VAASAN AMMATTIKORKEAKOULU
o N
.’.‘O VASA YRKESHOGSKOLA

. UNIVERSITY OF APPLIED SCIENCES

Lam Le

ENTERPRISE SERVICE BOOK
APPLICATION FOR MULTIPLE MOBILE
PLATFORMS

Department of Technology and Communication
2010

ABSTRACT

Author Lam Le

Title Enterprise Service Book Application for Multiple Mobile
Platforms

Year 2010

Language English

Pages 114

Name of Supervisor Ghodrat Moghadampour

The purpose of this thesis was to build an enterprise mobile service book
application for Wirtsild Oyj, a global company whose main office is located in
Vaasa, Finland. Wirtsild is one of the world leading companies in boat engines
and power plants.

Wiirtsild has a user manual application for engine information and troubleshooting
called Eldoc Server. It was built in ASP .Net. This application is widely used
within Wirtsild employees, especially mechanical engineers who are maintaining
and fixing engines every day. In order to increase the portability, mobility and
accessibility of this electronic manual, they have requested a mobile version for
this Eldoc Server.

The idea of this thesis was to implement an application for multiple mobile
platforms which implements the functionally now existing in Eldoc web server
such as viewing documents, pictures, videos, etc. Furthermore, it should utilize
advantages of mobile devices such as camera, voice recorder, and phone service.

The application was targeted for these platforms: Windows, Linux and Maemo. Qt
was selected as a development framework for this purpose as it is a cross-platform
framework, meaning that it is possible to code the application once and deploy
them across different platforms. Nokia N900 with Maemo OS was the main
targeted device thank to its capability, mobility, and reusability.

All objectives of the final thesis mentioned above have been met in the Qt based
application associated with this project. Tests have been performed and indicated
that all main features work perfectly. The application has been presented with
Wirtsild people and is waiting for their permission to change to production
version.

Keywords QT, programming, Maemo, eldoc, application

ACKNOWLEDGEMENT

I would like to thank all the people who helped me and inspired me during the final
thesis period.

At the beginning, I would like to give my honest thanks to my tutor, meanwhile, my
thesis’s supervisor, Ghodrat Moghadampour. He not only instructs me the academic
knowledge, but also the way how to handle problems in life. When I encountered
difficulties, his patience and professional skills give me a lot of power to overcome
the adverse circumstances.

Secondly, I would like to thank Professor Petri Helo, who is a lecturer in University
of Vaasa and a manager in my company. He has given me this interesting project and
some basic background information which is the basement for my achievement.

In the end, I will thank my beloved parents that encourage me from another remote
country.

Here are my deepest thanks again for all of you I mentioned above.

Contents

COMEITS .ttt e e e ettt e e e e e e et e et e e e e e e s aabbbaaeeeeeeeens 4
I INTRODUCTION ..ottt ettt e et e e e aaaeee s 9
1.1 Eldoc Server DeSCTIPtIONuiiieeeiiiiiiiiiieeeeeeeeeeiiiieeeeeeeeeeesiivreeeeeeeeeennens 10

2 TECHNOLOGY OVERVIEWcoooiiiiiiiiiiiiiiiieeeieeeee et 12
2.1 Darwin Information Typing Architecture (Dita)........ccccceevvvuviiiiieieeeernnnnnes 12
2,101 DA et e e e 12
2.1.2 Dita main fEAtUIES.cceriiiiiiiiiiiiiie ettt 13

2.2 QEEFramewWoOrK........ccoooiiiiiiiiiiieiii e 15
2.2.1 Introduction about Qt framework..........cccoeeeeeiiiiiiiiiiiiieeeeeeeeeeieeeee, 15
2.2.2 Qt features SUMIMATYuveereeeeeeeeniiiiiireeeeeeeessiiiieeeeeeeeeesnsaniereeeeeeeens 16

2.3 Maemo Platform OVErVIEWcoeiiiiiiiiiiiiiiieiiitee et 19
2.3.1 Maemo Main featureseeeeiiiiiiiiiiiiiiee ettt 20
2.3.2 Software development on Maemo platform.............ccccceevvviiiiiieeennnn. 22

3 ELDOC SERVICE BOOKooiiiiiiiiiiiiiiiieiiee ettt 24
3.1 Requirement ANALYSIS.......cceeeiireiuiiiiiieeeeeeeiiiiiieeeeeeeeeeiirereeeeeeeeeeeereeeeas 24
3.2 Main Features Deployment.............eueiiieeeiiiiiiiiiiieeeeeeeeciiiieeeee e e e e 25
3.3 Main Functions SpecifiCation.............ccceeeeriiiiuiiiiieeeeeeniiiiiiieeeeeeeeeeiiveeee 26
3.4 Class HICTarChyeeeiiiiiiiiiiiiiiiiiieee et 28
3.4.1 Manual related Classescooovuiiiiiiriiiiiiiniiee e 28
3.4.2 Spare part related ClaSSeSeeviieeirriiiiiiiiieee e 31
343 Main UL Classes ..ccoouuviiiiiiiiiieeeiiiieeeeee ettt 32
3.4.4 Optional features UL Classes........coovuuriiiiiiiiiiiiiiiiiiiiieeeeeeeiieeeee e 36

3.4.5 Mbarcode project inteZrationc..evvveeeeeeerrriiiiiiiieeeeeeeeriiieeeeeeeens 37

3.4.6 Mbarcode additional PIUZINS........ccccuvviirieeeeeeiiiiiiiiieeee e eeiiieeee e 42

3477 Media player ClaSSeSccuuvviiiieeeeeeiiiiiiiieeee e e eeeiitire e e e e e e e 44
3.5 Detailed Descriptions of Main FUnCtionsccccceeevriiiiiiieieeiennnniiinienee. 45
3.5.1 Open dOCUMENL. ...cccciiiiiiiiiiiiieeeee e et eeee e e e ettt e e e e e e e siiereeeeeeeeas 45
3.5.2 VIEW IMAZE ..uvvvviiieieeeeeiiiiiiieee e e e eesiiie et e e e e e e e eiebreeeeeeeeeesnnnnsraaeeeeeeeas 47
3.5.3 VIEW VIAEO .ttt 48
3.5.4 Add nOte/COMMENLcccoiuuiiiiiiiiiiiieaiiiee ettt e e e e 50
3.5.5 Take and attach piCtureccceeevriiiiiiiiiiieiiiniiiieeee e 51
3.5.6 Search manual/spare part dOCUMENLtccccevrrriirriiieeeeeeriiiiiiiieeeeeenn. 52
3.5.7 Create technical TEQUEST........ceeeieeiriiiiiiiieeeeeeeeriiieeee e e e e eeirreeeee e 54
3.6 Component Diagram............ceeeeeuuiiiiiiiieeeiiiiiiiieeeeeeeeesiieeeeeeeeeeeeeereeeees 55
3.7 Architectural DIagramcoccouiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 57
4 GUIDESIGN ..ottt ettt et e s e e sabae e 58
4.1 Main WINAOWooiiiiiiiiiiiiiiiee et e e 58
4.2 Request WINAOW ...cccoeiiiiiiiiiiiiieeeeeeeiieiete e e e e e e eiiitee e e e e e e e e siaaaeeeeeeeeeennnnns 59
4.3 Setting WINAOWcceeeiiiiiiiiiiiiiieee et e e e e e et e e e e e e e e e saaareeeeeeeeeennnnes 60
S5 IMPLEMENTATION.....ccoitiiititiitt ettt 62
5.1 Dita Parser FUNCHONouuviiiiiiiiiiiiiiiccceiec e 62
5.2 Add NEeW NOE...oooiiiiiiieiitie ettt e et e e iaeee e 65
5.3 Take and Attach PiCturesccoeiiiiiiiiiiiiiiiiiiie e 67
5.4 TMAZE VIBWET ..eeiiiiieeeiiiiiiiiieee e e e eeeiite et e e e e e e et re e e e e e e e e s s eararaeeeeeeeeennnnes 69
5.5 Media PIAYET ...cooiiiiiiiiiiieeeeeeeeee e 71
5.6 View PAf FIle....ooiiiiiiieeeee e 72
5.7 QLabelFingerExtension Class.........cccuuviiiieeeeiiiiiiiiiiieee e e eesciiiieeeee e e e e 74

5.8 Update Database.........cccuvviiiiieeeeeiiiiiiiiieee e e e eesiiiieee e e e e e e e sirareeeeeeeeeennees 75

5.9 Search ENGINe.......cccovviiiiiiiiiiiiieeeeeeeee et e e e e e e e 76
6 TESTING ..ottt ettt e e e 78
6.1 Viewing Technical DOCUMENLSeviiiiiiiiiiiiiiiiiiieeeee e 79
6.2 Adding Notes or Comments in Windows and LinuXcccccceeeeeeennnns 81
6.3 Adding Notes and Pictures in Eldoc Maemo Version.cccccceeeeeennnnes 81
6.4 Barcode Readercooouiiiiiiiiiiiiiiii e 83
6.5 Setting WINAOW ...ccooiiiiiiiiiiiiiiiee e e e e e e e 84
6.6 Request WINAOW ...ccooeiiiiiiiiiiiiieeeeeee e 85
T CONCLUSION ...ttt ettt ettt e et e et e et e e sabeeeenaeeeennee 86
7.1 Future DevelOPMENtuuviiiiieeeiiiiiiiiiieeeeeeeesiiiieeee e e e e eesirareeeeeeeeeennnees 86
8 REFERENCESooiiiiiiii et 87

APPENDICES

ABBREVIATION

API: Application Programming Interface

OS: Operating System

GUI: Graphical User Interface

UI: User Interface

JRE: Java Runtime Environment

SDK: Software Development Kit

IDE: Integrated Development Environment
DITA: Darwin Information Typing Architecture
PC: Personal Computer

MADDE: Maemo Application Development and Debugging Environment
HTML: HyperText Markup Language

URL: Uniform Resource Locator

LIST OF APPENDICES
APPENDIX 1. Qt Development Setup for Maemo Platform

APPENDIX 2. Madde — Maemo Development Tool on Windows

1 INTRODUCTION

Nowadays, mobile phones are playing an increasingly essential role in human life.
According to a recent report of the mobile market, the usage of mobile phones is
increasing by 4.2% per season, especially of the phones with intelligent systems.
Together with the increasing capability and functionality of mobile phones, users not
only utilize mobile phones in communication, but also treat them as multi-functional
devices, such as a multimedia player, a video player, a navigator, a game box or an
internet tablet, etc. With the rapid development of mobile phone hardware and
software, a smart phone can have nearly the same capability with a desktop computer.
Moreover, thank to its small size, mobility and portability are the big advantages of a
mobile phone. Having all these notable advantages, it is one of the most widely used
devices and can be found in everyone’s pocket.

Seeing the advantages and future of mobile phones, companies all over the world are
changing from desktop to mobile phone software development. Websites are
designed to have the capability to recognize the mobile phone devices and change to
suitable resolution to provide mobile users with the best look and view. Applications
written Java, C++, .Net, etc which once targeted for desktop environment are
modified in order to run in mobile devices. Game development is shifting to mobile
game providing touch screen.

Follow the trend, Wiirtsild, one of the world leading companies in boat engines and
power plants, has requested to convert one of its applications called Eldoc Server to a
mobile phone application so that it can be utilized among Wirtsild employees all
around the world. Basically the mobile application should implement the
functionality now existing in Eldoc web server such as viewing documents, pictures,
videos, etc. Furthermore, it can utilize advantages of mobile devices such as camera,
voice recorder, and phone service.

Moreover, they also want the application available for their other commonly used
devices such as Rugs portable PC running Windows and Laptop running Linux. This
creates the need that to have a software development framework that can be deployed
to multiple platforms and operating systems. The application should be coded once
and able to be deployed to many different devices.

10

1.1 Eldoc Server Description

This user manual application is mainly used by engineers for engine information and
troubleshooting. The main objective of this application is to convert documents which
are on DITA format (Darwin Information Typing Architecture) to readable html
format and display in a web browser with normal web functionalities such as
navigation links between pages, image viewer, and video viewer.

The user interface consists of multiple stacked selections. In the first step, user
chooses one of three main products. Language is by default set as English, and then
user can choose module which is either engine type or spare part type. After selection
of document number, the document will be displayed.

bookmarks

ir 1 product:

[oEMO ~ [select product —
-- gelect product —
PAAFDG5025
PAAEDG5026

PAAEDS5027

basket bookmarks

installation: product: language: module:
|oEMO v |PasEoss0zs w |english v [select module — ~

manual
spare parts

bookmarks

installation: product: language: module:

[oEMO ~ [PaaEDES026 ~ [english ~ [spare parts ~
—acleck b

o - select -

100 Engine Block, Bearings, Oil Sump, Covers

110 Crankshaft, Flywheel, Connecting Rod, Piston
120 Cylinder Head with Valves

130 Intermediate Gears

140 Valve Mechanism, Camshaft

150 Charge Air System

160 Injection Equipment, Gas Manifold

180 Lubricating Oil Pumps, Thermostatic Valves

190 ConlinE Water PumisI Thermostatic Valves

210 Starting Equipment

220 Regulating Mechanism

230 Speed Measuring System

340 Manifold {Fuel, Lube Qil, Cooling Water, Starting Air etc.)

350 Manifold {(Fuel, Lube Qil, Cooling Water, Starting Air etc.)
370 Cleaning Device, Crankcase Ventilation
470 Filters, Coolers, Engine Mounting

500 Transducers, Instrument Panel, Thermometers
600 Connecting Pieces, Extension Shaft, External Connections
800 Tools

Figure 1.1. Eldoc server .Net version - browsing steps.

11

installation: product: language: module:
[oEMO ~ |PaaE0ss028 ~ |english ~ |spare parts w
| 180 Lubricating Qil Pumps, Thermostatic Valves * | 182-0011A Electric motor for prelubricating oil pump

—select —
181-0006B Lubricating oil pump
182-0008E Prelubricating oil pum

0011A Elect otor fo b ting o
182-0012E Prelubricating pump assembly
183-0006E Thermostatic wvalve for lubricating il

|3

i |
152 019 d I 1 1
[+] []
il]
T | I
Weight
Part Mo Description Pcs Kg
182 015 Electrical mator 1 - o]
o e]
182 103 Ball bearing 1 o2 [o_]
182 104 Ball bearing 1 0.1 [o_]

User Comments

(Sotnencomnen:] B
o

@1 MN05 Wart=ila Finland Ov_ all rinhts reserved

Figure 1.2. Eldoc server .Net version — final user interface.

There are two types of document: manual and spare part. Manuals are engines’
related information and spare parts are technical details about individual parts of an
engine. The document type can be selected in “module” selector mentioned above.
Inside each document there are links to navigate between them and a collection of
videos and pictures for visualizing guidance.

User can also add comments or notes on the document he/she is reading. Added
notes/comments will be displayed together with the created date in the bottom of the
document.

12

2 TECHNOLOGY OVERVIEW

Below is a short description of the development framework and platform used in this
mobile application. There are three main parts: Dita document, Qt framework and
Maemo platform. In each part there will be a definition and summary of the main
features of the framework or platform.

2.1 Darwin Information Typing Architecture (Dita)

Dita is the format of the documents used as resources in this thesis application. It is
also the main format of majority of Wirtsild technical documents because of its
advantages over XML documents.

2.1.1 Dita

The Darwin Information Typing Architecture (Dita) is an XML-based architecture for
information exchange originally developed by IBM. The architecture applies the main
characteristics in XML architecture such as modulation, content reusability and
specialization. Dita is now one of OASIS standards. The main advantage of Dita
format compared with XML is that its architecture follows a standard and unified
format; therefore it can be converted to other format such as HTML, pdf, image using
a convert engine. /1/

The structure of a Dita documents is basically similar which XML or HTML
documents. It has one open tag and one close tag for every element. Each element can
have attributes and single or complex content. As with HTML, any images, video
files or other files which need to be displayed in output are included via reference.
Thank to its simple format, any XML editor can be utilized to create or edit Dita
content. Various editing tools which support Dita documents have been developed for
instance XMLmind XML editor /3/. Below is a sample Dita document.

<hO0>

<h0t label="man-06">Adjustments, Clearances and Wear
Limits</h0t>

<hl>

<hlt label="man-06.1">Adjustments</hlt>
<p>

<hp0>Valve timing</hpO>

</p>

13

<p>The valve timing is fixed and cannot be changed
individually, cylinder by cylinder.</p>

<fig label="fig-200601-1low" caption="06-1">Valve
timing</fig>

<1li>

<it>Inlet valve opens.</it>

<it>TDC.</it>

<it>Exhaust valve closes.</it>

<it>Exhaust valve opens.</it>

</1li>

<p>

<hp0>Other set values:</hp0>

</p>

<it>Valve clearances, cold engine: inlet wvalves 0.4 mm,
exhaust valves 0.8 mm.</it>

<it>Fuel delivery commencement. See test records.</it>
<it>Opening pressure of fuel injection valve 450410 bar</it>
</1li>

</hl>

</h0>

2.1.2 Dita main features

v" Topic orientation: Dita content is organized as modular topics. This is the
highest standard structure in Dita. Topics are listed by a Dita map. This is a
document contains links to different topics in the order that they appear in a
finished document. A Dita map specifies table of contents for deliverables.
Furthermore, Dita documents also have relationship table which defines the
linking between different topics. Modular topics can be reused in different
deliverables easily. /2/

v" Reusability: Another advantage of Dita document is that it allows copying
content from one place to another as a way of reusing content. Reusability in Dita
documents occurs in two levels:

e Topic reuse: As mentioned above, Dita topics have non-nesting structures;
they are organized by maps and relationship tables. This allows topics to

14

be reused in any topic-like context. When a topic is reused in a new
information model, the architecture will process it appropriately in its new
context. /2/

e Content reuse: Dita inherits this feature from XML format and has some
improvements on using the SGML method of declaring reusable global
entities. Dita has developed a new SGML reuse technique that gives each
element a “conref” attribute that can point to any other element in any
topic. /2/

v' Specialization: Dita has a mechanism engine to create a new element by
extending existing element. When creating, its identifier will be added to the class
attribute through its dtd. Because of this, the new element is always associated to
its origin and the element hierarchy can be maintained easily.

e Topic specialization: Extends a general topic to new information types
which can later be extended to other information structures. /2/

¢ Domain specialization: Extends an element vocabulary into a new element
which reflects a particular aspect of its parent element within a topic. This
makes the whole vocabulary available throughout all the topics. For
example, a keyword can be extended to be a nick name or a code. /2/

v' Property-based processing: Dita topics can be filtered or associated by its
metadata or attributes. There are many applications doing this job such as content
management system, search engines, processing filters. Dita property-based
processing has the following features:

e Extensive metadata: Dita metadata allows many different way of content
management applied to its content, therefore searching topics is easier. /2/

e Universal property: Almost all the elements in a topic contains a set of
universal attributes which are very convenience for identification, content
filter or content referencing infrastructure /2/

v" Using a set of HTML-like tags and tools: Dita has built a set of tags which is
widely accepted thank to its familiarity and compatibility with standard XML
tools.

15

e [everage popular language subsets: Dita borrows standard tags from other
popular format for instance HTML or XHTML with familiar tag names
like p, ul, ol, etc.. Moreover, Dita makes use of popular OASIS table
model. /2/

e Leverage popular and well supported tools: Dita format can be easily
translated to other popular tools thank to its class-based extension
mechanism. It can be converted well to design featured XSLT or CSS
style sheet language. /2/

2.2 Qt Framework

In order to achieve the customer requirement that the application should be able to be
deployed to many different platforms, Qt was selected as a main development
framework for this thesis application thank to its cross-platform compilation feature.

2.2.1 Introduction about Qt framework

Software development in mobile environment is diffused to many different platforms.
Qt is one solution for this multi-platform problem. Qt is a cross-platform application
and Ul framework that allows developers to write applications that can be deployed
to multiple platforms, from desktop to mobile phone or embedded system without the
need to rewrite the source code. Qt is a superset of standard C++ so developers can
use Qt or C++ data types or their combination. Nowadays Qt is being used by
developers all over the world, and this notable framework is used as a key developing
environment for many big projects for instance Linux KDE desktop, Google Earth
and Skype. Migrating Qt application from one platform to others is often no more
than a recompilation. Some operating systems can have their own custom Qt libraries.

16

£7 Windows Mobile

macmo

SYMBIAN iz I

d

Figure 2.1. Qt for multiple mobile platforms. /5/

2.2.2 Qtfeatures summary

Qt contains a collection of widgets, which are equivalent to controls in Windows
Form application. Like other GUI frameworks, Qt includes layout widgets such as
QVBoxLayout or QHBoxLayout, component widgets such as QLabel, QPushButton,
QTextEdit, etc... Based on these basic widgets, developer can build complex GUI
applications. In order to control user interaction with the application, Qt introduces an
innovative alternative for inter-object communication called “signals and slots” that
replaces the old and unsafe callback technique used in many legacy frameworks. Qt
also provides a conventional way to handle mouse clicks, key presses and other user
inputs. Last but not least, Qt desktop integration features enables applications to be
extended into the surrounding desktop environment by some of the services provided
on each development platform. /5, 3-5/

Qt has its own visual editor called Qt Designer. It is a tool for graphically designing
interfaces for Ul applications simply by “drag and drop”. Users can use Qt Designer
purely for GUI design, or creating entire applications with its support for integration
with popular IDEs. /5, 11-12/

Qt has excellent support for 2D and 3D graphics by providing Qt wrapper for
platform independent OpenGL programming. Qt’s painting system has a
sophisticated canvas framework that enables developers to create interactive
graphical applications taking advantages of high quality rendering across all
supported platforms. Qt OpenGL also supports one of the newest 3D technology
recently — stereoscopic 3D programming which allows users to see a likely 3D object
with depth buffer via glasses and supported GPU and screen; for instance NDIVIA

17

glasses with NDIVIA Geforce graphics card, ViewSonic 3D Vision enabled screen.
/5, 13-14/

Qt support connections with standard databases irrespective of platform. Native
drivers for some popular databases such as Oracle, Microsoft SQL Server,
PostgreSQL, MySQL... is included natively in Qt. Like Windows Form
programming, Qt has database-specific widgets and any built-in or custom widget is
data-awareness. /5, 24-26/

Qt applications have default look and feel of the operating system for which it is
compiled. However, it is still possible to change the appearance of Qt widgets
through Qt style sheets. Every built-in or custom widget has a method call
“setStyleSheet” to define its custom style sheet. The format follows standard style
sheet format.

aQLineEdit —->setStyleSheet ("background-color: yellow");

Qt uses Unicode standard and English is the default language. Moreover, it has
considerable support for internationalization by a translator named Qt Linguist.
Application language can be translated to many other Unicode supported languages
through separate translation file (*.ts). /5, 26-28/

Qt applications can use additional plug-ins or dynamic libraries to extend their
functionalities. Additional libraries and plug-ins should be declared in project file

(*.pro).

Qt offers an extensive set of tools for developing software. Qt Assistant is Qt’s
documentation tool. It contains code snippets and a lot of helpful information on how
to use the framework’s classes. There is also example code in each method’s
description. Packed together with Qt Creator is a collection of samples demonstrating
Qt key features: GUI, webkit, graphics view, scripting, openGL, XML, multimedia,
database, network, unit test, and others. Developer can download more samples in
Nokia Qt official website /4/.

v’ Platform Support for Qt /4/
¢ Windows
e MacOS X
e Linux/X11 (KDE)

e Windows CE

e Embedded Linux

v Language Support for Qt /4/

e Python
e Ada

e Pascal
e Perl

e PHP

* Ruby

e Java (Qt Jambi)

Windows

Mac OS

Linux / X11
Embedded Linux
Windows CE

Ct+ |::>
I' Java

Python

Maintained by
Ot open source community.
Not officially supported by Qt Development Frameworks.

Figure 2.2. Qt supported platforms and languages. /4/

Maemo 2
Symbian (S60)

18

19

2.3 Maemo Platform Overview

Maemo is a software platform developed by Nokia for smart phones and internet
Tablets. It is based on Debian Linux distribution. Maemo is mostly based on open
source code, and has been developed by Nokia in collaboration with many open
source projects such as the Linux kernel, Debian and GNOME. Maemo uses most of
frameworks and libraries from GNOME project such as Matbox window manager,
GTK-based Hildon GUI and application framework. Latest Maemo version is Maemo
5 with 4 desktops which can be customized with shortcuts and widgets. Nokia has
published some smart phones having Maemo OS for example N810 and the latest
phone is N900 which is one of the main target devices for this project. /6/

14:58 S5~ MEDION Mobile

G

E Saturday

& | 5/1. bugday

& 3 tasks undo

Figure 2.3. Maemo OS look and feel. /6/

There is also new operating system called MeeGo which is a co-operation between
Maemo and Moblin OS of Intel but currently there is no phones using this operating
system yet. Basically, majority of the Qt code for this new OS will be the same
compared with Maemo, there might be some minor changes in Ul components.

20

2.3.1 Maemo Main features

Below is the summary of this new platform’s main features which are considered
better compared with those in other Linux-based platforms.

2.3.1.1 Updating

Maemo devices can be updated either by a built-in software update tool via internet
connection (seamless software update) or a simple flashing method with a computer
via USB cable.

e With flashing the program will clean everything and install a fresh copy of
newest maemo version, just like reinstalling an OS in desktop computers.
However, personal data such as pictures and contacts which are kept in
separate memory allocation remains. /6/

e Using built-in software update tool is very handy and easy to utilize.
Whenever there are software updates, the phone will notify user and he
can perform software updates just by few clicks. However, the limitation
of this method is that it is not possible to perform full a update with major
changes of the core of the OS. /6/

2.3.1.2 Security

Maemo security concentrates on preventing remote attacks via wireless network or
Bluetooth or even 3G networks. Normal user has a default trivial role and limited
access to the OS. However, developer can easily gain root privilege by installing a
tool named “rootsh” and using the following command:

>>Sudo gainroot

2.3.1.3 Maemo components

Maemo is a modified light weight version of Debian Linux distribution targeted for
mobile devices. It has a lot of changes to reduce the consumed resource and energy
usage. It uses Xomap and Matchbox window manager which are X Window System-
based graphical user interfaces. The GUI use GTK+ toolkit and Hildon user interface
widgets. All installed widgets will have default Hildon look and feel.

Maemo replaces the GNU core Utilities used in Debian by a new software package
for embedded and mobile devices called BusyBox in order to reduce memory and

21

storage usage. As a result it will have some limitations compared with GNU core
utilities but that is minor and can be ignored.

Maemo uses GNOME ESD (Enlightened Sound Daemon) as the primary sound
server and GStreamer to play back sound and movie. GStreamer is used in shipped
media player and any many Qt media applications in maemo repository /7/. Like any
Linux distribution, the format supported by GStreamer can be extended by installed
additional plugins (gstreamer-plugins-bad, gstreamer-plugins-good).

Window management is controlled by Matchbox window manager, which displays
only one window at a time due to limited screen of a phone. Other windows will be
minimized and displayed in a summary screen which allows user to have easy
navigation between them. This effect has improved the handheld usability oh a
mobile device with a small screen.

Alfentrs M

a i M Maemo Mok B

-

Figure 2.4. Maemo multitasking with multiple processes running.

2.3.1.4 Software

Maemo has a collection of built-in applications which provides mobile phone users
with common features such as calling, messaging, web browser, multimedia, etc.
Furthermore, user can install additional applications from a number of sources,
including official and various community repositories through a built-in application
called “Application Manager”. Programmers can also install applications through

22

command line apt-get just like any other Linux distributions. Some of the most
commonly known sources for developers:

e Maemo official repository. /7/
e Maemo development repository. /8/

Third-party application: Thank to the free and open source nature of Linux and
Maemo, porting applications to Maemo is a straightforward procedure. Therefore,
Maemo can utilize a huge amount of existing open source projects developed for
Linux distributions. Moreover, Nokia and community developers are also creating
mobile featured applications for Maemo platform which are available for download
from Nokia OVI store /9/. These advantages enable Maemo users to have a
considerable repository compared with Iphone’s or Android’s.

2.3.2 Software development on Maemo platform

Software development for Maemo is possible using many programming languages
such as C, C++, Java, Python, Rubi, Mono and others. Especially Qt is widely used as
the main development framework for Maemo because of its usability, simplicity and
platform independence. The development environment used in development process
is called Maemo SDK which can be freely downloaded from Maemo website /10/.
The Maemo SDK uses Scratchbox as a cross-compilation toolkit and a “Sanbox”
which is designed for embedded Linux application development. Developer can
download and install Scratchbox from its website /11/ or install Scratchbox together
with Maemo 5 SDK and Nokia closed binaries using Maemo 5 SDK GUI installer.
/10/

The Maemo SDK provides a development environment for creating software to smart
phones and internet tablets under Linux OS. The SDK runs inside Scratchbox and
includes all required compilers, tools, libraries and headers to develop software for
the two target hardware architectures, Intel x86 and Armel. /10/

During development process, the software is testing in x86 environment, which also
includes the Hildon desktop for running the applications on desktop computer using
virtual X server called Xephyr. It acts as a simulator of Maemo OS and provides the
application with UI and functionality of the real Maemo OS. Using desktop computer
makes the application development easier, just like with normal Linux application
development. Furthermore, Maemo SDK has integrated to Eclipse IDE in a tool
called Esbox to speed up the development process radically. /10/

23

After preliminary debugging on desktop computer is finished, developer can do the
cross platform compilation and package the application for Armel architecture using
the Armel target of the Scatchbox. Then the application can be deployed directly to a
Maemo phone using Phone-PC connectivity or indirectly using deb installation file.
This phase insures that the application is working properly as there are differences
between the SDK and real Maemo OS.

Development tools and resources:

e Scratchbox: a cross platform compilation toolkit for embedded Linux
application development. It includes a collection of tools to cross compile
an entire Linux distribution under x86 and Armel architecture. /10/

e Maemo SDK rootstraps: a target root file system image for Scratchbox
that serves as a basis for development. Maemo SDK supports rootstraps
for both x86 and Armel architecture. /10/

¢ Nokia binaries: closed libraries whose source codes are not available but
may provide public API so that developers can utilize and integrate into
their applications. Some examples are contact information import/export
libraries, GPS libraries, address book libraries etc. /10/

e Maemo tools: In addition to basic tools, Maemo SDK provides developers
with more sophisticated development tools such as code analysis,
debugging, memory leaks, test automation. /10/

e Maemo repositories: maemo.org website has a collection of repositories
targeted for standard Debian package installation tools. /10/

e Maemo documentation: documentation for Maemo software development
provides developers with configuration manual, tutorials, API references,

sample codes and many other guides, available from maemo.org website.
/10/

24

3 ELDOC SERVICE BOOK

Below I will give a description about the general idea, the development outline and
functional specification of the application. In this section user will have a general
view how the development process was planned and conducted. Moreover, in the part
description of main functions, important features of the application will be described
in order to achieve user’s overall understanding before the implementation part which
will analyze the implementation code.

3.1 Requirement Analysis

This Eldoc Service Book is mainly used by Wirtsild mechanical engineers who are
maintaining the engines in every day. They need to read information of different
types of engine and spare part in order to do the maintenance. Therefore, the
application is made so that user can easily access the needed information with
minimum interactions with the phone.

User first choose product name, default language English, document type, and then
depending on document type user can choose manual or spare part number, a related
document will be displayed. In the document there are links where user can click on it
to view image, video or navigate to other documents. User can also add note, take
pictures and attach to the document.

In order to improve the accessibility and simplicity of the application, it provides
users the ability to have one-touch access based on engines’ barcode. User clicks on
search to open search window and scan engine's barcode, when the code is
recognized, corresponding document will be opened.

If there is problem with an engine, user can create new request, take pictures and
attach them in the request, after click 'send’, an email will be sent to resolution team.

When the phone is connected to internet, the data on the phone and on server will be
synchronized.

Application should be available in three platforms: Windows, Linux and Maemo
which are on the following portable devices:

e Rugged PCs - Xplore, Panasonic Toughbook - running standard
Microsoft Windows XP operating system and normal programs.

e Laptop running open source Linux operating system

25

e Nokia smart phone N900 running Linux based Maemo operating system

Theoretically the Qt code for these three platforms should have 95% similarity with
only some minor platform independent libraries or code changes. Nokia N900 with
Maemo OS is the main targeted device thank to its capability, mobility, and
reusability.

3.2 Main Features Deployment

The main and most important feature of the application is to display the user manual.
The application saves its own data on the machine and can be updated with the server
through internet connection or CD room or USB etc.

In addition to these main features, the application provides users visualization of
engines/spare parts by a collection of related images and videos.

In Maemo phone version, the application can utilize the camera and messaging
system of the phone on implementing additional features including taking and
attaching new pictures, barcode search engine, and sending technical support request.

Priority level:
e 1: Must-have features.
e 2: Should-have features.

e 3: Nice-to-have features.

26

Table 3.1. Main features and their priorities.

ijllliber Name Priority
1 Display User manual 1
2 Synchronization with server 1
3 View pictures 2
4 View videos 2
5 Add notes 2
6 Take and attach photos 3
7 Search by scanning engine code 3
8 Send technical request 3

3.3 Main Functions Specification

User who is Wirtsild engineers can have two ways to access needed documents,
either by browsing it or searching using engine’s barcode. After opening a document,
user can view pictures, videos, add notes or take and attach more pictures. If there is
problem with a particular engine or spare part, he can create a technical request, take
and attach some pictures to illustrate the problem and send to the resolution team.

27

ELDOC SERVICE BOOK

Create Request /

Take and attach photos

Read technical documeants

View video

Add comments

— Search documents
h

_:-"_F-'-F

/

| Update application data

Figure 3.1. Application main functions.

The application data can be updated automatically when the internet connection with
Wirtsild‘s local intranet is created. However, user can still update the application
manually using update option in the application menu. In case the phone does not
have internet connection, user can also copy the newest application data to the phone
using memory stick, CD room, etc.

28

3.4 Class Hierarchy

Documents include manuals and spare parts. Manuals are engines’ related
information and spare parts are technical details about individual parts of an engine.
Depending on document types we have different class structures and parser methods.
Some complex relations are cut into different parts to simplify the diagram.

3.4.1 Manual related classes

The structure of a manual contains many different child tags. First of all, in the very
beginning of each manual is a tag named “Convinfo” where basic information of the
document such as language, version, reference chapters, etc is listed. Like HTML
document, the main content of a manual contains many heading tags h0O; an hO tag
may embrace lower level tags hl, h2 ... An h* tag is followed by one paragraph
(Paragraph). The content of each paragraph can include text, note (Note), figure (Fig),
and unordered list (WP). A member of an unordered list can include note and figure.
A note can also have figure inside. The structure of a manual document can be
visualized in below class diagram.

=STrUCts
Title

+ aftlabel: QString
+ name: QString
+ walue: GString

title

Paragraph

Convinfo

converted. QString

children: Qlist<Paragraph=
figs: Cllist<Flg=

notes: Qlist<Notes
arderlist: Qlist<int=

pa: QllstzOString=

title: Tile

type: int

wps: CList<WPs=

Lol
WP

+ o+ o+ o+

fig: Fig

note: Note

ps: Qlist=QString>
value: QString

converter: QString
dtdversion. QString
edition: QString

language: QString
refchapter: QString
refengine: CiString
version: Q5tring

+ o+ F o+ o+ o+ o+ F o+ o+ o+ o+ o+

Convinfaf)

getConverted() : OString
getConverter() : QString
getDidversion() : QString
getEdition() . QString
getlanguage() : QString
getRefchapter() : QString
getRefengine() . OString
getVersion() : QString
setConverted{QString) © void
setConverter(QiString) : void
setDtdversion{QString) © void
setEdition{Q5tring) . woid
setLanguagelQString) : void
setRefchapter(QString) : woid
setRefengine(QString) : void
sefVersion{Q5tring] © void

B I T S S S S T T T S S e S R S S S S

addChild{Paragraph&) : void
addFig{Fig&) . woid
addNote(Notes) : void
addOrder(int) : void
addP{QStrings) : void
addWp(WP&) : void
getChildren() : Qlist<Paragraph=
getCompaonent(int) = int
getFlgs() : Qlist<Fig>
getNotes() - Olist<Notes
getOrderList() : Qlist<int=
getPs() : OList=QString=
getTitle() : Title

getType() « int

getWps() - QList<WP=
Paragraph()

setChildren{CList<Paragraph=&; : void

setFigs(Glist<Fig=&) : void
setNotes|OList«<Note=&) : void
setOrderlist{QLlist<int=&) : void
setPs{QList«0String=&) : void
setTitle(Titles) : vaoid
setType(int) : void
setWarn(Q5ting&) © void
setWps(OList<WP=&) . void

+Hig

29

«5iructs
Fig

-convinfo

-ha

Manual

convinfo. Convinfo
ho. Paragraph

type. int

+ HTYPES: QString ([4]) [readOniy}

getType() @ int
Manual()

+ o+ o+ o+ o+ o+ o+

setType(int) : void

getConvinfa() : Convinfo
getHO{) - Paragraph

setConvinfa{Caonvinfo) : void
setHO{Paragraph) : vald

attCaption: QString
attlabel: CString
value: QString

Fig()

Fig{QString, QString, QString)

+note

«structs
Note

+ fig: Fig
+ type: Q5tring
+ value: QString

Figure 3.2. Structure of a manual document.

+Hig

30

These are object classes with their getter and setter methods. Manual class represents
an instance of manual document. It two main attributes:

e convinfo: This instance of class Convinfo includes basic information of
the engine such as language, version, reference chapters, etc.

e h0: This hO tag which is an instance of class Paragraph includes the main
content of a manual document. Each hO tag may include lower level tags
h1, h2, etc which are also instances of class Paragraph.

Attributes of a Paragraph class:

e children (QList<Paragraph>): As mention above, each Paragraph contains
a list of other child Paragraphs of the same type. This interesting feature is
not supported by C++ but Qt.

e figs (QList<Figure>): a list of figures in this paragraph.

® notes (QList<Note>): a list of notes in this paragraph.

® ps (QList<QString>): a list of <P> tag in this paragraph.

e wps (QList<WP>): an unordered list in this paragraph.

e title (Title): title of the paragraph.

e type (int): defines type of the paragraph such as h0, h1, h2, etc.

e orderlist (QList<int>): defines the order that these above components will
appear in the paragraph.

There are many other small tags. However, to simplify the code, the parser will parse
them into normal string with HTML tag directly. This will be explained more in the
parser code.

31

3.4.2 Spare part related classes

The content of a spare part document is much simpler compared with manual. A
spare part document includes many pages. Each page has one image and a collection
of portions. Each portion can contain other child portions. Normally a portion is a
row in the table of description of that spare part. The structure of a spare part
document can be visualized in below class diagram.

Portion

children: COlList<Portions
deseription: GString
href: QString

quality: Q5tring Page
title: String
weight: OString

Image: GString
name: GString
portions: Gllist<Portions

SparePart

getWeight() - OString

Partion{)
setDescription{Q5tring&) © void
setHref{QStrings) | void
setCuality{QStrings) © void
setTitle{CString&) - void
setWeight{QString&) : void

setlmage(QStings) © void
sethame{QStringa) @ void

addChild{Portion&) © void 7 e e
getChidren() : QList<Portion> L =4 arion(Portions) - void o = s
getDescnpnon()I: G3mng + getlmage() : QString + addPage(Page&) : void
getHref(l) 4 Q.Stnng‘ + getName() - QString + getPages() - Qlist<Page:>
getQuality() : QString + getPortions() - Qlist<Portions + SparePart()
getTitle{) : QString + Pagef)

i

.

+ o+ + o+ o+ o+ o+ o+ o+ o+ o+

Figure 3.3. Structure of a spare part document.

These are object classes with their getter and setter methods. SparePart class
represents an instance of spare part document. It contains a list of pages. Attributes of
Page class:

® image (QString): the image in the page.
¢ name (QString): title of the page.
e portions (QList<Portion>): list of portions in the page.

Attributes of Portion class:

32

children (QList<Portion>): a list of child portions.
description (QString): content of the portion.
href (QString): link to an image if available.

quality (QString): number of portions in the engine. It is a string because it
just needs to be displayed, no calculation.

weight (QString): Weight of the portion.

3.4.3 Main Ul classes

EldocServer is the main class of the application which receives user interactions and
implements Ul changes. Some of the most important functions' description:

openDocument: open manual or spare part document.
viewlmage: view a specified image.

viewVideo: view a specified video.

uploadPicture: take and attach pictures to the document.
addNote: add note to the document.
openBarcodeReader: open the search engine.
updateDatabase: synchronization with server.
openRequest: open request form

openSetting: open setting window.

clearContent: clear the current content.

goNextPage: move to next page when viewing pdf document.

changeMenuVisibility: hide/show the menu.

The structure of these Ul components can be visualized in below class diagram:

QifainWindow
EldocServer

banner: QActivelabel*

Labe!
QLabelFingerExtension

fingermaove: bool

+ COMMON IMAGE JPEG _ROOT: QString {readOnly} W int
currentPage: int yooint

+ ELDOC ROOT. QString {readCnly} ;

+ ENGINES MANUAL QString ([30]) [readOnly} pdfContainer | B ——— T

+ ENGINES _MANUAL DOCNAME: QString ([30]) {readOnly} # mouseMoveEvent{OMouseEvent™) | woid

+ ENGIMNES SPARE: QString ([18]) {readOnly} # mousePressEvent{OMouseEvent®) : void

+ ENGINES SPARE DOCNAME: QString ([19]) {readCnly} # mouseReleaseEvent{OMouseEvent®) : void

+ INSTALLATIONS: OString ([2]) {readCnly} + QlabelFingerExtension (CWidget*)

+ LANGUAGES: QString {[2]) {readOnly} + ~ClLabelFingerExtension()
m_cancelButton: QPushButton®
m_note: CTextEdit”
m_noteDialog: GDialog*
m_noteWidget: QOWidget”
m_okButton: QPushButton® DitaParser
m_pagelist: Qlist<ResizableFrame*s*
m_remoteAddress: QString DitaParser()
m_remoteFolder: QiString getSubEngineiQStrings) | OHash<QString, QString=
m_remotellsernarme: QString read Content{QComMNoded) : Paragraph
m_submit: QPushButton® read ConvInfo{G DomNodes) | Convinfo
m_upload: GPushButton® readLI{CDomNode&) - GString

+ MODULE1 MANUAL: int =1 {readOnly} readManual{QString) : Manual*

+ MODULE2 SPARE: int =2 [readCnly} readPage{CDomNodes) - Page

+ MODULES: QString ([3]) fread Only} read Para{QDomNaode 8) : QString
parser: DitaParser* read Portion(Q DomNaodes) © Partion
pdf: Poppler: Document™ -parser readSparePart{(QString) | SparePart™
pdfContainer: QlabelFingerExtension” - readTable{QDomNode&) | QString

+ PRODUCTS: QString ([4]) freadCnly} / - readWP{QDomMNode&) : WP
ui: Ui EldocServer® - readWSsiQDomNodes) : QString

+ W20 DOC ROOT: QString IreadCnly}

+ W20 IMAGE GIF ROOT: QString {readOnly}

+ W2o IMAGE JPEG_ROCT: QString [readCnly}

+ W20 VIDED 3GP_RODT. OString {readOnly] QLabet

+ W3z DOC ROOT: Qstring {readCnly} QActiveLabel

+ W32 IMAGE GIF ROOT: QString {readOnly}

+ W32 IMAGE JPEG_ROOT: QString [readOnly] banmer

+ W32 VIDEQ 3GP ROOT: OString {readOnly} = =

+ clicked() : void

+ activelink{QString&) © woid i event.(QEvent") t?oo\ .

+ addNote() : void + QAct!veLabe\(QW@get , bool}

+ addPicture(QStrings) © void & QActlvleLabe\(QStrmg&)

+ cancelNotef) : void + ~QActivelabel()

changeEvent(QlE\{gnt‘) vc?id _header

+ changeMenuVisibility() : void

+ changeSetting(OStrings, OString &, QString&) © void

- clearcontent{) : void

+ displayManualContent{ Paragraph &) : ResizableFrame”

- displayPortion(Q5trings, Portiana) : void L Widget
EldocServer{QWidget*) ResizableFrame
~EldocServer() -
engineValuechanged{int) : vold header: QActivelabel®
goNextPage{) : void mainFrame: QFrame”
hideMenu() : void -
initialize() ; void i el SeRtly
inttializeEngineListint = void + expand() - void
initializeSubEnginelist{QString &) : void oL Glavoln
InstallationValuschangadfint) - void i getHeader() -QAd'V?Labe‘”
languageValuschanged(int : vaid + Fies.lzableFrame(QWldgetf,bool)
moduleValuechangedint) : void + getContent{Qlayout®) - void
openBarcodeReader() void + setHeader(QString&) © void
openDocument(QString&) - vold triggered({) - void

B T T e e e e S S A e T S S

openRequest]) : void

openSetting() vold
pageValuechanged(int) . void
productValuechanged(int) : vold
subengineValuechanged{int) : void
aubmitNotel) void
updateDatabase() : void
uploadPisturel) : void
viewlmage(QStrings, QString&) : void
viewVideo{Q5tring&) : void

OWidget
QActiveWidget

clicked() : void
event{QEvent”) : bool
CActiveWidget{OWidget')
~OiActiveWidget()

+ o+ o+

Figure 3.4. Eldoc Service Book main UI classes.

33

34

EldocServer class includes many constant attributes (attributes in capital) keeping
application’s global setting such as resource folder location, image folder location,
manual document names, spare part document names, etc. Some of important
attributes of EldocServer class:

e parser (DitaParser): parser class for converting documents from Dita
format to HTML format.

¢ Dbanner (QActiveLabel): banner on top of the application.

e m_noteDialog (QDialog): popup dialog for adding note. This widget
contains m_note, m_okButton and m_cancelButton in its layout.

¢ ui (Ui::EldocServer): Ul implementing class.
e pdf (Popler::Document*): pdf renderer.

e m_pageList (QList<ResizableFrame*>): a list keeping all the pages while
displaying spare part document.

EldocServer class also includes other classes as helpers for its functionality:

v' DitaParser: A parser converting documents from Dita format to HTML format. It
has two main public functions “readManual” and “readSparePart” for converting
the two types of document. Description of its main methods:

e getSubEngine: get sub-engine of the selected engine. This method is used
when user is browsing a spare part document.

e readManual: read the content of a manual document.

¢ readConvinfo: read the information part of the document.

¢ readContent: read the main content part of a manual document.
e readSparepart: read the content of a spare part document.

¢ readPage: read the content of a page in the spare part document.

35

v" QActiveLabel: An Ul class implementing the Wirtsild banner on top of the UI
which has show/hide feature. This feature is also complemented by the class
QActiveWidget. This class has an important custom signal:

e clicked: a signal emitted when user clicks on the label. This is a user
defined signal as normal QLabel does not have this signal.

v ResizableFrame: An UI class implementing a heading paragraph (hO, hl, h2...)
which is the main content of a manual document. This class also has auto-hide
feature when user clicks on the heading in order to reduce the display of
unnecessary information. It has two main functions:

e collapse: hide the content of the paragraph.
e cexpand: show the content of the paragraph.

v" QLabelFingerExtension: An UI class which extends QLabel class and
implements finger swiping feature. It will emit a defined action when user swipes
his/her finger across the screen. It has the following custom signals and events:

¢ mouseClickEvent: signal is emitted when user click on the label.

® mousePressEvent: signal is emitted when user hold the mouse press on the
label.

¢ mouseReleaseEvent: signal is emitted when user releases the mouse.

e fingerScrolled: the combination of these three signals above under a
specified circumstances will trigger this signal.

36

3.4.4 Optional features Ul classes

v" TSCMobile (Technical service calls mobile): is the UI class implementing
sending technical request feature. Pictures can be taken and attached to the
request by function “addPicture”. Request is sent by function “sendRequest”.
Main attributes of the class:

¢ ui (Ui:TSCMobile): UI implementing class.

e parent (QWidget*): As this is the stacked window, it has a parent. This
variable keeps the value of the parent window so that it can be called to
display again when the class TSCMobile is destroyed.

Main functions of the class TSCMobile:

addPicture: add taken picture to the request.

e viewPicture: view taken picture.

sendRequest: send the request and go back to main view.

cancelRequest: cancel request and go back to main view.

QlfainWindow
TSCMobile

parent: CWidget"
ui: Ui TSCMabile®

+ addPicture{Q5tring&) : void
cancelReguest(] : void

changeEvent[QEvent") : void

closeEvent{QCloseEvent”) : woid
sendRequest() - void

+ setProductName{Q5tring&) : void

+ TSCMobile{CWidget*)

+ ~TSCMabile)

- uploadimage() : void
viewPicture(Q5tringa) : void

Qffain¥indow
SettingWindow

ul: UiSettingWindow*

changeEvent{QEvent®) : vold

changeSetting() : void

SettingWindow{ CWidget®, O5tring, QString, QString)
~SettingWindow()

+ o+ o+ W

Figure 3.5. Request form and setting window.

37

v' SettingWindow: settings for the connection between phone and server. There are
three parameters in the EldocServer class which can be changed in this setting
window:

e m_remoteAddress: the IP address of the host machine.
e m_remoteFolder: the folder in the host machine where data is saved.

e m remoteUsername: username of the authenticated user.

3.4.5 Mbarcode project integration

The MBarcode open source project has been modified and integrated to the
application. This project is using the two common open source libraries libdmtx and
zbar to read barcode. In order to simplify the class diagram, it has been cut into 2
parts: barcode decoder classes and UI classes although there are relations between
these two parts. The class structures will be described below.

3.4.5.1 Barcode decoder classes

This is the main decoder engine containing three classes. The main class is
BarcodeDetector which reads the barcode from video widget and convert it to the real
engine/spare part document number. This class contains two implementation classes
DMTXDecoderThread and ZBarDecoderThread to read matrix data. Some of its main
methods:

e start: start the pipeline and decoding.
e stop: stop the pipeline and decoding.
e analyselmage: analyze the captured image to find the data matrix.

e getLastlmage: return the last attempted decode of either the zbar or dmtx
thread.

e doFocus: auto focus on barcode in the image.
¢ dmitxCallback: callback for dmtx GStreamer element.

e zbarCallback: callback for ZBar GStreamer element.

38

OThread
DMTXDecoderThread

QObfect
BarcodeDetector

CThread
ZBarDecoderThread

doQuit: boaol

frame_fource: Int
frame_height: Int
frame_width: int
hasFoundBarcode: bool
isDecoding: bool

thread _buffer: char*

thread _output: char®
thread _run: QWaitCondition
walt_mutex: Ohutex

db o dLode ln il i

-dmtx_thread

~

+

DMT X DecoderThread])

+ ~DMTXDecoderThread()

- libdmtx_analyse_image() : int
+ runi): void

accelerometers: gboolean
buffer_chb_id: guint

camera_sre. GstElement®

con: DBusConnection”
current_data_table_name: gchar ([255])
device Type: int

drntx_thread: DMTXDecoderThread
drmty_timer: clock_t

frame_height: int

frame_width: int

globalEAN: char ([14])

isportrait: gboolean
last_upc_walue: long long

pipeline; GstElement”

QR0 _timer: clock_t
scan_in_progress: int
scanning_status: bool

timer_id: guint

zhar_thread . ZBarDecoderT hread

-zbar_thread

/

CE o+ o+ o+t

+ o+ + +

barcode_ftype: char® [readCnly}
doCuit: bool

frame_bpp: int

frame_fource: char ([5])
frame_height: int

frame_width: int
hasFoundBarcode: bool
image: zbar_image_t*
isDecoding: bool

scanner. zbar_image scanner_t*
thread _buffer: char*

thread _output: char®

thread _run: QWaitCondition
wait_mutex: Chdutex

libzbar_analyse image() : int
runi) : void
ZBarDecoderThread()
~ZBarCecoderThread()

analyselmage(char®, char®, int) : int
BarcodeDetector()

~Barcode Detector()
drntxCallback() : void

doFocus() : void

getlastimage() : Qlmage”
imageAnalysed{CString, OString) @ void
loadFromFilel) : void

start() : void

stop() @ void

zharCallback() : void

Figure 3.6. Barcode decoder classes.

The main barcode detector class is BarcodeDetector. It includes two child classes as
helpers for its functionality: DMTXDecoderThread and ZBarDecoderThread. They
are two independent threads using two different libraries and running simultaneously
to read the barcode. The parent class BarcodeDetector will get the values of the
thread finding the matrix data first.

DMTXDecoderThread class uses open source library libdmtx as its decoder and
ZBarDecoderThread uses open source library Zbar as its decoder. Basically the two
classes have the same attributes and methods; the difference is the way each method
is implemented. Below is the description of these two important decoder classes.

39

v" DMTXDecoderThread: The first class for reading data matrix barcode. It uses
open source library libdmtx for the implementation. Main functions:

run: start the thread.

libdmtx_analyse_image: read data matrix from the image.

Main attributes:

thread_buffer: Allocated buffer for the thread.
thread_output: Output character of the thread.
frame_width: width of a frame.

frame_height: height of a frame.

isDecoding: Indicate that the thread is running.

wait_mutex: allow the caller to block the thread when data is not
available.

hasFoundBarcode: variable set if the decoder found something.

ZBarDecoderThread: The second class for reading data matrix barcode. It uses

open source library Zbar for the implementation. Main functions:

run: start the thread.

libdmtx_analyse_image: read data matrix from the image.

Main attributes:

thread_buffer: Allocated buffer for the thread.
thread_output: Output character of the thread.
frame_width: width of a frame.

frame_height: height of a frame.

isDecoding: Indicate that the thread is running.

40

e wait_mutex: allow the caller to block the thread when data is not
available.

¢ hasFoundBarcode: variable set if the decoder found something.

3.4.5.2 Mbarcode UI classes

In the below class diagram, BarcodeDetector is the class which has been mentioned
in the previous chapter. The main Ul class is MainWindow which is responsible for
Ul rendering. It contains a VideoWidget and a BarcodeDetector widget. When
barcode is found, the result will be displayed in stacked window ResultsWindow.

BarcodeDetector

QMainWindow
ResultsWindow

-decoder

barcode_text: QString
m_ui: UizResultsWindow*

changeEvent{QEvent®) : void

- on_pushButton_clicked() : void
openDocument() : void

+ processBarcode(QString) : void

+ ResultsWindow(QWidget")

+ ~ResultsWindow()

+resultsWindow

QlMainWindow
MainWindow

+ decoder: BarcodeDetector”

- focusing: baool

- pluginFileNames: QStringlist

- plugininterfaces: GSetzPlugininterface’>
- pluginsDir: QDir

resultsWindow: ResultsWindow®
settings: (Seftings*

sinkPlugins: QSet<SinkPlugin®>
tillRolModel: QStandard temiodel”
- Ul Ui MainWindow®

videoWidget: VideoWidget”

[

T

+videoWidget

+

barcodeAnalysedSignal{QString, QSting) : vold

cancelScan() : void

dataAnalysed{QString, QString, QHash<QString, QString:) © void
dataAnalysedSignal{QString, QString, CHash<QString, QString=) : vold
imageAnalysed({QString, OString) : void

loadPlugins{) : void

MainWindow{ GWidget™)

~MainWindow{)

- on_actionPlugins_triggered() : void

- on_actionSettings_triggered() : void

- on_actionTest_portrait_mode_triggered{) : void

- on_btnCancel_clicked() : void

- on_btnOpenlmage_clicked{) : void

- on_btnRefocus clicked() : void

- oh_ktnScan_clicked() : void

- on_thlTIIRall_clicked{QMadellndex) < void

- setFocusing(bool) : void

- showResultsWindow(QString)
+ startScani) : void

[

+ +

void

41

QWidget
VideoWidget

accelerometers: gboolean
buffer_ch_id: guint
camera_src: GstElernent”
con: DBusConnection®
current_data_table_name: gehar ([255])
data; GstElement”
decoder: BarcodeDetector®
deyiceType: int

file_sre: GstElernent®
focusing: bool
frame_height: int
frame_width: int

image: zbar_image_t*
input_selector: GstElement”
isportrait: gboolean
last_upe value: long long
pipeline: GstElernent®
pipelineReady: bool
scan_in_progress: int
scanner: zbar image scanner t*
timer_id: guint

video_crop: GstElernent®

o+

+ o+ o+ o+

bufferProbeCallback(GstElement*, GstBuffer*, GstPad®) - gboclean

bufferProbeCallback_callback{GstElement®, GstBuffer’, GstPad*) : gboolean
busCallback(GstBus®, GstMessage’) | ghoalean
busCallback_callback{GstBus®, GstMessage®) : gboolean

destroyPipelinef) : void

focusingValueChanged(boal) : void

getDeviceType() : void

handleCreateWindow(GstBus®, GstMessage®, GstPipeline®) : GstBusSyncReply

handleCreateWindow_callback{GstBus®, GstMessage®, GstPipeline”) : GstBusSyncReply
initPipeline() : boal

isFocusing() : bool
paintEvent{QPaintEvent) : void

refocus() : void

setData{GstElement”) : void
setFocusing{bool) : void

start() : void

stop() : void

useFilesre{QString) © vold

useVideosrc() : void

VideoWidget{ OWidget”)

VideoWidget{ OWidget”, BarcodeDetector”)
~VideoWidget()

Figure 3.7. Mbarcode main Ul classes.

Some of the main methods of MainWindow class:

e startScan: start scanning.

® cancelScan: stop scanning.

* imageAnalysed: Analyze the image to get barcode data.

42

e dataAnalysed: Analyze the barcode.

e showResultsWindow: show the result window when barcode has been
found.

e on_actionTest_portrait_mode_triggered: change from landscape to portrait
mode.

e on_btnRefocus_clicked: focus on the barcode in the image.
¢ loadPlugins: loading additional plug-ins.

Other important class is Video widget which is used to display the captured video.
Below are some of its main methods:

e start: start the display.

Stop: stop the display.
¢ initPipeline: initialize the pipeline.
e destroyPipeline: free the pipeline.

¢ busCallback: a callback function which retrieves any message from the
GstBus.

e getDeviceType: get type of the device.

e Refocus: refocus on the image.

3.4.6 Mbarcode additional plugins

Mbarcode project also provides a collection of plug-ins in order to enhance its
usability. Depending on format of the barcode, which can be a URL, a phone number,
text, the plug-in will navigate the application to a browser; call a person, sms, etc.
Because these features are not used in this application, I only give a short description.
However, reader can still find more information in the description at the beginning of
each class.

43

Plugininterface

+ o+ o+ o+ o+ o+

getName() : QSting

geiSeitings Window{QWidget™) : QMainlWVindow™
gelSinkPlugins() : QSet=SinkFlugin™>
hasSeffings Window() : boo!
initinterface{MainWindow™) ;: void
~Flugininterface()

CNain Window
PluginSettings

idTolnterface: GHash<int, Plugininterface’s
model: QStandard temiodel”
ui: UizPluginSettings”

-inter‘face/

SinkPlugin

interface: Plugininterface” [readCnly}

clickActon(QWidget™) : void
gelfmage() : Qimage ”
getinterface]) . Plugininterface®
getName() : QSiring

geiTexi() : ASking

hasHisiorvl istWidget() : boo!
hasResulisVindow Widget() : boo!
historvL istWidget() : QWidget *
isReady() : boo!
resultslVindowlWidgel() : QWidge! *
SinkPlugin{Plugininterface®)
~SinkFluging)

+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+

-plugin \

changeEvent{QEvent*) : void
on_tbIPlugins_clicked{CGModel Index) ; void
PluginSettings{CSet<Plugininterface”s>, QWidget”)
~PluginSettings{)

QMainWindow
SettingsWindow

settings: CSettings”
Ui UisSettingsWindow®

changeEvent{QEvent”) : void

on_chkFullscreenScan_clicked() : woid
setSettings(QSettings*) © void
SettingsWindow({QWidget”)

+ ~SettingsWindow()

+ o+

QObject

Pluginintermediate

parentWindow: QWidget®
plugin: SinkPlugin®

+ clickedPluging) : void
+ Pluginintermediate{SinkPlugin®, QWidget*)

Figure 3.8. Mbarcode additional plug-in classes.

3.4.7 Media player classes

44

Below are three media classes including image viewer, picture capture and video
viewer. These Ul components are quite simple with a main widget to display video or
image. They are all implemented as stacked windows.

QMainWindow
ImageViewer

M ainWindo w
PictureWindow

imagelabel: ClLabel
scrollArea; QScrollArea®

ImageViewer(OWidget™)
initilize() : void
setlmage{QString &) © void

filelist: QStringlist
filesTable: OTableWidget”
m_ismainWindow: bool
PATH: QString {readCnly}

timer: QTirmer*

closeEvent{OCIoseEvent) : vaid
getTakenPictures{) : vaid

initialize{) : void

isincluded{QStrings, GStringListd) : bool
PictureWind ow{COWidget™)

Figure 3.9. Image viewer and picture capture.

v ImageView: display picture when user clicks on an image link in the document or
reviews taken picture. Its methods:

initialize: initialize the image viewer.

setlmage: set the URL of the image needs to be displayed.

v" PictureWindow: Implement a thread for monitoring and getting taken pictures.
Its methods:

initialize: initialize the picture window.

getTakenPictures: get taken pictures.

isIncluded: check whether the image is new or already existed.

closeEvent: event triggered when user closes this window to return to

main window.

45

CMAainWindow
MediaPlayer

m_AudioOutput: Phonon: AudioCutput®
m_audio Dutput Path: Phonon:: Path
m_MediaCbject: Phonon:MediaObject”
m_videoWidget: Phonon: VideoWidget”
slider: Phonan: SeskSlider*

+ initVideoWindow() : void
+ MediaPlayer{QWidget™)
+ playiQString&) : void

Figure 3.10. Media player.

v' MediaPlayer: A class for displaying videos. It uses Qt phonon open source
library for the display. Main components of this media player are a media object,
a video widget and an audio widget which are linked together. Its methods:

¢ initVideoWindow: initialize the video widget.

e play: play the requested video.

3.5 Detailed Descriptions of Main Functions

This part will give you the general idea of functionality of the application. All the
functions listed in the use-case diagram mentioned above will be described in detail.
The implementation codes of these functions will be analyzed in later chapters.

3.5.1 Open document

In order to access the correct document, user has to complete some nested selectors.
User first chooses default installation Demo, product name, default language English,
document type, engine number. If document type is spare part, there is one more
selector for sub engine. Finally a related document will be displayed.

Because the structures of manual and spare part documents are different, depending
on the product type manual or spare part there are different methods for reading and
displaying document. The sequence diagram is described below.

User

EldocServer

[User chooses installation]:
installationValuechanged (int)

updateSelectars()

[

[User chooses product]:
productValuechanged{int)

updateSelectars)

i

[User chooses language]:
languageValuechanged(int)

™

updateSelectars()

]

[User chooses document type]
moduleValuechangediint)

£

A |
l._

updateSelectors()

[User chooses engine]
engineValuechanged(int)

|~

46

DitaParser

alt

[if document type is spare part]

updateSelectors()

[

[User chooses subengine]
subengineyaluechanged(int)

alt

[manual is selectaed)

[spare part is selected]

readManual{2String) Manual®

6.1

openCocument{QStringd)

T

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A1

|_|6
|

|
displayManualContent{ Paragraph&) : Resizable Frame*

openDocument{QStrings)

6.4

displayPortion{Q5tring&, Portion&)

display()

[e‘

5.5

.I_I

Figure 3.11. Sequence diagram - Open document.

47

The sequence can be described below.

e User chooses an installation; Eldoc Service Book will show an additional
selector of products.

e User chooses a product; Eldoc Service Book will show an additional
selector of language. English is selected as default language.

e User chooses a language; Eldoc Service Book will show an additional
selector of document type (or module). There are two document types:
manual or spare part.

e User chooses a document type; Eldoc Service Book will show an
additional selector of documents.

e [f the document type is spare part, there is one more selector for sub-
engines.

e User chooses a document; depending on document type, Eldoc Service
Book will have different methods to read the document and display it.

3.5.2 View image

When user clicks on an image link, Eldoc Service Book will open a new stacked
window (ImageViewer) to display the image. After that, user can click on “Back”
button to exit image viewer and return to the original window.

The image is automatically adjusted to fit the screen size. All the images are stored in
image and common folder inside resource folder.

48

EldocServer

>0

u

[User clicks an image link]:
viewlmage(Q5Strings, QStrings) I

ser
|
|
!
. Imag eViewer
setimage{Q5Strings)
|
|

11| pm—=— =2 === =

I
displaylmage() I

'I:]‘ IT| mER
|

exitlmage‘v’iewer{)
1

I return()

2.1

displayQriginaWindow()

2.1.1
I |

| | X

Figure 3.12. Sequence diagram — View image.

The sequence can be described below.

e User clicks on an image link; Eldoc Service Book opens a new instance of
class ImageViewer as a stacked window and set the URL of the image
needs to be displayed.

e ImageViewer displays the image.

e User clicks on the “Back” button, Eldoc Service Book will destroy the
ImageViewer and restore original window.

3.5.3 View video

When user clicks on a video link, Eldoc Service Book will open a new stacked
window (MediaPlayer) to display the video. After that, user can click on “Back”
button to exit video viewer and return to the original window.

49

% EldocServer

I
[User clicks on video link]: [
viewVideo(QString&) :

i MediaPlayer
lay(QString&
1.1 ———E—Y(———g—)———_:;.

displayVideo(}
|
|
exitViqeoPIayerﬂ

| return()

2.1

returnOriginalWindow()

L2.1 A
|

x ——— 4

Figure 3.13. Sequence diagram — View video.

The sequence can be described below.

e User clicks on a video link; Eldoc Service Book opens a new instance of
class MediaPlayer as a stacked window and set the URL of the video
needs to be displayed.

e MediaPlayer displays the image.

e User clicks on the “Back” button, Eldoc Service Book will destroy the
MediaPlayer and restore original window.

3.5.4 Add note/comment

50

User clicks on “Add Comment” button, a new comment dialog new be displayed.

User enters the note/comment and click “OK” to submit note or “Cancel” to discard
the note. New added note will be display at the end of the document, right after the
“Add Comment” button.

User

EldocServer

addMote()

MNoteDialog

T
|
|
A-‘ createNoteDialag()

e

3.2

T
|
|
|
|
|
displayNoteDialog()
L_l1 A
getUserinput() |
[f 12 '
| |
alt condition / i i
submite new note; submitNate) L I
[] 2 L I
2 saveNote() |
closeNote Dialog()
[]‘ | 21
displaySavedNote() I
__________________ i ——— R FERE.
discard note]
[] . cancelNote() -l I
discardNate() I
31
closeNoteCialog()
L_IS 1.1
display() |

Figure 3.14. Sequence diagram — Add note/comment.

The sequence can be described below.

User clicks on “Add Comment” button; Eldoc Service Book opens a new

popup dialog for adding comment.

e User enters note/comment in the textbox.

e [f user clicks on “Save” button to save the note, Eldoc Service Book will

add the note to the end of the document and close the dialog.

e [If user clicks on “Cancel” button to discard the note, Eldoc Service Book

will close the dialog.

3.5.5 Take and attach picture

User clicks on “Attach picture” button, Eldoc Service Book will open a new stacked
window (PictureWindow). This picture window UI class will create a thread
monitoring taken pictures. When user takes a picture, it will be recorded and updated
in the picture window. Finally user can click “Back” button to end the thread and
attach taken pictures to the document. Like notes, taken pictures will be displayed at

the end of the document.

EldocServer

uploadPicture()

Y

PictureW indow(QW idget")

i s sinirs - fe

PicturaW indow

loop /

1.1

A

F getTakenPictures()

display TakenPicturas()

]

exit()

1.1.2

display TakenPicturas()

addPicture(QString&)

Y

Oy

LIJQ.H
1

2.1

i
X

Figure 3.15. Sequence diagram — Take and attach picture.

52

The sequence can be described below.

e User clicks on “Attach picture” button; Eldoc Service Book opens a new
instance of class PictureWindow as a stacked window for getting taken
pictures.

e User takes pictures. The action getTakenPictures will be repeated every
second to get taken pictures and display them.

e User clicks on the “Back” button, Eldoc Service Book will add taken
pictures to the end of the document, destroy the PictureWindow and
restore original window.

3.5.6 Search manual/spare part document

User clicks on Search menu item to open the search utility which is a barcode reader.
It will be opened as a new stacked window. This utility will create a threat analyzing
the data. When data has been analyzed and the barcode is recognized, it will be
displayed in result window (ResultsWindow UI class). User can click on “Open
Document” button to return to the main window and searched document is displayed.

The search engine is represented by BarcodeEngine in below figure. However the real
class name is MainWindow in package mbarcode.

53

% EldocSarver

User
| T
| I
| spenBarcodeReader() |
1 _———
. startScan() _ BarcodeEngine
TR
dataAnalysed(QString, GString, QHash=0String, OString=)
RasultsWindow
processBarcode(QString) n "
R - [g g %
' T
' displayPesul() [
; |_|_1.1.2.1
I |
| >!< |
' |
2 : opaenDocument() !
|
I e o
| openDocument(QStrings)
2.1
display()
2.1.1
l |
X

Figure 3.16. Sequence diagram — Search engine.

The sequence can be described below.

e User clicks on Search menu item to open the search utility; Eldoc Service
Book opens BarcodeEngine for scanning barcode.

e BarcodeEngine creates a thread analyzing the data.

e When the barcode has been found, BarcodeEngine will create a new
instance of ResultsWindow to display the result.

e User clicks on “View Document” button to view the searched document.

3.5.7 Create technical request

Whenever problem occurs, user can create a request to get technical support from

resolution team. User clicks on Request menu item to create new technical service

call (TSCMobile). In New Request window, user information such as name,
telephone number will be automatically retrieved. The product name will also be
fetched based on the document he is reading. User can write a description of the
problem, take and attach pictures. These happen the same way with take and attach
pictures described above.

Finally, user can click on “Send request” button to send the request to resolution team
and return to main window. A notification will be displayed when the request has
been sent or error occurs.

getTakenPictures()

iﬁ EldocServer
Actor1
I T
I |
: ! openRequest(} .._l T
TSCMobile(QWidget)_ <oz
ER
F loadUsarPersenallnfol)
writaDescription() o |
2 : B
a::ldF'I' L|-|
icturas() | PictraWind
2 T T PictureWindow(@QWidget') T
| N =
|
l T
|
| lop /' 311
|
|
|
= | displayTakenPicturas() |
LI ' 212
|
| axit() e S
4 I | -
I I uploadimage()
. displayTakenPictures{) 4.1
- T
L] | | #11 J
g sandRaquest() | I
| L
| 5.1 i X
| sendPequeast()
!‘ returni) [Ii
o) B 5.2
__returnCriginalWindow() |
Bl 5.21
notifyUser() |
522
o T
| | I
| | e
|

Figure 3.17. Sequence diagram — Create technical request.

55

The sequence can be described below.

e User clicks on Request menu item to create a new request. Eldoc Service
Book will create a new instance of TSCMobile class as a stacked window.

e TSCMobile automatically adds user personal information saved on phone
such as name, phone number. Product name will also be retrieved.

e User writes description of the problem.

e User can take and attach pictures to the request to illustrate the problem.
This has been described in previous chapter.

e User clicks on “Send” to send the request and return to original window.

e Eldoc Service Book notifies user when the request has been sent or error
occurs.

3.6 Component Diagram

There are four main packages in this application. All classes in package mediaplayer,
image, and mbarcode are targeted for the main Ul component in package main.

e Package main: dita parser and Eldoc server main Ul component.

e Package mbarcode: barcode reader.

e Package mediaplayer: video player.

e Package image: responsible for taking new pictures and viewing pictures.

mediaplayer

é + MediaPlayer

image L

+ ImageViewer .
+ PictureWindow

T

+ PluginInterface

+ PluginIntermediate
+ PluginSettings

+ ResultsWindow

+ SettingsWindow

+ SinkPlugin

+ VideoWidget

+ ZBarDecoderThread

3
o
=

wimnports =
mbarcode
+ BarcodeDetector & .
+ DMTXDecoderThread g
+ M ain¥Window é_:mmport»

T T R T T T e e o) e e R et ek

+ Convinfg

+ DitaParser

+ EldocServer

+ Fig

+ Manual

+ Note

+ Page

+ Paragraph

+ Partion

+ QActivelabel

+ DActiveWidget
+ QlabelFingerExtension
+ ResizableFrame
+ SettingWind ow
+ SparePart

+ Title

+ TSCMobile
+WPF

Figure 3.18. Component diagram.

56

The mbarcode package is the modified version of mbarcode open source project /20/.
This project is mainly targeted for Maemo OS in Nokia N90O.

57

3.7 Architectural Diagram

The architectural diagram of the application can be described below. Application data
can be updated through many different ways.

~ T
N
r/-' i
rﬁ) e
N
Internet 2, -
e (:: Y =
Data L_])
h < Wartsila Central Server
Online connection =
=possible to syncronize data from central server —
-possible to order online B -
A\—’\H_ .-’W“—f

/ -user authentication

Data
— CSS style sheets
T __Mo online connection Actual manualparts

-manual COROM, USB syncronization of data from central server Movies
~order parts fax, SmMe PDFs
— Application plugins

End user
-manual ——
-spare parts

Figure 3.19. Architectural diagram.

In above picture the actual communication framework is described in high level.
Basically the application needs Data. Data is located in a specified folder in the phone
storage. Data consists of CSS style sheets, actual manual/spare parts (DITA format),
movies, PDF or other attached files. Also the actual application updates can be seen
as a data which can be updated to client. The data needs to be transferred to customer
device somehow. If the device is connected to the Internet it is possible to do the
updates automatically; in case no Internet connection the transfer needs to be done
using other methods like USB memory stick, CD ROM. One way to connect to the
server is to utilize the RAO communication which is another ongoing Wirtsild
project. Technically it is possible and it requires that the end user is strong
authenticated. All the functionality needed to authenticate the user and for
communicating with the site core exist in RAO project. When user is authenticated, it
is possible to define which products the user has access, therefore all relevant
manuals are downloaded.

58

4 GUI DESIGN

The core functionality of this application is Dita parser engine which reads
documents in Dita format and saves information in objects so that it can be displayed
later by Qt UI components.

In GUI design, there are two separate parts for Linux and Windows GUI design and
Maemo GUI design. Technically the GUI for Linux and Windows are the same
because they are implemented using common Qt Ul components which are available
in all platforms. The GUI for Maemo should be implemented separately as they use
many Maemo 5 specific GUI components to take advantages of Maemo 5 look and
feel.

The main GUI which displays documents is implemented the same for the three
platforms. When deploying, depending on the OS it will have separate look and feel.
The GUI for adding notes and photos, viewing pictures and videos will be
implemented separately depending on the OS. Moreover, the version for Maemo will
have additional functionalities and therefore additional GUI such as sending request,
barcode reader, and client-server synchronization.

Below I will give description about some main parts of GUI design which are created
by Qt Creator GUI designer.

4.1 Main Window

Before accessing the document, user has to complete some nested selector. In order to
give more space for the content display, the selectors will be automatically hidden
when user clicks on other parts rather than them and can be showed again when user
clicks on Wirtsild banner. Below is the GUI design made by Qt Creator.

59

Menu Type Here Banner

Select
> j electors

b wt
\
Main
> scrollable
content
J

Figure 4.1. Main window design.

The banner will be filled with Wirtsild icon when the application is loaded. In the
above design, it is only a blank line. This banner is always showed in the screen so
that user can click on it to show or hide the selectors.

All the selectors are placed inside a panel so that by showing or hiding the panel, the
whole selectors will be showed or hidden. The widget displaying the main content
has scrollable feature enabled in order to display document with long content.

4.2 Request Window

Request window is used to send request to resolution team for technical support. User
can fill in detail of the problem he is having, take some pictures and attach to the
request to illustrate the problem and send it to resolution team. This window is
implemented as a stacked window.

A stacked window is a child window which will slide from the left side to the right
side and overlap its parent window. When user clicks the Back button it will slide
back and the parent window will be displayed again.

Below is the GUI design made by Qt Creator.

60

Type Here
Zampany
Reporter User
Melephione +358442725640

Engine number

Description

Witkachments

Attach Image] [Cancel] [Send

Figure 4.2. Request window design.

The “Attach Image” button is used to take and attach pictures to the request. Taken
pictures will be displayed in “Attachments” area. User clicks on “Send” to send the
request and return to original window. Eldoc Service Book will notify user when the
request has been sent or error occurs.

4.3 Setting Window

Setting window is used to configure the connection between the phone and server in
order to synchronize the data. The IP address of the server, user name of the
authenticated user and resource folder are configurable attributes. This window is
implemented as a stacked window.

Below is the GUI design made by Qt Creator.

61

Twpe Here

© Berver IP Address |

Figure 4.3. Setting window design.

After user clicks on “OK” to exit this window and return to the main window, there
will be a notification informing that the application setting has been changed.

62

S IMPLEMENTATION

Because of the complexity of this application, hereby I will give a description or
explanation of some important functions and classes. Details of each function can be
found in the comments of the attached source code.

5.1 Dita Parser Function

In order to read the document in Dita XML format, Qt provides QDomDocument and
its children classes in xml module. The conversion is made by class DitaParser. The
class includes the following public methods:

¢ Manual* readManual(QString path);
e SparePart* readSparePart(QString path);

These methods are meant for reading manual and spare part document. Parameter
path is the location of the converting Dita document. Because a Dita XML document
is quite big, it is divided into multiple parts depending on the tag name. Each tag
name will have its own private converting method. There might be nested tag, that
one tag name contains others. Example of one tag name:

<it>If the difference between exhaust gas temperatures of
various cylinders is larger than 70°C at loads higher
than 25 % the reason for this should be looked for.</it>
<it>The charge air temperature should, in principle, be
as low as possible at loads higher than 80 %, however,
not so low that condensation occurs. See chapter 03,
<ref xml:link="simple" inline="true"
behavior="external" content-role="fig" href="fig-
320352-1low">Fig 03-1</ref> . At loads lower than 25 %
it is favourable to have a charge air temperature as
high as possible.
</it>
</1li>

Below is the method to read this unordered list.

QString DitaParser::readLI (const QDomNode &node) {
QString ul="";

63

//iterate through tag list

for (int i=0;i<node.childNodes () .size();i++) {
QDomNode it=node.childNodes () .at(i);
QString 1i = "<1i>";
//iterate through the child tags of every <1li>
//tag and convert the content to HTML

for (int j=0;j<it.childNodes () .size();j++) {
QDomNode itatt=it.childNodes () .at(3);
if (itatt.nodeName ()=="#text") {

// get the text content
1li +=itatt.nodeValue();
//get the content of the link
}else if (itatt.nodeName ()=="ref") {
//get the text content of the link
QString displaytext=itatt.toElement () .text();
//get type of the link
QString role=itatt.attributes().
namedItem("content-role") .nodeValue () ;
//get href attribute of the link
QString href=itatt.attributes().
namedItem ("href") .nodeValue();
//convert to a normal HTML link
QString link="[<a href=\""+role+";"+href+"\"
style=\"color:#B1FB17;\">"+displaytext+"1";
1i +=1ink;

}
1i 4= "</1i>";
ul+=11i;

}

ul+="";

return ul;

This method will iterate through the tag list and read the content of each of them.
When it reaches the <ref> tag, it will convert this tag to a normal link tag. Finally, the
method will concatenate every part together to form the fully unordered list and
return it.

64

The QDomNode node is the root tag of the paragraph (tag in above text). The for
loop is used to iterate though all the <it> tag. Value of one <it> tag is like this:

QDomNode it=node.childNodes () .at (i) ;

The second for loop is used to iterate through the content of each <it> tag. An <it>
tag can have text and link. Value of one attribute of the <it> tag:

QDomNode itatt=it.childNodes () .at(3);

If the content of the attribute is only text, read the text content:

if (itatt.nodeName ()=="#text") {
// get the text content

1i +=itatt.nodeValue () ;

If the attribute is a complex element containing other tags (in this case a ref tag), get
the attributes “href” and “content-role” of this tag in order to form a link:

else if(itatt.nodeName ()=="ref") {
//get the text content of the link
QString displaytext=itatt.toElement () .text();
//get type of the link
QString role=itatt.attributes()
.namedItem("content-role") .nodeValue();
//get href attribute of the link
QString href=itatt.attributes()
.namedItem ("href") .nodeValue();
//convert to a normal HTML link
QString link="[<a href=\""+role+";"+href+"\"
style=\"color: #BI1FB17;\" >"+displaytext+"1";

1i +=1ink;

Finally, close the tag and concatenate it to the list.

1i 4= "</1i>";

ul+=11i;

65

The return value of this function will be a converted HTML unordered list.
5.2 Add New Note

User clicks on “Add Comment” button, a new comment dialog new be displayed.
User enters the note/comment and click “OK” to submit note or “Cancel” to discard
the note. New added note will be display at the end of the document, right after the
“Add Comment” button. Method code and explanation:

void EldocServer: :addNote () {
//1f note is not already created, create one
if (m_noteDialog == NULL) {
//display as a dialog
m_noteDialog=new QDialog(this);
//set auto orientation for this widget

m_noteDialog->setAttribute (Qt::WA_MaemoS5AutoOrientation,
true);

//start GUI design of a text box and 2 buttons OK and
//Cancel
QVBoxLayout *vlayout = new QVBoxLayout (m_noteDialog);

m_noteDialog->setObjectName (QString: :fromUtf8 ("New
Note"));

m_note = new QTextEdit ();

m_okButton =new QPushButton ("OK");

m_cancelButton = new QPushButton("Cancel");
//horizontal layout

QHBoxLayout *hlayout= new QHBoxLayout () ;
hlayout—->addWidget (m_cancelButton) ;
hlayout—->addWidget (m_okButton) ;
vlayout—->addWidget (m_note) ;
vlayout->addLayout (hlayout) ;
//end GUI design
//Below is connect the two buttons with other action
//submit or cancel note

connect (m_okButton, SIGNAL (clicked()), this,

SLOT (submitNote ()));

connect (m_cancelButton, SIGNAL (clicked()), this,

SLOT (cancelNote()));

66

lelse({
//clear the old content if note already exists

m_note->setPlainText ("");

}
// display the note dialog

m_noteDialog->show () ;

In order to avoid unneeded UI creation, the note dialog, which is a global variable, is
initialized once user wants to add note. First check if the note dialog has not already
been created; if not, initialize it:

if (m_noteDialog == NULL) {
//display as a dialog

m_noteDialog=new QDialog(this);

Set auto orientation feature for the note dialog:

m_noteDialog->setAttribute (Qt::WA_MaemoS5AutoOrientation,

true);

Then, initialize the Ul component inside the dialog, including a textbox, two buttons
for OK and Cancel action.

m_note = new QTextEdit ();
m_okButton =new QPushButton ("OK");

m_cancelButton = new QPushButton("Cancel");

Connect the two buttons with the submitNote and cancelNote action:

//Below is connect the two buttons with other action
//submit or cancel note

connect (m_okButton, SIGNAL (clicked()),this,

SLOT (submitNote()));

connect (m_cancelButton, SIGNAL (clicked()), this,

SLOT (cancelNote()));

If the note dialog is already created and used before, then clear the old content:

67

m_note->setPlainText ("");

Finally, display the note dialog:

m_noteDialog->show () ;

5.3 Take and Attach Pictures

User clicks on “Attach picture” button, Eldoc server will open a new stacked window
(PictureWindow). This picture window UI class will create a thread monitoring taken
pictures. When user takes a picture, it will be recorded and updated in the picture
window. Finally user can click “Back” button to end the thread and attach taken
pictures to the document. Like notes, taken pictures will be display at the end of the
document.

Briefly description about implementation of this thread:

First of all, start a QTimer and set the time interval 1 second. Then, set the action will
be executed when the QTimer is timeout (every 1 second).

//start a QTimer

QTimer timer = new QTimer (this);

//search for taken pictures after every 1 second
connect (timer, SIGNAL (timeout()), this,

SLOT (getTakenPictures()));

//repeat after 1 second

timer—->start (1000);

By doing this, the action getTakenPictures will be repeated every 1 second. Below is
the detail of this function.

void PictureWindow: :getTakenPictures () {
//PATH: folder where pictures are saved
QDir myDir (this—->PATH) ;
//filter for only image files
QStringList filters;
filters.append(tr ("*.jpg"));
filters.append(tr ("*.jpeg"));
QOStringlList currentlist=myDir.entryList

68

(filters,QDir::Files | QDir::NoSymLinks);
//iterate through current files to check if there
//is any new file
//filelist: old file list
foreach(QString file,currentlist) {
// if file is not included in the old file list
if(!'isIncluded(file,filelist)) {
QTableWidgetItem *fileNameltem =
new QTableWidgetItem(file);
fileNameItem->setIcon
(QIcon(myDir.absoluteFilePath(file)));
int row = filesTable->rowCount () ;
filesTable->insertRow (row) ;
//add the file to file table

filesTable->setItem(row, 0, fileNamelItem) ;

}

//give filelist the value of current file list for the
//next check

filelist=currentlist;

This function will check if there is any new file compared with the file list it has
previously. If there is a new file, it will be added to the taken picture table and
displayed in the user interface.

Set the filter to monitor only image files in the image folder (PATH).

QStringList filters;
filters.append(tr ("*.jpg"));
filters.append(tr ("*.jpeg"));

Get all the image files in the image folder and save them in a list.

QStringList currentlist=myDir.entryList

(filters,QDir::Files | QDir::NoSymLinks);

Then iterate through every element in this list and check if each of them exists in the
old file list. If not, add it to the table of taken pictures.

69

if(!isIncluded(file, filelist)) {
QTableWidgetItem *fileNameltem =
new QTableWidgetItem(file);
fileNameItem->setIcon
(QIcon(myDir.absoluteFilePath(file)));
int row = filesTable->rowCount () ;

filesTable->insertRow (row) ;

//add the file to file table

filesTable->setItem(row, 0, fileNamelItem) ;

Finally, give variable filelist the value of current file list for the next check.

filelist=currentlist;

5.4 Image Viewer

The image viewer window is implemented quite easily using a QLabel and set the
image as a pixmap to that label. QLabel UI component can be used to display both
text and picture. The code together with explanation:

//set as a stacked window
setAttribute (Qt: :WA_Maemo5StackedWindow) ;

//set auto orientation
setAttribute (Qt: :WA_MaemoS5AutoOrientation, true);
setObjectName (QString::fromUtf8 ("Image Viewer"));
imageLabel = new QLabel;

//define custom attributes
imagelLabel->setBackgroundRole (QPalette: :Base);
imagelabel->setSizePolicy (QSizePolicy: :Ignored,
QSizePolicy: :Ignored);
imagelLabel->setScaledContents (true);

//the main display window

scrollArea = new QScrollArea;
scrollArea->setBackgroundRole (QPalette: :Dark) ;
//set the image label as the only component
scrollArea->setWidget (imageLabel) ;
setCentralWidget (scrollArea);

70

scrollArea->setWidgetResizable (true);

First of all, set basic attributes for this image viewer such as auto oriented, stacked
window, and object name:

//set as a stacked window
setAttribute (Qt: :WA_Maemo5StackedWindow) ;

//set auto orientation
setAttribute (Qt: :WA_Maemo5AutoOrientation, true);
setObjectName (QString: :fromUtf8 ("Image Viewer"));

Then, initialize the image label which is the main container to display the image.

imageLabel = new QLabel;

//define custom attributes
imagelLabel->setBackgroundRole (QPalette: :Base);
imagelabel->setSizePolicy (QSizePolicy: :Ignored,
QSizePolicy::Ignored);

imageLabel->setScaledContents (true);

After initializing the image window, the application can call the function setlmage
multiple times to view different images:

void ImageViewer::setImage(const QString &path) {

//set pixmap for the image label which will display the
//actual image.

imageLabel->setPixmap (QPixmap (path)) ;

This function will set the image as the pixmap content of the label in order to display
it.

71

5.5 Maedia Player

The media player is created using Qt phonon library with gstreamer plugin to play
3gp media files.

Briefly description of the code for creating media player:

//set object name

this->setObjectName (QString::fromUtf8 ("Video")) ;
//set stacked window feature
setAttribute (Qt: :WA_Maemo5StackedWindow) ;
//create new media object

m_MediaObject= new Phonon::MediaObject (this);

//create new video widget

m_videoWidget= new Phonon::VideoWidget (this);

// link the video to media

Phonon: :createPath (m_MediaObject, m_videoWidget);
//create audio output

m_AudioOutput = new
Phonon: :AudioOutput (Phonon: :VideoCategory, this);

//link the audio to media
Phonon: :createPath (m_MediaObject, m_AudioOutput);

//a slider to navigate through the video

slider = new Phonon::SeekSlider (this);
slider—>setMediaObject (m_MediaObject) ;

// start GUI creation

QWidget *centralWidget=new QWidget (this);
this->setCentralWidget (centralWidget) ;

QVBoxLayout* layout=new QVBoxLayout (centralWidget);
layout—->addWidget (m_videoWidget) ;

layout—->addWidget (slider) ;

// end GUI creation

72

Phonon media player is a media object; it consists of a video widget which can be
displayed in the user interface and an audio widget which outputs the sound. In order
to create this media player, first create the media object, video widget and audio
widget then link them together by the following codes:

// link the video to media

Phonon: :createPath (m_MediaObject, m_videoWidget) ;
//1link the audio to media

Phonon: :createPath (m_MediaObject, m_AudioOutput);

The slider is used to navigate through the playing video. There are many other Ul
component with can be used to facilitate the video display such as next, back, pause
button, etc.

//a slider to navigate through the video

slider = new Phonon::SeekSlider (this);

After creating the slider, it should be linked to the media object:

slider—->setMediaObject (m_MediaObject) ;

Finally, place the video widget together with the slider in the main window:

// start GUI creation

QWidget *centralWidget=new QWidget (this);
this->setCentralWidget (centralWidget) ;

QVBoxLayout* layout=new QVBoxLayout (centralWidget);
layout—->addWidget (m_videoWidget) ;

layout—->addWidget (slider) ;

// end GUI creation

This will create a media player to play any media type.
5.6 View pdf File

The viewing pdf feature of the application is implemented by Qt Poppler library. This
extended library is targeted for dealing with pdf document and can run in Linux and
Windows platforms. Briefly description of the code:

73

//create new pdf renderer object

Poppler: :Document *pdf = Poppler::Document::load(ELDOC_ROOT+
"attachmentl.PDF") ;

//create a QLabel to contain the pdf file which is rendered
//as images.

QLabelFingerExtension pdfContainer =new
QLabelFingerExtension() ;

//set the content of pdfContainer to the first page of pdf
//file

pdfContainer—->setPixmap (QPixmap: : fromImage
(pdf->page (0) —>renderToImage ()));

//current page

currentPage=0;

//connect action to go to the next page

connect (pdfContainer, SIGNAL (fingerScrolled()), this,
SLOT (goNextPage ()));

//add the pdf container to the main layout
layout—->addWidget (pdfContainer) ;

First of all, create a new Poppler pdf renderer object:

//create new pdf renderer object

Poppler: :Document *pdf = Poppler::Document::load (ELDOC_ROOT+
"attachmentl.PDF");

Poppler will read the content of pdf file and convert it to a collection of images. The
later part is just displaying the image using a QLabel. The below code show how to
convert a page to image using poppler feature:

pdf->page (i) —>renderToImage ()

As normal QLabel does not recognize finger swiping action, a new class
QLabelFingerExtension which inherits from QLabel and implements a custom signal
to recognize finger interactions is created. Detail of the class will be explained later.

//create a QLabel to contain the pdf file which is rendered
//as images.

QLabelFingerExtension pdfContainer =new
QLabelFingerExtension () ;

74

Finally, connect the signal finger swiping to the action goNextPage.

connect (pdfContainer, SIGNAL (fingerScrolled()),this, SLOT (goNe
xtPage()));

This will create a custom pdf viewer which supports finder swiping action.
5.7 QLabelFingerExtension Class

This class inherits from QLabel and implements a custom signal to recognize finger
swiping action. Finger swiping is the action that user swipes his finger from the left
side to the right side of the screen, normally to trigger an action to move to the next
page. The class includes the following private member:

e Xx: x coordinate of the finger

e y:y coordinate of the finger

e fingermove (bool): indicate whether the finger is moving
It has three protected methods to track the movement of finger:

e mouseMoveEvent: finger is moving

¢ mousePressEvent: finger is touching the screen

¢ mouseReleaseEvent: finger is out

The action is recognized as finger swiping only when the finger has moved a distance
along the X axis. When user touches the screen, mousePressEvent is triggered and
does the following event:

//give x the value of current x coordinate of the finger
x=finger->x();

//give y the value of current y coordinate of the finger
y= finger ->y();

//indicate that the finger is moving

fingermove=true;

When user releases the finger from the touch screen, mouseReleaseEvent is triggered
and does the following event:

75

if (abs (x—ev->x())>200&&abs (y—ev-—>y ())<70&&fingermove) {
fingermove=false;

emit fingerScrolled();

This code checks if the finger has moved far enough along the X axis and not
exceeded the Y coordinate limitation. If the condition is satisfied, the signal
fingerScrolled will be emitted:

emit fingerScrolled();

This case shows how a custom signal is defined in Qt.
5.8 Update Database

The synchronization between client and server is done using Linux command
“rsync”. In order to use this command, rsync package should be installed both on
Linux server and on the phone.

When user click on “Update” button, the application will create a separate process to
execute this command, the new process is working independently with the application
process. This works exactly the same way with daemon in Linux machine. Qt has the
possibility to create new process using QProcess:

QProcess rsync;

rsync.startDetached ("rsync",QStringList () << "r" <<
m_remoteUsername+ "@" +m_remoteAddress+":"+m remoteFolder <<
W20_DOC_ROQT) ;

m_remoteUsername: authenticated user name.
m_remoteAddress: IP address of the server.
m_remoteFolder: location of the data folder in server machine.

W20_DOC_ROQOT: location of data in local machine.

76

This command will start the independent process rsync to synchronize the files
between host machine and local machine. The option “-r”’ to sync the whole folder.

After the process has completed and the application has been updated, a notification
will be sent to user using Qt maemoS5 information box:

QMaemo5InformationBox::information(this, "Update is
installed successfully",
OMaemo5InformationBox: :DefaultTimeout) ;

If there is error in executing the command, user will be notified the same way:

QMaemobInformationBox: :information(this, "Error updating
database", QMaemoS5InformationBox::DefaultTimeout);

5.9 Search Engine

The search engine is implemented using existing open source project mbarcode. The
mbarcode application is modified and integrated into this application. It is changed so
that after finding the code of the searching document, the barcode engine will send
the information to the main window and trigger the action “openDocument” to
display related document. Then the barcode engine will be destroyed and the original
window with new information is restored.

//close itself

this->close();

//check if the result window has parent

if (this->parent()) {
//1f it has parent then close it also
MainWindow* m_barcode=(MainWindow*)this->parent();
m_barcode->close () ;

//get the main window EldocServer

if (m_barcode—->parent ()) {
EldocServer* m_eldoc=((EldocServer¥*)
m_barcode->parent ()) ;

//open related document

m_eldoc->openDocument (this—->barcode_text);

}

77

First of all, close the current window.

//close itself

this->close();

Check if this result window has a parent window, and then close the parent.

if (this->parent()) {
//1f it has parent then close it also
MainWindow* m_barcode=(MainWindow*)this->parent();

m_barcode->close() ;

Then, get the instance of EldocServer class which is the parent of m_barcode.

EldocServer* m_eldoc=((EldocServer*)m_barcode->parent());

Finally, open the searched document.

m_eldoc—->openDocument (this—->barcode_text);

In this code, the EldocServer class is the parent of the MainWindow class which is
the parent of this result window. In order to get the EldocServer class, it needs to call
function this->parent() twice.

78

6 TESTING

According to the project plan described at the beginning of this document, all
objectives of the final thesis have been achieved in the Qt based application
associated with this project. The application has been deployed to the three platforms
Maemo, Linux and Windows and showed to Wirtsild people. All the required and
extra features have been successfully implemented. The project is on its way to
integrate with other ongoing Wirtsild Qt projects.

When testing, there is a feedback from customer that there is few seconds delay
before the actual document is showed. That is because the document is quite big (can
be up to 2000 lines) it takes time for the application to convert it to HTML and
display in the screen.

to slide the fuel retainer ring to one side. Move the fuel line connecting sleeves clear of
the adjacent fuel pipes.

E Loosen the f. ning screws 12, remove the high pressure connecting piece and
i

I ing sl move the housing (3).
Remove the securing plate.The valve tappets can now be withdrawn. Before
dismantling, mark the parts so that they can be reassembled in their original positions.

The tappet roller and pin can now be separated by depressing the retainer into the

pin and slide out.The tappet should be covered, as the retainer is under spring loaded
tension.

14.3.2 Inspection of valve mechanism parts
Clean the rocker arm bore and the journal and measure for wearWhen deaning, pay
special attention to the oil holes.

Figure 6.1. Eldoc service book look and feel.

Every implemented method was tested during coding and directly after it. Any found
bug was immediately corrected. The applied testing approaches to methods are as
follows:

e Updating when no internet connection.

¢ Adding comments with invalid characters.

79

¢ Sending request with invalid information.
e Scanning invalid barcode.

e @Giving wrong server information such as wrong server IP address, wrong
user name, etc.

e Taking too many pictures at the same time.

In addition, any place in the source code where there might occur an exception has
been covered with try, catch clause. The GUI has been tested by simple performing
operation. All feedbacks of the supervisor and customers have been taken into
account and will be fixed when the application is moved to production version. The
application is ready to be integrated with other ongoing Wirtsild projects.

Below are the testing results and screenshots of some main features of the
application.

6.1 Viewing Technical Documents

Before accessing the document, user has to complete some nested selector. In order to
give more space for the content display, the selectors will be automatically hidden
when user clicks on other parts rather than them and can be showed again when user
clicks on the Wirtsild banner. Below is the Ul in Maemo, Windows and Linux
platforms.

~

=ll@a~ EdocServer ~

EldocServer ~

block is made of nodular cast iron and cast in one pies
dit is designed for minimum stress concentration and
the cooling water system, including the jacket water distributing s
lubricating oil channels, and the charge air receiver are integrated in the engine block.

Figure 6.2. Eldoc Service Book main GUI in Maemo platform.

80

The main Uls on Windows and Linux have the same functionality compared with one
on Maemo but the appearance is operating system native look and feel. Below is

Eldoc Service Book in Windows platform.

Menu

= ion BEE

it 'ELDOC 3.00

|cEmo ~| [Pangnesoze | [englsh | [manual v
|02 Fuel, Iubricating oil, cooling water v
i "~
femperaiire 28 C. u
Conversion from various current and obsolete viscosity units to centistokes can
be made in the diagram, [1. The diagram should be used only for e
corversion of viscosities at the same temperature, The same temperatures
should then be used when entering the viscosity/temperature point into the
diagram, [
amn e I s e e o e e | R
300 -
0 A s e e
4] / Tz
20 g
r /i
12 S Sy A CJ
< | B

Figure 6.3. Eldoc Service Book main GUI in Windows platform.

Below is Eldoc Service Book Linux version with default Ubuntu Linux look and feel.

Menu

L ELDOC 3.00

|pEMo 3| [Paseoss026 3] [english 3| [spare parts 3]
[

[160 injection Equipment, Gas Manifold 3 [165-005A Fuel oil system in Hot-bax O | e

=

1. Fuel oil system in Hot-box

165 044 165 149

Part No Description Qty(Pcs) Weight(Kg) |
165 043 Pin [- 5

Figure 6.4. Eldoc Service Book main GUI in Linux platform.

81

The application can have the possibility to have the same style for every platform. In
order to achieve that, the application look and feel should be changed using Qt style
sheet for each widget.

6.2 Adding Notes or Comments in Windows and Linux

The same with .Net version, at the end of each specific document is the place where
user can add notes/comments for it. The added note will be displayed directly below
the text field

Meru

L—u,-.e-;‘u DO 3.00

Two types of glycol are available: monopropylene glycol (MPG) and rmonoethyleneglycol |
(MEG). So called industrial qualities of both glycol types can be used, but MPG is
considered to be less harmful to the environment.

Add new comment

Thu Nov 4 20:21:13 2010
this is & comment!

Figure 6.5. Adding notes/comments in Eldoc tablet version.

6.3 Adding Notes and Pictures in Eldoc Maemo Version.

In phone version, at the end of each specific document are two buttons for attaching
comments or pictures. The two buttons are made big so that user can easily click on it
using his fingers.

82

™ 00:46> Sllga~ Eldocserver ~

0

Attach Picture Add Comment

ti elo 3 00:45:46 2010
Comment
ti elo 3 00:46:42 2010

20100803_002.jpg
ti elo 3 00:46:42 2010

20100803 _001.jpg

Figure 6.6. Adding notes/comments and pictures in Eldoc phone version.

The “Add Comment” action will be displayed as a popup dialog:

Comment|

Cancel

Figure 6.7. Adding notes/comments in Eldoc phone version.

83

The “Attach Picture” action will be displayed as a stacked window. A stacked
window 1is a child window which will slide from the left side to the right side and
overlap the parent window. When user clicks the Back button it will slide back and
the parent window will be displayed again.

W 00:46% Slgis eldoc
Please open the lens to take photos

Figure 6.8. Attaching pictures in Eldoc phone version.

6.4 Barcode Reader

The barcode reader has the video display of what user is scanning. User can also have
the option to input existing picture which has been taken before. At the bottom is two
buttons to start scanning and open existing file.

84

W 00:48» =liges Search ~

Scan Barcode Open image

Figure 6.9. Barcode reader.

When user click on “Scan Barcode”, the application will start scanning and there will
be one more option for focusing the image.

6.5 Setting Window

Setting window is used to configure the connection between the phone and server in
order to synchronize the data. The IP address of the server, user name of the
authenticated user and resource folder are configurable attributes.

02:11 B[] setting ~

ERLFNIIEE 192.168.1.108|

User name

PEI(RLIGITE /home/lam/eldoc_resource/w20/text/xml/en/

Cancel

Figure 6.10. Setting window.

85

After user exit this window and return to the main window, there will be a
notification informing that the application setting has been changed.

6.6 Request Window

The request window is also implemented as a stacked window. The name of the
reporter and his telephone number is automatically retrieved based on his information
saved on the phone.

W 02:11 B[] SsupportRequest v

REpuiLel User
Telephone +358442725640
Engine number

Description

Attachments

Attach Imaae Cancel

Figure 6.11. Request window.

User can also click on “Attach Image” to take and attach pictures in the request to
visualize the problem. This action will open the Picture Window which has been
described in previous chapter.

User clicks on “Send” to send the request and return to original window. Eldoc
Service Book will notify user when the request has been sent or error occurs.

86

7 CONCLUSION

This project has given an excellent example of the usability of Qt framework on
multiple mobile platforms. Nowadays, being a key developing environment for many
big projects for instance Linux KDE desktop, Google Earth and Skype, Qt is
gradually accepted as a development framework among developers all over the
world.

Together with Android, Maemo is becoming the future platform for mobile device.
Maemo is mostly based on open source code, and has been developed by Nokia in
collaboration with many open source projects such as the Linux kernel, Debian and
GNOME. Because of its nature, all application for Maemo will be open source and
can be reuse by other developers. This enables knowledge sharing between
developers which is very important in software development that developer does not
need to develop things others have done previously.

Mobile phones are playing an increasingly essential role in human life. Thank to the
portability, usability and capability of modern mobile phones, in the near future, it
will be the most important electric equipment which cannot be replace in our social
life. It can be a TV, a multimedia player, a video player, a navigator, a game box or
an internet tablet, etc.

All main and optional features of the application have been successfully
implemented. The main function of the application is to view technical documents,
images, and videos. Moreover, additional features of a phone have been utilized in
taking pictures, sending technical request and updating the server. However, certain
aspects of this thesis could have been better for example the time delays when
displaying documents as stated in customer’s feedback. These changes can be made
when the application is moved to production version.

7.1 Future Development

Currently the application can be updated only via local wireless connection because
of security reason. However, it can be integrated with another Wiirtsild project named
RAO which provides secure communication; then it can be updated remotely via
GPRS for instance.

87

8 REFERENCES

1/

12/

/3/

14/

/51

16/

117/

18/

19/

110/

11/

Wikipedia - Darwin Information Typing Architecture (2010). [WWW].
[referred 1.10.2010] Auvailable on the Internet:
<URL:http://en.wikipedia.org/wiki/Darwin_Information_Typing_Architecture
>

Don Day, Mochael Priestlet, David Schell. IBM corporation (2005).
Introduction to the Darwin Information Typing Architecture, [referred
1.10.2010] Available on the Internet:
<URL: http://www.ibm.com/developerworks/xml/library/x-dital/>

XMLmind XML Editor (2010). [WWW]. [referred 15.10.2010]
Available on the Internet: <URL: http://www.xmlmind.com/xmleditor/ >

Qt Nokia official website (2010). [WWW]. [referred 15.10.2010]
Available on the Internet: <URL: http://qt.nokia.com/ >

Nokia corporation (2009). Qt 4.6 white paper, [referred 15.10.2010] Available
on the Internet: <URL: http://qt.nokia.com/products/files/pdf/qt-4.6-
whitepaper >

Wikipedia - Maemo (2010). [WWW]. [referred 1.10.2010] Available on the
Internet: <URL: http://en.wikipedia.org/wiki/Maemo>

Maemo official repository (2006). [WWW]. [referred 1.07.2010]
Available on the Internet: <URL: http://repository.maemo.org/dev>

Maemo development repository (2006). [WWW]. [referred 1.07.2010]
Available on the Internet: <URL: http://repository.maemo.org/extras_dev>

Nokia OVI store (20006). [WWW]. [referred 1.07.2010]
Available on the Internet: <URL: https://store.ovi.com/>

Maemo official website (2007). [WWW]. [referred 1.07.2010]
Available on the Internet: <URL: http://www.maemo.org/>

Scratchbox (2009). [WWWI]. [referred 1.07.2010]
Available on the Internet: <URL: http://www.scratchbox.org>

112/

/13/

114/

/15/

116/

17/

118/

119/

120/

88

Maemo 5 SDK (2009). [WWW]. [referred 1.07.2010] Available on the
Internet: <URL: http://repository.maemo.org/stable/fremantle/maemo-sdk-
install-wizard_5.0.py>

Maemo SDK virtual image (2009). [WWW]. [referred 1.06.2010]
Available on the Internet:
<URL:http://maemovmware.garage.maemo.org/2nd_edition/>

VMWare player (2007). [WWW]. [referred 1.06.2010]
Available on the Internet: <URL: http://www.vmware.com/>

Java website (2000). [WWW]. [referred 1.06.2010]
Available on the Internet: <URL: http://www.java.com>

Esbox IDE (20009). [WWW]. [referred 1.06.2010]
Available on the Internet: <URL: http://esbox.garage.maemo.org>

MADDE technology overview (2009). [WWW]. [referred 1.06.2010]
Available on the Internet: <URL: http://wiki.maemo.org/MADDE>

Qt Creator nightly-build version (2009). [WWW]. [referred 1.06.2010]
Available on the Internet: <URL: http://qt.nokia.com/developer/qt-snapshots>

PC connectivity project (2009). [WWW]. [referred 1.06.2010] Available on
the Internet: <URL: https://garage.maemo.org/frs/download.php/7104/PC-
Connectivity_0.9.4.exe>

Mbarcode open source project. [WWW]. [referred 1.06.2010]
Available on the Internet: <http://maemo.org/packages/view/mbarcode/>

APPENDIX 1 1(20)

1 QT DEVELOPMENT SETUP FOR MAEMO PLATFORM

This chapter will explain the Qt development setup and configuration on Maemo
platform. Because Maemo is a newly published environment, the development
process is much more complex compared with other environment and Nokia will
have to do a lot in order to make it easier for starter. This chapter will introduce
completely all the needed setups and configurations to create a Qt Maemo
application. This part will also include a sample Qt application running on Maemo
platform.

1.1 Maemo SDK virtual image

Maemo community has been conducting a project called Maemo SDK Virtual Image
to help the developing less painful. This project provides a fully programming
environment for Maemo platform in one virtual image. All user has to do is to
download and install a virtual machine player for instance VMWare together with
this virtual image. This project is an important contribution since it offers the
developer a complete Maemo programming environment with no need to spend time
to download and configure correctly all tools which is a burden for starter. Below is
installation procedure:

Download Maemo SDK virtual image from its website /13/ and extract it to one
specified folder.

Download VMWare player from its website /14/, install it in your machine and start
the program.

In VMWare Workstation window, click File -> Open then choose the location of the
image file you have just extracted (maemosdk_desktop_intrepid-10-08.vmx).

In the main page, click on “Power on this virtual machine” to start Ubuntu machine
with complete Maemo programming environment.

APPENDIX 1 2(20)

= maemosdk - VMware Workstation

Fle Edt View UM Team Windows Help

ure BaR Dees DEE:

Sidebar L A TS 3l (5 maemos: dk
= [Powered on) = ° a
B o (5 Applications Places system @@ g v ®©| s
= @ Faworites
) Red Hat Linux —_
=
2ldoewi-1.0.arig
ot~ 12rz-
Ypzns -are-4.8,
" nVIRTUAL IMAGE
ffietall Y=
Izizill=r
v
< >
To direct input ta this ¥, click inside or press Ctri+G QOHR400 | =

Figure 1. Maemo SDK virtual image.

This Linux operating system contains Esbox IDE and a complete Maemo SDK.
Moreover, it also has some Qt Maemo sample applications which can be deployed
and run directly to a Maemo OS.

1.2 Environment setup

Another alternative for advanced user is to have his own Linux machine and install
maemo SDK on it. This is a preferable way as with Maemo virtual image there will
be connectivity problem with your device through VMWare later. Another problem
with VMWare is that you have to run double OSs at the same time; it takes a lot of
computer resources. As a result, it will be much slower for developer to code and
debug in Ubuntu OS running inside Windows OS. For the purpose of this thesis, I
have installed Ubuntu 8.04 in my computer. In order to achieve a complete Maemo
programming environment, user should install Scratchbox as a Maemo simulator,
Maemo 5 SDK and esbox as an editor. The procedure will be described in the next
chapter.

APPENDIX 1 3(20)

1.2.1 Maemo 5 SDK and Scratchbox installation

Maemo 5 SDK installation is now made easy with GUI installer. This installer will
install Scratchbox and Maemo 5 SDK on Debian based systems. This installer will
allow installation of Nokia closed packages and applications provided that EULA is
accepted. The complete feature of this GUI installer:

Install/Upgrade Scratchbox

e Installation of Maemo 5 SDK

¢ Installation of nokia-binaries

¢ Installation of nokia-apps

¢ Installation of Xephyr, if missing

e (an create a launcher for Xephyr on Desktop

¢ (an create a shortcut to Scratchbox home folder on Desktop

e (Can create Maemo 5 info page on Desktop that contains useful links for
developers

Download maemo5 SDK from its website /12/ and give the execution right to the file
by the following command:

chmod a+x maemo-sdk-install-wizard_5.0.py

Start the GUI installer by the following command:

sudo ./maemo-sdk-install-wizard_5.0.py

And follow the instruction until you get the installation finish.

APPENDIX 1 4(20)

Maemo 5.0 5DK installation wizard

This installer will guide you through the steps needed to install Maemo 5.0 SDK on your
development machine. The installation will take approximately 20 minutes (depending
on download speed) and about 3GB of disk space on system root.

It will install Scratchbox cross compilation environment togther with Maemo 5
development files on your host system.

Application manager x * MNokia - Environment

ol

_ﬂext ~| cancel

Figure 2. Maemo 5 SDK installation wizard.

Scratchbox does not support VSDO (Virtual Dynamic Shared Object) and you need

to disable this feature. Edit the file /etc/sysctl.conf using your preferred editor and
add the following line at the end of the file:

vm.vdso_enabled = 0

After that, you can start Scratchbox to check the installation. Open a terminal and
type the following commands:

> Xephyr :2 -host-cursor -screen 800x480x16 -dpi 96 -ac -kb
&

> /scratchbox/login
[sbox—-FREMANTLE_X86: ~] > export DISPLAY=:2
[sbox-FREMANTLE X86: ~] > af-sb-init.sh start

APPENDIX 1 5(20)

As expected, you will see a simulator of maemo 5 operating system.

Figure 3. Maemo 5 simulator in Linux machine.

1.2.2 Esbox installation

ESbox is an Eclipse-based IDE. It is based on Eclipse Ganymede (3.4.2) and provides
C/C++ and Python support, source editing, project building, run/debug/profiling, and
Debian package deployment. ESbox communicates transparently with Scratchbox
and one or more Maemo SDKs, available separately, to let you develop Maemo
applications. ESbox can also update the image on your Maemo devices and
communicate with them using the various network clients and servers available with
the PC Connectivity project.

With ESbox, Scratchbox, Maemo SDK(s), and PC Connectivity installed, you can
run, debug, and profile locally under emulator running in an X server, and also deploy
the application to a Maemo device (N800, N810, N900) to run, debug, and profile on
hardware.

Esbox needs Java environment to run. Download newest version of JRE from Java
website /15/, choose Linux self-extracting file. You will get a *.bin file.

APPENDIX 1 6(20)

Change the permission of this file to executable by the following command:

chmod a+x jre-6u<version>-1inux-1586.bin

Copy the file to a location you want to install, for example /usr/java, login as root and
change current location to this location again.

sudo su

cd /usr/java
Run the self-extracting binary file:

./jre-6u<version>-1linux-1586.bin

Accept the license agreement and follow the wizard instruction until it finishes. Java
will be installed in folder /usr/java/jrel.6.0_<version>.

Download esbox from its website /16/. It includes 2 zip files:
e Common components

¢ Linux/GTK support

Extract the two files to the same folder you specify, for example /home/user/esbox.
At this state, when you click on esbox icon it will not start because of linking to JRE
problem of esbox. In order to overcome this problem, copy your JRE installation
folder to esbox home folder and rename it to jre:

cp -r /user/java/ jrel.6.0_<version> /home/user/esbox

mv /home/user/esbox/jrel.6.0_<version> /home/user/esbox/jre

Double click esbox.sh to start esbox with auto-linked Maemo OS simulator —
Scratchbox and a full Maemo software development kit SDK.

1.3 Maemo PC connectivity

The Maemo PC Connecticity project aims to make an easy communication between a
Maemo device and host PC through USB, wireless or Bluetooth connection.
Developers can take advantages of this tool for deploying the application to the
Maemo phone directly. The setup procedure is described below.

1.3.1 Introduction

APPENDIX 1 7(20)

The Maemo PC Connecticity project is targeted for the communication between a
Maemo device and host PC through USB, wireless or Bluetooth connection. It
provides developers with many tools such as connection sharing, remote accessing,
file sharing and transfer, remote debugging and deployment.

Maemo PC connectivity supports Maemo Framantle and Diablo OS in mobile
devices and Windows, Linux, Mac OS in host computer.

In developer point of view, Maemo PC connectivity enables developer to deploy the
application directly to Maemo phone via USB, wireless or Bluetooth without the need
to make installable deb file and install manually in the phone. The Maemo
development environment consists of a Maemo device and host PC running
Scratchbox and Maemo SDK integrated together with services provided by Maemo
PC connectivity. With these tools up and running, developers can code the software
in Esbox, test it using a simulator inside Scratchbox and finally deploy it directly to
the phone.

Some basic services provided by Maemo PC connectivity between host computer and
Maemo device include:

e Connection establishment: By using Maemo PC connectivity applets, a
connection between Memo phone and host PC can be established via
USB, WLAN or Bluetooth; user can also configure settings for allowed
services between the two parties.

e Connection sharing: Once the connection between host PC and Maemo
device has been established, it is possible to easily share the internet
connection from one device to other.

e Secure Shell: Like other Linux distributions, user can take the advantage
of securely sharing data between the host PC and remote mobile device
using SSH command which creates a secure channel between the two
devices and protects the connection from outside attacks.

e Scratchbox Remote Shell: SBHFS is a remote command execution system
which is similar to rsh and ssh. It is designed with slow devices and
Scratchbox’s special requirements.

e Network File system: NFS allows file system sharing over a network.

APPENDIX 1 8(20)

e Samba: provides shared access to files, printers, serial ports and
miscellaneous communications between nodes on a network. Most usages
of Samba relate to host PC running Microsoft Windows.

e Virtual Network Computing: VNC is a graphical desktop sharing system
that allows a host PC to remotely control a Maemo device.

e Rdesktop: Opposed to Virtual Network Computing, Rdesktop is a client
for remotely accessing Windows desktops from a Maemo device.

e X tunneling over SSH: allows the forwarding of X11 desktop from a
Maemo device to a host PC.

e Secure Copy: SCP is another way to transfer files between a local and a
remote host PC using SSH

e Rsync: is a utility that provides file synchronization between host PC and
mobile devices. It uses a protocol that transfers only the bytes inside files
that have been changed since the previous transfer.

1.3.2 Installation and configuration

The Maemo PC connectivity product consists of two parts, installation of necessary
services and configuration tools to Maemo device, and installation of necessary
clients to the host PC which is used to access Maemo PC connectivity services from
the Maemo device. The Maemo PC connectivity product includes many standard
services available for Linux PCs by default. Most of the services require user
expertise to be able to install and configure them correctly. Maemo PC connectivity
aims to provide easy installation and configuration in both parties to make use of
these services. For the purpose of this thesis, I use a host machine running Linux OS
to communicate with the Maemo device. The procedure can be described below.

1.3.2.1 Installation in Maemo device

In order to install Maemo PC connectivity on Maemo device, the Maemo extras-devel
repository should be added. This repository which is targeted for Maemo developers
includes a lot of community software. The applications in this repository are being
developed and can have bugs. Therefore, it is not added by default. To add this
repository, open the “Application Manager”, then click “Repository catalogs™ click
“Add” and fill all the fields like the following screenshot:

APPENDIX 1 9(20)

New catalogue

C1CIIEEIEEE Maemo extras-devel
WELEELLIGESI v.maemo.org/extras-devel

DIl llldle[sBl fremantle

Components: RS non—free|

Figure 4. Adding new repository in Maemo device.

After that, refresh the application list and the package named maemo-pc-connectivity
should be available. Installation of this package will install all the necessary Maemo
PC connectivity components for this mobile device.

1.3.2.2 Installation in Linux host machine

Start Linux machine, and click System -> Administration -> Synaptic Package
manager to open the Synaptic application manager. In opened window, under
“settings” menu, select “Repository” option.

Click on “Add” button and add the following repository to the collection:

http://pc-connectivity.garage.maemo.org/repository intrepid
main

APPENDIX 1 10(20)

Ubuntu Software | Third-Party Software | Updates Authentication Statistics

& http://mirrors.cpv.signove.com/ubuntu/ jaunty multiverse [~]
& http://mirrors.cpv.signove.com/ubuntu/ jaunty-updates multiverse
http://mirrors.cpv.signove.com/ubuntu/ jaunty-backports main restrict
http://archive.canonical.com/ubuntu jaunty partner —
http://archive.canonical.com/ubuntu jaunty partner (Source Code)

- http://mirrors.cpv.signove.com/ubuntu/ jaunty-security main restricted
http://mirrors.cpv.signove.com/ubuntu/ jaunty-security universe
http://mirrors.cpv.signove.com/ubuntu/ jaunty-security multiverse

- http://mirrors.cpv.signove.com/scratchbox stable main
http://mirrors.cpv.signove.com/virtualbox jaunty non-free
http://pc-connectivity.garage.maemo.org/repository intrepid main
http://scratchbox.org/debian/ maemo4-sdk main

: http://scratchbox.org/debian/ maemo5-sdk main Fal

\ Bl
4 Agd.. || [SrEdit. || = Remove \(0)Add CD-ROM...|

(=]
&
=]
&
&
&
Eik
[

|@Bevert| | aglose|

Figure 5. Adding new repository in Linux machine.

Click on “Close” button and reload the application list. After this, user should be able
to search and install package named host-pc-connectivity.

File Edit Package Settings Help

Quick search -

o e S scoccmeainty]| ook,

ApPly Wapgiy all marked changes

Reload Mark All Upgrades

All s| | Package Installed Version | Latest Version | Description H
Amateur Radio (universe) host-pc-connectivity 0.6 06 Host PC-Connectivity network manager support.
Base System =||0 :host-pe-connectivity-nogui 06 Host PC-Connectivity network manager support.
Base System (restricted) [43 traceroute 20121 Traces the route taken by packets over an IPv4/IPV6 network
Communication [ssmping 09.1-1ubuntul check your multicast connectivity
Communication (multivers{ ||[J° :sntop 1434 A curses-based utility that polls hosts to determine connectivity
Communic (restricted| |[J: : libdbd-odbc-perl 1171 Perl5 module for an ODBC driver for DBI
Communication (universe)| || - hobbit-plugins 20080705 plugins for the Hobbit network monitor
Cross Platform O miredo 1152 Teredo IPv6 tunneling through NATs
Cross Platform (multiverse, | |[]: - apt-zip 0.18 Update a non-networked computer using apt and removable media
Cross Platform (universe) O ifupdown-extra 013 Network scripts for ifupdown
Development [:agsync-dev 0.2-pre-10 Development files for AvantGo and Pocket PC synchronization =
D N ,' Host Pl ivity network support.
pment (universe)
_— @ | Get screenshot|
Documentation (multiverse This metapackage configures the hostpc to be used together with the
Documentation {universe) maemo-pe-connectivity.
Editors
Editors (multiverse)
Editors (universe)
Electronics (multiverse)
Electronics (universe) [~

ey D)
Sections

Status

Custom Filters

\ \
\ \
[origin |
\ \
\

Search Results |

151 packages listed, 1620 installed, 0 broken. 1 to installjupgrade, 0 to remove

Figure 6. Host-pc-connectivity package installation.

APPENDIX 1 11(20)

1.3.2.3 Creating environments

With aemo PC connectivity, it can be used the idea of environment to contextualize
the configuration of connections and tools. For instance, you can create an
environment named “Home” that has the USB connection and the NFS tool
configured and an environment named “Office” that has the WLAN connection and
the SBRSH tool configured. When you select an environment, all connections and
tools configured are applied.

In order to configure an environment on Maemo device, go to Settings -> Control
Panel -> Connectivity -> PC connectivity manager. On PC connectivity manager
window, click on “Advanced” button, then click on “New” button to add new
environment. Set the environment name “Home” and click on “Ok”. Click “Save” to
save the configuration changes.

Environment Manager

Default

Home

Office
Select

New

Delete

Figure 7. Maemo environment manager.

User can also configure connections and tools to be applied in that environment for
instance USB networking.

After configuring your environments, user can switch between them by using the
Connection Switcher applet which is available in the status bar:

APPENDIX 1 12(20)

Office
None

Environments: Home

USB @ Bluetooth @@ Wlan

Figure 8. Maemo environment selector.
1.3.2.4 Connection establishment

On Maemo device, connection can be easily configured by using Maemo PC
connectivity applets. User can have multiple options for the connection: USB,
WLAN or Bluetooth. In my case, I use USB connection which is the easiest way.
Connect the Maemo phone with the Linux machine. There will be a popup window
asking to choose between Mass storage mode and PC suit mode. You should just
click outside the popup to keep the mode previously set by Maemo PC connectivity.
In order to set up correctly, follow the following steps:

e Disconnect the USB cable.

e Run Setting -> Control Panel -> Connectivity -> PC connectivity
manager.

e Check “USB” option.
e Press “Apply” button.

The USB mode will be switched to USB networking mode with the following default
values:

APPENDIX 1 13(20)

DHCP Server: enabled

IP address: 192.168.2.15
Gateway: 192.168.2.14
Netmask: 255.255.255.0

Connect the USB cable to the host PC and the Maemo PC connectivity has been
successfully established.

1.4 Building and Debugging a QT Maemo application

Open Esbox. Point to File -> New and click "New Maemo 5 C++ Project". In
Template Project Type window, choose "Maemo 5 Hello World" Project and click
"Next". In Project Configuration windows, choose both configurations
FREMANTLE_ARMEL and FREMANTLE_X86 as target architectures for your
application. By doing this, the application can deploy and run in both x86 architecture
which is a Linux machine (in testing phase) and Armel architecture which is Maemo

machine (in final running version). Click Finish to leave other fields default values
and create a new project.

G repicatons vaces spem DO 00A W Lamte il 3@ Mon Oct 25, 934 PM [§]
™ IM I Lk CH % ro)e 7%

ject’ X
Fle Edit Navigate Search Run Project Wing

Project Configuration

(i w @ & [dv G~ Select the project location and select the initial build E

I | WESbox
configurations

=) >3 =0

= 0/ £ outline 2 =o
Project name: [helloworld

An outline is not available.
R @ Use defautt lacation
b £ gthelloworld
Build configuratians:
Check the configurations to include in the project, Double-click to change
the active configuration (shown in bold).
= [¥](7]) seratchbox 1 (jseratehbox/)
= [FREMANTLE_ARMEL
[¥] % FREMANTLE_ARMEL (Debug)
[¥] %! FREMANTLE_ARMEL (Optimize d)
~ [¥] ® FREMANTLE_X86
[¥] % FREMANTLE X86 (Debug)
[¥] 4 FREMANTLE_X86 (Optimized)

[problem

@) Error Log| € Progress | 47 Search f-=0
No console|
Configure Installed Targets
@ Fiter build targets based on selected template
z Next > | Einish. cancel
0 items selected —
[@] [@ (Login - Mozila Firefox] |[mé ESbox - Esbox [lam.rtf (~) - gedit] T &

Figure 9. Qt Maemo project wizard.

APPENDIX 1

If there is a dialog asking if you want to check for required build, runtime, and debug
packages, Choose "Yes" to allow the application to get the latest build packges. In
validate installed packges window, check both "Update package list" and "upgrade

installed packages" and click "Finish".

Checking Packages

This page shows the installation process. Before finishing, configure the settings and verify your network
preferences.

Update package lists HTTP timeout: |30

Upgrade installed packages "~

Set up your proxy settings, if neaded, an the Network Connections page.

5

Cancel

Figure 10. Nokia closed binary packages update.

After creating, the new project will have main.cpp and a class MyWindow where the
Ul is designed, just like normal QT application. Moreover, Esbox will automatically
create some configuration files in debian folder which are needed in creating
installable deb file. In these files, the file named "control" is the most important file
defining the package information. You can also modify this file with your

information

APPENDIX 1 15(20)

7 == helloworld
b alincludes
= (Lsrc
P [g main.cpp
P [mywindow.cpp
P [n mywindow.h
i Makefile.am
= (= debian
changelog
compat
control
copyright
rules
b =po
autogen.sh
ag configure.ac
COPYING
COPYING LESSER

| Makefile am

Figure 11. Qt Maemo project structure.

Having a look at file mywindow.cpp, you can see in the function
"on_menu_helloworld", it uses new QT component Hildon::Note which is included in
library hildonm.h. This is one of additional UI libraries for creating maemo
application special looking and feel. This specified sample component will have
default MAemo 5 look and feel and specific behavior under Maemo OS.

void MyWindow: :on_menu_helloworld()
{
/* Create and show a "Hello World" dialog */

Hildon: :Note helloworld_note (Hildon::NOTE_TYPE_INFORMATION,
("Hello World!!!™));

helloworld_note.run();

Start Scratchbox: In Esbox window, on the standard toolbar, click on "Start X server"
button to start Xephyr server. After that, click on "Start Maemo application
framework" to start Scratchbox.

APPENDIX 1 16(20)

T Appiications piaces_sysem @ O OA B tamie uff 4 Mon oct 25, 1017 pm [3]
L4 ESbox - helloworld/src/mywindow.cpp - ESbox ==
File Edit Refactor Mavigate Search PBun Project Window Help
row & g e @ @ v O~ Qv G~ | = o~ cow X~ | @ 0 (o 2} i"ggng
t Project Explorer 2 =0 | [§ mywindow.cpp £ [l control = 0|5 outline & =0
= _".'I - m main.show alll); < AW o~
b £ eldoc-qt ‘m

CephyT on =2 [[iceyboard)i == o glbmm/ilenh

u

< £ helloworld 2 gtkmm.h
b & Includes = hildonmm h
< @src U mywindowh
b [& main.cpp @ MyWindow:MyWindow
® Mywindow::~ Mywindo

Mywindow::on_menu_

b [q mywinaawq
> [mywindow:H
i Makefile.an{

< (= debian

changelog = S 3 M AEMD
compat &

control
¥ Maemo Select
copyright
rules 7
b @ po 3 Ovi Store I D)
autogen.sh Progress| 4 Search i)
ad| configure ac S , E- -
CORYING -
COPYING.LESS
i Makefile am
b ESathelloword ~ ——————— et ra': Mo such file or dire
] D]
@) [@ [Login- Mozila Firefox] || M Esbox - helloworldssrc... |[[*lam.tf (~) - gedit |[D) Xephyr on 2 (ctrl+shi... | O &

Figure 12. Starting Scratchbox inside Esbox IDE.

Run sample application: Right-click on the project and choose Build configurations -
> Set active -> FREMANTLE_XS86 to activate x86 mode. Right-click on the project
again and choose Run as -> Maemo Local Application

APPENDIX 1 17(20)

| = Xephyr on 2 ctriFshiftgrabs mouse and kceyboard 1) =[x

Say Hello

Xephyr on 2 crrixshift grabs mouse and keyboard [

Hello World!!!

Figure 13. Sample Maemo application.

1.5 Creating debian package and installation process on Maemo phone

Like what is stated before, in order to create installable debian package to install in
other Maemo device, developer has to create a "debian" folder containing some
configuration files. These files contain basic information of the building process for
instance software information, changelog, copy right, etc. When creating sample
Maemo 5 C++ project, Esbox automatically adds those config files into the project.
Developer can edit these files to update package information.

Among these file, developer can modify the file named "control" to edit package
information like package name, description, architecture, etc. Most importantly, the
build-Depends option specifies additional libraries needed prior to application
deployment. Whenever software developer uses any additional library, it should be

APPENDIX 1 18(20)

listed here. When installing the deb file in Maemo OS, the system will check if all
required libraries listed here are already installed in the system. If there is a library
missing, installation will fail and user is notified about missing library. Below is one
sample control file.

Source: helloworldl8n

Section: unknown

Priority: extra

Maintainer: Lam Le <lamle@wapice.com>

Build-Depends: debhelper (>= 5), libhildonmm-dev (>= 2.1.1
), libosso-dev (>= 2.21)

Standards-Version: 3.7.2

Package: helloworldl8n
Architecture: any
Depends: ${shlibs:Depends} ${misc:Depends}

Description: Hello World C++

Creating debian package: Right-click on the project and choose Debian package ->
Build debian package. On the Select Target window, choose FREMANTLE_ARMEL
as the target architecture. After that select a folder to put generated debian file and
click OK, the building process will start.

APPENDIX 1 19(20)

Debian Package Reader ¢
Built successfully - helloworld1Bn_0.1_armel.deb

File Size | Location

changelog.gz 179 jusrishare/docfhelloworld18n
copyright 150 fusrfshare/docfhelloworld18n
hellowarld 19112 fusrfbin

helloworld-il8n.mo 391 fusrishareflocale/pt_BRLC_MESSAGES
helloworld-il8n.mo 347 jusrishare/locale/en_GB/LC_MESSAGES

Figure 14. Creating debian package for Maemo device.

After the building process finishes and the debian file is generated, user can simply
copy the file to Maemo device via USB cable and install the file in the phone by the
following command:

sudo gainroot //get root previledge

apt-get —-f install <filename>.deb

The -f option will allow the system automatically install missing packages if needed.

Using Esbox, developer can also have the option to install the application directly to
the phone if Maemo PC connectivity has already been established. Right-click on the
project and select Debian Package -> Install Debian Package On Target. In new open
dialog, choose Maemo device USB or Bluetooth or WLAN ad-hoc depending on
your connection and click Finish, the created debian installable file will be installed
in the Maemo phone directly.

APPENDIX 1 20(20)

Deploy Debian Package *
Deploy & Debian package to the target

Project Name:

Package Locatic sersflammfhome/lamworkspace/helloworldtaraetihellowerldl8n_0.1_armel, deb-‘ [Browse... ‘

Target:
w [Z] Remote Connections

B Maemo device (USB]) (192.168.2.15)

B Maemo device (Bluetooth) (192.168.3.15)

& mMaemo device (WLAN ad-hoc) (192.168.4.15)

B mMaemo device (user-configured) (PLEASE-CONFIGURE-ME.LOCAL)
= [Z] Scratchbox 1 (fscratchboxy)

8 FREMANTLE_ARMEL

B FREMANTLE_X86

Install package on target

@ [Mext >][Finish H Cancel]

Figure 15. Deploying debian package directly to Maemo phone.

After this step, the application should be running in the phone. However, this kind of
deployment is only targeted for developers to debug the application on the phone.
When user closes the application, it will be removed from the phone. In order to have
a perfectly running version of the application on the phone, developers have to create
an installable debian file and install it in the phone. This procedure has been
described in previous chapter.

APPENDIX 2 1(6)

2 MADDE - MAEMO DEVELOPMENT TOOL ON WINDOWS

Windows user can also experience Maemo development by a tool created by Nokia
named Madde (Maemo Application Development and Debugging Environment). The
purpose of this tool is to make the development less painful and easier for developer
to start. Below I will give a description about development process using this tool.

2.1 Introduction

Madde is a Maemo application development tool in Windows platform. This tool can
be integrated with developer preferred tool Qt creator. Developers can use Qt creator
to code and compile the application either for Windows platform or Maemo platform.
However, this tool is not officially published yet. Currently it is a ‘Technology
Preview’ of a new development tool for Maemo. As a result, it is not so stable and
there might be a case that some of the components do not work. Nevertheless, this is
a quite interesting and easy tool for developer getting familiar with Maemo
development, developers will be able to build project in Qt Creator for maemo
device, and deploy, run and debug the application with a few mouse clicks.

Advantages of Madde:
e Windows development possibility.
¢ Include already-built tools which can generate installable deb file directly.

e Connect and deploy directly to maemo phone through an application on
the phone named Mad Developer.

Disadvantages of Madde:

¢ Do not have maemo simulator. Consequencely, it is hard to debug the
application on maemo platform.

¢ Installation of new library or new packages to the SDK is not supported.
There are some workarounds for this but it is not easy and not always
successful.

APPENDIX 2 2(6)

2.2 MADDE installation on Windows machine
Download and install Madde from here its official website /17/.

Download and install Qt Creator: As Madde is currently just an experimental project,
it is not supported in the official release of Qt Creator. In order to get the version
supports Madde, developer should download the nightly-build version of the latest Qt
Creator from its website /18/. During installation, in addition to basic components,
the components named "MinGW" and "Post mortem debugging" of Qt Creator should
be also installed.

Bt Gt Creator 1.3.80 Setup

Chooze Components
Chooss which Features of Ok Creator 1,380 you want to inskall,

Check the components you wank o instal and uncheck the companents you don't want ko
install, Click Mext bo continue.

Select componentsto istall | qrerestor | || Do eden
[] i -
[] Create Desitop Sharkout
[] Svwisian ARM Device Deb
E Post morbern debugoing

Space required: 175.4MB

Figure 16. Qt Creator nightly-build version installation.

Configure Qt version in Qt Creator to use Madde library: In Qt Creator, click on
Tools-> Option and in Options window, choose Qt4 -> Qt versions. Click on Add
button to add new Qt version and specify the location of Madde gmake:

c:\madde\0.6.14\targets\fremantle-gqt-0951\bin\gmake.exe

APPENDIX 2 3(6)

& Options @

"! Ot Versions

H-Ernironmeant | -
B Texk Editer Gt yersions

[Fakevim T i

- Locakor | Mame gmake Location Debugging Helper |
& Help = futo-datected

o et QtinPATH <ot fourds @
[# Projects =1 Maraal

Gt Mersions|
S50 SDKs |
Manmo Doy
14 il
- Debugger
- Designer
B Wersion Conrol
H Code Pasting

¢ %)

Wersion hams: Maemﬁ k4.5 |
amake Location: | C/IMADDELD.6. 14lkargetsliremantle-ot-0951 niquake £xe
Debupging Helpar: « Show Log

Found QF versian 4.5.3, wsing mbspec default (Masmao)

Lo I concat |[appty |

Figure 17. Adding MADDE gmake library.

Click OK to close Options window and your Qt Creator can deploy application in 2
platforms: Windows with standard qmake and Maemo with new madde maemo5
qmake.

2.3 Configure phone connectivity with Qt Creator

In order to deploy, test and debug the application on Maemo device, the connection
between windows PC and the device should be established. The configuration is
divided into 2 parts: Setting up Windows environment and installation of software in
mobile device.

2.3.1 Device software installation

Open the application manager and enable the Extras repository if it is not already
enabled.

Go to Download/Development/mad-developer and install the client.

APPENDIX 2 4(6)

Connect your phone with the PC by Usb cable, wireless connection or Bluetooth
connection. In this case I use USB cable.

Start the client on maemo device. Click on “Mange Usb”. On new open tab, click on
“Load g_ether” and then click “Close”.

£ Mad Developer

RHetwork configuration. Tap Lo refresh

wsho
wiand

gprsd

Madule in use g_ether

Load Load Load
g_nokia q_file_storage o_ether

Figure 18. Mad-developer.

After that you can set up the Usb settings. Click on “Edit” to open Network
Configuration Settings tab. Click on “Configure” and your client is set up for the
connection with your PC. In this case the IP address of the phone in the interface
with the PC is 192.168.2.15.

- 1302 EB‘: . Mad Deweloper
Hetwork configuration. Tap to refresh
usho

wilkanl

gprsl

IP Address 192 1682 15 B useohep

Hetmask 255.255.255.0 Cancel

. Defauilt route Canfgure

Figure 19. IP address configuration.

APPENDIX 2 5(6)

2.3.2 Set up Windows environment:

Download PC-Connectivity from its website /19/ and install it to your computer.
When installing, in addition to basic options, choose also the option
“UsbNetworking”. Connect your device with the PC. The client should be configured
as described above. Choose "PC suite mode" as connection method. User should see
those configurations below:

Pc-connectivity usb networking

TYPE! |taticIP v
IP configuration;

P: [19z . 168, 2z . 14 |

Mask: [255 | 255 , 255 . 0

| appky | [Exxit]

Figure 20. PC connectivity usb networking.

Click on “Apply” and you will see a notification that a new connection with your
mobile phone has been established.

2.3.3 Qt Creator configuration

After the configuration between your computer and mobile device has been
established, open Qt Creator to configure so that it can deploy the application on both
platforms Windows and Maemo. The Windows platform is configured by default, we
can add the Maemo platform in the configuration window. Click on Tools->Options,
in Options window click on Qt4->Maemo Device. In Memo Device Configurations
window, click on Add to add new device and fill all the information like the
following screenshot.

APPENDIX 2 6(6)

+| Maemo Device Configurations
4 Environment
ST |
Locataor Remove
+ Help
88
Projects ez
= Q4 il T |
Ot Yersions Configuration Name: | MaemoS Device Deplay Key ...
S0 Dk Device type: &) Remate Device () Lacal Simulator
emo Dev

H Chake Authentication type: (3 Password (O Key
+ Debugger v
- Designer Hosk Name: 192.168.2.15
Yersion Control : -
#l- Code Pasting S5H Part: 22

Gdbserver Part: 10000

Connection Timeout: ISIJ

User Name: developer

Password: ssssee

Private key file: rruments and Settingsidwilms).sshiid_rsa | | Browse...

Mo current best results available.
£ >

[ok [canesl | [sy

Figure 21. Qt Creator network configuration.

192.168.2.15 is the IP address of your Maemo phone. You can get the password from
Mad developer on your Maemo phone. On Mad developer, click on ‘Developer
Password’ to generate a password for Qt Creator. You should keep this window open
as long as Qt Creator can connect and deploy to your phone. The password changes
every time you open Mad Developer.

— 16:25 %D;; * Mad Developer

Network configuration. Tap to refresh.

usb0 192.168.2.15 255.255.255.0 -
wlan0 -
gprs0 -

Password for ‘developer’ user generated!
Password is removed when Close button is clicked

axjusk

Figure 22. Mad developer temporary password.

Finally, Qt Creator can deploy application on both Desktop and Maemo Device.

