

Hidajete Isa

WEB BASED GUI MANAGEMENT FOR

FLEXINT22 SHDSL.BIS MODEM

Technology and communication

2011

FOREWORD

First of all I want to thank my family, especially my mother who has supported

me from the beginning, her encouragement is what kept me motivated and moved

forward. I also want to thank my friends who supported me.

Secondly I want to thank Pekka Lappalainen, R&D Manager, for giving me this

opportunity to do the bachelor thesis at their department. I also would like to ex-

press my sincere gratitude to my instructor Tommi Lundell, SW Team leader, for

his great help and guidance during the entire project. A big thank you goes to all

the co-workers that helped with this project.

Finally, I wish to thank my supervisor Antti Virtanen, senior lecturer, for the

valuable advice and support he has given me in the writing of this report.

15.2.2011 Helsinki

Hidajete Isa

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Tietotekniikan koulutusohjelma

ABSTRACT

Author Hidajete Isa

Title Web Based GUI Management for FlexiNT22 SHDSL.bis

Modem

Year 2011

Language English

Pages 51

Supervisor(s) Antti Virtanen

Instructor Tommi Lundell, SW Team Leader

The purpose of this thesis was to design and implement a prototype of a web

based GUI management for FlexiNT22 SHDSL.bis modem at Nokia Siemens

Networks BBA NBMS division.

Web based GUI management gives an administrator the ability to configure and

monitor FlexiNT22 over the Internet using a web browser. The most direct way to

accomplish this is to embed a web server (Embedded web Server) into the mo-

dem, and use that server to provide web-based management user interface con-

structed using HTML language.

The project involved familiarizing with the operations and characteristics of Flex-

iNT, searching for an appropriate web server, examining the features and the

compatibility with the software, evaluation and implementing a demo version.

The evaluation consists mainly of three parts: Surveying web servers and further

choosing the most suitable web servers for the evaluation. In the third place, we

were concerned with defining criteria of the embedded web server features for

evaluation.

The project was carried out using KLone embedded web server, which is open

source software. The study describes how to program HTML pages in C language

and how to implement web pages. As result pages could be embedded into a sin-

gle executable binary file that contained KLone’s HTTP/S server.

Keywords Embedded web server, web-based gui management, shdsl

 modem, html, C language

VAASAN AMMATTIKORKEAKOULU

Tietotekniikan koulutusohjelma

TIIVISTELMÄ

Tekijä Hidajete Isa

Opinnäytetyön nimi FlexiNT22 SHDSL.bis modeemin web-hallintasovellus

Vuosi 2010

Kieli Englanti

Sivumäärä 51

Ohjaaja Antti Virtanen

Valvoja Tommi Lundell, SW Team Leader

Tämän opinnäytetyön tavoitteena oli suunnitella ja toteuttaa graafinen web-

pohjainen käyttöliittymä prototyyppi FlexiNT22 SHDSL.bis päätelaitteeseen

Nokia Siemens Networksin NBMS (Narrowband Multiservic) osastolle.

Web-hallintasovellus antaa järjestelmänvalvojalle mahdollisuuden määrittää ja

valvoa FlexiNT22 modeemia internetin kautta käyttäen web-

selainta.Toteuttaakseen tämän tarvitaan sulautettu Web-palvelin joka upotetaan

modeemin sisään, ja käyttäen tätä palvelinta luodaan web-hallintasovellus HTML-

kielellä.

Projekti jakautuu kahteen osaan: tutkiminen ja implementaatio. Tutkimukseen

kuului perehtyminen FlexiNT:n toimintaan ja ominaisuuksiin, sopivan web-

palvelimen etsiminen ja sen ominaisuuksien tutkiminen ja soveltuvuus

ohjelmiston kanssa. Sulautettu web-palvelin on ideaali tähän projektiin.

Valintamenetelmiin kuului valita kolme sopivinta palvelinta ja tutkia niiden

ominaisuudet.

Implementaatioon kuului suunnitella ja toteuttaa toimiva web-hallintasovellus

runko.

Työ toteutettiin käyttäen KLonen web-palvelinta, joka on avoimen lähdekoodin

ohjelmisto. Tässä työssä kuvataan, miten ohjelmoidaan HTML-sivuja käyttäen C-

kieltä ja miten ne toteutetaan. Lopputuloksena web sivut voidaan upottaa yhteen

binääri ohjelmatiedostoon, joka sisältää KLone HTTP/S-palvelimen.

Asiasanat sulautettu web-palvelin, web-pohjainen käyttöliittymä,

 shdsl modeemi, html, c-kieli

5

SYMBOLS AND ABBREVIATIONS

ASCII American Standard Code For Information Interchange

ASP Active Server Pages

ATM Asynchronous Transfer Mode

BBA Broadband Access

BSS Business Support Systems

CGI Common Gateway Interface

CLI Command Line Interface

COSI Common Operating System Interface

CPU Central Processing Unit

CSS Cascading Style Sheets

CVS Concurrent Versions System

DAA Digest Access Authentication

DSLAM Digital Subscriber Line Access Multiplexer

EFM Ethernet in the First Mile

EFMC EFM over Copper

EOC Engineering Order Channel

EWS Embedded Web Server

FE Fast Ethernet

GE Gigabit Ethernet

6

GPL General Public License

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IIS Internet Information Services

IP Internet Protocol

ISP Internet Service Providers

LMI Local Management Interface

MAC Media Access Control

MIB Management Information Base

MII Media Independent Interface

MIME Multipurpose Internet Mail Extension

NBMS Narrowband Multiservice

NMS Network Management System

NVT Network Virtual Terminal

OAM Operation Administration and Maintenance

OS Operating System

OSE Operating System Embedded

OBS Operations and Business Software

7

OSS Operation Support Systems

PAM Pulse Amplitude Modulation

PMA Physical Medium Attachment

PMD Physical Medium Dependent

PWE Pseudo Wire Emulation

RAM Random Access Memory

RCS Revision Control System

ROM Read Only Memory

RSTP Rapid Spanning Tree Protocol

RTOS Real Time Operating System

SHDSL Single-pair High speed Digital Subscriber Line

SNMP Simple Network Management Protocol

SSH Secure Shell

SSI Server Side Includes

SSL Secure Socket Layer

STP Spanning Tree Protocol

TC Transmission Convergence

TCP Transmission Control Protocol

TDM Time Division Multiplexing

TLS Transport Layer Security

8

URL Universal Resource Locator

UTP Unshielded Twisted Pair

VCS Version Control System

VFS Virtual File System

VLAN Virtual Local Area Network

XML Extensible Markup Language

9

CONTENTS

FOREWORD

ABSTRACT

TIIVISTELMÄ

SYMBOLS AND ABBREVIATIONS

1 INTRODUCTION .. 12

1.1 Project description .. 12

1.2 Company Background .. 13

2 FLEXINT22 SHDSL.bis MODEM .. 14

2.1 Overview ... 14

2.2 General Features ... 14

2.3 Development Environment ... 16

2.4 Software Platform ... 16

2.5 Operating System .. 17

2.6 TDM Interface .. 18

2.7 Fast Ethernet Interface .. 18

2.8 SHDSL Interface ... 19

2.9 SNMP Protocol ... 19

2.10 Telnet Protocol .. 20

2.10.1 The Network Virtual Terminal (NVT) .. 20

2.10.2 Options and Option Negotiation ... 21

2.11 EFM – Ethernet in the First Mile .. 21

2.12 ATM – Asynchronous Transfer Mode .. 22

2.13 General Web Server .. 22

2.14 Embedded Web Server ... 23

2.15 HTTP – HyperText Transfer Protocol .. 24

3 WEB SERVER SELECTION .. 27

3.1 Requirements for Embedded Web Servers ... 27

3.2 Embedded Web Server Solution Survey... 27

10

3.3 The most Appropriate Solution ... 29

3.3.1 KLone .. 29

3.3.2 Nichestack HTTPServer.. 33

3.3.3 GoAhead Web Server ... 34

4 WEB GUI DESIGN ... 35

4.1 Interface Design .. 35

4.2 Web page styles and formatting .. 37

4.3 Web Development Tools .. 37

5 WEB GUI IMPLEMENTATION .. 38

5.1 Interface Implementation .. 38

5.2 Client-Server Communication .. 38

6 RESULTS ... 45

6.1 Main Page ... 45

6.2 Configure page .. 45

6.3 Line page ... 47

7 CONCLUSION .. 48

8 REFERENCES ... 49

11

LIST OF FIGURES

Figure 1. FlexiNT22 applications. [Fig1] ... 14

Figure 2. FlexiNT22. [Fig2] .. 15

Figure 3. FlexiNT22 SW environment. [Fig3].. 17

Figure 4. TCP/IP Protocol Suite. [Fig4].. 20

Figure 5. ATM Cell. [Fig5] ... 22

Figure 6. HTTP/1.0 One TCP connection per request. [Fig6] 25

Figure 7. HTTP/1.1 Multiple requests per TCP connection. [Fig7] 26

Figure 8. Example page of running Klone application. .. 31

Figure 9. User interface design structure. ... 35

Figure 10. All menu buttons and menu buttons with sublinks. 36

Figure 11. Menu frame HTML source code. .. 36

Figure 12. Sequence diagram between client and server. 39

Figure 13. frame_identifier[] variable. ... 40

Figure 14. Showtop and showframe.. 41

Figure 15. Finished interface with three frames.. 42

Figure 16. Main page. ... 45

Figure 17. Configure page... 46

Figure 18. Line configuration page ... 47

12

1 INTRODUCTION

1.1 Project description

Rapid technology development in the last decade has put tremendous impacts to

the network industry. We have undergone 2G to 3G upgrade and now even the 4G

is on the way. Network service providers are equipped with up to date solutions to

secure high efficiency operation as well as the best network quality for the end

users. Today most operators or enterprises are using SHDSL modems not only

because of its multi built in feature of transferring high-speed data in both direc-

tions and moving data farther and faster than earlier solutions but also the ability

to improving spectral compatibility to pre-existing and emerging services. One of

the drawback of FlexiNT22 is that it doesn’t support web GUI management which

means an on-site visit seems to be a must regarding any configuration update.

This can be translated as huge opex to the operators shoulder. This thesis project

is conducted in co-operation with my work place NSN to provide a solution by

adding the web GUI management feature onto the FlexiNT22 SHDSL.bis modem.

The main focus includes choosing the most suitable embedded web server, create

a simple process and design user friendly web GUI structure and implement a

demo version sample.

13

1.2 Company Background

Nokia Siemens Networks is one of the largest telecommunications hardware,

software and services companies in the world. Operating in 150 countries world-

wide with more than 60 000 employees, it’s headquarter is in Espoo, Finland.

Nokia Siemens Networks was established in 2007 as the result of a joint venture

50/50 between Nokia Corporation and Siemens AG.

Nokia Siemens Networks provides communication services. It offers a complete

portfolio of mobile, fixed and converged network technologies as well as profes-

sional services including consulting and systems integration, network implemen-

tation, network design, maintenance and care, and managed services, including

operations support, network operations, infrastructure and third party manage-

ment.

The main products of the company include Internet and mobile communications,

services, radio access, broadband access, converged core and OSS/BSS solutions.

Its major manufacturing sites are in China, Finland, Germany and India. About 1

billion people are connected through its networks. The customer base of Nokia

Siemens Networks includes 1,400 customers in 150 countries (including more

than 600 operator customers). [1]

14

2 FLEXINT22 SHDSL.bis MODEM

2.1 Overview

FlexiNT22 is a Network Terminal to support Carrier Class services over the local

copper loop. The subscriber services that FlexiNT22 supports are Ethernet &

TDM over SHDSL.bis.

FlexiNT22 works to the Central Office equipment which can be DSLAM for the

termination of the SHDSL.bis lines. FlexiNT22 can also work in a box to box

configuration acting as a network terminal and a line terminal. FlexiNT22 is flexi-

ble, providing different ways of deploying TDM and Ethernet services over

SHDSL, suitable for mobile backhaul or the enterprise market.

SHDSL.bis line coding supports line speeds up to 5.7 Mbit/s over a single copper

pair. FlexiNT22 supports up to 4 SHDSL.bis bonded lines delivering symmetrical

bandwidth of 22.8 Mbit/s.

The Figure 1 below illustrates the basic applications with FlexiNT22s, and Flex-

iNT22 combined with DSLAM or used as standalone connection. [2][3]

Figure 1. FlexiNT22 applications. [Fig1]

2.2 General Features

FlexiNT22 provides the following functionality:

• Support for up to 4 SHDSL.bis bonded lines

• 2 x 10/100Base-T Ethernet Interfaces

• 2 x E1/T1/J1 TDM interfaces

15

• Support for SHDSL.bis for ATM & EFM

• Support a wide range of Layer 2 Ethernet features

 - Bridging : 2K MAC table

 - VLAN tagging : 802.1Q

 - VLAN Q in Q supported

 - TLS supported

 - STP, RSTP supported

 - EFM OAM supported

• SNMP fault management

Figure 2 below shows FlexiNT22 interfaces.

Figure 2. FlexiNT22. [Fig2]

16

2.3 Development Environment

Tools for developing applications are a source code editor, version control system,

a compiler and a debugger. FlexiNT22 is developed under linux environment

(host) using RedHat Enterprise Linux platform where all application developing

tools are installed. To access the developing tools from host are used X-terminals.

An X-terminal is a display/input terminal for X Window System client applica-

tions.

Source code editor for writing application is used Sniff+ 3.2.1 editor which has

supports to various version control tools such as RCS, CVS, ClearCase. For ver-

sion control system (VCS) is used IBM’s Rational ClearCase, it can handle large

binary fills, large number of file, large repository sizes and versioning of directo-

ries. As for compiling is used gcc-compiler (GNU Compiler Collection). For de-

bugging is used Trace32 tool with Lauterbach’s Power Debug II Ethernet debug-

ger.

2.4 Software Platform

FlexiNT22 has MPC8247 processor. The MPC8247 boot sets up the processor

environment, configures Flash and RAM access areas. Boot should be OS inde-

pendent so that it can be started without OS. Only dependency between boot and

application SW is file system and possibly some reused low level device drivers

can be same. The application SW is loaded by boot as one monolithic part to

RAM and executed from there. The application part can be stored in compressed

format in Flash file system.

17

Figure 3. FlexiNT22 SW environment. [Fig3]

Operating system is OSE-Delta, with COSI interface on top of it. The application

sybsystems are located in COSI tasks, which communicate with each other using

OS message passing technique. [4]

2.5 Operating System

A real-time operating system (RTOS) is a program that must respond to external

events within a limited time, and it must be a platform that supports real-time ap-

plications and embedded systems. When a user is waiting for the result of a com-

pilation in a personal computer, no error will occur if the result appears a few sec-

onds later than expected.

FlexiNT22 uses OSE (Operating System Embedded) Delta RTOS developed by

ENEA, a Swedish based company. OSE Delta is especially designed for distrib-

uted and fault-tolerant real-time systems.

OSE uses signals in the form of messages passed to and from processes in the sys-

tem. Messages are stored in a queue attached to each process. A 'link handler'

mechanism allows signals to be passed between processes on separate machines,

over a variety of transports.

18

2.6 TDM Interface

Time Division Multiplexing, a type of multiplexing that combines data streams by

assigning each stream a different time slot in a set. TDM repeatedly transmits a

fixed sequence of time slots over a single transmission channel. Within T-Carrier

systems, such as T-1 and T-3, TDM combines Pulse Code Modulated (PCM)

streams created for each conversation or data stream.

G.703 is a standard which originally described voice over digital networks. It's a

ITU-T recommendation which is associated with the PCM standard. Voice to

digital conversion according to PCM requires a bandwidth of 64 kbps (+/- 100

ppm), resulting in the basic unit for G.703. By multiplication this results in e.g. T1

(24 channels x 64 kbps + 8 kbps adding frame) 1544 kbps and E1 (32 time slots x

64 kbps(E0)) 2048 kbps.

G.704 (framing) is the framing specification for G.703. A carrier can 'steal' a

64kbps time slot (TS0) from a 2.048 Mbps line and use this to provide timing.

The result is that 31 time slots are left for data, which equals in a bandwidth of

1.984 Mbps.

G.703 service is typically used for interconnecting data communications equip-

ment such as bridges, routers, and multiplexers. It is transported over balanced

(120 ohm twisted pair) or unbalanced (dual 75 ohm coax) cable. [5][6]

2.7 Fast Ethernet Interface

Fast Ethernet is a local area network (LAN) transmission standard that provides a

data rate of 100 Mbits/s and is most referred to as 100BASE-T which is 10 times

faster than the older Ethernet 10BASE-T specification.

Fast Ethernet is also known as IEEE 802.3u and consists of three separate specifi-

cations that describe different physical-layer transmission schemes for Fast

Ethernet:

 The first specifications and the most popular is 100Base-TX, which oper-

ates over two pairs of copper wire known as Category 5 (CAT5) un-

19

shielded twisted pair (UTP), or over a shielded twisted pair (STP). One

pair is for receiving data signals, and the other for transmitting data sig-

nals.

 The second specification, 100Base-T4, operates over four pairs of CAT3,

CAT4 or CAT5 copper wires UTP with a signalling system that makes it

possible to provide Fast Ethernet signals over standard voice-grade CAT3

UTP cable

 The third specification, 100Base-FX, operates over multimode fibre-optic

cable and reaches distances up to two kilometres. [7]

2.8 SHDSL Interface

SHDSL - Single-pair High-speed Digital Subscriber Loop technology enables

high speed, symmetrical data transport or simultaneous data and voice transport

with N x 64 kbps at data rates up to 2312 kbps by fully exploiting current copper

wire infrastructure, used for transmission of telephone conversations. SHDSL

technology is especially suited for high bandwidth two-way, symmetrical video

transmission for teleconferencing, video remote education and similar purposes.

SHDSL is standardized by ITU-T recommendation G.991.2 in February 2001 also

known as G.SHDSL. After major updates to G.991.2 that were released in De-

cember 2003, G.991.2 is referred to by the standard's draft name of G.SHDSL.bis

or just SHDSL.bis. The updated G.991.2 features:

- support for up to four copper pair connections

- extensions to allow user data rates up to 5696 kbit/s

- support for Dynamic Rate Repartitioning, allowing flexible change of the

SHDSL data rate without service interruption. [8]

2.9 SNMP Protocol

SNMP (Simple Network Management Protocol) is a protocol for network man-

agement. It makes possible the exchange of management information between

network devices. It is part of the TCP/IP protocol suite. SNMP enables network

20

administrators to manage network performance, find and solve network problems,

plan for network growth. [9]

2.10 Telnet Protocol

Telnet is a network protocol used on the Internet. It is typically used to provide

user oriented command line login sessions between hosts over a LAN or the

Internet. The Telnet protocol is applied on a TCP connection to send data in AS-

CIIformat coded over 8 bits between which the Telnet check sequences come. It

therefore provides a communication orientated bi-directional system (half-

duplex), coded over 8 bits. Telnet clients have been available on most Unix sys-

tems for many years, and are available for virtually all types of computers. [11].

Figure 4 below shows the TCP/IP Protocol suite.

Figure 4. TCP/IP Protocol Suite. [Fig4]

2.10.1 The Network Virtual Terminal (NVT)

Telnet defines a standardized, fictional terminal called the Network Virtual Termi-

nal (NVT) that is used for universal communication by all devices. A Telnet client

takes input from a user and translates it from its native form to the NVT format to

send to a Telnet server running on a remote computer; the server translates from

NVT to anything representation the computer being accessed requires. The proc-

ess is reversed when data is sent from the remote computer back to the user. This

http://www.economicexpert.com/a/Unix.htm

21

system allows clients and servers to communicate even if they use entirely differ-

ent hardware and internal data representations. [10]

2.10.2 Options and Option Negotiation

Having Telnet clients and servers act as NVTs avoids incompatibilities between

devices, but does so by stripping all terminal-specific functionality to provide a

common base representation that is understood by everyone. Since there are many

cases where more intelligent terminals and computers may wish to use a more ad-

vanced communication feature or service, Telnet defines a rich set of options and

a mechanism by which a Telnet client and server can negotiate their use. If the

client and server agree on the use of an option it can be enabled; if not, they can

always fall back on the NVT to ensure basic communication.

2.11 EFM – Ethernet in the First Mile

Ethernet in the First Mile (EFM), also known as IEEE 802.3ah standard is a new

Ethernet technology targeted at access for copper and fibre media. EFM sets goals

for a short reach option of at least 10 Mbps up to 750 m, and a long reach option

of at least 2 Mb/s up to 2.7 km, but the standard does not limit systems to these

rates. Bonding of multiple copper pairs allows much higher throughput, providing

a viable alternative for end-users served only by copper.

Ethernet packets arrive through an MII (Media Independent Interface) interface. If

incoming data does not fully fill the transport link, flags are added between

frames. An optional aggregation layer breaks the packets into variable length

fragments which are forwarded to the transmission convergence (TC) sub-layer

are encapsulated with 64B/65B framing and transmitted via the (PMA/PMD) to

the wire. The receiver side restores the packets and removes padding added at re-

mote end to fill the TC frame.

A cross-connect layer connects between the Ethernet interfaces and physical links

so that one physical link can carry signals from multiple Ethernet interfaces, or

payload from one Ethernet interface can be carried over multiple physical

links.[11]

22

2.12 ATM – Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) is a technology that provides a single plat-

form for the transmission of voice, video and data at specified quality of service

using cell relay technology.

ATM was standardized by ITU-T in 1987. It is based on packet-switching and is

connection oriented transfer mode that uses asynchronous time division multi-

plexing techniques with the multiplexed information flow being organized into

small blocks of fixed size, called cells. As shown in Figure 5 a cell consists of 53

bytes, the first 5 bytes contain header information such as connection identifier,

while the remaining 48 bytes contain user information, or payload.

Figure 5. ATM Cell. [Fig5]

ATM networks are used in a variety of environments. For instance, it is widely

used in the backbone of Internet Service Providers (ISP) and in campus networks

to carry Internet traffic. [12]

2.13 General Web Server

Web servers, also known as HTTP servers, are computer software systems that

store and transmit information to web clients. Generally, web browsers include

Internet Explorer, Mozilla Firefox, Google Chrome, Apple Safari and Opera. A

web server is the repository for web documents, storing the information and their

display formats. A web server handles requests and passes documents back to the

browser. The browser performs the more difficult work of presenting the text, dis-

playing graphics, generating sound or video and running Java applets. When a

browser receives a file from a web server, the server provides the MIME (Multi-

purpose Internet Mail Extension) type of the file. The browser uses the MIME

type to establish whether the file format can be read by the browser’s built-in ca-

pabilities or not, or whether a suitable plug-in application is required to read the

23

file. Web servers use HTML to represent hypertext documents on a web browser

without a helper application. The web documents on the server can be static (e.g.,

stored as a read-only document) or created dynamically in response to parameters

supplied by the clients. General web servers, which were developed for general

purpose computers such as NT servers or Unix and Linux workstations, typically

require megabytes of memory, a fast processor, a pre-emptive multitasking oper-

ating system, and other resources. [13]

2.14 Embedded Web Server

A web server can be embedded in a device to provide remote access to the device

from a web browser if the resource requirements of the web server are reduced.

Underlying this reduction of the resource requirements of the web server is typi-

cally a portable set of code that can run on embedded systems with limited com-

puting resources, and which can be utilized to serve the embedded web documents

to the web browsers. This type of web server is called an Embedded Web Server

(EWS). By embedding a web server into a network device, it is possible for an

EWS to provide a powerful web-based management user interface constructed

using HTML, graphics and other features common to web browsers. EWSs are

used to convey the state information of embedded systems, such as a system’s

working statistics, current configuration and operation results, to a web browser.

EWSs are also used to transfer user commands from a web browser to an embed-

ded system. The state information is extracted from an embedded system applica-

tion and the control command is implemented through the embedded system ap-

plication. In many instances, it is advisable for embedded web software to be a

lightweight version of web software. Embedded environments are often more lim-

ited in resources than non-embedded systems, and hence increased efficiency of

resource usage is in order. Also, by limiting the functionality of certain embedded

applications, security and reliability can be enhanced. For network devices, such

as routers, switches and hubs, it is possible to place an EWS directly into the de-

vices without additional hardware. As more devices (such as home appliances,

manufacturing devices and medical instruments) are connected to the Internet, I

24

believe that EWS technology will be essential to making Internet devices more

manageable. [14]

2.15 HTTP – HyperText Transfer Protocol

The Hypertext Transfer Protocol (HTTP), which utilizes TCP/IP for its transport,

is used by web clients and servers to exchange hypertext information between the

two. HTTP is a client driven protocol, simply meaning that all communications

are initiated with the client. To initiate a session, a web client makes TCP open

requests to the well-known port number 80. Once the web server has accepted the

request, it expects one of three basic operation commands (GET, HEAD and

POST) and an object address. Object addressing is done using a Universal Re-

source Locator (URL). After processing the command, the server responds to the

request with the header identifying the body content type, encoding, length and

other supporting information, followed by the requested object body. Finally, the

server closes the session by issuing a TCP close request.

Figures below show the difference between HTTP/1.0 and HTTP/1.1 when proc-

essing a TCP connection request. [15][16]

25

Figure 6. HTTP/1.0 One TCP connection per request. [Fig6]

26

Figure 7. HTTP/1.1 Multiple requests per TCP connection. [Fig7]

27

3 WEB SERVER SELECTION

3.1 Requirements for Embedded Web Servers

Traditional web servers are designed to serve up static disk-resident web pages to

end-users surfing the Internet, and are typically deployed on high-end Unix or

Windows workstations. These technologies are unsuitable for the development of

interactive GUIs because their common gateway interface (CGI), or similar appli-

cation interfaces, require substantial development effort and do not facilitate rapid

prototyping of the product's "look-and-feel." Furthermore, traditional web server

implementations are unsuitable for embedded real-time software environments

because they use megabytes of memory, consume significant CPU cycles, and re-

quire preemptive multitasking OSes.

The requirements for embedded web servers are quite different. The most impor-

tant requirement for an embedded web server technology is its ability to rapidly

develop and integrate a dynamic and interactive web based interface with the em-

bedded firmware. CGI and other traditional technologies simply cannot meet these

requirements. The embedded web server software itself must have a small mem-

ory footprint, both in code size and run-time memory usage. Since the web con-

tent will likely be stored in Flash memory, low-overhead data compression tech-

niques are also important. In non-pre-emptive real-time environments, embedded

web server software must be able to handle multiple concurrent HTTP requests

without degrading system performance and without consuming more than a rea-

sonable and bounded amount of CPU cycles at a time. [17]

3.2 Embedded Web Server Solution Survey

According to the study regarding embedded web servers, there are many commer-

cial and open source embedded web servers’ products on the market for web ap-

pliances. Based on the requirements of the study I have chosen some comparisons

between various embedded web servers based on their features.

Table below shows features of selected embedded web servers.

28

Table 1. Comparisons between various embedded web servers.

Referring to the Table 1, here we have chosen 7 embedded web servers into our

comparison which are KLone, Embedthis App Web, Nickestack HTTP Server,

Rompager, Goahead, Seminole and HTTP web server. All the servers are devel-

oped and technically maintained and upgraded using C/C+ programming language

with portability. Memory footprint is the measurement of consumption of memory

for a running application. Larger programs often require big memory occupation.

In case of a small memory constrain, we implement low memory footprint pro-

grams. Sometimes designers even sacrifice efficiency in order to downsize the

footprint to fit into the available RAM. Looking at the Table 1, we find that

KLone and Embedthis App Web require a relatively big memory to support its

function with range from 110kb to 400kb. On the other hand, the remaining 5

serves have an average footprint of 10 to 20kb. KLone has the widest content cov-

erage; Embedthis App Web and GoAhead both sharing a big content portfolio as

well. At the end, we will also review the difference of each server from commer-

29

cial point of view. HTTP web server and Rompager offer us the most expensive

license fee, topping 22000 Euros for its highest level service, Embedthis App Web

together with Nichestack HTTP Server stay in the middle level with roughly 5000

Euros . KLone, Semonole and GoAhead have the cheap offer here ranging from 0

to 2000 Euros.

3.3 The most Appropriate Solution

Looking at the features of Table 1 above, comparing the EWSs, the three most

appropriate solutions for this study were chosen: KLone, Nichestack HTTP Server

and GoAhead web server. We will take a short look on each web server for more

details.

3.3.1 KLone

KLone is an open-source (GPL) Embedded Web Server. It is a fully-featured,

multi-platform framework which allows both static and dynamic web pages to be

written in C/C++ (with the usual scripting style: <% /* code */ %> mixing HTML

and C/C++ code). The pages can then be embedded (in compressed and/or en-

crypted form) into a single executable binary file that also contains KLone's high-

performance HTTP/S server. Given its nature, it can be linked natively to any

C/C++ library (database, XML, graphics, etc.), without an intermediate layer, and

it is especially suited for low-resource (embedded) systems.

KLone is open source software released under a double license: commercial and

GPLv2. [18]

30

Here are some key features of KLone [18]:

· Multiplatform HTTP and HTTP/S

· Small memory footprint

· Multiple content suppliers (on-disk file system, embedded file system, CGIs)

· Open source or royalty-free commercial license

· Automatic setup and build framework

· Full source code available

· Dynamic page scripting in C/C++

Dynamic pages are written by mixing HTML and C/C++ code embraced within

<% code %> tags.

During the build phase, the framework translates, compiles and links the pages to

the web server providing fast script execution, tiny memory occupation, embed-

dable content and native usage of thousand of C/C++ libraries from within web

scripts.

Example of running KLone application

Here the examples presented are taken from Koanlogics website, the reason is that

during this testing phase I myself did not take screenshots of my testing proce-

dure, hence I use these examples.

We create an empty directory and download a ready-made version from

Koanlogic website and extract the files into this created directory:

Now we run make (GNU make must be used).

The framework will compile and create a simple application ready to be custom-

ized.

31

We run the daemon to see KLone in action:

$./kloned

Now we connect to the running webapp with the browser: http://localhost:8080/.

The webapp directory holds the content of basic web application and each new

web file created will be saved in this directory.

The page will look like in Figure 8.

Figure 8. Example page of running KLone application.

Adding new page with dynamic content [18]

The webapp directory contains all the files for creating a web application, this di-

rectory is automatically compiled, bundled into the KLone daemon executable

with KLone HTTP server in it. To add a new page, it must be created inside the

webapp directory and we have to run “make” again to compile, the same applies

for each file modification or removel, “make” has to be done and compile so

changes will take effect. If the server is running we kill it (killall kloned), than re-

build the daemon (make) and restart it (./kloned).

As an example we will build a basic directory browser.

http://127.0.0.1:8080/

32

The page root.kl1 displays the content of the root directory of the computer run-

ning the KLone server. The kl1 extension is used by KLone server for web page

that contains dynamic contents.

<%!

 #include <string.h>

 #include <sys/types.h>

 #include <dirent.h>

%>

<html>

<body>

<%

 DIR *dirp;

 struct dirent *dp;

 dirp = opendir("/");

 while ((dp = readdir(dirp)) != NULL)

 io_printf(out, "%s", dp->d_name);

 closedir(dirp);

%>

</body>

</html>

The output will be the list of files and directories of the computer. There are two

blocks of C code enclosed in two different kinds of KLone blocks:

<%! %>. This is the declaration block, all #includes, global variables and func-

tion declarations go in here.

<% %> This is the block to be used inside HTML to generate dynamic output

from C code. The function io_printf(out, "%s", dp->d_name); prints the

list of directories to the client. [19]

The io_printf(out, …) function is a global variable defined within KLone which is

most used in the implementation part. It is a function that is used to print data to

the output stream that is to the browser. An example below is shown:

io_printf(out, “%s”, “this is a string”);

io_printf(out, “The value is %d”, 35);

const char *input_text = “hello!”;

io_printf(out, “text: %s”, input_text);

33

Three examples are shown above how the io_printf (out, …) function can be used.

KLone was chosen as the most suitable embedded web server for FlexiNT22 for

the following reasons: as FlexiNT22 is a monolithic application KLones features

fit the best for this solution, as the written pages in KLone are embedded into a

single executable binary file, HTML pages can be written inside C/C++ code, it

works on top of linux, and the CLI commands of the modem can be emulated to a

test bench.

3.3.2 Nichestack HTTPServer

NicheStack HTTPServer is an embedded web server designed specifically to op-

timize size and performance without sacrificing important security features found

in conventional web servers. It is easily integrated into any networked device ar-

chitecture to dramatically simplify device deployment and remote management.

HTTPServer supports access to files stored in a local physical or virtual file sys-

tem. These files may include embedded function calls for the creation of dynamic

content which are executed as the file is converted to an HTTP stream.

HTTPServer provides features such as CGI and SSI, HTML compression through

substitution and expansion of frequently repeated ASCII sequences, SSL and

TLS, basic and digest authentication, includes NicheFile to enable file storage in

RAM, ROM or Flash, dynamic content with SSI and CGI active hooks.

The optional HTML compiler is a valuable timesaving tool for developers that

produces ready to use C code, linking variables to forms and dynamic HTML

which is compatible with the run time systems of HTTPServer. The HTML com-

piler compresses standard HTML files and converts them into C language struc-

tures that are compatible with the VFS. [19]

Nichestack HTTPServer with its multifunction features is one of the candidates to

be run, but because of the limited time of the project, and considering the amount

34

time taken for implementation, and not to forget the licence cost, it wasn’t possi-

ble. That’s the reasons it didn’t make to final tests.

3.3.3 GoAhead Web Server

The GoAhead Web Server is a fully functional, small memory footprint, open

source, standards-based embedded web server designed for cross-platform sup-

port. Its functionality includes Active Server Pages (ASP) for delivering dynamic

HTML pages, in-process CGI, embedded JavaScript and an open, extensible

scripting architecture, SSL 3.0 and DAA..

GoAhead Web Server supports HTTP 1.0, and some performance enhancements

of HTTP 1.1 such as persistent connections. GoAhead Web Server, with free

source code, has no proprietary lock-ins.

To run the GoAhead Webserver a TCP/IP stack, an event timer, and approxi-

mately 60KB of RAM are required.

An Active Server Page (ASP) is an HTML page that is processed on the web

server before the page is sent to the user.

Server-side JavaScript is a very effective way to create dynamic web pages with-

out having to recompile whenever you wish to change the data shown in the web

pages.

The JavaScript is embedded in the web page, using Active Server Pages, and is

run by the GoAhead Web Server before the web page is sent to the user’s

browser. The resulting page is small and transmits quickly to the user’s browser

even over slow modem links. The JavaScript implementation allows the creation

of objects to represent device data for easy scripting access. [20]

GoAhead Webserver with its rich features and functionality would’ve been a good

choice to run, but because of the lack of contact support it didn’t make to final

tests.

35

4 WEB GUI DESIGN

4.1 Interface Design

In this project it’s important to have a structure of the web GUI and the main point

is to make three working web pages using a test bench.

In this study a web based GUI is composed of three frames: the top frame, the

menu frame and the info frame, which will be described below.

Figure 9 shows the structure of user interface.

top_frame

menu_frame

info_frame

Figure 9. User interface design structure.

The TOP FRAME - This frame is designed to contain the official NSN LOGO

and will be always within the browsers viewport regardless which link is clicked.

The MENU FRAME - This frame contains the menu links as shown in the figure

below, which remains always within the browser viewport. Clicking on links in

this frame will load new pages into the info frame. The buttons for the links were

made with PhotoShop in 2 different colours, as default yellow buttons, and when

clicked the button will change into orange colour or as to say highlighted as

shown in Figure 10, and when Configure link is clicked it has sub links and they

will be highlighted as shown in Figure 10.

NSN LOGO

Details

Menu

links

Image

36

Figure 10. All menu buttons and menu buttons with sublinks.

The HTML code captured from web browser will look as shown in Figure 11.

Figure 11. Menu frame HTML source code.

The coding will be explained in more detail in next chapter.

The INFO FRAME - This frame can be scrolled and contains the main content

pertaining to whatever link the user clicks on in the menu frame on the left. By

default when loaded this frame will show Main page that contains at the top an

image of the modem and below is created a table that contains the main informa-

tion about the modem. This applies to the other links when clicked, the page will

be loaded in this frame with corresponding information.

37

4.2 Web page styles and formatting

The pages were created using plain HTML including frames, tables, forms with

style sheets (CSS) according to NSN styles (fonts and colours), but without using

any JavaScript or ASP scripts, as they are not suitable with the software.

4.3 Web Development Tools

CoffeeCup HTML Editor was chosen as the main development tool for html cod-

ing. This is due to fact that it’s easy to learn and use, has built in tags which made

it less consuming time and the other feature that makes it easier to read is the Pre-

view tab, it’s next to the Code Editor tab, we are able to see how the page will

look like in the browser.

38

5 WEB GUI IMPLEMENTATION

5.1 Interface Implementation

Implementation involves coding the various parts of the application. All the mo-

dems CLI commands were collected and put them in a C file test bench as func-

tions where they are called later from the index.kl1 file that is associated with the

KLone server. The coding of pages was written in Notepad++ which is a powerful

text editing tool, as for compiling and testing was done under UNIX environment

using Putty an SSH client and nano text editor.

As explained above in chapter 4.1 Interface Design, Figure 9, we see that the main

window is divided in three frames: top, menu and info frames. To create these

frames are used functions, which contain mix of C and HTML code. These func-

tions are inside the index.kl1 file and each step will be explained in detail how the

pages are created by using examples of coding.

5.2 Client-Server Communication

After introduced all the tools and steps in chapter 4 and as explained in chapter 3

KLones functionality, the next step is to open a web browser, type the IP address

and port number, the default port number is 80 so it doesn’t need to be specified

in the address bar, but if the port number is other than the default port than the

URL address should be like http://localhost:8080 where 8080 is the specified port

number. Figure below shows a sequence diagram of client-server communication

that will be explained in more details below.

39

Figure 12. Sequence diagram between client and server.

When we open the browser and write the IP address of the modem, first the client

requests an empty page.

Server returns the www_make_header() function, below will be shown main

parts of the function.

This function generates two pages (frames) named showtop and showframe as

shown in Figure 14. As the function name says, this function creates the main

window puts the HTML tags in it, and divides the page in two frames, which are

showtop and showframe. Below will be shown an example how the frame is cre-

ated using variable frame_identifier[], which is defined in the global data section

and has the values {frame, frame, menu, info}. This variable table is used to iden-

tify each frame names in a logical way as shown in the Figure 13 below . The top

part with orange colour has the value “frame” the same goes for the others as seen

in the in Figure 13. The output of the index.kl1 will be as index.kl1?frame=frame,

meaning that two frames are created as mentioned above showtop and showframe,

can be seen in the code below.

40

Figure 13. frame_identifier[] variable.

void www_make_header(void)

{

 /* Here the function creates the HTML tags */

io_printf(out, "<HTML>\n");

io_printf(out, "<HEAD>\n");

io_printf(out, "<META HTTP-EQUIV=\"refresh\">\n");

io_printf(out, "<META HTTP-EQUIV=\"Content-Type\" CON-

TENT=\"text/html;

charset=utf-8\">\n");

io_printf(out, "</HEAD>\n");

io_printf(out, "<frameset rows=\"20%,*\" border=\"0\">\n");

io_printf(out, "<frame src=\"images/nsn_logo_top.jpg\"

name=\"showtop\"

scrolling=\"no\" noresize name=TOP>\n");

io_printf(out, "<frame src=\"index.kl1?%s=%s\"

name=\"showframe\"

scrolling=\"no\" noresize name=showFRAME>\n",

frame_identifier[0],frame_identifier[1]);

io_printf(out, "</frameset>\n");

io_printf(out, "</HTML>\n");

return;

}

41

Figure 14. Showtop and showframe.

Next the client requests the information for showtop frame. Server returns the im-

age nsn_logo_top.jpg and puts it in showtop_frame, as shown in the code above.

Next the client requests the information for “showframe” frame. Server returns the

contents of the www_make_frames() function, part of code below shows how the

frames are created.

This code generates two other frames inside showframe: showmenu and showinfo

frames as shown in Figure 15. In addition to to frame_identifier[], are added

menu_identifier[] and info_identifier[] which are also defined in the global data

section, to identity the two other frames that are created. The variable

menu_identifier[] is used to identify the menu navigation links according to menu

level, and info_identifier[] is used to identify which page will be called according

to parameter given, for example the output of showmenu is in-

dex.kl1?frame=menu&menu=1&info=1 and showinfo is in-

dex.kl1?frame=info&menu=1&info=1. As yet the output is not complete and

doesn’t show any data, but is further below explained until the final part is

reached.

42

io_printf(out, "<frameset cols=\"176,*\">\n");

io_printf(out, "<frame src=\"index.kl1?%s=%s&%s=%s&%s=%s\"

name=\"showmenu\">\n",frame_identifier[0],frame_identif

ier[2],menu_identifier[0],menu,info_identifier[0],info)

;

io_printf(out, "<frame src=\"index.kl1?%s=%s&%s=%s&%s=%s\"

name=\"showinfo\">\n",frame_identifier[0],frame_identif

ier[3],menu_identifier[0],menu,info_identifier[0],info)

;

io_printf(out, "</frameset>\n");

Figure 15. Finished interface with three frames.

Next the client requests the information of showmenu frame 

src=index.kl1?frame=menu&menu=1&info=1 which calls the

www_make_menuframe() function. Server returns the contents of the

www_make_menuframe().

This function generates the menus from the menu_array data table (menu_array

table is defined in the global data section), it puts the image on each menu link

and highlights the clicked link. Figure 10 above in chapter 4.1 Interface Design

shows the generated menus.

Level mentioned in the comment blocks, describes navigation menu as tree view,

“0” means main menu link, like ”Main”, “1” means sub link, like “Line”, “2”

means sub link of sub link, like “TDM0”.

43

/* explanation of array numbers “ “ as in order: "LEVEL" "Visible

name","menu args","info args", "default MENU image", "active MENU

image"*/

const char *menu_array[][6] = {

{"0","Main","1","1","images/pic_main_yellow.jpg","images/pic_main_

orange.jpg"},

{"0","Configure","2","2","images/pic_configure_yellow.jpg","images

/pic_configure_orange.jpg"},

{"1","Line","3","3","images/pic_line_yellow.jpg","images/pic_line_

orange.jpg"},

{"1","TDM","4","4","images/pic_tdm_yellow.jpg","images/pic_tdm_ora

nge.jpg"},

{"2","TDM0","5","5","images/pic_tdm0_yellow.jpg","images/pic_tdm0_

orange.jpg"},

{"2","TDM1","6","6","images/pic_tdm1_yellow.jpg","images/pic_tdm1_

orange.jpg"},

};

 Next is shown part of the code how menu frame is called.

The output values of showframe will be as follow: in-

dex.kl1?frame=frame&menu=1&info=1 which loads the default main page, and

on each menu link will be put a corresponding picture as defined in menu_array

data table.

io_printf(out, "<a href =\"index.kl1?%s=%s&%s=%s&%s=%s\" tar-

get=\"showframe\"

scrolling=\"no\" noresize><img src=%s

alt=\"%s\">
\n",frame_identifier[0],frame_identi

fier[1],menu_identifier[0],menu_array[temp][2],info_ide

ntifier[0],menu_array[temp][3],temp_select_pic,

menu_array[temp][1]);

Next and the last step, the client request the information for the showinfo frame

 src= index.kli?frame=info&menu="1"&info="1" which calls the

www_make_infoframe_body () function.

Server returns the contents of the www_make_infoframe_body() as shown below

main parts of the code. This function creates the HTML head tags for each page

and it will load as well the stylesheet and background image, this part will not

change, but it will be part of every page that is generated as a whole, so at the end

all the functions will combine and at the client side we will see the HTML source

code.

io_printf(out, "<HTML>\n");

io_printf(out, "<HEAD>\n");

44

io_printf(out, "<link rel=\"stylesheet\" href=\"style.css\"

type=\"text/css\">\n");

io_printf(out, "</HEAD>\n");

io_printf(out, "<BODY back-

ground=\"images/texture_0005_rgb.jpg\">\n");

After the showinfo frame head tags are created the next part is the main contents

of each page, as shown above highlighted text (in-

dex.kli?frame=info&menu="1"&info="1") determines which page will be loaded

by switch-case statement as below.

The switch-case statement selects what page will be loaded depending by the pa-

rameter given by client which is info=”x” where “x” is a changeable value. As

mentioned above index.kli?frame=info&menu="1"&info="1" in this example case

1 will be printed with the www_make_info_frame_1 function that has the con-

tents of Main page. Same goes for the two other functions,

www_make_info_frame_2 has the contents of Configure page and

www_make_info_frame_3 that has the contents of Line page.

switch (tempi){

case 1: www_make_info_frame_1(frame_string, menu_string,

info_string);

 break;

case 2: www_make_info_frame_2(frame_string, menu_string,

info_string);

 break;

case 3: www_make_info_frame_3(frame_string, menu_string,

info_string);

 break;

 }

/* Here we close the body and html tags (appears on every page) */

io_printf(out, "</BODY>\n");

io_printf(out, "</HTML>\n");

45

6 RESULTS

6.1 Main Page

The Main Page is shown first when using a web browser. The currently shown

page is shown highlighted on the list on the left on the menu page. Clicking an

item on the menu list (Configure, File System, Management, Statistics, Log out)

takes you to the corresponding page. Figure 16 shows the main page.

Figure 16. Main page.

The Main Page shows the information on Platform, Software and Hardware ver-

sions, serial number and MAC address of the device.

6.2 Configure page

The Configure page has three subpages: Line, TDM and Ethernet. The purpose

of the study is to make the Line page work with the line modes as shown in Table

2 below:

46

Table 2. Line modes.

 LINE MODES

LINE FRAMING DUAL-BEARER

CO Manual ATM ON

CP EFM OFF

CO Auto

CO Auto mode is not implemented in this study. Figure 17 below shows conf

status page.

Figure 17. Configure page.

The configure page shows the current configuration status of the device.

- System status including Hostname, Location and Contact information

- Line status including line1 to line 4

- Ethernet status including FE0 and FE1

- TDM status including TDM0 and TDM1

47

- Management status including IP address

- SNMP status including manager public address and trap public address

- Timing status

6.3 Line page

On the Configure Line page we are able to configure the line mode choosing be-

tween “CO(Central Office) Manual”, “CP(Customer Premises)” and “CO Auto”

(not implemented), between framing modes “ATM” or “EFM”, and choosing

dual-bearer ON or OFF, which are shown on the first table. After choosing the

desired configuration mode, by clicking on the “SET CONF” button, the changes

will apply and on the bottom page will appear the configuration form according to

line mode choice, in this case as shown with radio buttons chosen “CO Manual”,

“ATM”, “DB-OFF”. Choosing between line and framing modes and applying the

changes with “SET CONF” button. Figure 18 shows Line configuration page.

Figure 18. Line configuration page

48

7 CONCLUSION

The purpose of this thesis project was to design and implement a prototype of a

web based GUI management for FlexiNT22 SHDSL.bis modem for NSN BBA

NBMS division. Requirements from the company have been gathered and taken

into account in making the web GUI design.

The main focus included in choosing the most suitable embedded web server, is to

create a simple process and design user friendly web based GUI structure.

This thesis project has been for many parts very educational and rewarding. After

a considerable amount of time and hard work a web based GUI management using

KLone embedded web server has been successfully completed, and the objectives

have been met. Nevertheless, this thesis writing process has been time consuming

and very challenging. The main reason for this is because, during this journey lots

of personal changes happened and unfortunately sometimes the motivation disap-

peared completely.

Despite the hardships encountered I greatly enjoyed all the challenges that this

project brought up. The programming of web features, and rebuilding the server

side software, is not something one often implements. All of these experiences

made me a more capable c programmer and a better html designer.

For the future study other functions need to be developed; such as http authentica-

tion, file system, management and statistics.

49

8 REFERENCES

[1] NSN official website. [referred 8.1.2010] Available on the Internet: <URL:

http://www.nokiasiemensnetworks.com>

[2] FlexiNT22, Rel 1.0 User Manual. Unpublished. [Accessed 1.11.2008] NSN

intranet.

[3] Datasheet FlexiNT22 R1. Unpublished. [Accessed 1.11.2008] NSN intranet.

[4] Aalto, Matti 2007. FlexiNT SW Architecture. Unpublished. [Accessed

10.11.2008] NSN intranet.

[5] ITU-T Recommendation G.703 (11/2001), Physical/electrical characteristics

of hierarchical digital interfaces

[6]ITU-T Recommendation G.704 (10/98), Synchronous frame structures used at

1544, 6312, 2048, 8448 and 44 736 kbit/s hierarchical levels

[7] IEEE 802.3u Standard Part3: Carrier Sense Multiple Access with

Collision Detection (CSMA/CD) access method and Physical Layer specifications

Section Two

[8] ITU-T Recommendation G.991.2 (12/2003), Single-pair high-speed digital

subscriber line (SHDSL) transceivers

[9] Mauro Douglas R. & Schmidt Kevin J. (2001). Essential SNMP. O’Reilly.

[10] Douglas E. Comer. (2006). Vol 1. 5th Ed. Internetworking with TCP/IP:

Principles, protocols, and architecture. Chapter 24. Pearson Prentice Hall.

[11] IEEE Std 802.3ah -2004 Part3: Carrier Sense Multiple Access with Collision

Detection (CSMA/CD) access method and Physical Layer specifications

[12] Abhijit S. Pandya, Ercan Sen (1999). ATM Technology for Broadband Tele-

communications Networks. CRC Press

50

[13] Nancy J. Yeager, Robert E. McGrath 1996, Web Server Technology: The

Advanced Guide for World Wide Web Information Providers. Morgan Kaufmann.

[14] Sean K. Patterson, Senior Software Engineer, Spyglass Inc. Embedded Web

server aids monitoring [referred 5.1.2010] Available on the Internet:. <URL:

http://www.eetimes.com/electronics-news/4039713/Embedded-Web-server-aids-

monitoring>

[15] Douglas E. Comer, (2006). Vol 1. 5th Ed. Internetworking with TCP/IP:

Principles, protocols, and architecture, Chapter 27. Pearson Prentice Hall.

[16] Mani Subramanian. (2000). Networks Management: Principles and Practice.

Addison-Wesley.

[17] GoAhead Software, Functionality Overview of an Open Source Embedded

Web Server, (2000).

[18] KoanLogic embedded software engineering. [referred 15.10.2009] Available

on the Internet: <URL: http://www.koanlogic.com/klone/>

[19] Interniche Technologies, inc. [referred 15.10.2009] Available on the Internet:

<URL: http://www.iniche.com/webport.php>

[20] GoAhead Software. [referred 15.10.2009] Available on the Internet: <URL:

http://www.goahead.com/products/webserver/default.aspx>

[Fig1] Nokia Siemens Networks, Backhaul Technologies. [referred 2.2.2009] Un-

published. NSN intranet

[Fig2] Wilton Paul, Frischholz Gerhard 2008, FlexiNT22 – Network Terminal for

SHDSL bis (power point slide). [referred 2.2.2009] Unpublished. NSN intranet

[Fig3] Aalto, Matti 2007. FlexiNT SW Architecture. [Accessed 10.11.2008] Un-

published. NSN intranet.

[Fig4] http://www.ml-ip.com/assets/images/tcpip-layers.gif

51

[Fig6] http://lbdigest.com/wp-content/uploads/2008/05/httppersistence.png

[Fig7] http://lbdigest.com/wp-content/uploads/2008/05/httppersistence11.png

	1 INTRODUCTION
	1.1 Project description
	1.2 Company Background

	2 FLEXINT22 SHDSL.bis MODEM
	2.1 Overview
	2.2 General Features
	2.3 Development Environment
	2.4 Software Platform
	2.5 Operating System
	2.6 TDM Interface
	2.7 Fast Ethernet Interface
	2.8 SHDSL Interface
	2.9 SNMP Protocol
	2.10 Telnet Protocol
	2.10.1 The Network Virtual Terminal (NVT)
	2.10.2 Options and Option Negotiation

	2.11 EFM – Ethernet in the First Mile
	2.12 ATM – Asynchronous Transfer Mode
	2.13 General Web Server
	2.14 Embedded Web Server
	2.15 HTTP – HyperText Transfer Protocol

	3 WEB SERVER SELECTION
	3.1 Requirements for Embedded Web Servers
	3.2 Embedded Web Server Solution Survey
	3.3 The most Appropriate Solution
	3.3.1 KLone
	3.3.2 Nichestack HTTPServer
	3.3.3 GoAhead Web Server

	4 WEB GUI DESIGN
	4.1 Interface Design
	4.2 Web page styles and formatting
	4.3 Web Development Tools

	5 WEB GUI IMPLEMENTATION
	5.1 Interface Implementation
	5.2 Client-Server Communication

	6 RESULTS
	6.1 Main Page
	6.2 Configure page
	6.3 Line page

	7 CONCLUSION
	8 REFERENCES

