being quite 

dark is usually a harder band and is laid in summer; it is called “summer wood”. 

These tracheids are thick walled and provide rigidity and stability to the bole. 

The change from the thin wall to the thick wall tracheid can be very rapid as in 

Douglas fir, or more gradual as in Scots pine. Other softwoods such as the firs, 

spruces etc., display growth rings which are not so distinct, because the sum-

mer wood is pale. (Microscopy U.K. 2010) 

 

 

It could be noticed in above figure 2.3 that the summer wood and spring wood 

have different relative thickness depending upon weather conditions that year. 

The tree's age can be calculated by counting the number of annual rings. 

 

Spring wood Summer wood 

Figure 2.3 Scots Pine (Pinus sylvestris) x3 .Transverse section represents 

30 years of even growth. (Microscopy U.K. 2010)   
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2.4  Chemical composition of pine 

 

Cellulose, hemicelluloses and lignin are the main constituents of wood. In dif-

ferent wood species, their relative composition varies greatly. Apart from above 

mentioned three compounds, wood also contains extractives, such as resin. Ex-

tractives are removed, to larger extent, in chemical pulping process. (Sixta 

2006) 

 

2.4.1 Cellulose 

 

Cellulose is the main constituent of wood carbohydrates. It is a polysaccharide 

consisting of glucose units. The cellulose molecule easily forms hydrogen 

bonds with neighbouring molecules, thus giving xylem cells mechanical support. 

As it can be seen in table 2.1, Scots pine contains 40% cellulose (Knowpulp). 

In terms of quantity, cellulose is the most abundant renewable polymer resource 

available worldwide. It has been estimated that, by photosynthesis 1011 to 1012 

tons are synthesized annually in a rather pure form (e.g., in seed hairs of the 

cotton plants), but mostly are combined with lignin and other polysaccharides 

(hemicelluloses) in the cell wall of woody plants. (Klemm, Schmauder & Heinze 

2002, pp.277-319)  

Table 2.2 Chemical composition of some typical cellulose-containing materials 

(Sixta 2006, p. 24) 

Source Composition[%] 

cellulose 

Hemicelluloses Lignin Extract 

Hardwood 43-47 25-35 16-24 2-8 

Softwood 40-44 25-29 25-31 1-5 

Bagasse 40 30 20 10 

Cotton 95 2 1 0.4 

Hemp 70 22 6 2 

Jute 71 14 13 2 

Wheat straw 30 50 15 5 
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As it could be seen from the above table 2.2, other cellulose-containing material 

includes agricultural residues, water plants, grasses, and other plants’ sub-

stances. Whereas, commercial cellulose production concentrates on the har-

vested source such as wood or on naturally highly pure sources as cotton. 

 

2.4.2 Hemicelluloses  

 

Hemicelluloses are heteropolysaccharides, and differ from cellulose in that they 

consist of several sugar moieties, are mostly branched, and have lower molecu-

lar masses with a DP of 50...200. Hemicelluloses play a crucial role in the bond-

ing capacity of fibres, i.e. the ability to form interfibre bonds, which gives the pa-

per fibre network its strength. A considerable percentage of the hemicelluloses 

dissolve in the production of chemical pulp. Hemicelluloses comprise 26% in 

case of pine.  (Sixta 2006, p. 28) 

 

2.4.3 Lignin  

 

Lignin is a natural multibranched polymer, whose purpose is to bind fibres tightly 

to one another inside the wood, thus providing strength. Even though the lignin 

concentration is highest in the intermediate lamella between fibres, lignin is also 

found throughout the fibre cell wall. Unlike cellulose and hemicellulose, lignin is 

a hydrophobic substance. As a result, lignin molecules do not easily form bonds 

with one another to reinforce the fibre network in the paper. It is lignin that gives 

native wood its colour. Scots pine contains 27.7% lignin, whereas the amount of 

lignin in softwood ranges from 25-32%. (Knowpulp; Gullichsen & Fogelholm 

2000) 

 

2.4.4 Extractives 

 

In addition to its major structural components, cellulose, hemicelluloses and lig-

nin, wood contains also an exceedingly large number of other low and high mo-

lecular weight (organic) compounds, the so-called accessory compounds or ex-
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tractives. The content of accessory content compounds in the wood of tree from 

temperate zones amounts approximately 2 to 5 %, but the concentration can be 

much higher in certain parts of tree, for example, the branches’ bases, heart-

wood and roots. Relatively high amounts (up to 20% of dry matter) of extractives 

are found in certain tropical and subtropical woods. (Sixta 2006, pp.33-35) 

The content and composition of extractives not only vary among the wood spe-

cies but also with the geographical site and season. This fact is important for the 

production of pulp as certain extractives in fresh woods may cause yellow dis-

colorations (pitch troubles) or a yellowing of the pulp. In addition, extractives 

may also influence the strength of refiner pulp, the gluing and finishing of wood 

as well as the drying behaviour. The percentages of the extractives in the sap- 

and heartwood of pinus sylvestris could be seen in table 2.3. (ibid)   

Table 2.3 Percentage of the extractives in the sap- and heartwood of pinus syl-

vestris (based on dry wood). (Sixta 2006, p.35) 

 Sapwood Heartwood  

Petroleum ether 2.20 8.80 

Ether 0.06 0.80 

Acetone/water(9/1) 0.30 0.70 

Ethanol/water 0.40 0.40 

 

As it could be seen from the above table 2.3, the amount of extractive is not 

equally distributed within wood. They are rich in roots and heartwood, but less 

on other parts of tree. The amount and type of extractive varies with species. 

According to Torgnysdotter (2006), despite their small amounts, the presence of 

extractives may seriously interfere with papermaking. 
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3 COMPARISON OF PINUS SYLVESTRIS WITH BETULA PEN-
DULA AND EUCALYPTUS GRANDIS 
 

3.1 General 

 

Pinus sylvestris which is commonly known as Scots pine is softwood species, 

whereas Betula Pendula (Silver birch) and Eucalyptus grandis (eucalyptus) are 

hardwood species. Hardwood (deciduous trees, such as birch and eucalyptus) 

have more complex structure than softwood (coniferous tree, such as pine). 

Mainly, fibre dimensions have a greater impact on the differences between 

softwood and hardwood pulps than chemical composition. Fibre length greatly 

affects the strength properties of the pulp and the paper made from it. On the 

other hand fibre width and fibre wall thickness affect fibre flexibility and tenden-

cy to collapse in the paper production process and, in turn, the paper properties. 

Fibre size also has an impact on the number of fibres per unit of weight, which 

has an effect on, for example, paper formation and optical properties. (Levlin & 

Söderhjelm 1999) 

Hardwood fibre is considerably shorter and thinner than the softwood fibres. 

Generally hardwood contains more cellulose and hemicellulose and less lignin 

than softwood, while the proportion of extractives, i.e. resin, is higher. The mo-

lecular mass of hardwood lignin is also apparently lower than softwood lignin. 

 

3.2 Growth properties  

 

In terms of growth, these 3 species are very different. Scots Pine plantation ro-

tations vary between 50-120 years, with longer rotations in northeastern areas 

where growth is slower. For the Scandinavian pine, it takes about 75 years to 

be ready to harvest, compared to a pine in south USA where it only takes 25 

years for the tree to be ready to harvest. This is due to the warm climate all year 

around. It has a dry density of around 470 kg/m³ . (Karlsson 2006, p.11) 
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Birch is a naturally growing tree species, which is ready for logging in 30 - 60 

years. To reach saw timber stage, it grows around 80 years. Birch is dense, 

with a specific gravity of approximately 500 kg/m3. (Knowpulp) 

Eucalyptus grandis (tropical variety) grows in plantations, in Brazil. The average 

cycle of forest under cultivation is about 14 years. First thinning of eucalyptus is 

from 4 to 5 years, harvesting from 7 to 8 years. Eucalyptus grandis has a lower 

density (500 kg/cm3). (ibid) 

 

3.3 Physical characteristics 

 

If these species are compared according to their physical characterstics, Scots 

pine fibres are on average 3 mm long, 30 µm wide. Finnish birch wood fibres 

are on average 1.1-1.2 mm long, 18-22 µm wide. Fibre has relatively thin walls 

which means it collapses easily.Fiber length of eucalyptus is 0.95 mm and width 

16 µm. Fines content is quite low. (Knowpulp; Nanko & Button & Hillman, 2005) 

Table 3.1 Comparison among different species. (Karlsson 2006, p.84) 

  Pine Birch Eucalyptus 

Length [mm] 3 1.1-1.2 0.9-0.95 

Width [µm] 30 18-22 12-16 

Wall thickness [µm] 8 3 2-3 

Number of fibres/mg 2000 8000 16000 

S(m2/g) at tensile 
index 50kNm/kg 

29 34 41 

 

As it could be seen from the table above, the amount of fibres per gram vary 

with large difference. These will affect surface properties of the end product 

manufactured.  

Length is one of the most important characteristics of papermaking fibres. A 

long fibre can have more bonds with other fibres and therefore be more strongly 

held in the network than a short fibre. The tensile strength of wet web increases 

rapidly with fibre length. Tensile strength, breaking strain, and fracture tough-

ness of a dry paper often also improve with increasing fibre length. (Niskanen 

1998)   
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3.4 Process properties 

 

Different species’ ability to cook varies and so do the defibration point. The defi-

bration point of eucalyptus is at kappa number 18, when it is for spruce approx. 

40. Eucalyptus has a very high cellulose content and low hemicelluloses con-

tent, while in birch the exact opposite is true. This is why higher yields can be 

achieved with eucalyptus than birch. The yield of pine compared to birch and 

eucalyptus is low. Additionally, the wood from eucalyptus plantations is more 

uniform, thus it has better fibre quality and processability. (Knowpulp) 

While washing, birch pulp is more difficult to wash than pine pulps, which is 

probably due to a difference in wood extractive composition and the better abili-

ty of birch pulp to retain water. The drainage of birch pulp is usually lower than 

for pine pulp because birch fibres are shorter and more flexible. Pine contains 

saponifiable extractives that cause foaming in pulp washing whereas birch and 

eucalyptus contain less extractive and do not arise much problem. Extractive 

content of eucalyptus is even less than half that of birch, so washability is better 

compared to birch but drainage can be very poor. In knot separation, for pine 

pulp typically 1-3 % of the main stream is removable fraction; for birch pulp it is 

usually smaller. Screening of eucalyptus pulp is even easier. (ibid) 

Low fibre swelling is in correlation with good dimensional stability of paper. Eu-

calyptus fibres with low hemicelluloses content tend to swell less, hence provid-

ing good dimensional stability compared to birch and pine. (ibid) 

 

3.5 Product properties 

 

Long fibres of pine have good strength properties, mainly tensile and tearing 

strength, which provide excellent runnability in converting equipment (paper 

machine, coater and printing press). Birch and eucalyptus short fibres give pa-

per a smooth printing surface,  a more even sheet surface, better formation, 

smaller pore size and superior opacity. Because there is less lignin in birch and 

eucalyptus, compared to pine, it is also easier to bleach the pulp to higher 

brightness. The qualities make the fibres of these hardwood species suitable for 
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use in printing paper, although this type of paper generally consists of a blend of 

hardwood and softwood pulp to meet both the strength and the printing surface 

demands of the customers. (Karlsson 2006, p.10) 

As eucalyptus fibres are smaller than those of pine and birch fibers, their num-

ber per unit of weight is higher and additionally fibre distribution of eucalyptus is 

also relatively narrow which makes the pore distribution of paper narrower. This 

gives papers made with eucalyptus pulps better formation, good ink absorption 

ability and a higher degree of opacity than papers made from pine and birch 

pulps. In addition to that, eucalyptus’ short and stiff fibres have low surface 

strength. As bulk and stiffness are crucial for board and non impact printing pa-

pers, eucalyptus has been found to be very suitable pulp for such cases.  (Nan-

ko & Button & Hillman 2005) 
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4 CHEMICAL PULPING 

 

4.1 General 

 

Pulping represents the process by which wood or other lignocellulosic material 

is reduced to fibrous mass, denoted as pulp. In chemical pulping, lignin is dis-

solved at elevated temperature (130-170°C), as fibres can be separated without 

any mechanical defibration only after 90% of the lignin has been removed. Un-

fortunately, delignification is not a selective process. Parallel to the lignin re-

moval, significant part of hemicelluloses and some cellulose are degraded. The 

total fibre yield ranges from 45-55% (at a given extend of delignification of about 

90%), depending on the wood sources and pulping process applied. In contrast, 

in mechanical pulping, the lignin bonding the fibres together is softened by heat-

ing the wood material through mechanical stress. Then, the fibre bonds are bro-

ken by means of mechanical stress and have an extremely high yield - over 

90%, compared to chemical pulping process which is almost double. However, 

the strength properties of chemical pulps are overwhelmingly superior and can 

constantly be bleached to an extremely high brightness. In addition, chemical 

pulp mills that burn wood material dissolved in the process are self-sufficient in 

regard to electricity and steam power. These are the key reasons for production 

of pulp predominantly on global scale, by chemical processes. (Gullichsen & 

Fogelholm 2000; Sixta 2006, pp. 109-110) 

Chemically separated fibres are flexible and have a high bonding potential. At 

the same time they are not much damaged and have kept their length in the 

separating process. They give strong paper. The main commercial chemical 

pulping techniques comprise the sulfate or Kraft, the acid sulfite, and the soda 

process. In 2000, the chemical pulps accounted for more than 77% of all wood 

based fibre material worldwide (see Table 4.1). (Sixta 2006, p. 110) 
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Figure 4.1 Simplified diagram of Kraft pulping’s 

chemical recirculation loop. (Gullichsen & 

Fogelholm 2000) 

Table 4.1 Global pulp production by category in 2000. (Sixta 2006, p. 9) 

Pulp category Pulp production [Mio t] 

Kraft 117.0 

Sulfite 7.0 

Semi-chemical 7.2 

Mechanical 37.8 

Non-wood 18.0 

Recovered fibre 147.0 

 

It could be seen from the table above that Kraft pulp production has the highest 

values among all, no matter if it is compared to mechanical pulp or within 

chemical pulps.  

 

4.2 Kraft process 

 

The principal method is the 

Kraft process (strongly al-

kaline, ~ pH14), which can 

be used with all kinds of 

wood. German chemist 

Carl F. Dahl invented the 

sulphate process in 1879. 

The process was called 

Kraft process, based on 

German and Swedish word 

for strength, as it produced 

stronger pulp at high yield. 

Kraft pulping has devel-

oped as the principle cook-

ing process, accounting 

89% of the chemical pulps 

and for over 62% of all vir-

gin fibre material. In com-

parison, only 5.3% of the 
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world’s chemical pulp production is obtained by the sulfite process. (Toland 

2002, pp. 5-67) 

The main active chemical agents in the Kraft process are hydroxide (OH-) and 

hydrosulfide anions (HS-) which are present in Kraft cooking liquor, as aqueous 

solution of caustic sodium hydroxide and sodium sulfide, denoted as white liq-

uor. Other than these, white liquor also contains small amounts of Na2CO3, 

Na2SO4, Na2S2O2, NaCl and CaCO3 plus other accumulated salts and non-

process elements. The hydro-sulfide ion plays an important role in Kraft pulping 

by accelerating delignification and rendering non-selective soda cooking into a 

selective delignification process. Delignification can be divided into three 

phases, namely the initial, bulk and residual or final phases. In the bulk delig-

nification phase the main part of the lignin is removed while at the same time 

only minor carbohydrate losses occur. The point at which cooking is stopped 

depends on the pulp type being produced. In the production of unbleached pulp 

the final point is close to the defibration point. However, with continuous delig-

nification, the dissolution of carbohydrates extensively increases. In order to 

maintain high yields and to preserve a sufficiently high quality of the pulp, delig-

nification is limited to a certain degree of delignification, targeting kappa number 

of about 25-30 for softwood Kraft pulps. (Gullichsen & Fogelholm 2000; Sixta 

2006) 

The advantages of Kraft process are: 

• Produces high strength pulp 

• Handles wide variety of species 

• Tolerates barks in the pulping process 

• Cooking time is relatively short compared to other processes 

• Regeneration of chemicals and energy is efficient 

• Side-products such as turpentine and tall-oil are valuable 

These factors, substantial technical development overtime and economical fea-

sibility have further strengthened the position of Kraft pulping. 
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The main reaction variables in the alkaline cooking are wood species (i.e., their 

main chemical components), chips’ dimensions, temperature, time, and the 

concentration of cooking chemicals. Some of the fibre strength differences are 

inherent in the wood species and their growing conditions, whereas other items 

are chemical and mechanical in nature. Most Kraft digesters are controlled by 

pulping to a constant H-factor. H-factor which indicates relative speed of lignin 

dissolution depends on cooking time and temperature. H-factor's dependency 

on temperature is very strong due to delignification temperature dependency. 

Even a difference of couple of a degrees in cooking temperature can make a 

big difference in pulp quality. H-factor has been defined so that 1 hour in 100 °C 

is equivalent with H-factor 1. As a rough rule of thumb, one can assume that the 

rate of reaction in Kraft pulping doubles with every 10°C increase in tempera-

ture. This pulping parameter is essentially a measure of thermal energy of the 

pulping process. A second aspect of this is the temperature profile of the cook. 

How fast the pulping process is brought to the target cooking temperature and 

how long the temperature is held is integrated into H-factor and pulping strate-

gy. In addition to H-factor, the maximum cooking temperature and the alkali lev-

el of cooking liquor have a significant influence on fibre strength and the inhe-

rent bonding potential of the pulp. Most Kraft pulping operators have a target for 

the level of residual lignin (Kappa number) in the fibres exiting the digester. The 

variablility in kappa number is a measure of Kraft pulping uniformity. (Gullichsen 

& Fogelholm 2000; Nanko & Button & Hillman 2005; Sixta 2006) 

The strength-bearing components of wood fibres are the cellulose molecules 

that aggregated into fibrils and fibril-aggregates with crystalline and amorphous 

regions. During chemical pulping, the fibre strength increases with the cellulos-

es content up to certain level, after which cellulose degradation reactions be-

come too severe, which in turn leads to a decrease in fibre strength. (Torgnys-

dotter 2006) 
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5 BEATING AND ITS EFFECT ON FIBRE PROPERTIES 

 

Beating is used to enhance the binding power of plant fibres in paper sheets, 

which is done by applying mechanical stress to fibre as it is milled by a device 

called a “beater”. By performing such mechanical treatment, the fibre wall is 

squeezed, kneaded and plasticized, and the fibre surface is partly disintegrated. 

Mechanical shear separates parts of cellulose fibrils so that the fibre structure 

becomes hairy and fluffy. Fibrils may involuntarily be completely liberated from 

the fibre material, and some fibres may even be completely torn to fibre frag-

ments. (Sixta 2006, p.1281).  

 

 

 

 

As it could be seen in the figures (5.1 and 5.2) above, beating changes several 

single fibre properties. The classification of primary structural effects on fibres 

can be internal fibrillation, external fibrillation, fines formation, fibre cutting, and 

straightening of fibres. Internal fibrillation increases fibre swelling and flexibility 

by “loosening” the cell wall structure, and external fibrillation increases the outer 

surface of fibre. The structure and bonding of paper depends on fibre properties 

such as fibrillation and also the density and tensile strength of paper therefore 

increase due to beating. There are indications that fibre/fibre joint strength also 

increases with beating due to changes in the physical structure of the fibre sur-

face that makes new surfaces available of molecular bonding. Torgnysdotter, 

Page et al. measured the microscopic contact area of chemical pulp fibres and 

Figure 5.1 Fibres before beating 

(Knowpulp) 

Figure 5.2 Fibres after beating 

(Knowpulp) 
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found an increase in the degree of bonding with beating. Fibrillar fines are pro-

duced during beating, which enhances the fibre/fibre joint strength and paper 

strength. (Levlin & Söderhjelm 1999, p. 41; Torgnysdotter 2006, p.25). 

 

According to Niskanen (1998) chemical pulp is usually beaten to optimize its 

contribution to the mechanical properties of paper. Beating serves the purpose 

of increasing the area of contact between the fibres by increasing their surface 

through fibrillation and by making them more flexible. (Raymond & Rowell 1986, 

pp. 104-108). 

 

Pulping and beating also affect the degree of swelling by altering the pore struc-

ture and the inherent network strength of the fibre wall. The moisture content of 

the fibres is greatly affected by their chemical composition, regarding which fi-

bre charge is an important parameter. Different pulping techniques result in dif-

ferent chemical compositions of the fibre wall. By chemically increasing the total 

fibre charge, increased fibre swelling can be achieved. The charges most com-

monly originate from the carboxylic and sulphonic acid groups. (Torgnysdotter 

2006) 

 

In the chemical pulps, the amount of fines is lower than in mechanical pulps. 

There are two types of chemical pulp fines, the primary fines and secondary 

fines. Primary fines are present in unbeaten pulps. They contain parenchyma 

cells from the wood. Beating creates secondary fines. These include lamellar 

and fibrillar parts of the fibre wall and colloidal materials. The primary fines con-

tent of chemical pulp is typically less than 2%, but beating can increase the total 

fines content to 15%. Fines have large specific surface area because of the 

small particle size. Beating increases the surface area further. Because of their 

large surface area, fines improve bonding between fibres. In paper, most fines 

surface is bonded to fibres when paper dries. Particularly chemical pulp fines 

bond almost completely, and essentially all the free surface is lost. (Niskanen 

1998, pp.63-64)  
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The major effect of beating is a drastic increase of water uptake by the fibre ma-

terial. The kneaded cell wall will swell, and the fibril fur on the surface will store 

water by capillary forces, while the isolated cellulose fibrils aggregate to hydro 

gels containing huge amount of immobilized water. The hydrodynamics volume 

of the fibres is increased substantially, so that filtration as in sheet forming 

process is severely hampered. This effect is used to characterize the effective-

ness of beating, by measuring drainability. On the other hand, beating lowers 

the drainage capability of pulp and this reduces the production rate and in-

creases the energy consumption. Some paper properties are improved with 

beating but others deteriorate.  (Sixta 2006, p.1281) 

 

Beating increases most of the strength properties of the paper except tear 

strength, which increases with gentle beating but drastically decreases with 

more intense beating. The internal fibrillation arising from the beating makes the 

fibre more flexible and densifies the sheet during drying, increasing the total 

bound area of the sheet. An important effect of beating is the straightening of 

fibres. (Torgnysdotter 2006, p.25) 

 

Figure 5.3 PFI mill 



25 

 

Laboratory beating simulates the industrial beating process to predict the usabil-

ity of a pulp. Since beating has a large influence on the pulp properties, beating 

in the chemical pulp testing is possibly the most important single phase. This 

includes the amount of beating energy and the beating intensity, since both sig-

nificantly influence pulp and sheet properties. Any changes in the single fibre 

properties also change the corresponding pulp and paper quality. For example, 

pulp drainage resistance increases due to an increase surface area (mainly 

fines formation) during beating. (Levlin & Söderhjelm 1999, p. 41) The optimum 

beating conditions must be determined case-by-case to meet the end-product 

requirements coupled with the mill-specific conditions. (Kcl, 2010) 

 

As an example of influence of the amount of beating on the properties of paper, 

the tensile strength increases but the opacity decreases. Here the amount of 

beating is a critical control variable to gain our desired product, as the tensile 

strength and opacity both are important properties for the paper. (Levlin & 

Söderhjelm 1999, p.13)  

 

Lindström has reviewed the chemical factors influencing the behaviour of fibres. 

The quality of water used has a significant effect on the pulp behaviour and 

therefore on the beating results. Important water parameters are pH, electrolyte 

content and temperature. All these influence the swelling of fibres. (Lindström & 

Kolman 1982) 
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6 EXPERIMENTAL PART 

 

6.1 Experimental design and methods used 

 

Two different pine Kraft pulps were pulped in laboratory scale using a liquid cir-

culation batch process. The initial plan was to achieve two different pulps, one 

with high kappa (~30) and the other with low kappa (~20). When the pulps with 

low lignin content (kappa number 18.4) and the other with high lignin content 

(kappa number 28.5) were achieved after several cooking trials, then further 

work was proceeded. Both of them were beaten to four different revolution de-

grees in PFI mill. Later hand sheets were prepared from the pulps beaten at dif-

ferent degree and unbeaten pulp. Different pulp properties were measured from 

each beaten pulp fraction and the unbeaten pulp, obtained from both cookings 

and later handsheets were prepared from each fraction. The parameters of the 

experimental setup are put together in table 6.1. 

Table 6.1 Parameters of the experimental design.  

Plan Target Achieved 

2 different 

cookings 

Low lignin content 

(Kappa number: ~20) 

and High lignin content 

(Kappa number: ~30) 

Low lignin content 

(Kappa number: 18.4) 

and High lignin content 

(Kappa number: 28.5) 

4 degrees 

of beating 

1000, 2000, 3000, 4000 1000, 2000, 3000, 4000 

 

As shown in the above table, two different cookings were planned to achieve 

the target. The required pulps were obtained after adjusting few important pa-

rameters which affects the cooking process, such as H- factor, amount of active 

alkali [gNaOH /l], temperature profile of cooking and duration of cooking. 
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6.2 Raw material 

Fresh pine chips were fetched from the Stora Enso, Kaukopää mill, Imatra for 

all required cookings. The moisture content of the chips used in cooking was 

different in two different cooks. To preserve the moisture content of chips, it was 

kept in the refrigerator at temperature 5 ºC.   Later, the chips were screened in 

Gyratory screen. An even distribution of chip size improves the quality of the 

pulp and also improves defibration speed and production, which was the reason 

why only the chips within 19 mm – 25 mm length were used in the pulping proc-

ess. Barks, knots and fines were also completely removed during the chip 

screening, as they were not suitable for the pulping process. The white liquor 

used in the cooks was also brought from Stora Enso, Kaukopää mill, Imatra. 

 

6.3 Cooking method and conditions 

 

Cooking was done in a liquid circulated laboratory batch digester of tank size 

0.010 m3 (10 litres). Liquid was circulated between heat exchanger and digester 

tank continuously increasing the temperature of liquid, as it was heated by heat 

exchanger which was operated by electricity. Although the system can reach 

maximum temperature up to 171 °C and stand up to 20 bars pressure, only 9 

bars was reached as maximum pressure and temperature was 170°C during 

operation. For each cooking ~1000 g of oven-dry screened chips were used. 

The cooking was done in alkali conditions as white liquor was used in cooking 

process. The amount of white liquor required was calculated. The active alkali 

was 141 [gNaOH /l] of white liquor used for the cooking process and sulfidity was 

35%. 

First of all, the chips were fed into the digester tank, and then a measured vol-

ume of white liquor was poured. Required amount of water was added to main-

tain wood to liquid ratio, which was 1/4. In each cooking, 90 minutes were used 

to raise the temperature of cooking liquor from 80°C to 170°C. The idea was to 

increase heat quite slowly (~1°C /min) providing enough time for impregnation, 

so that the chips get homogeneously cooked. Cooking was done for 79 minutes 
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at 170 °C. The pulp received from the cook had kappa number 28.5. The 

amount of active alkali percentage for the high kappa cooking was 26% from 

the oven-dry wood. In the next cook, cooking time was extended to 110 minutes 

to get a low kappa number and the amount of active alkali percentage was in-

creased from 26% to 30%. After each cook, ~100 ml of black liquor was col-

lected to analyse residual alkali content. The black liquor inside the tank was let 

to cool down by switching off the heater and opening the cold water supply to 

heat exchanger. Pulp was washed, as temperature reached 50ºC and pressure 

was below 1.5 bars. For washing, warm water was injected to digester tank and 

wash outlet was flown to drainage. Use of warm water while washing was nec-

essary, so that the pulp quality remained as stable as possible. After washing 

for 10 minutes inside the tank, cooked chips were taken out and were further 

washed. 

 

6.4 Disintegration and screening  

 

As the cooked pulp was like fibre bundles loosely packed, it was necessary to 

separate them with mechanical treatment. The pulp was disintegrated in a disin-

tegrator. Disintegrated pulp was screened in Somerville screen with the slots of 

diameter 0.20 mm. The accept and reject pulps from the screening were col-

lected separately in two different cotton bags. The bags were centrifuged to re-

move as much water as possible, so the degradation of fibres during long stor-

age time will slow down. Later the accept pulp was transferred to an air tight 

container and was kept inside the refrigerator at 5 ºC. Generally, accept pulps 

were stored for maximum of 2 weeks while they were being used in the experi-

ment. The moisture content and weight of shives (reject) were measured and 

then shives were thrown away. 

 

6.5 Kappa analysis 

 

The kappa number is an indication of the lignin content (hardness) or bleach-

ability of pulp. For the analysis, 2g of oven-dry pulp was taken as sample. Three 

trials were made for each pulp category and kappa number was calculated. An 
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average was taken from calculated trials. The average kappa numbers obtained 

were 18.4 and 28.5 for low and high lignin contained pulp respectively. Kappa 

number was measured following the standard procedure stated in ISO 302-

1981(E). 

 

6.6 Residual alkali measurement  

 

Residual alkali test shows the amount of alkali remaining in the black liquor, af-

ter the cooking was finished. Two different samples from each cooking were ti-

trated till the alkalinity dropped down to the pH 10.5 and the amount of hydro-

chloric acid (HCl) consumed during the titration was noted. Those measured 

values were the residual alkali content in the pulp. The values are given in the 

appendix 3. All the procedures followed during this test were according to ISO 

699:1982(E). 

 

6.7 Beating  

 

The accept pulp received after screening was beaten in PFI mill. A measured 

amount of pulp of specified stock concentration was beaten between a roll with 

bar and a smooth beater housing, both rotating in the same direction, but at a 

different peripheral speeds. The main part of the beating energy transfers to the 

pulp via bar surface not via the edges. In PFI, the beating consistency was high, 

10% compared with a normal low consistency beating of about 2%-5% in paper 

mills. 

For beating, 30±0.5 g of oven-dry pulp at 10% consistency was taken. Sample 

pulps were beaten to 1000, 2000, 3000, 4000 revolutions. After beating there 

were 4 different types of beaten pulps and an unbeaten pulp (control) category 

from each cooking. The work was done following the standard procedure stated 

by ISO 5264/2-1979(E). 

All the further experiments were continued with these five pulp categories.  

 



30 

 

 

6.8 Pulp properties test 

 

The drainability of a pulp suspension in water (Schopper-Riegler number), fibre 

length and water retention value (WRV) were measured from each pulp cate-

gory. The standard procedures followed for tests are listed in appendix 4.  

 

6.9 Handsheet preparation  

 

Laboratory hand sheets were prepared using “Rapid-Köthen” sheet former. 

Hand sheets of basis weight 80g/m2 were made. Five sheets from each cate-

gory were taken, which were within ±3% range of 80g/m2. There were total 50 

accepted sheets (5 sheets x 10 categories). These sheets were later used to 

test different paper properties. The standard procedure followed for handsheet 

preparation was ISO 5269-1:1998(E). 

 

6.10 Handsheet tests 

 

Optical properties and strength properties were measured from the sheets.  The 

following strength properties were measured from the sheets. 

• Tensile strength  

• Tearing strength 

• Thickness 

• Bursting strength 

• Air permeability.   

And optical properties were 

• Brightness  

• Opacity 
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7 RESULTS AND DISCUSSION 

 

Results received from the experiments are illustrated in charts. Explanation be-

low each chart explains the change occurred after each beating. Though, only 

the key points are explained, a lot more can be analyzed from the chart and in 

addition to that detail values could be found in appendices. The unbeaten or 

control pulp and control paper sheets are taken as reference for comparison. 

 

7.1 Comparison between low and high lignin contained pulp of pine 

 

The yield was 42% for the pulp with kappa number 28.5 whereas it was even 

less, 38% for the pulp with kappa number 18.4. Typically, it was normal to get 

smaller yields for the later one as the cooking time was extended to dissolve as 

much lignin as possible, where cellulose and hemicelluloses dissolved too. The 

amount of active alkali per gram oven-dry wood for the high kappa cooking was 

26%, whereas for the low kappa cooking it was 30%. In addition to that, disinte-

gration performed prior to pulp screening to separate fibres had significant ef-

fect, especially in case of high kappa pulp which could be seen throughout the 

result. 

 

Schopper-Riegler measurement 

 

The international standard specified method for determination of the drainability 

of a pulp suspension in the water is described with the term Schopper-Riegler 

(SR) number. It is designed to provide a measure of the rate at which a dilute 

suspension of pulp may be dewatered. As the drainability is related to the sur-

face conditions and swelling of the fibres, and constitutes a useful index of the 

amount of surface treatment to which the pulp has been subjected. 

Ordinary laboratory apparatus was used during the measurement, which con-

sists of a measuring cylinder with a scale. The scale on which a discharge of 

1000 ml corresponds to a SR number of zero and zero discharge to SR number 
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of 100.  The tests were preformed following the procedures strictly stated on 

ISO 5267/1-1979 (E). All the values from the tests are given in appendix 1, table 

1. 

 

Chart 7.1 Sr number versus revolutions in PFI mill 

In above chart, Sr number versus revolution, SR numbers increased by 8.4% 

and 15.4% respectively for low and high lignin containing pulps at first beating. 

The values increased sharply after 2000 revolutions as slope could be noticed 

where increment was highest, 11% and 22% for low and high lignin containing 

pulps. Overall increment in Sr number after beating 4000 revolutions in PFI mill 

compared to unbeaten pulp was 42% and 108% for low and high lignin contain-

ing pulps respectively. 

As an important remark, SR number for low kappa was considerably lower than 

in other pulps around the same kappa number. This may be due to error in de-

vice, which remained unnoticed but it is uncertain to some extent. In addition 

another possibility may be that pulp with lower lignin content may have slower 

response to beating compared to higher one. For the most pulps tested, proper-

ties were in agreement with previous studies found in the literature.  

 

 

 

 

10

12

14

16

18

20

22

24

26

28

control 1000 2000 3000 4000

S
R

 n
u

m
b

e
r 
°

Revolutions

Kappa 28.5

Kappa 18.4



33 

 

Fibre length 

 

Fibre length was measured using “Kajaani FS 300 Analyzer” to measure the ef-

fect of increasing amount of beating on the single fibre. From each pulp cate-

gory, 3 measurements were taken with same conditions and sample amount 

and an average of them was taken into account. The values of fibre length 

analysis are given in appendix 1, under the table 2. 

Fibre length of high lignin containing pulp seems to be quite short compared to 

low lignin containing pulp. As a matter of fact, it was due to difference in raw 

material used. As the raw material was fetched for each cooking, it is possible 

that both raw materials may not have same characteristics when compared on 

microscopic level. So that may be the reason for long fibres in case of low lignin 

containing pulp but not in the high lignin containing pulp. 

 

Chart 7.2 Fibre lengths versus revolutions in PFI mill 

Fibre length decreased with the increasing number of revolutions which may be 

the result of fibre breakage while beating. Although the differences were small, 

it provides the proof of fibre breaking and creation of secondary fines while per-

forming beating in PFI mill. The maximum decrease in fibre length was 8% at 

first beating of low lignin containing pulp. In totality, fibre length decreased by 

17% and 10% after 4000 revolutions compared to unbeaten fibres for low and 

high lignin containing pulps respectively. 
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The fibre length of high lignin containing pulp was smaller compared to the low 

lignin containing pulp which affected the overall results.  

 

Water retention values  

 

Water retention value (WRV) describes the amount of water remaining in a wet 

pulp sample after centrifuging. It is the ratio of water to dry fibre weight. Water 

retention provides better information of how beating response on fibres and wa-

ter removal at press section than CSF or SR. It depends on parameters such as 

salt content, pH, and temperature. WRV has been reported to be an indicator of 

fibre flexibility and swelling too. The values of water retention are given in ap-

pendix 1, under table 3. 

 

Chart 7.3 Water retention value versus revolutions in PFI mill 

As a matter of fact, pulp with less lignin content had initial WRV 139% and pulp 

with high lignin content had 123% before any mechanical treatment. After beat-

ing both pulps to 1000 revolutions in PFI mill, there was a drastic increase of 

water uptake by the fibre material in both cases. In further beatings, increments 

were 7% at maximum for both low and high lignin containing pulps.   
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Tensile strength  

 

Tensile strength is a very important property to describe the general strength of 

paper. The tensile index value relates strength to the amount of material being 

loaded. Tensile index therefore has primary use to describe the strength of 

pulps. Tensile strength was measured using “Testometric Micro 350”. A sample 

of 15 mm width and 18-20 cm length was used for the tests. The values of ten-

sile strength shown as tensile index are given in appendix 1, under the table 4. 

 

Chart 7.4 Tensile index versus revolutions in PFI mill 

As Chart 7.4 demonstrates, the effect of beating improved paper tensile 

strength properties by 55%, 13%, 9% and 3.5% after 1000, 2000, 3000 and 

4000 revolutions in case of low lignin contained pulp. The results for high lignin 

contained pulp were 9.4%, 7.4%, 5%, and 7% at 1000, 2000, 3000 and 4000 

revolutions in PFI mill. The increased amount of beating respectively increased 

paper tensile strength. There was a significant increase in paper strength, when 

comparing beaten fibers to unbeaten (control) fibers.  

In general, tensile strength continuously increased from the unbeaten pulp to 

highly beaten one in both pulp categories. A sharp increase in the tensile index, 

55% could be seen in low kappa pulp, whereas for high kappa pulp tensile in-

dex increased only by 9%, after 1000 revolutions in PFI mill. In addition to that 

the tensile strength for low kappa was much lower then expected. 
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Tear strength  

 

The tear strength measures the ability of the sheet to resist the propagation of a 

tear. The tear strength is truly a measure of the amount of energy required to 

fracture a sample. A rule of thumb is that as tear strength decreases the tensile 

strength increases. In the experiment, tearing strength was measured using 

“DIGI-TEAR”, a device produced by Messmer muchel. A sample of 62 mm 

length and 50 mm width was used for the measurement. The values of tearing 

strength are shown as tear index in appendix 1, table 5. 

 

 

Chart 7.5 Tear index versus revolutions in PFI mill 

The behaviour of tear index as we can see from the above chart, increased 

sharply at the first beating by 28% for low lignin containing pulp then it gradually 

decreased. The behaviour of high kappa was unusual as it was supposed to in-

crease to certain amount and then decrease, but it decreased steadily from the 

very first beating.  

 

Burst strength 

Burst strength is the maximum pressure that the paper can resist without break-

ing with pressure applied perpendicular to the plane of the test piece. Bursting 
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strength was measured using the “Lorentzen & Wettre - Burst-o-matic”, a burst 

strength measurement device. Five measurements were taken from each sam-

ple, at 1606 kPa. Burst index can be found plotted below. The values of bursting 

strength shown as burst index are given in appendix 1, table 6. 

 

 

Chart 7.6 Burst index versus revolutions in PFI mill 

Burst index increased by 72% and 47% for low and high lignin containing pulps 

respectively, which was the major increment after 1000 revolutions in PFI mill. 

In totality, burst index increased by 148% and 82% after 4000 revolutions com-

pared to unbeaten fibres for low and high lignin containing pulps respectively. 

In general, the bursting strength of high lignin containing pulp seems to be bet-

ter which is obvious as the cooking time was 30 minutes less compared to low 

lignin containing pulp, so the degradation of cellulose and hemicelluloses is 

lower. 

                         

Bulk  

 

The actual, physical thickness of a piece of paper, usually expressed in thou-

sandths of an inch, is the bulk of the paper. Bulk affects the flexibility of paper. 

Thickness of sheets was measured, so that the bulk of sheet could be calcu-

lated. The measurement was taken from 6 different locations on the sheet using 

2

3

4

5

6

7

8

9

10

control 1000 2000 3000 4000

B
u
rs

t 
in

d
e
x
 [

k
P

a
 m

2
/g

]

Revolutions

Kappa 28.5

Kappa 18.4



38 

 

the “L&W Micrometer 51”. The average thickness of each sheet was calculated. 

Then, the bulk was calculated for each sheet. The values of bulk are given in 

appendix 1, table 7. 

 

Chart 7.7 Bulk versus revolutions in PFI mill 

In general, bulk decreased continuously with the increased amount of beating. It 

decreased by 14% and 15% for low and high lignin containing pulps respec-

tively which were the highest decrements in both categories at first beating. 

Overall bulk decreased by 24% and 23% for low and high lignin containing 

pulps respectively after beating 4000 revolutions in PFI mill compared to un-

beaten pulps.  

The sheets made from high lignin containing pulp were supposed to have 

higher bulk compared to the sheets made from the pulp with low lignin contain-

ing pulps, but quite surprisingly the values were opposite. The pulp with high 

lignin containing pulp had lower bulk. As the fibre lengths of raw materials were 

different, it may have affected the bulk.  

 

Air permeability   

 

If the air-permeability of the paper is too high, it means that paper is porous. As 

an effect of beating, paper produced will be less porous and properties such as 

density, strength, or smoothness will increase to certain extent. Air permeability 
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was measured using the “MBT- Permeance Tester”, a device produced by 

Messmer instrument limited. Measurements were done using pressure 0.74 kpa 

and values are expressed in terms of Bendtsen ml/min. The values of air per-

meability are given in appendix 1, table 8. 

Chart 7.8 Air permeability versus revolutions in PFI mill 

Chart 7.8 shows the air permeability change before and after beatings. As ex-

pected, after each beating stage the air permeability decreased to certain level 

as the paper became less porous. With increasing amount of beating, the 

bondability between the fibers enhances and paper density increases which re-

sults as dense and smooth paper. High air permeability, more than 2000 ml/min 

could be result of mainly coarse fibers and a relatively low level of primary and 

secondary fines which could be noticed in low lignin containing pulp in case of  

unbeaten and beaten up to 1000 revolutions in PFI mill.  

Air permeability was suppose to be higher for high lignin containing pulp as fi-

bres were stiffer in comparison to low lignin containing pulp. But the high lignin 

containing pulp had dense formation which directly affected the air permeance. 

Due to the reason, the air permeance of high kappa pulp was lower than  low 

kappa pulp. 
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Optical properties  

 

Opacity and brightness are most important reflectance values of paper. Opacity 

characterizes the ability of paper to hide text or pictures on the back side of the 

sheet. Brightness is reflectance of paper using blue light. Blue light is used be-

cause papermaking fibres have a yellowish colour and because the human eye 

perceives blue colour as brightness. “Lorentzen & Wettre – Elrepho” was used 

to measure optical properties.  

  

Chart 7.9 ISO Brightness versus revolutions in PFI mill 

As can be seen from the Chart 7.9, the brightness value decreased sharply by 

around 14% for both low and high lignin containing pulps after the first beating, 

whereas it decreased slowly after first beating in low lignin containing pulp and 

stopped at final brightness of 19%.  But brightness value for the pulp with high 

lignin content decreased quite huge compared to low lignin containing pulp. The 

overall brightness was decreased by 22% and 28% for low and high lignin con-

taining pulps respectively after beating 4000 revolutions in PFI mill compared to 

unbeaten pulps. The values of brightness are given in appendix 1, table 9. 

In optical properties no major differences between high and low kappa pulp 

were observed. The brightness decreased with increasing amount of beating in 

both cases.  
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7.2 Comparison of different properties among pine, birch and 
eucalyptus 
 

In this section, all the values from the experiments made during this thesis work 

are compared with the results from the earlier thesis work done on birch and 

eucalyptus. The comparison is made for all the results which were obtained 

from the earlier thesis work done by Pyykkönen in year 2008.  

 

Comparison of Schopper-Riegler values 

 

 

Chart 7.10 Sr number versus number of revolutions in PFI mill 

Birch with high lignin content has the highest increment in Sr number by 426% 

which is followed by birch with low lignin content 233% which were the values 

for unbeaten and beaten up to 5000 revolution. For eucalyptus, Sr number has 

increased by 157% and 56% for high and low lignin content pulps respectively 

after 5000 revolutions, but in case of pine, the increments were very low. For 

pine with high lignin content Sr increment was 108% whereas for low lignin con-

tent it was even less then that, 42%. 

It may be caused by the short fibres of birch, that birch fibres cannot form dense 

fibre web on wire, as orientation of fibres is poor for short fibres and that lets 

huge amount of water pass through the wire, which increases more when the 
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fibres are beaten. Same phenomena will explain the relatively high drainability 

of eucalyptus fibres too, whereas pine acquired lowest SR number as it had 

longest fibres among all. The fines generated from the beating did not affect 

much as in the earlier cases where the initial fibres were shorter. If we consider 

the initial fibre lengths, pine has nearly 3 times longer fibres than others, so the 

drainability was low for pine. (Values for the above chart are available in appen-

dix 2, table 1).  

Comparison of fibre length 

 

Chart 7.11 Fibre lengths versus number of revolutions in PFI mill 

It is worth to notice that birch has 3 times shorter fibre length compared to pine 

fibres whereas eucalyptus has the shortest of all, which is nearly 4 times shorter 

compared to pine.  Fibre length is one key factor among few important factors 

which decides the final product quality. These short fibres provide better optical 

properties but less strength compared to longer fibres of pine to the end product 

produced from them, which restricts their use in various products.  In general, 

end product decides the usability of particular species for production. (Values 

for the above chart are available in appendix 2, table 2). 
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Comparison of tensile strength 

 

Chart 7.12 Tensile index versus number of revolution in PFI mill 

Chart 7.12 implies that with the increasing amount of beating, the tensile 

strength was increasing in all species which is plotted as tensile index versus 

revolution in above chart. Beating affected tensile strength in positive direction 

as it increased the amount the fibrils on outer surface of fibre, increasing possi-

bility of bonds between fibres which contributed directly by increasing the 

strength of paper web. Pine with high lignin content has the highest tensile 

strength before and after beating. On other hand highest increment could be 

noticed in eucalyptus pulp with high lignin content which has increment of 

178%.  

Here as pine was beaten up to 4000 revolutions only compared to other two 

which were beaten up to 5000 revolutions, it looks like birch and eucalyptus 

have higher tensile increment but if comparison is made at single point; say at 

4000 revolutions pine had highest strength and the values can be seen in clear 

fashion. Again in terms of fibre length it was easy for pine to gain highest incre-

ment, as the possibility of bond formation is higher in case of long fibres of pine. 

(Values for the above chart are available in appendix 2, table 3). 
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Comparison of tear strength 

 

Chart 7.13 Tear index versus number of revolutions in PFI mill 

From Chart 7.13 can be concluded that the tear strength of low lignin containing 

pulp of pine increased at first beating but later decreased, whereas for high 

lignin containing pulp, it decreased slightly after each beating. Compared with 

birch and eucalyptus pulps, tear strength of pine seems be far better. This was 

expected as the long fibres of pine has higher strength compared to birch and 

eucalyptus. (Values for the above chart are available in appendix 2, table 4). 
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Comparison of burst strength 

 

Chart 7.14 Burst index versus number of revolutions in PFI mill 

In general, burst strength increased with increasing amount of beating. A 

notable change in bursting strength was seen in case of high kappa pulp of 

pine. In the above chart it seems that the low kappa pulp of pine has lower 

bursting strength compared with high kappa pulp of birch which is a little bit 

surprising. Others than that everything seems to correspond with the values 

from the literature. (Values for the above chart are available in appendix 2, table 

5). 
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Comparison of bulk 

  

Chart 7.15 Bulk versus number of revolutions in PFI mill 

As depicted in chart 7.15, the bulk of handsheets decreased sharply in case of 

pine compared to birch and eucalyptus after first beating. Although the general 

trend seems to be same, the response for beating seems to be faster for pine 

pulps. No significant difference was found between birch and eucalyptus but it 

seems that long fibres of pine tend to break which creates the secondary fines 

and increases the density of paper web, as result bulk decreases quite rapidly.  

(Values for the above chart are available in appendix 2, table 6). 
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Comparison of brightness 

Chart 7.16 Brightness versus number of revolutions in PFI mill 

Overall brightness decreased in all three species with the increased amount of 

beating but it could be noticed that brightness of birch was decreasing sharply 

compared to eucalyptus and pine. The high lignin containing pulp of eucalyptus 

had the highest decrement, by 30% which was followed by pine high lignin 

containing pulp whose decrement value was 28%. The brightness was highest 

in case of unbeaten birch followed by unbeaten eucalyptus which is at around 

the same level. 

From the above chart it can be seen that the brightness values are higher for 

birch and eucalyptus compared to pine. Although the brightness was 

decreasing with increasing amount of beating in all pulps, the range was narrow 

for birch and eucalyptus, whereas for pine the range was very wide. That 

explains why birch and eucalyptus have higher brightness compared to pine. 

When beaten to same level, the brightness of pine dropped down sharply with 

higher decrement values compared to other two species. (Values for the above 

chart are available in appendix 2, table 7). 
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SUMMARY 
 
The aim of this study was to investigate effects of beating on virgin Kraft fibre of 

pine. The two different pulps required for the experiment were cooked in labora-

tory scale in a batch digester with cooking liquor recirculation. As the result of 

cooking, pulp with kappa number 28.5 (so called high kappa) and pulp with 

kappa number 18.4 (so called low kappa) were obtained which were used for 

the entire experiments. The yield was 38.1% and 41.6% for low and high kappa 

pulps respectively. After washing, both pulps were beaten with the PFI mill re-

finer to 1000, 2000, 3000 and 4000 revolutions. Laboratory hand sheets were 

prepared from four different beaten pulp fractions and also from the unbeaten 

pulp fraction, from both cookings which were later used to measure optical and 

strength properties. Additionally, Sr number, residual alkali content, fibre length 

and water retention values were measured. 

Some distinct differences in strength properties were observed in the thorough 

testing of laboratory handsheets. Beating brought significant changes in the fi-

bre properties. Some of them were desired whereas others were undesired. Sr 

number was increased as the fibres drainability was increasing. Water retention 

values were rising after each beating. Beating increased the amount of fibrils on 

the surface of the fibres and flexibility, providing it with more surface area to 

bond and flexibly provides good web formation of fibre web; as a result tensile 

strength increased. As an important remark, beating had negative effect on the 

tearing strength. The bulk of sheet decreased with the increasing numbers of 

beating giving smooth compact paper. Whereas on the other hand, it was a real 

surprise to see that brightness was decreasing with the increased number of 

beating, and so did opacity. Fibre length decreased because of beating, which 

directly reduces the web strength of paper made from it. In addition to that the 

fibre length for high kappa cooking was a little bit small compared to low kappa 

cooking. Although being pine, exactly same material was not used in different 

cookings. This difference in fibre length likely affects the results in paper testing. 

Air permeability decreased to a quite low value after beating compared to un-

beaten pulp sheet, which is a required property for paper making. Overall beat-
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ing brought positive increments for all strength properties except tear, opacity 

and brightness. 

For the most part, tested, both pulp and paper, properties were in agreement 

with previous studies found in the literature. However, some properties e.g. bulk 

and air permeability were different than expected, being in fact just the opposite 

than awaited to be observed according to the literature. 

The results obtained from the experiments were compared with the earlier study 

done on birch (Betula pendula) and eucalyptus (Eucalyptus Grandis). The ex-

perimental data for birch and eucalyptus truly depends on the earlier thesis 

(secondary source), so any mistakes or uncertainty in values for birch and 

eucalyptus do not concern this thesis. In addition to that the handsheet prepara-

tion method used was different compared to earlier work; sheets were pressed 

and then dried in earlier ones whereas in case of pine the sheets were just dried 

without pressing. This may influence the values to some extent.  

In the evaluation of pine Kraft versus birch or eucalyptus Kraft pulp as the raw 

material of laboratory made handsheets, pine Kraft pulp revealed some promis-

ing features, e.g. better tensile, tear and bursting strengths. However, the most 

important properties for strong paper were emphasized in the evaluation. Based 

on the evaluation, the quality of laboratory made handsheets were far better in 

case of pine Kraft pulp used as the raw material than of birch or eucalyptus 

pulp. 

In fact, depending on the criteria for evaluation, pine Kraft pulp is better suitable 

for certain paper or board grades than birch or eucalyptus Kraft pulp. In addi-

tion, in certain products a mixture of these pulps can be used to achieve quality 

and processability.  
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APPENDIX  1 

Experimental values of Pine     1 (3) 

Table 1 Sr number [Srº] 

Revolutions Kappa 28.5 Kappa 18.4 

control 13 12.0 

1000 15 13.0 

2000 18 14.0 

3000 22 15.5 

4000 27 17.0 

 

Table 2 Fibre length [mm] 

Revolutions Kappa 28.5 Kappa 18.4 

control 2.76 3.31 

1000 2.69 3.04 

2000 2.61 2.92 

3000 2.56 2.89 

4000 2.50 2.74 

 

Table 3 Water retention value [%] 

Revolutions Kappa 28.5 Kappa 18.4 

control 123% 139% 

1000 139% 164% 

2000 150% 169% 

3000 155% 170% 

4000 159% 182% 

 

Table 4 Tensile index [Nm/g]  

Revolutions Kappa 28.5 Kappa 18.4 

control 75.66 36.88 

1000 82.72 57.18 

2000 88.82 64.74 

3000 93.12 70.73 

4000 99.37 73.18 
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Table 5 Tear index [mNm2/g]      2 (3) 

Revolutions Kappa 28.5 Kappa 18.4 

control 14.04 15.89 

1000 12.72 20.28 

2000 12.05 18.47 

3000 10.98 17.17 

4000 9.89 16.35 

 

Table 6 Burst index [kPa m2/g] 

Revolutions Kappa 28.5 Kappa 18.4 

control 5.10 2.39 

1000 7.48 4.12 

2000 8.14 4.99 

3000 8.75 5.76 

4000 9.27 5.76 
 

Table 7 Bulk [cm3/g] 

Revolutions Kappa 28.5 Kappa 18.4 

control 1.69 1.93 

1000 1.44 1.67 

2000 1.38 1.53 

3000 1.33 1.51 

4000 1.27 1.51 
 

 

Table 8 Air permeability [ml/min] 

Revolutions Kappa 28.5 Kappa 18.4 

control 1389 4400 

1000 710  2327 

2000 282   1280 

3000 103 676 

4000 52 435 
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Table 9 Brightness [%]       3 (3) 

Revolutions Kappa 28.5 Kappa 18.4 

control 25.03 24.01 

1000 21.47 20.71 

2000 19.75 19.51 

3000 19.05 18.96 

4000 18.02 18.81 
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APPENDIX  2   

Table 1 Sr number [Srº]         1 (2)  

  
Birch 
(12) 

Birch 
(18.5) 

Eucalyptus 
(10.5) 

Eucalyptus 
(19) 

Pine 
(18.4) 

Pine 
(28.5) 

control 15 15 23 21 12.75 13 

1000 20 21 26 2 13.25 15 

2000         13.25 18 

3000 30 44 28 42 13.50 22 

4000         15.00 27 

5000 50 79 36 54     
 

 

Table 2 Fibre length [mm]  

  
Birch 
(12) 

Birch 
(18.5) 

Eucalyptus 
(10.5) 

Eucalyptus 
(19) 

Pine 
(18.4) 

Pine 
(28.5) 

control 1.10 1.11 0.76 0.75 3.31 2.76 

1000 1.00 1.05     3.04 2.69 

2000         2.92 2.61 

3000 0.98 1.02     2.89 2.56 

4000         2.74 2.50 

5000 0.95 0.99         
 

 

Table 3 Tensile index [Nm/g]  

  
Birch 
(12) 

Birch 
(18.5) 

Eucalyptus 
(10.5) 

Eucalyptus 
(19) 

Pine 
(18.4) 

Pine 
(28.5) 

control 44.7 47.87 35.36 29.71 36.88 75.66 

1000 62.8 71.90 50.29 63.71 57.18 82.72 

2000         64.74 88.82 

3000 68.7 89.65 57.74 76.54 70.73 93.12 

4000         73.18 99.37 

5000 65.9 103 62.07 82.60     
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Table 4 Tear index [mNm2/g]      2 (2) 

  
Birch 
(12) 

Birch 
(18.5) 

Eucalyptus 
(10.5) 

Eucalyptus 
(19) 

Pine 
(18.4) 

Pine 
(28.5) 

control 5.75 6.20 4.99 4.08 15.89 14.04 

1000 8.14 7.17 6.24 6.54 20.28 12.72 

2000         18.47 12.05 

3000 7.64 6.85 6.59 6.89 17.17 10.98 

4000         16.35 09.89 

5000 7.47 5.06 6.51 6.21     

 

Table 5 Burst index [kPa m2/g] 

  
Birch 
(12) 

Birch 
(18.5) 

Eucalyptus 
(10.5) 

Eucalyptus 
(19) 

Pine 
(18.4) 

Pine 
(28.5) 

control 1.98 2.18 1.51 1.45 2.39 5.10 

1000 3.75 5.17 2.51 3.76 4.12 7.48 

2000         4.99 8.14 

3000 5.11 6.66 3.17 5.39 5.76 8.75 

4000         5.76 9.27 

5000 5.32 7.55 3.62 5.51     

 

Table 6 Bulk [cm3/g] 

  
Birch 
(12) 

Birch 
(18.5) 

Eucalyptus 
(10.5) 

Eucalyptus 
(19) 

Pine 
(18.4) 

Pine 
(28.5) 

control 1.48 1.44 1.62 1.62 1.94 1.69 

1000 1.33 1.26 1.51 1.51 1.67 1.44 

2000         1.54 1.38 

3000 1.23 1.18 1.47 1.47 1.51 1.33 

4000         1.51 1.27 

5000 1.23 1.11 1.43 1.43     

 

Table 7 Brightness [%] 

  
Birch 
(12) 

Birch 
(18.5) 

Eucalyptus 
(10.5) 

Eucalyptus 
(19) 

Pine 
(18.4) 

Pine 
(28.5) 

control 29.8 28.86 29.76 21.58 24.01 25.03 

1000 28.3 25.96 29.95 20.33 20.71 21.47 

2000         19.51 19.75 

3000 26.5 23.69 29.16 17.21 18.96 19.05 

4000         18.81 18.02 

5000 26.1 21.84 29.09 15.20     
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APPENDIX  3  

Cooking results         1 (1) 

  
kappa 
value 

Yield 
Residual 

alkali 
content 

Active alkali per 
gram oven-dry 

wood 
time 
(min) 

High kappa 
pulp 

28.5 41.6% 7.5 26% 79 

Low kappa pulp 18.4 38.1% 7.3 30% 110 
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List of standards used at work.    APPENDIX  4  
          1 (1) 

� Determination of Kappa number of pulp - ISO 302 - 1981(E) 

� Laboratory beating of pulp - PFI mill method - ISO 5264/2 - 1979(E) 

� Determination of drainability of pulp by Schopper-Riegler method - ISO 

5267/1 - 1979(E) 

� Determination of fibre length - TAPPI single fiber mode 

� Preparation of laboratory sheets for physical testing -- Part 2: Rapid-Köthen 

method-  ISO 5269-1:1998(E)  

� Determination of tearing resistance (Elmendorf method) - ISO 1974:1990(E) 

� Determination of tensile properties - ISO 1924 - 1:1992(E) 

� Determination of bursting strength - ISO 2758:1983(E) 

� Determination of thickness, density and specific volume - ISO 534:2005 (E)  

� Measurement of diffuse blue reflectance factor (ISO brightness) - ISO 2470 - 

1977(E) 

� Determination of opacity (paper backing) -- Diffuse reflectance method - ISO 

2471 - 1977(E) 

� Determination of water retention value (WRV) – ISO 23714:2007(E) 

� Determination of alkali resistance - ISO 699:1982(E) 

� Determination of air permeance (medium range) -- Part 3: Bendtsen method 

- ISO 5636-3:1992  

 

 


