

CONTAINERIZATION AND SCALING OF A

PHP APPLICATION

Docker & Kubernetes

Lahti University of Applied Sciences
Information and Communications
Technology
Software Engineering
Fall 2019
Joni Juntunen

 Abstract

Author(s)

Juntunen, Joni

Type of publication

Bachelor’s thesis

Published

Fall 2019

Number of pages

41

Title of publication

Containerization and scaling of a PHP application
Docker & Kubernetes

Name of Degree

Bachelor of Software Engineering
Abstract

In this project, a monolithic PHP application was containerized with Docker and
orchestrated using Kubernetes. The PHP application was built using the Symfony
framework. An additional requirement was serving each client organization with their
own copy of the application accessed via different DNS names.

Choices for the PHP engine and web server were PHP-FPM and Nginx. These were
separated to multiple containers to maintain the single process per container
principle. PHP application source was added to the PHP-FPM container. The PHP
container was built using multistage Dockerfile with a separate build stage.

Kubernetes was used to orchestrate the pods consisting of two containers, Nginx and
PHP-FPM. Environment variables were used to customize each pod for each client
organization. Kubernetes was built on virtual machines as a bare metal solution.

To handle the network connections to Kubernetes, a Nginx proxy was used between
the WAN network and the Kubernetes network. All traffic to the nodes in the
Kubernetes network must pass through the proxy, separating the cluster from public
access. Traffic to the proxy was secured with an SSL certificate.

Kubernetes was found to be suitable platform for a software as a service product.
Running containers inside Kubernetes required definition of multiple different layers
and services which increased the complexity of the backend administration.

Keywords

Docker, Kubernetes, containers, orchestration, DevOps, scaling, PHP

 Tiivistelmä

Tekijä(t)

Juntunen, Joni

Julkaisun laji

Opinnäytetyö, AMK

Valmistumisaika

Syksy 2019

Sivumäärä

41

Työn nimi

PHP-sovelluksen kontitus ja skaalaus
Docker & Kubernetes

Tutkinto

Tieto- ja viestintätekniikan insinööri (AMK)

Tiivistelmä

Opinnäytetyössä tehtiin ohjelmistokontitus PHP-ohjelmalle käyttäen Docker-kontteja
ja Kubernetes-orkestrointiteknologiaa. PHP-ohjelma oli luotu käyttäen Symfony-
ohjelmistokehystä. Lisävaatimuksena oli tarve tarjota jokaiselle asiakkaalle oma kopio
ohjelmasta perustuen DNS-verkkonimeen. Työ tehtiin yritykselle IT-palvelut Joni
Juntunen.

PHP-tulkiksi valittiin PHP-FPM-moottori ja web-palvelimeksi Nginx. Nämä laitettiin
erillisiin kontteihin, yksi sovellus konttia kohti periaatteen mukaisesti. Ohjelmiston
lähdekoodi tallennettiin mukaan PHP-FPM-konttiin ja kontin kuvaustiedosto
muodostettiin monivaiheisella Dockerfile-määrityksellä.

Kubernetesilla hallittiin näistä konteista muodostettuja kapseleita (Pod). Yhteen
kapseliin laitettiin kaksi konttia, Nginx-kontti ja PHP-FPM-kontit. Ympäristömuuttujilla
kapseleissa olevat kontit muokattiin asiakaskohtaisilla asetuksilla. Kubernetes
asennettiin virtuaalipalvelimille.

Ulkoisia yhteyksiä varten Kubernetes-klusterin eteen asetettiin Nginx-välityspalvelin.
Ulkoinen pääsy klusteriin eristettiin tämän välityspalvelimen taakse. Yhteydet
välityspalvelimeen salattiin SSL-salauksella.

Kubernetes soveltui alustaksi Software as a Service muotoisen palvelun
tuottamiseen. Konttien ajaminen Kubernetesissä vaati useiden eri Kubernetes-
palveluiden asetusten määrittelyitä, mikä taas lisäsi palvelun ylläpidon
monimutkaisuutta.

Asiasanat

Docker, Kubernetes, Ohjelmistokontit, Orkestrointi, DevOps, Skaalautuminen, PHP

CONTENTS

1 INTRODUCTION ... 1

2 THE APPLICATION ... 2

3 TECHNOLOGIES .. 3

3.1 PHP .. 3

3.2 Symfony framework .. 3

3.3 Nginx .. 4

3.4 Software containers .. 5

3.5 Scalability ... 6

3.6 Kubernetes ... 8

3.6.1 Pods .. 8

3.6.2 Services ... 9

3.6.3 Volumes ...10

3.6.4 Deployments...10

3.6.5 Ingresses ..11

3.6.6 ConfigMaps and Secrets ..11

4 DOCKER ..12

4.1 Docker engine ...12

4.2 Docker images ...13

4.3 Dockerfile and dockerignore ..14

4.4 Docker container ...15

4.5 Docker registry ..16

4.6 Docker volumes and storage drivers ..16

5 ARCHITECTURE ..17

5.1 Load balancing ..18

5.2 Scaling ...18

5.3 Availability ...19

5.4 Data persistence ..19

5.5 Deployment ...20

5.5.1 Continuous Integration ..20

5.5.2 Continuous Delivery ..21

6 CONFIGURATIONS ...22

6.1 Private image registry ..22

6.2 Nginx proxy..25

6.3 Kubernetes cluster ...26

7 SUMMARY ...38

REFERENCES ..39

1

1 INTRODUCTION

Scalability and high availability are important in today’s web applications and they go

mostly hand in hand with each other. High availability is especially important if the

application supports everyday work and is accessed multiple times during the day.

Software containers are a way to package and deliver applications. A PHP web

application has unique requirements for running inside containers. Containers suit well for

scaling because of their undetermined lifetime. Containers can be terminated and started

as required.

This thesis work was done through a company called IT-palvelut Joni Juntunen. The

company is a one-man’s business that provides outsourced IT services and software

development services for client organizations. The company was established in fall 2018.

The PHP application is produced for a new startup using the application as their primary

product. The Application’s primary functions are project and work management using

mobile devices and collection of work hours for salaries and invoices.

The purpose of this thesis work is to containerize the application using Docker and then

orchestrate and manage this application in Kubernetes. Design and implementation of the

surrounding architecture are also part of the work but not the focus of this thesis.

2

2 THE APPLICATION

The application is a single-page PHP-based web application distributed with software as a

service model. Frontend is custom JavaScript using jQuery with some elements from

React JavaScript framework. Mainly navigation and main application component using a

state. Views are built on server-side using Twig templates and are accessed via Ajax

requests. Views are responsive and designed as mobile first. The CSS framework used is

Bootstrap 3.

The current backend is Nginx webserver with MariaDB database. Each client organization

has their own copy of the application source code configured via environment variables

defined in the configuration file. Databases are running on the same hosts as the

application. Client instances are separated with domain names.

The current architecture shown in Figure 1 does not scale except for adding more servers

and spreading client instances to different machines. A Single client organization is limited

to only one server for their instance.

Figure 1. Current architecture

3

3 TECHNOLOGIES

3.1 PHP

PHP is a scripting language that is compiled during execution. The Web server hosting

PHP content uses Common Gateway Interface (CGI) to call the PHP interpreter to

execute the scripts. The Nginx web server supports PHP FastCGI Process Manager

(PHP-FPM), which uses process pools to handle the requests. (Nginx documentation

2019.)

PHP version 7 introduced an improved Zend engine and performance boost to opcode

caching. Opcode caches are used to store and share precompiled scripts to skip the

compilation step. These upgrades greatly improved the response times compared to older

versions of PHP. (Gavalda 2019; PHP documentation 2019.)

PHP version 7 also introduced the possibility of type hinting and strong typing. PHP is a

loosely typed language and variables do not have a type. Type hinting can be used to

define types for function arguments and function returns. An exception is thrown when the

variable type does not match the hinted type (strict mode) or when the variable cannot be

directly converted to the required type (default mode). (PHP documentation 2019.)

PHP has a package manager named Composer for handling the dependencies of the

application. Composer uses Packagist as primary repository. Dependencies are stored in

the vendor directory and must be delivered with the application. Composer uses the

composer.json file to store the information about dependencies. (Composer

documentation 2019.)

3.2 Symfony framework

The Symfony framework is an open source full stack framework for PHP language. It

scales from minified APIs to full web applications. The framework consists of multiple

independent components that all have specific tasks, for example Logger for logs and

HTTP Foundation for receiving HTTP requests and creating responses. Some popular

PHP projects use Symfony components in their core, like the Drupal 8 content

management system. (Symfony SAS 2019.)

The framework uses model-view-controller (MVC) architecture to separate different layers

responsible for handling the requests. Models are entities defining domain level objects

and their relationships. Models’ state is stored to the database using the Doctrine object

4

relational mapper (ORM). The Doctrine abstracts the database layer and automatically

generates SQL queries. (Salehi 2016, 2; Symfony SAS. 2019.)

Controllers handle the requests and change the state of the models. Best practices in

Symfony recommend use of thin controllers. Thin controllers are kept as light as possible

and all domain level code is executed in separate services called by the controller. The

controller returns the response. (Salehi 2016, 32-34; Symfony SAS. 2019.)

Views are the responses created using templates. Models are attached to the views by

the controller and templates define the appearance of the views. The default templating

engine in Symfony is Twig, which has its own templating language. (Salehi 2016, 23-24;

Symfony SAS. 2019.)

Symfony supports environment variables and config files as a source of configuration

definitions. Environment variables override config files. Basic definitions are the running

environment APP_ENV and DATABASE_URL. By default, allowed values for APP_ENV

are dev, prod and test. Creating custom levels is possible. Dev is for development use

and it disables caches, enables Symfony profiler and displays verbose error messages.

The prod level enables caches and disables all development features. The test level is for

automated testing. (Symfony SAS. 2019.)

3.3 Nginx

Nginx is an open source HTTP server and reverse proxy. It uses asynchronous event-

based architecture instead of threads and forking to handle client requests. Nginx

supports signal hook for reloading the configuration without restarting the service.

Nginx supports FastCGI applications by passing the request to the FastCGI process.

Configuration of FastCGI for PHP requires passing the requested script file as a proxy call

parameter. The destination can use Linux sockets or TCP ports.

Image 1. Nginx FastCGI PHP example

5

The example in Image 1 presents the settings for a proxy which redirects all requests to

localhost port 9000 (default port of php-fpm). Row 4 sets the parameter for the script file to

be executed. Nginx’s internal variables start with dollar $-character. In the above example

$document_root is the root directory for the request. $fastcfg_script_name is the path part

of the Uniform Request Identifier (URI). It does not include the requested server name or

the query parameters. (Nginx documentation 2019.)

3.4 Software containers

Containers are packages that include all the components and dependencies of a software

application. Containers differ from virtual machines by having a shared operating system

kernel. This has the benefit of requiring less resources and having less virtualization

overhead, but they are less secure than virtual machines. Containers separate the

application from the infrastructure. Containers have the benefit of being ephemeral

instances of applications and services. (Rouse 2018; Docker Inc 2019d; Docker Inc

2019c.)

Figure 2. Container versus virtual machine (Docker Inc. 2019)

Figure 2 illustrates the primary difference between containers and virtual machines. A

single host operating system with a container hosting platform (Docker) can serve multiple

containers that are separated from each other and include all the dependencies of the

application. In virtual machine-based systems, additional guest operating systems are

required to separate applications from each other. The most flexible use of resources is

achieved by using a combination of both technologies: hosting container platforms on

multiple virtual machines and orchestrating containers on top of them using technologies

like Kubernetes.

6

History of container technology

The history of container technology began with the development of chroot in version 7 of

Unix in 1979. Chroot enabled isolating application’s access to only specified directory and

its subdirectories. Such a chrooted application cannot access files of other isolated

applications running on the same host. (Mell 2018.)

In 1999 first container like isolation of resources was introduced in FreeBSD operating

system’s jail function. It used chroot implementation with hardened confinement. (Haff

2013.) 2001 the VServer project was born with Virtual Private Servers that separated

user-space environment into distinct units. Its biggest weakness was that it required a

Linux kernel with specialized patch to function properly. (Red Hat Blog 2015.)

Beginning from year 2002 the Linux namespaces were being developed. Namespaces are

abstraction on top of system resources that allows the processes within the same

namespace have their own isolated instance of system resources. Resources include

things like cgroup root directory, network devices, mount points and hostnames. (Kerrisk

2010, 607.)

In 2003 Google introduced Borg, a container cluster management system. At that time, it

relied on isolation technologies of Linux operating system and as such did not have

process level isolation for resources. A single process could reserve all available

resources and starve other processes. In 2004 Google begun a development of a process

container technology known as control groups (cgroups). Cgroups allow organizing

processes in to groups whose access to resources, like memory and CPU time, can then

be limited. In 2008 cgroups were merged to Linux kernel and Linux container (LXC)

technology was developed by IBM. (Mell 2018.)

Docker started as an internal tool for dotCloud company and in 2013 it was released as

open source. 2014 Docker Incorporated released 1.0 version of their container technology

and 2015 they donated the technology to Open Container Initiative. (Mell 2018.) Also, in

2014 Google announced Kubernetes container orchestration technology that is traced

from Borg and in 2015 version 1.0 was released and Google gave the technology to Cloud

Native Computing Foundation. (Red Hat Blog 2015; Krochmalski 2016, 6; Mell 2018.)

3.5 Scalability

Scalability is the ability to expand or reduce systems resources and have linear effect in

its performance. Node is used to describe a single unit of processing. Performance is

measured by how fast node completes a certain computing task. Scalability measures the

7

trend of performance with increasing load. In web-based applications performance is

measured by response time to a request from an end user. (Abd-El-Barr 2005, 63; Liu

2009, 1-4.)

 Scaling can be horizontal or vertical and it is measured over multiple dimensions:

• Performance & efficiency

Number of processors and their core speed. Efficiency is the balance between the

size of the computational task and the number of processors and their

interoperation overhead.

• Size / Load

Maximum number or processors/hosts that the system can accommodate before

there is a negative impact on the performance because of internal communications

or because of physical limitations.

• Application

The ability of an application to increase its performance by adding more

processors for the application to utilize. Distributed systems can have multiple

copies of the same application serving requests and increasing number of hosts

has the same effect.

• Generation

The ability to upgrade the undelaying hardware or systems without changes to the

application code. Today’s virtualization platforms provide abstractions so that

hardware can be changed or upgraded without the virtual hosts noticing.

• Heterogeneity

The ability of a system to scale using hardware and software components from

different vendors.

(Abd-El-Barr 2005, 66-67.)

Horizontal scaling is achieved by adding more nodes. For example, in web-based

application by increasing the number of hosts serving the requests. Vertical scaling is

about adding more resource to a node. For example, increasing number or processors on

a node. Virtualization systems today can handle both scenarios by changing resources

available to a virtual host (vertical) and the number of hosts (horizontal).

8

3.6 Kubernetes

The Kubernetes is an open-source container orchestration tool. It was originally

developed by Google and was an update from Borg, Google’s inhouse container

orchestration software. Development of Kubernetes is now being overseen by the Cloud

Native Computing Foundation, that is a sub-foundation of Linux foundation and it has

members like Google, Amazon Web Services, Microsoft, IBM, Intel, VMware and RedHat.

(Eldridge I. 2018; Cloud Native Computing Foundation 2019.)

Kubernetes consists of several components (Figure 3): Kubernetes master, Kubernetes

nodes, ETCD and Flannel an overlay network. ETCD is a key-value store for the clusters

data. Overlay network provides a network to the pods to communicate between each

other. In addition to these there are abstractions called Kubernetes Objects which include

pods, services, volumes and namespaces. Additional higher-levels abstractions called

Controllers are built upon these Kubernetes objects. Kubernetes Control Plane is a term

that covers all the components that can change the state of a Kubernetes cluster. (Saito,

H. Hsu, C. & Lee, C. 2016, 1-7; The Kubernetes Authors 2019b.)

Figure 3. Kubernetes architecture (Saito et al. 2016)

3.6.1 Pods

The pod is the smallest deployment unit in the Kubernetes. Pod is a group of one or more

containers, and they are guaranteed to be co-located on the same node. Containers

inside the same pod share the localhost network and can directly communicate with each

9

other. The pods are isolated from each other using Linux namespaces. (Saito et al. 2016,

61; Eldridge I. 2018.)

Replication of the pods between the nodes and recovery of the crashed pods is

automated through replication controller. Replication controller will automatically assign

crashed pods to healthy nodes and keep the configured number of pods continuously

running. (Saito et al. 2016, 67; Eldridge I. 2018.)

3.6.2 Services

The service is a layer that routes network requests to pods. Service has its own IP

address and network name inside the cluster. Containers can access the services using

service names. There are three different mapping types for the services, each having

different availability and visibility:

Figure 4. Example of service types ClusterIP and NodePort

• ClusterIP

Service A in the example Figure 4. Default service type. ClusterIP service is only

available inside the cluster. It cannot be accessed from the outside of the cluster

and it does not reserve a port on the nodes.

• NodePort

Service B in the example Figure 4. NodePort reserves a network port on each

node using range 30000-32767 (default). Traffic to each port is then routed to the

service and can be used to access the service from outside of the cluster.

• LoadBalancer

LoadBalancer is a Kubernetes cloud service provider specific implementation of

mapping a public IP addresses to the nodes and NodePorts. There exists load

10

balancer for non-cloud Kubernetes called MetalLB that is under active

development.

 (Kubernetes Authors 2019; Saito et al. 2016, 77-83.)

The services use selector configurations to create endpoints for the matching pods. The

pods define labels for metadata and these labels are then searched by the service

selector definition. Each pod matching the selector is then mapped as an endpoint for the

service. Services without selector definition do not create endpoints automatically. The

endpoints are also used to map network locations outside of the cluster for an access

through a service or as an access point between different namespaces inside the cluster.

(Kubernetes Authors 2019.)

3.6.3 Volumes

Because containers are ephemeral, changes to the files inside containers are lost at

termination. Volumes allow persistent storage of the files. The volumes are mounted on

the pods and keep their state even if the pods are removed, exception being the emptyDir

type.

The volume type sets requirements for the storage provider. For example, emptyDir type,

that resets when the pod is removed, is provided by the node, but nfs type requires an

NFS server to provide volumes for mounting. The Kubernetes provides an abstraction for

storage provider and consumer through PersistentVolume objects. ConfigMaps are also

mounted to the pods as volumes. (Saito et al. 2016, 87-88; Eldridge I. 2018.)

3.6.4 Deployments

The deployments are Kubernetes controllers, an abstraction layer for Kubernetes

Replicasets that handles the creation and replication of pods using deployment definition.

Pods defined without a Replicaset are not handled automatically by the Kubernetes and in

case of a node failure does not migrate the pods to a healthy node. (Kubernetes Authors

2019.)

The deployments are configured using YAML -formatted files. The configurations consist

of two parts. A header part which contains the configuration file definitions and metadata.

And spec part which defines the Replicaset options and a template. The template inside

the spec part defines the pod configuration. The template includes definitions like affinity,

volumes, containers, configMaps etc. (Kubernetes Authors 2019.)

11

3.6.5 Ingresses

Kubernetes Ingress is an API to map HTTP and HTTPS requests to services inside the

cluster. The Ingress services are exposed as NodePorts on each node and a proxy is

required to route the external network traffic to the cluster. Cloud service providers use the

LoadBalancers to route the traffic and do not require an external proxy. The Ingresses can

route the request based on a target hostname and path. (Kubernetes Authors 2019.)

The Ingress requires an ingress controller to function. Using ingress moves the

management of the hosts and the routing rules away from the external proxy and to the

cluster level, closer to the actual endpoints. The external proxy is only responsible for the

routing of the request to the cluster nodes and securing the external communications to

the proxy. (Kubernetes Authors 2019.)

3.6.6 ConfigMaps and Secrets

The ConfigMaps and the Secrets are configuration management and storage solutions

provided by the Kubernetes. They store values as a key-value pairs. The ConfigMaps can

store the configurations for the applications running inside the containers. The

ConfigMaps separate the configurations from the container images and centralize the

configuration management. Both are mapped as volumes to the pods. The containers

inside the pods can then mount them as files or directories. (Kubernetes Authors 2019.)

The Secrets are like ConfigMaps but are meant to be used to store credentials and other

sensitive data. Secrets are not stored in a more secure way compared to the ConfigMaps.

The difference is in applying changes to a deployment object: Secrets are reapplied

always while ConfigMaps are not. (Kubernetes Authors 2019.)

12

4 DOCKER

The Docker is a software container technology. Docker containers are software containers

that use the Docker’s libcontainer instead of the Linux containers. Docker ecosystem is a

collection of multiple tools (Figure 5) which provide services such as creating and sharing

container images, and running and hosting containers. The Docker also provides an APIs

to manage the images and the containers. (Krochmalski 2016, 7.)

Docker Desktop is a free development environment for creating containerized

applications. It supports Windows and OS X. It integrates Docker Engine, Docker

Compose and includes access to the Docker Hub. (Docker Inc. 2019a.)

4.1 Docker engine

The Docker Engine is a container hosting platform. Docker Engine uses Docker Images

that are the base for the containers. The images include all the dependencies of a

containerized application. Docker Images support the sharing of dependencies through

layers. (Docker Inc. 2019b; AeonLearning 2017.)

Figure 5. Docker Engine (Docker Inc. 2019c)

13

The Docker Engine has two different licenses. The Community edition that is free and the

Enterprise edition that has certified support and certified Docker Image Registries

available. The Community edition of the Docker Engine is only available for the Linux.

Enterprise Edition also supports the Windows and Windows Server 2016. The Windows

server includes licenses for the Docker Enterprise Edition Basic and is available for no

additional costs. (Docker Inc. 2019b.)

The Docker Engine consists of a server process called dockerd and a command line

interface docker. They communicate over a REST application programming interface

using Unix sockets or network interfaces. (Docker Inc. 2019c.)

4.2 Docker images

The Docker images are read-only templates that contain the definitions for the Docker

containers. The images can be based on other images and usually are. The images are

created by defining a Dockerfile that is a text only configuration file with predefined syntax

for the instructions. When changing the Dockerfile and rebuilding the image, rebuilds are

only needed for the layers that were affected by the change. (Krochmalski 2016, 45-46;

Docker Inc. 2019c.)

The layers are readonly except when a container is intialized from an image, then a read

and write layer is added on top of the image layers. This layer is only accessible from

inside of the initialized container. All readonly layers are shared between multiple

containers created from the same Image. The topmost layer is used to store the state of

that individual container. Each layer in the image is a set of diffrences compared to the

layer directry below it. (Krochmalski 2016, 47-48; Docker Inc. 2019.)

The layers are shared between the images. Each layer has a unique sha256 digest as an

identification, generated from the contents of the layer. Each layer is stored only once and

can be part of multiple images. While building the containers the Docker generates

intermediate layers and checks the build cache for the existing layers on the host. The

layers found in the cache are not rebuild during the build process to optimize the build

time. (Brown 2016; Docker Inc. 2019.)

Modifying the files inherited from the underlying layers inside the running container moves

the files to the topmost read and write layer and stores the changed files there. The

containers making a large number of changes to the underlying file system grow because

of this even if no new files are written by the container. (Docker Inc 2019.)

14

4.3 Dockerfile and dockerignore

The Dockerfile contains the instructions for the docker build command on how the image

will be constructed. Each instruction creates a new layer to the final image. The Docker

uses a build context to access the host files during the build process. The build context

root is the location of the Dockerfile.

Dockerfile uses an instruction followed by an argument format with a #-character denoting

the comment lines. The file is executed from the top to bottom in order. The instructions

are not case-sensitive, but the preferred practice is to uppercase instructions to separate

them from the arguments. Dockerfile begins with a FROM instruction defining the base

image, the word scratch is reserved to denote creation of an image without a base image.

Image 2. Dockerfile example

In the example Dockerfile (Image 2) the base image is PHP-FPM image using Alpine

Linux distribution as its core. RUN command at row 3 executes a move command inside

the image to enable the development configuration. On row 5, COPY instruction copies

the contents of the build context directory from the host to the image in directory named

app.

The ENV instruction on row 7 sets an environment variable that is available when the

container is run. The APP_ENV instructs the Symfony framework to use the development

mode.

The EXPOSE instruction informs that port 8000 is to be published on the host machine.

The CMD is the command executed when the container is started. This command will

instruct the Symfony framework to start the internal PHP web server.

15

The Dockerignore file is used to exclude files and directories from the build context. There

are two practices in defining the excluded files and directories. The first is to directly

define the files and directories to be excluded. This has a risk of leaking sensitive data or

credentials to the final image. The other is to first define exclusion of everything and then

including files and directories required by the final image.

The Dockerignore file does not work in a multistage Dockerfile when copying contents

from a stage to another. It only operates on ADD and COPY commands when referencing

the contents in the build context.

Image 3. Dockerignore example

Dockerignore file in the example (Image 3) shows the syntax of excluding the log and

gitignore files in any directory of the source, the double asterisk denotes the any depth

level. Also excluded are the node_modules directory at root, / forward slash is added for

readability to denote that a directory is excluded. Also excluded are the Dockerfile and

dockerignore files themselves. (Docker Inc. 2019.)

4.4 Docker container

The Docker container is a runnable instance of a Docker Image. The containers are

created from the images and can have additional container specific instructions, for

example a network configuration and a mounted storage. Multiple instances of containers

can be created from a single image. (Docker Inc. 2019c.)

The container runs only as long as the command defined by the Dockerfile instruction is

running. Containers use Linux namespaces to isolate the container from the host

operating system and other containers. (Docker Inc. 2019.)

16

4.5 Docker registry

The Docker Registry is a repository technology to store and distribute the Docker Images.

The images are distributed to either public or private repositories. The Docker Hub is a

public registry that anyone can use. The Docker’s default configuration is to use Docker

Hub for the Docker Images. (Docker Inc. 2019c; AeonLearning 2017.)

Docker Incorporated provides a container image to setup a private registry. The private

registry also requires a creation of an SSL certificates to secure the connection between

the hosts and the registry. The registry also supports multiple different authentication

methods. (Docker Inc. 2019.)

4.6 Docker volumes and storage drivers

The volumes are mounted directories or files from the host system. The data written by a

container to the mounted volume is persisted even if the container is deleted from the

system. Volumes can be shared between multiple containers. Access to the volumes

bypasses the storage driver and instead uses direct host access. (Docker Inc. 2019.)

The storage drivers handle reads and writes of the Docker images. The drivers work on

top of Linux filesystems and are dependent on the kernel support. Windows and Mac have

their own versions of the storage drivers that cannot be changed. The drivers abstract the

access to the image layers stored inside different directories. (Docker Inc. 2019.)

The default storage driver is the OverlayFS (overlay2) from Docker version 18.09.0

onwards. Version 18.06 and older use AUFS (a union file system) as default. The

Overlay2 is more performant compared to AUFS. (Docker Inc. 2019.)

Selection of the storage drivers is also dependent on the kernel version and the image

storage location’s filesystem format. The driver selection in order of preference for the

filesystem format is: BtrFS, ZFS, Overlay2, AUFS, Overlay, Devicemapper and VFS.

Supported formats for Overlay and AUFS are XFS or Ext4. (Docker Inc. 2019; Docker Inc.

2019e.)

17

5 ARCHITECTURE

The new architecture is built on multiple virtual machines provided by a third-party hosting

service. Important properties for virtual machines are a secure and fast network

connection between hosts and the possibility to vertically scale the virtual machines.

Figure 6. Architecture

The architecture in Figure 6 is divided into multiple clusters:

1. Kubernetes cluster providing the application pods. Minimum of 2 pods per client,

which must be distributed to different nodes.

2. Galera cluster providing databases for applications running on the Kubernetes

cluster.

3. Distributed file system using GlusterFS as high availability binary storage for data

not stored in the database.

4. Testing and development cluster.

18

The Kubernetes cluster runs multiple containers of the same base application, customized

for the client using environment variables. The application is a PHP language based

monolithic stateless web application. The application container is built upon a PHP-FPM

image and the container images are loaded from a private image registry.

5.1 Load balancing

Access to the Kubernetes cluster is handled via a Nginx proxy with a passive backup in

case the main proxy has a failure. This also requires support for a floating IP from the

datacenter provider. The Nginx proxy routes the traffic to all worker nodes in the

Kubernetes cluster, balancing requests to nodes with the least amount of traffic. Every

worker node has an ingress controller for routing the external traffic to their target services

inside the cluster. Traffic from the services to the pods is handled by the kube-proxy

component that by default uses a round-robin load balancing algorithm.

Pod distribution inside the cluster requires configuration to balance multiple replicas of the

same pod between different nodes. By default, the kube-scheduler component chooses

the nodes during a spin-up, preferring the nodes with most computational resources

available, and tries to distribute them to multiple nodes. There are configuration rules

PodAffinity and PodAntiAffinity that can enforce distribution of pods between multiple

nodes even in case of a node failure. Normally during node failure, all the running pods

from the failed node are distributed to healthy pods after a grace period. After the node

recovers, the pods are not distributed again and in the long run this will cause imbalance

inside the cluster.

ProxySQL is configured to distribute reads between multiple nodes inside the Galera

cluster but writes are targeted to a single node to avoid a deadlock state. Another writer

node is selected from all other nodes in case the writer node has a failure.

5.2 Scaling

Databases are scaled by adding more nodes to the Galera cluster. Adding nodes is

simplified by having a virtual machine template with required software preinstalled. The

database joins the cluster automatically by inserting the correct configuration through

virtual machine initialization script. Additional configuration is done to the ProxySQL by

adding the new server to the list of available servers.

Kubernetes is horizontally scaled by adding more worker nodes to the cluster. Worker

nodes are created from the virtual machine template and joined to Kubernetes by running

19

the kubectl join command. After this the Kubernetes master redistributes current pods

between all the nodes.

The Application and service containers are scaled inside the Kubernetes cluster by

issuing commands to the Kubernetes scheduler and changing the number of replicas. The

number of application containers is based on the size of the client organization.

5.3 Availability

High availability is achieved by having no single point of failure inside the architecture.

Every component should have at least another failover component and preferably the

ability to balance the load between components.

The Galera cluster is fail-safe between all nodes, and a single surviving node in case of

failure can still serve requests and act as a point of recovery for resurrected nodes. In

case of total failure where all database nodes go down, recovery is made by determining

the node with the latest changes and using that node as a base. This is a catastrophic

failure and there would be some downtime.

ProxySQL runs as a service inside the Kubernetes cluster, and load balancing and

failovers are handled by Kubernetes. Configuration is handled via Kubernetes ConfigMap

and the single endpoint address is pointed for the service with ClusterIP, which all

application pods can then utilize as their database host.

Application pods are configured to prioritize distribution to multiple nodes through use of

PodAffinity rules providing protection from node failures. Routing for them is provided by

Kubernetes services configured as ClusterIPs. Service discovery for new replicas of the

pods is handled by Kubernetes through Kubernetes service Selector and pod

MatchSelector definitions. These matches allow Kubernetes to automatically generate

new endpoints as the number of pod replicas changes.

5.4 Data persistence

Database data is persisted inside each node of the Galera cluster. Each node is a virtual

machine and they are connected to each other via virtual network and distributed to

multiple datacenters for high availability.

Binary files uploaded by the clients are stored inside GlusterFS mounts provided to

application containers as Kubernetes volumes. GlusterFS is distributed to multiple

datacenters.

20

Application sources and container images are stored inside the development cluster. The

Source codes are stored in a private Git server and images are stored in a private image

repository.

5.5 Deployment

Deployment pipeline is semi-automated. Provision of new clients is handled by internal

admin tools that initialize the database and update the ProxySQL cluster, reserve disk

space from the binary storage and generates Kubernetes deployment, ingress and service

configurations. The API for the DNS management is provided by third party and the SSL

certificates are provided by Let’s Encrypt.

The private registry for the Docker images is hosted on the development cluster using a

Docker registry with Nginx reverse proxy. The images are built using multistage

Dockerfiles that have PHP-FPM base image and a build stage for the Composer

dependency installation and the WebPack, building the frontend JavaScript code. And a

cleanup stage where all the files and directories not required by the running container are

stripped from the image. Dockerfile versions are stored inside a separate configuration

repository on private Git server.

The application image does not include any client configurations and are stateless. All the

client configurations that are required for operation are made in the Kubernetes using

configMaps. These include for example the database connection configuration, location of

the binary file storage, JWT-certificates and configurations etc. All of these are defined as

container environment variables.

5.5.1 Continuous Integration

Code changes are tested locally before being pushed to the Git repository. The integration

testing tools are provided by the Symfony framework that uses PHPUnit testing

environment as a base. The tests make web-client requests to the application and then

asserts the responses. Assertions check for valid responses, changes in the database

state and performance of the request.

For testing mock database is generated and rollback of the transactions are used to

speed up the tests. The transaction rollback restores the state of database, this is

preferred alternative to recreating the database between each test. Transaction rollback

ability is provided by the Doctrine ORM.

21

The responses are asserted for a valid HTTP status codes and a content. Symfony mock

client has a crawler for content that can also follow links and mock form submissions. The

database changes are validated by querying the state of tables changed by the request.

The performance is measured through profiler provided by Symfony. Most important

metrices are the response time, database query count and query time.

5.5.2 Continuous Delivery

New features and updates are integrated as soon as all tests have passed, and the

feature is mature enough. Updates are delivered via container image registry. The

application image is updated, and Kubernetes is triggered to update all the containers.

Database migrations cause minor slowdown by limiting containers which serve the client

organization to one. After the migration has succeeded container replica count is restored.

22

6 CONFIGURATIONS

The configuration is a file-based system where images are described in Dockerfiles and

the Kubernetes cluster is defined through yaml-formatted files. All files are stored in a Git

repository for version control and documentation of the changes. In the Kubernetes

configuration the focus is on separating client organization variables from the container

images and routing the external requests to the right pods using Ingress and Kubernetes

services.

6.1 Private image registry

A private image registry is used to store the Docker images of the application. The primary

reason to use a private registry is to prevent outside access to the source code. If the

application image was uploaded to a public registry, anyone could download the image

and access the code.

Installation package requirements consist of:

• docker

• docker-compose

• nginx

• apache2-utils

• SSL certificate

Nginx is configured as proxy using an SSL certificate signed with a self-signed CA root

certificate. The CA root certificate is distributed to every node in the Kubernetes cluster

and added to a trusted certificates storage. Authentication is handled with HTTP basic

authentication.

23

Image 4. Nginx reverse proxy

In the Nginx configuration (Image 4), row 9 has regex filter for User-Agent HTTP header.

This rule is used to prevent communication from the older, incompatible version of the

Docker engine. A private registry requires Docker 1.6.0 or higher version (Docker Inc.

2019).

Image 5. Docker Compose configuration

24

The Docker Compose configuration (Image 5) uses the environment variables, rows 9

through 12, to configure the behavior of the registry. Rows beginning with

REGISTRY_AUTH are used to configure the authentication type and location of the

security file. REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY is the root path

for the binaries of the docker images.

Image 6. Kubernetes private registry secret

Use of a private registry in Kubernetes requires creation of a secret for Kubernetes (Image

6). The secret can then be referenced in deployment configurations. For Docker registries,

the dockerconfigjson field must contain base64 encoded contents of a config.json file

(Image 7). The type field defines the type of the secret. Kubernetes requires this

information to decode the contents correctly.

Image 7. Contents of dockerconfigjson

25

In config.json (Image 7) the password on row 4 is not encrypted. It is a base64 encoded

plain password. The format is a username password key-value pair. The hostname for the

registry is used in reference to the image in the deployments. That way Kubernetes can

match the secrets and image registries.

6.2 Nginx proxy

Nginx proxy is the connection layer for the clients. The proxy routes and balances the

traffic between nodes in the cluster. The proxy also has the SSL certificates to secure the

client connections to the proxy. After the proxy, all internal requests are not encrypted.

Image 8. Nginx proxy configuration

In the Nginx configuration (Image 8) row 1 is the block, which defines the backend

servers. Row 2 has the load balancing algorithm definition “least_conn;” This algorithm

routes traffic to a server with the least active connections and presumably the lightest

workload.

Rows 3 and 4 are the IP addresses of the worker nodes in the Kubernetes cluster. Port

number is the ingress-nginx service’s NodePort number. Image 9 shows the kubectl

26

command to query the services in the ingress-nginx namespace. The ports column on row

3 displays the port mappings in internal:external format. Internal port 80 is mapped to

external port 31918.

Image 9. Ingress service

From row 8 onwards in Image 8 is the location block which routes all the traffic to the

backend nodes and sets Host and X-Forwarded-For headers. Host name is the requested

DNS name, and this is required to route requests to correct pods in the Kubernetes

ingress. X-Forwarded-For is the client IP address the request originated from.

Rows 14 through 18 define the SSL certificate configuration. Row 21 server block defines

the redirection of HTTP connections to HTTPS.

6.3 Kubernetes cluster

Kubernetes cluster consists of multiple Ubuntu 18.04 LTS based nodes with following

requirements:

• swap disabled

• iptables rule

• kubelet

• docker

Figure 7 shows the route taken by an external request to reach the pods inside the

cluster. The requests are routed to the Ingress service which has specific rules to choose

the destination service or pod. The Ingress to application service route is configured via

an API extension that has a spec field for the Nginx specific rules.

27

Figure 7. External request

Image 10. Application ingress configuration

The application ingress configuration (Image 10) requires an annotation

“ingress.kubernetes.io/ingress.class” to set the type of the ingress to which the rules

28

inside the spec field are applied. Rows 9 to 16 define the rules to route the requests with

hostname example.com to the Kubernetes service named service-example using port 80.

Row 10 is the target hostname of the request. Rows 11, 12 and 14 are Nginx specific

fields. Row 13 defines the path, the forward slash ‘/’-character denotes all paths. Rows 15

and 16 define the service name and the port.

Image 11. Application service configuration

The application service (Image 11) is a layer that routes the requests to the pods inside

the cluster. the pods that have metadata labels which match the key-value in the service’s

selector field (row 8). The endpoints are automatically created for each pod matched via

the selector and the requests are balanced between multiple endpoints with round-robin

algorithm.

The PHP application pod consists of two containers with a shared data volume:

• Nginx container as a reverse proxy for the PHP-FPM container and as a static

content host.

• PHP-FPM container which executes the application scripts.

29

Image 12. Deployment metadata

Image 12 shows the basic metadata for a Kubernetes Deployment. Row 7 defines the

number of pod replicas this deployment will have and row 8 defines the selector used to

find the pods which belong to this deployment.

Image 13. Deployment template metadata

Deployments have a template that defines the structure of the pods managed by this

deployment. Important part of the template metadata is to have at least one label (row 14)

which matches the selector matchLabels definition of the deployment spec (Image 12, row

10).

30

Row 17 in Image 13 has a podAntiAffinity rule to distribute the pods managed by this

deployment to different nodes. If the node has a failure and the pods are redistributed

across healthy nodes, the affinity rules are used to distribute the pods to different nodes

and keep the cluster balanced. If no affinity rules are defined all the pods in the service

might end up running on a single node.

Row 28 in Image 13 defines the Kubernetes secret for accessing the private registry. This

secrets’ configuration is in Image 6. Multiple ImagePullSecrets can be configured.

Image 14. Deployment template volumes

Volumes available for the containers are configured in Image 14. Row 31 configures an

empty volume that will be used to share the application files between the both containers.

Rows 33, 36 and 41 define the volumes using configMaps and secret. These are then

defined in Image 15 as mounts on the containers.

31

Image 15. Deployment template containers

The application container configuration (Image 15) uses the application image from the

private registry. The version number is tagged to the image during the build stage.

ImagePullPolicy IfNotPresent checks the nodes image storage before downloading the

image from the registry.

Memory and CPU time are limited based on the current hardware and approximated

number of concurrent requests per customer. The application’s average memory

consumption per request is about 80 Megabytes of memory and one container can serve

about eight concurrent connections at any given time before reaching the memory limit.

Shared volume for the Nginx container is mounted to path /app. Two different PHP

configuration files are mounted from the PHP configMap volume. Both are mapped to

PHP conf.d directory. Mount on row 62 is the JSON web tokens volume containing the

client specific encryption certificates. Application locates these certificates using the

environment variables configured in the Image 21 rows 12 and 13.

The lifecycle field on row 64 to 67 defines the script file to be executed on the container

initialization. The poststart.sh script (Image 18) is included to the container image during

32

the image build stage. Rows 68 to 70 defines the configMap from where to load the

environment variables.

Image 16. Nginx container definition

The Nginx container configuration (Image 16) for the reverse proxy is very basic. The

memory and CPU time requirements and limits are low because these proxies will only

serve requests coming from a single client organization and all requests are shared

between multiple replicas.

Volume mounts are the shared volume between the Nginx container and the application

container, mounted to /app. And the Nginx configMap which maps the custom Nginx

configuration to the Nginx conf.d directory.

Image 17. Command to create secret

The Kubernetes Secret containing the private and public keys for the JSON web tokens is

generated with the command in Image 17. The n flag sets the namespace to example.

Commands create, secret, and generic are instructions for the kubelet. Jwt-example.com

is the name of the new secret. --from-file defines the key-value pair for the secret. First is

the key followed by a value. Example creates two key-values pairs:

• private: private.pem contents encoded with base64.

33

• public: public.pem contents encoded with base64.

Image 18. postStart.sh script

The script in Image 18 is the post start script for the application container. The script is

executed after the container has initialized and is used to finalize the initialization of the

container image. In row 2 the script copies the application source code to the shared

volume. This shared volume is accessed by both the application container (PHP-FPM)

which executes the PHP scripts and the Nginx container serving static content. Additional

initializations from row 5 onwards are instructions for the Symfony framework to install

static assets, initialize the internal cache and set folder permissions.

The container is in initializing state until the post start script has completed. Errors in the

post start script will prevent the container from entering the running state. Lifecycle scripts

should be kept as light as possible.

34

Image 19. Nginx configMap

The Nginx configMap (Image 19) configures the Nginx to function as a reverse proxy for

the PHP application. The Nginx also serves static contents such as CSS and JavaScript

files. Rows 17 to 25 has the reverse proxy configuration which redirects the requests to

localhost:9000 address. Because the container that provides the PHP-FPM is running

inside the same Kubernetes pod, they can access each other through the localhost name

and a port number.

35

Image 20. PHP configMap

ConfigMap for the PHP settings (Image 20) is split to two separate configurations.

Symfony.ini contains all the optimizations for the Symfony framework. And app.ini has

customer specific settings. In this case are specified a maximum file upload size and a

time zone for the application.

Image 21. Application environment configMap

36

Client-based variables and configurations are mapped to clients’ containers via

ConfigMaps. Image 21 presents an example client configMap for the application (PHP)

container.

Rows 7 to 9 define environment variables for the Symfony framework: the running level of

the application, hash for security functions and database connection URL. Database

connection describes database type followed with credentials, server and database name.

On row 9 the service-proxysql is the ProxySQL Kubernetes service which provides the

database access. Rows 10 and 11 have variables used by the application and rows 12 to

16 have variables for the JSON authentication library.

Image 22. Application Dockerfile

37

The application image does not include any client specific configurations or variables. The

image has only base code for the application to function and all customizations are made

through environment variables or mounted config maps.

Dockerfile for the application (Image 22) is multistage to separate the build stage from the

final runnable image. The Build stage is an image of Composer package manager from

the public Docker registry. Build stage executes the Composer to install all the external

PHP library requirements of the application.

The build stage also installs Yarn, a JavaScript library package manager, to install all

modules required by the application’s frontend JavaScript. Yarn also executes Symfony

framework’s Encore WebPack wrapper, which builds and transpiles the ES6 JavaScript

code to a more widely supported ES5 code.

After the build stage has completed, all unnecessary files are removed from the directory

used as the base for the application. This is done in order to reduce the size of the final

image. In Image 22 the removal of directories and files are separated for readability.

The application image is based on Linux running the Alpine distribution, with PHP

FastCGI Process Manager and its requirements pre-installed. The Alpine distribution is

selected because of its small size. The Php-fpm Docker image also includes hooks for

customizing the PHP installation. In Image 22, rows 33 to 37 are used to install and

enable PHP-modules required by the application.

Row 39 has the command to copy the built PHP application from the build stage to the

final application image. EXPOSE 9000 opens the PHP FastCGI Process Manager’s port

to handle requests from the Nginx container.

38

7 SUMMARY

The purpose of this project was to containerize and orchestrate a PHP application using

Docker and Kubernetes. Kubernetes has many abstractions to simplify the management

of containers. Deployments abstract the pod lifecycle management and Kubernetes

services abstract the pod networking.

Container images should be kept as small as possible for fast delivery and to save space

on the image registry server. Hard version numbering is preferred instead of using the

latest tag, to avoid unwanted upgrades and to allow the possibility of rollback.

The main challenges with Kubernetes came from routing the external traffic to the right

pods and calculating and selecting the memory limits for the PHP application pods. For

memory limits, overprovisioning is preferable. Implementing automatic horizontal scaling

of the pods is also a possibility in the future.

The next steps for the development of the platform are a centralized logging and

monitoring solution, automation of customer instance creation and distribution of clusters

over multiple different datacenter locations.

Replacement of the Nginx reverse proxy container inside the PHP application pod is also

a possibility in the future. For example, Roadrunner or Nginx Unit are promising

technologies to make a PHP application handle a large number of traffic by making the

application’s front memory persistent and offloading requests to child processes similarly

to how NodeJS operates.

39

REFERENCES

Abd-El-Barr, M. & El-Rewini, H. 2005. Advanced Computer Architecture and Parallel

Processing. John Wiley & Sons Inc.

AeonLearning Pvt. Ltd. 2017. What is Docker Container [referenced 17 Feb 2019].

Available: https://acadgild.com/blog/what-is-docker-container-an-introduction

Brown, N. 2016. Explaining Docker Image IDs [referenced 16 Nov 2019]. Available:

https://windsock.io/explaining-docker-image-ids/

Cloud Native Computing Foundation. Members [referenced 9 Mar 2019]. Available:

https://www.cncf.io/about/members/

Composer documentation. Composer documentation [referenced 16 Nov 2019]. Available:

https://getcomposer.org/doc/

Docker Inc. 2019. Docker documentation [referenced 15 Nov 2019]. Available:

https://docs.docker.com

Docker Inc. 2019a. Docker Desktop [referenced 17 Feb 2019]. Available:

https://www.docker.com/products/docker-desktop

Docker Inc. 2019b. Docker Engine [referenced 17 Feb 2019]. Available:

https://www.docker.com/products/docker-engine

Docker Inc. 2019c. Docker overview [referenced 17 Feb 2019]. Available:

https://docs.docker.com/engine/docker-overview

Docker Inc. 2019d. What is a Container [referenced 3 Feb 2019]. Available:

https://www.docker.com/resources/what-container

Docker Inc. 2019e. Docker source code: Linux driver [referenced 15 Nov 2019]. Available:

https://github.com/docker/docker-

ce/blob/19.03/components/engine/daemon/graphdriver/driver_linux.go

Eldridge I. 2018. What is Container Orchestration. New Relic [referenced 9 Mar 2019].

Available: https://blog.newrelic.com/engineering/container-orchestration-explained/

Gavalda, M. 2019. The Definitive PHP 5.6, 7.0, 7.1, 7.2 & 7.3 Benchmarks [referenced 26

Nov 2019]. Available: https://kinsta.com/blog/php-benchmarks/

Haff, G. 2013. What are containers and how did they come about? [referenced 16 Feb

2019]. Available: http://bitmason.blogspot.com/2013/09/what-are-containers-anyway.html

https://acadgild.com/blog/what-is-docker-container-an-introduction
https://windsock.io/explaining-docker-image-ids/
https://www.cncf.io/about/members/
https://getcomposer.org/doc/
https://docs.docker.com/
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-engine
https://docs.docker.com/engine/docker-overview
https://www.docker.com/resources/what-container
https://github.com/docker/docker-ce/blob/19.03/components/engine/daemon/graphdriver/driver_linux.go
https://github.com/docker/docker-ce/blob/19.03/components/engine/daemon/graphdriver/driver_linux.go
https://blog.newrelic.com/engineering/container-orchestration-explained/
https://kinsta.com/blog/php-benchmarks/
http://bitmason.blogspot.com/2013/09/what-are-containers-anyway.html

40

Liu, H. 2009. Software Performance and Scalability: A Quantitative Approach. Wiley-

Blackwell.

Kerrisk, M. 2010. The Linux programming interface: a Linux and Unix system

programming handbook. No Starch Press.

Krochmalski, J. 2016. Developing with Docker. Packt Publishing.

Mell, E. 2018. Dive into the decades-long history of container technology. TechTarget

[referenced 3 Feb 2019]. Available: https://searchitoperations.techtarget.com/feature/Dive-

into-the-decades-long-history-of-container-technology

Nginx documentation. Nginx documentation [referenced 16 Nov 2019]. Available:

https://nginx.org/en/docs/

PHP documentation. PHP documentation [referenced 16 Nov 2019]. Available:

https://www.php.net/manual/en/

Red Hat Blog. 2015. The History of Containers [referenced 16 Feb 2019]. Available:

https://rhelblog.redhat.com/2015/08/28/the-history-of-containers/

Rouse, M. 2018. Container (containerization or container-based virtualization).

TechTarget [referenced 3 Feb 2019]. Available:

https://searchitoperations.techtarget.com/definition/container-containerization-or-

container-based-virtualization

Salehi, S. 2016. Mastering Symfony. Packt Publishing.

Saito, H., Hsu, C. & Lee, C. 2016. Kubernetes Cookbook. Packt Publishing.

Symfony SAS. 2019. What is Symfony? [referenced 24 Nov 2019]. Available:

https://symfony.com/what-is-symfony

The Kubernetes Authors. 2019. Kubernetes Documentation [referenced 17 Nov 2019].

Available: https://kubernetes.io/docs/home/

The Kubernetes Authors. 2019a. Learn Kubernetes Basics [referenced 9 Mar 2019].

Available: https://kubernetes.io/docs/tutorials/kubernetes-basics/

The Kubernetes Authors. 2019b. Kubernetes Concepts [referenced 9 Mar 2019. Available:

https://kubernetes.io/docs/concepts/

The Kubernetes Authors. 2019c. Cluster Networking [referenced 9 Mar 2019]. Available:

https://kubernetes.io/docs/concepts/cluster-administration/networking/

https://searchitoperations.techtarget.com/feature/Dive-into-the-decades-long-history-of-container-technology
https://searchitoperations.techtarget.com/feature/Dive-into-the-decades-long-history-of-container-technology
https://nginx.org/en/docs/
https://www.php.net/manual/en/
https://rhelblog.redhat.com/2015/08/28/the-history-of-containers/
https://searchitoperations.techtarget.com/definition/container-containerization-or-container-based-virtualization
https://searchitoperations.techtarget.com/definition/container-containerization-or-container-based-virtualization
https://symfony.com/what-is-symfony
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/cluster-administration/networking/

41

The Kubernetes Authors. 2019d. Pod Overview [referenced 9 Mar 20219]. Available:

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

