

Bibha Gupta

 Development of a System for Recommendation
and Search via Cloud Computing

Helsinki Metropolia University of Applied Sciences
Master of Engineering
Information Technology – Mobile Programming
Thesis
5 March 2011

 Abstract

Author(s)
Title

Number of Pages
Date

Bibha Gupta
Development of a System for Recommendation and Search via
Cloud Computing

70 pages
5 March 2011

Degree Master of Engineering

Degree Programme Information Technology – Mobile Programming

Specialisation option Mobile Programming

Instructor(s) Kitsnik Peeter, Ph.D, Senior Lecturer

Cloud computing is one of the emerging technologies. This thesis aimed to outline cloud
computing and its features. The thesis considered cloud computing for machine learning
and data mining. The goal of the thesis was to develop a recommendation and search
system using cloud computing. The main focus was on the study and understanding of
Hadoop, one of the new technologies used in the cloud for scalable batch processing, and
HBase data model which is a scalable database on top of the Hadoop file system.

The thesis project involved the design, analysis and implementation phases for developing
the search and recommendation system for staffing purpose. So, mainly the action
research method was being followed for this project.

Software project staffing is one of the main problems in software organizations. Searching
for an employee based on simple queries to relational database is not sufficient to find a
suitable match for a project. The Recommendation System based on Hadoop, HBase and
MapReduce can efficiently recommend persons or teams from a set of available developers
and according to project requirements. As a result this project developed an efficient
staffing recommendation system on cloud computing platform, using Hadoop.

The System recommends a list of persons that can replace the person leaving the project.
The processing of data is very fast because of its parallel processing feature. This system
takes less time to get the search results compared to other system based on the non-
scalable Oracle database.

Keywords cloud computing, Java, MapReduce, Hadoop, HDFS, HBase,
ZooKeeper, recommendation algorithms, REST service

Contents

1 Introduction 1

2 Conceptual Background 3

2.1 Definition of Cloud Computing 3

2.2 Apache Hadoop 4

2.3 ZooKeeper 5

2.4 MapReduce Programming Model 6

2.5 Recommendation and Search Algorithms 7

2.5.1 K-Nearest Neighbor Algorithm 7

2.5.2 User-based Collaborative Filtering Algorithm 7

2.6 REST Services 9

3 Hadoop Distributed File System 12

3.1 Overview 12

3.2 Architecture 12

3.2.1 NameNode 13

3.2.2 DataNodes 15

3.2.3 HDFS Client 16

3.3 Replication Management 18

3.4 Features of HDFS 18

3.5 Advantages and Disadvantages 20

4 HBase a Scalable, Distributed Database 22

4.1 Overview 22

4.2 Architecture 22

4.3 Data Model 24

4.4 HBase in Action 27

4.5 HBase Uses 29

4.6 HBase vs Relational Database 31

5 Recommendation and Search System Development 32

5.1 Analysis 32

5.2 Development Environment 34

5.3 System Architecture 35

5.4 Loading Data to HBase 37

5.4.1 Employee Table 39

5.4.2 Competence Table 42

5.4.3 Project Table 44

5.5 Using RESTful Services 49

5.5.1 Server 50

5.5.2 Client 53

5.6 Data Mining 55

5.6.1 Competence Data Analysis 55

5.6.2 Project Data Analysis 58

5.6.3 Recommendation 61

6 Conclusion 65

References 67

Abbreviations and Terms

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

CRUD Create, Retrieve, Update, Delete

DBA Database Administrator

GNU GNU's Not Unix

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

IO Input/Output

IP Internet Protocol

JDK Java Development Kit

KNN K-nearest Neighbor Algorithm

MIME Multipurpose Internet Mail Extensions

OS Operating System

RDMS Relational Database Management System

REST Representational State Transfer

RPC Remote Procedure Call

SLAs Service Level Agreements

SQL Structured Query Language

TCP Transmission Control Protocol

UI User Interface

URL Uniform Resource Locator

XML Extensible Markup Language

1

1 Introduction

In the present day software era the ever growing data demands elastically scalable

data centers which can be conveniently accessible with high quality in a secure way.

This demand led to cloud computing as one of the emerging technologies of today.

Cloud computing releases computer services, computer software, and data storage

away from locally hosted infrastructure and into cloud-based solutions. The ability of

the cloud services to provide apparently an unlimited supply of computing power on

demand to users has caught the attention of industry as well as academia. In the past

couple of years software providers have been moving more and more applications to

the cloud[1].

Several big companies such as Amazon, Google, Microsoft, Yahoo, and IBM are using

the cloud. Today, forward-thinking business leaders are using the cloud within their

enterprise data centers to take advantage of the best practices that cloud computing

has established, namely scalability, agility, automation, and resource sharing. By using

a cloud-enabled application platform, companies can choose a hybrid approach to

cloud computing that employs an organization's existing infrastructure to launch new

cloud-enabled applications. This hybrid approach allows IT departments to focus on

innovation for the business, reducing both capital and operational costs and

automating the management of complex technologies. [2]

Cloud services claim to provide nearly everything needed to run a project without

owning any IT infrastructure. From e-mail, Web hosting to fully managed applications

resources can be provided on–demand. This helps to reduce development cost and

hardware cost. [3]

Large corporations are regularly faced with the problem of staffing new projects.

Assigning employees to projects based on their list of competences and project

requirements requires complex queries. Cloud computing can provide a scalable

method for answering these complex queries.

2

The goal of this thesis is to get an understanding of cloud computing. This includes the

study and understanding of Hadoop Distributed File System (HDFS), HBase Data

Storage and MapReduce. The main goal is to develop and implement a

recommendation and search system for staffing using cloud computing. This system is

for competences mining and is based on cloud-based technology using Hadoop.

If single person leaves a project, find replacement. From a given list of competence

requirements, find a matching person. From a given complete list of requirements for a

new project, find a team. From a given incomplete lists of competences for an

employee, estimate missing competences. These are some use cases for this thesis.

This thesis project is done at Tieto Company in collaboration with a Alto University, and

I am one of the research team members. I am responsible for the design and

implementation of the software.

The study is to use Tieto Employee Competence Data for data mining as an input for

searching and recommending the required profile. This study is done only for the data

which has all the required information.

3

2 Conceptual Background

2.1 Definition of Cloud Computing

Cloud computing is basically services-on-demand over the Internet. It is a natural

evolution of the widespread adoption of virtualization, service-oriented architecture and

utility computing. [4]

Definitions of Cloud Computing

a) Cloud computing is a computing capability that provides an abstraction between

the computing resource and its underlying technical architecture (e.g., servers,

storage, networks), enabling convenient, on-demand network access to a

shared pool of configurable computing resources that can be rapidly

provisioned and released with minimal management effort or service provider

interaction.[5]

b) There is no formal definition commonly shared in industry, unlike for Web 2.0,

and it is very broadly defined as on-demand provisioning of application,

resources, and services that allow resources to be scaled up and down.[6]

c) Clouds are a large pool of easily usable and accessible virtualized resources

(such as hardware, development platforms and/or services). These resources

can be dynamically reconfigured to adjust to a variable load (scale), allowing

also for an optimum resource utilization. This pool of resources is typically

exploited by a pay-per-use model in which guarantees are offered by the

Infrastructure Provider by means of customized SLAs.[7]

The Key features of cloud computing are:

 Service: Everything, infrastructure, platform and software, is delivered as

services.

 Scalability: Resources can be dynamically scalable over data center without

much difficulty

 Cost effectiveness: It follows the “pay as use basis” model

4

 Interface: Independent of location, services are accessible as Web services

via Web browsers

 Availability

 Virtualization

Cloud computing includes a number of technologies such as Virtualization, Web

services, Service Oriented Architecture, Web 2.0, Web Mashup. One of the key new

technologies used in the cloud are scalable batch processing systems. The main

reference implementation here is Google MapReduce and its open source

implementation Apache Hadoop originally developed at Yahoo.

Distribution and scalability are playing important roles in the cloud, and for that

Hadoop can be used. Hadoop is a cloud computing program created to deal with the

growing demands of modern computing and storage of massive amounts of data.

Many companies, especially ones that operate through demanding websites, e.g.

Amazon, Facebook, Yahoo, eHarmony and eBay, use Hadoop.[4]

2.2 Apache Hadoop

Hadoop is an open-source cloud computing environment that implements the

MapReduce based on Google MapReduce. Hadoop is written in Java language; any

machine that supports Java can run the Hadoop software. It has its own distributed file

system called Hadoop Distributed File System (HDFS) which is based on GoogleFile

System. Hadoop uses the HDFS to divide files among several nodes, with the processor

of each node only working off their own storage. Hadoop is an Apache project. Hadoop

enables the development of reliable, scalable, efficient, economical and distributed

computing using very simple Java interfaces - massive parallel code without the pain.

HDFS based database used mainly for batch processing is HBase which is heavily

inspired by Google Bigtable. The main applications for Hadoop seem to be log analysis,

Web indexing, and various data mining and customer analysis applications.

HDFS and HBase are discussed in detail in chapters 3 and 4.

5

2.3 ZooKeeper

ZooKeeper is a Hadoop’s distributed coordination service for building distributed

applications. It provides a centralized service for managing queues of events,

configuration maintenance, leader election, naming, distributed synchronization and

providing group services. At its core, ZooKeeper is modeled after a straightforward,

tree based, file system API [8]. It runs in Java and has bindings for both Java and C

[9].

The ZooKeeper service is provided by a cluster of servers to avoid a single point of

failure. ZooKeeper uses a distributed consensus protocol to determine which node in

the ZooKeeper service is the leader at any given time.

Architecture

There is only one leader among the servers and it is elected at the startup. Figure 1

showing the architecture diagram of Zookeeper. All servers store a copy of the data in

memory. The main task of the leader is to coordinate and accept writes. All other

servers are direct, read-only replicas of the master. This way, if the master goes down,

any other server can pick up the slack and immediately continue serving requests.

ZooKeeper allows the standby servers to serve reads. [8]

Figure 1. Architecture [8]

A limitation here is that every node in the cluster is an exact replica - there is no

sharing and hence the capacity of the service is limited by the size of an individual

machine. [8]

6

2.4 MapReduce Programming Model

MapReduce is a parallel programming model for processing large sets of data. Google

introduced MapReduce in 2004 for distributed computing. This framework is

implemented in C++ with interfaces in Python and Java. MapReduce consists of two

main functions Map and Reducer. Computation takes input as a set of key/value pairs

and produces output as set of key/value pairs.

Figure 2. MapReduce

As illustrated in figure 2, MapReduce function call splits the input data into N pieces.

Mapper maps input <key, value> pairs to a set of intermediate <key, value> pairs.

Then all the intermediate pairs are sorted by unique keys, so that all the values of the

same key are grouped together. The reducer reduces this grouped set of intermediate

values. The outputs of all reduce functions are merged to produce the output of the

complete MapReduce job.

7

2.5 Recommendation and Search Algorithms

The recommendation algorithm is for analyzing data for a particular problem to find

the items a user is looking for and to produce a predicted likeliness score or a list of

top N recommended items for a given user. Different algorithms can be used based on

each use case. For this thesis, K-nearest neighbor has been used for finding a similar

replacement of an employee leaving a project. User-based Collaborative Filtering

Algorithm is used for predicting missing competences.

2.5.1 K-Nearest Neighbor Algorithm

The K-nearest neighbor algorithm (KNN) is part of supervised learning that has been

used in many applications in the field of data mining, statistical pattern recognition and

many others. KNN is a method for classifying objects based on the closest training

examples in the feature space. An object is classified by a majority vote of its

neighbors. K is always a positive integer. The neighbors are taken from a set of objects

for which the correct classification is known. It is usual to use the Euclidean distance,

though other distance measures can also be used instead. [10]

One of the advantages of the KNN is that it is well suited for multi-modal classes as its

classification decision is based on a small neighborhood of similar objects (i.e., the

major class). So, even if the target class is multi-modal (i.e., consists of objects whose

independent variables have different characteristics for different subsets), it can still

lead to good accuracy. A major drawback of the similarity measure used in the KNN is

that it uses all features equally in computing similarities. This can lead to poor

similarity measures and classification errors, when only a small subset of the features

is useful for classification. [11]

2.5.2 User-based Collaborative Filtering Algorithm

A user-based collaborative filtering algorithm produces a recommendation list for the

object user according to the view of other users. The assumption is that users with

similar preferences will rate products similarly. Thus missing ratings for a user can be

8

predicted by first finding a neighborhood of similar users and then aggregating the

ratings of these users to form a prediction.

User rating data can be a matrix A(m,n), where m represents the number of users, n

represents the number of items. Element R (at the ith line and jth column) represents

the rating of the item j rated by user i. User rating data matrix is shown in figure 3.

[12]

Figure 3. User-item rating data matrix [12]

A cosine similarity algorithm can be used to measure the similarity between user i and

j. Similarity between user i and user j is sim (i, j):

Rating of item i rated by user u can be predicted by rating of nearest neighbors set

NBSu rated by user u. The predicted rating of item i rated by user u is:

NBSu - the nearest neighbor set of user u;

Pu,i – Predicted rating by user u on item i;

sim(u,n) — the semblance between user u and n;

9

 — the rating of item i rated by user n;

— the average rating of items rated by user u;

 — the average rating of items rated by user n.

According to the rating of items, select N items that have the highest rating to

compose a recommendation set and recommend them to the object user. [12]

2.6 REST Services

REST is an architectural style which is based on Web standards and the HTTP protocol.

In REST-based architecture everything is a resource. A resource is accessed via a

common interface based on the HTTP standard methods. In REST architecture there is

a REST server which provides access to the resources and a REST client which

accesses and modifies the REST resources. [13] Figure 4 shows the JAX RS

Architecture.

Figure 4. JAX RS Architecture

10

As shown in figure 4, every resource should support the HTTP common operations.

Resources are identified by global IDs (which are typically URIs). REST allows that

resources have different representations, e.g. text, XML, JSON etc. The client can ask

for specific representation via the HTTP protocol (Content Negotiation). The HTTP

standard methods which are typically used in REST are PUT, GET, POST and DELETE.

[13]

Java, REST and Jersey

Java technology (Java EE) defines standard REST support via JAX-RS (The Java API for

RESTful Web Services) in JSR 311 . Jersey is the reference implementation for this

specification. Jersey contains basically the core server and the core client. The core

client provides a library to communicate with the server. [13]

JAX-RS uses the following annotations to define the REST relevance of classes:

 @Path

 @GET

 @POST

 @PUT

 @DELETE

 @Consumes

 @Produces

11

Figure 5. JAX RS in Action

Figure 5 illustrates the technical implementation of JAX RS services.

12

3 Hadoop Distributed File System

3.1 Overview

Hadoop comes with a distributed filesystem called HDFS (Hadoop Distributed

Filesystem). HDFS is highly fault-tolerant and is designed to be deployed on low-cost

hardware. HDFS provides high throughput access to application data and is suitable for

applications that have large data sets.

The Hadoop filesystem is designed for storing petabytes of a file with streaming data

access using the idea that most efficient data processing pattern is a write-once, read-

many-times pattern. HDFS stores metadata on a dedicated server, called NameNode.

Application data are stored on other servers called DataNodes. All the servers are fully

connected and communicate with each other using TCP-based protocols.

3.2 Architecture

HDFS is based on master/slave architecture. A HDFS cluster consists of a single

NameNode (as master) and a number of DataNodes (as slaves). The NameNode and

DataNodes are pieces of software designed to run on commodity machines. These

machines typically run a GNU/Linux operating system (OS). The usage of the highly

portable Java language means that HDFS can be deployed on a wide range of

machines. A typical deployment has a dedicated machine that runs only the NameNode

software. Each of the other machines in the cluster runs one instance of the

DataNodes software. The architecture does not preclude running multiple DataNodes

on the same machine but in a real deployment one machine usually runs one

DataNode.

The existence of a single NameNode in a cluster greatly simplifies the architecture of

the system. The NameNode is the arbitrator and repository for all HDFS metadata. The

system is designed in such a way that user data never flows through the NameNode.

13

3.2.1 NameNode

As illustrated in figure 6, NameNode manages the filesystem namespace, metadata for

all the files and directories in the tree.

Figure 6. HDFS Architecture[15]

The file is divided into large blocks (typically 128 megabytes, but the user selectable

file-by-file) and each block is independently replicated at multiple DataNodes (typically

three, but user selectable file-by-file) to provide reliability. The NameNode maintains

and stores the namespace tree and the mapping of file blocks to DataNodes

persistently on the local disk in the form of two files: the namespace image and the

edit log. The NameNode also knows the DataNodes on which all the blocks for a given

file are located. However, it does not store block locations persistently, since this

information is reconstructed from DataNodes when the system starts.

On the NameNode failure, the filesystem becomes inaccessible because only

NameNode knows how to reconstruct the files from the blocks on the DataNodes. So,

14

for this reason, it is important to make the NameNode resilient to failure, and Hadoop

provides two mechanisms for this: Checkpoint Node and Backup Node.

Checkpoint Node

Checkpoint is an image record written persistently to disk. NameNode uses two types

of files to persist its namespace:

- Fsimage: the latest checkpoint of the namespace

- Edits: logs containing changes to the namespace; these logs are also called

journals.

NameNode creates an updated file system metadata by merging both files i.e. fsimage

and edits on restart. The NameNode then overwrites fsimage with the new HDFS state

and begins a new edits journal.

The Checkpoint node periodically downloads the latest fsimage and edits from the

active NameNode to create checkpoints by merging them locally and then to upload

new checkpoints back to the active NameNode. This requires the same memory space

as that of NameNode and so checkpoint needs to be run on separate machine.

Namespace information lost if either the checkpoint or the journal is missing, so it is

highly recommended to configure HDFS to store the checkpoint and journal in multiple

storage directories.

The Checkpoint node uses parameter fs.checkpoint.period to check the interval

between two consecutive checkpoints. The Interval time is in seconds (default is 3600

second). The Edit log file size is specified by parameter fs.checkpoint.size (default size

64MB) and a checkpoint triggers if size exceeds. Multiple checkpoint nodes may be

specified in the cluster configuration file.

Backup Node

The Backup node has the same functionality as the Checkpoint node. In addition, it

maintains an in-memory, up-to-date copy of the file system namespace that is always

synchronized with the active NameNode state. Along with accepting a journal stream

of the filesystem edits from the NameNode and persisting this to disk, the Backup node

15

also applies those edits into its own copy of the namespace in memory, thus creating a

backup of the namespace. [14]

Unlike the Checkpoint node, the Backup node has an up-to-date state of the

namespace state in memory. The Backup node requires same RAM as of NameNode.

The NameNode supports one Backup node at a time. No Checkpoint nodes may be

registered if a Backup node is in use. The Backup node takes care of the namespace

data persistence and NameNode does not need to have persistent store. [14]

3.2.2 DataNodes

There are a number of DataNodes, usually one per node in the cluster, which manage

storage attached to the nodes. HDFS exposes a file system namespace and allows user

data to be stored in files. Internally, a file is split into one or more blocks and these

blocks are stored in a set of DataNodes. The NameNode executes the file system

namespace operations such as opening, closing, and renaming files and directories. It

also determines the mapping of blocks to DataNodes. DataNodes store and retrieve

blocks when requested (by clients or the NameNode), and they report back to the

NameNode periodically with lists of blocks they are storing. The DataNodes are

responsible for serving read and write requests from the file system’s clients. The

DataNodes also perform block creation, deletion, and replication upon instruction from

the NameNode. [15]

DataNodes and NameNode connections are established by handshake where

namespace ID and the software version of the DataNodes are verified. The namespace

ID is assigned to the file system instance when it is formatted. The namespace ID is

stored persistently on all nodes of the cluster. A different namespace ID node cannot

join the cluster.

A new DataNode without any namespace ID can join the cluster and receive the

cluster’s namespace ID and DataNode registers with the NameNode with storage ID.

A DataNode identifies block replicas in its possession to the NameNode by sending a

block report. A block report contains the block id, the generation stamp and the length

for each block replica the server hosts. The first block report is sent immediately after

the DataNodes registrations. Subsequent block reports are sent every hour and provide

16

the NameNode with an up-to date view of where block replicas are located on the

cluster. [16]

3.2.3 HDFS Client

Reading a file

To read a file, HDFS client first contacts NameNode. It returns list of addresses of the

DataNodes that have a copy of the blocks of the file. Then client connects to the

closest DataNodes directly for each block and requests the transfer of the desired

block. Figure 7 shows the main sequence of events involved in reading data from

HDFS.

Figure 7. A client reading data from HDFS [16,63]

17

Writing to a File

For writing to a file, HDFS client first creates an empty file without any blocks. File

creation is only possible when the client has writing permission and a new file does not

exist in the system. NameNode records new file creation and allocates data blocks to

list of suitable DataNodes to host replicas of the first block of the file. Replication of

data makes DataNodes in pipeline. When the first block is filled, new DataNodes are

requested to host replicas of the next block. A new pipeline is organized, and the client

sends the further bytes of the file. Each choice of DataNodes is likely to be different.

If a DataNode in pipeline fails while writing the data then pipeline is first closed and

partial block on failed data node is deleted and failed DataNode is removed from the

pipeline. New DataNodes in the pipeline are chosen to write remaining blocks of data.

Figure 8 shows the steps involved in creating a new file, writing data to it and then

closing the file.

Figure 8. A client writing data to HDFS [16,66]

18

3.3 Replication Management

The NameNode is responsible for block replication. Replica placement determines

HDFS reliability, availability and performance. Each replica on unique racks helps in

preventing data loses on entire rack failure and allows use of bandwidth from multiple

racks when reading data. This policy evenly distributes replicas in the cluster which

makes it easy to balance load on component failure. However, this policy increases the

cost of writes because a write needs to transfer blocks to multiple racks.

The NameNode keeps checking the number of replicas. If a block is under replication,

then it is put in the replication priority queue. The highest priority is given to low

replica value. Placement of new replica is also based on priority of replication. If the

number of existing replicas is one, then a different rack is chosen to place the next

replica. In case of two replicas of the block on the same rack, the third replica is placed

on a different rack. Otherwise, the third replica is placed on a different node in the

same rack as an existing replica.

The NameNode also checks that all replica of a block should not be at one rack. If so,

NameNode treats the block as under-replicated and replicates the block to a different

rack and deletes the old replica.

3.4 Features of HDFS

Communication Protocols

All HDFS communication protocols are layered on top of the TCP/IP protocol. A client

establishes a connection to a configurable TCP port on the NameNode machine. It talks

the ClientProtocol with the NameNode. The DataNodes talk to the NameNode using the

DataNodes Protocol. A Remote Procedure Call (RPC) abstraction wraps both the Client

Protocol and the DataNodes Protocol. By design, the NameNode never initiates any

RPCs. Instead, it only responds to RPC requests issued by DataNodes or clients. [15]

19

Data Disk Failure, Heartbeats and Re-Replication

The primary objective of the HDFS is to store data reliably even in the presence of

failures. The three common types of failures are NameNode failures, DataNodes

failures and network partitions. [15]

NameNode considers DataNodes as alive as long as it receives Heartbeat message

(default Heartbeat interval is three seconds) from DataNodes. If the NameNode does

not receive a heartbeat from a DataNodes in ten minutes the NameNode considers the

DataNodes as dead and stop forwarding IO request to it. The NameNode then

schedules the creation of new replicas of those blocks on other DataNodes.

Heartbeats carry information about total storage capacity, fraction of storage in use,

and the number of data transfers currently in progress. These statistics are used for

the NameNode’s space allocation and load balancing decisions. The NameNode can

process thousands of heartbeats per second without affecting other NameNode

operations.

Cluster Rebalancing

The HDFS architecture has data rebalancing schemes in which data is automatically

moved from one DataNode to another if the free space threshold is reached. In the

event of a sudden high demand for a particular file, a scheme might dynamically create

additional replicas and rebalance other data in the cluster. These types of data

rebalancing schemes are not yet implemented. [15]

Data Integrity

Block of data can be corrupted due to many reasons such as network faults, buggy

software or faults in a storage device. So, at the time of file creation checksum is used

and stored for each block. While retrieving a file, it is first verified with those

checksums and if verification fails, then another replica of data is used.

20

Metadata Disk Failure

Corrupted Fsimage and the EditLog may stop the HDFS functioning. For redundancy,

NameNode is configured to have multiple copies of these files and are updated

synchronously.

Snapshots

A Snapshot saves the current state of the file system at any instance of time. The main

usage of this feature is to rollback to the previous state if the upgrading resulted in

data loss or corruption.

3.5 Advantages and Disadvantages

Advantages of the HDFS are:

- Reliable storage - HDFS is a fault tolerant storage system. HDFS can

significantly store huge amounts of data, scale up incrementally and can

effectively handle the failure of significant parts of the storage infrastructure

without losing data.

- Commodity hardware - HDFS is designed to run on highly unreliable

hardware and so is less expensive compared to other fault tolerant storage

systems.

- Distributed - HDFS data are distributed over many nodes in a cluster and so

parallel analyses are possible and this eliminates the bottlenecks imposed by

monolithic storage systems.

- Availability - Block replication is one of the main features of HDFS. By default

each block is replicated by the client to three DataNodes but replication factor

can be configured more then 3 at creation time. Because of replication HDFS

provides high availability of data in high demand.

Limitations in HDFS are:

- Architectural bottlenecks - There are scheduling delays in the Hadoop

architecture that result in cluster nodes waiting for new tasks. More over disk is

not used in a streaming manner, the access pattern is periodic. HDFS client

21

serializes computation and I/O instead of decoupling and pipelining those

operations.

- Portability limitations - HDFS being in Java could not able to support some

performance-enhancing features in the native filesystem.

- Small file - HDFS is not efficient for large numbers of small files.

- Single MasterNode – There might be risk of data loss because of single

NameNode.

- Latency data access – At the expense of latency HDFS delivers a high

throughput of data. If an application needs low–latency access to data then

HDFS is not a good choice.

One of the major advantages of the HDFS is scalability. Besides its limitations,

HDFS is highly in demand when data sets are very large where scalability plays

an important role.

22

4 HBase a Scalable, Distributed Database

4.1 Overview

HBase is the open-source distributed column-oriented database system for the

management of a large volume of structured data. HBase includes most of the

functionalities provided by Google BigTable. HBase is written in Java and it is the

Hadoop application to use real-time read/write random-access to very large datasets.

HBase can scale linearly by adding nodes; it does not support backward scaling.

Data in HBase are organized in tables, rows and columns. Each particular column can

have several versions for the same row key. It does not support SQL but it is able to

host very large, sparsely populated tables on clusters made from commodity hardware.

HBase can be accessed through technologies such as Java Client/API and MapReduce.

HBase classes and utilities in the org.apache.hadoop.HBase.mapred package facilitate

using HBase as a source and/or sink in MapReduce jobs. REST server, Thrift Gateway

API and Iruby Shell are also used to access HBase. [16,350-353;22]

History/ background of HBase:

The HBase project was started by Chad Walters and Jim Kellerman of Powerset at the

end of 2006. It was modeled after Google’s “BigTable”. The first HBase release was

bundled as part of Hadoop 0.15.0. HBase became a Hadoop subproject at the

beginning of 2008. HBase has been in production use at Powerset since late 2007.

Other production users of HBase include WorldLingo, Streamy.com, OpenPlaces, and

groups at Yahoo! and Adobe. [16,344]

4.2 Architecture

There are three major components of the HBase architecture:

HBaseMaster, HRegionServer and HBase Client.

23

Figure 9. HBase Architecture

As illustrated in figure 9, HBase master manages the HBase cluster by assigning

regions to registered HRegionServers, and responsible for recovering HRegionServer

failures.

HRegionServers carries zero or more regions and responsible for handling client

read/write requests. It contacts HBaseMaster to get a list of regions to serve.

HRegionServers also send notifications to the HBaseMaster that it is alive.

The HBase client’s main task is to find HRegionServers that are serving the particular

row range of interest. As explained in figure 10, on instantiation, HBase client directly

contacts HBaseMaster to find the location of the -ROOT region. Then, the client

contacts that region server and scans the -ROOT region to find the .META region that

will contain the location of the user region. Then the client contacts HRegionServer

24

serving that region and issues the read or write request. Above information is cached

in the client so that subsequent requests need not go through this process. [22]

Figure 10. Client Communication

If a region is reassigned either by the master for loads balancing or because a

HRegionServer has died, the client will rescan the .META table to determine the new

location of the user region. If the .META region has been reassigned, the client will

rescan the -ROOT region to determine the new location of the .META region. If the -

ROOT region has been reassigned, the client will contact the master to determine the

new -ROOT region location and will locate the user region by repeating the original

process described above. [22]

4.3 Data Model

HBase uses a data model which is similar to Google BigTable’s data model. The

applications keep the rows of data in labeled tables. Each row has a sorting key and an

25

arbitrary number of columns. Table row keys are byte arrays. Sorting of table rows can

be done by row key and the table’s primary key.

Figure 11. Row Oriented Database Table (RDBMS Model) [23]

Figure 11 shows a row-oriented database table layout.

Figure 12. Column Oriented Database Tables (Multi-value sorted map) [23]

Figure 12 shows how a column-oriented database table differs from a row-oriented

database table when same data is loaded to it.

Column Families

Rows of one table can have a variable number of columns. A column name is of the

form "<family>:<label>" with an arbitrary string of bytes. A table is created with a

<family> set, known as “column families”. All column family have same prefix for

example: book:author and book:publication columns are members of book column

family. The family name must be string whereas the label can be of any arbitrary

bytes.

26

Column can be updated by adding new column family members as per the update

request by client. Example: book:science can be added to column family book as long

as book exists otherwise not.

A new <label> can be used in any writing operation, without any previous

specification. HBase stores “column families” physically grouped on the disk, so the

items in a certain column have the same particular read/write characteristics and

contain similar data. By default only single row may be locked at a time. Row writes

are always atomic, but single row may be locked to perform both read and write

operations on that row atomically. Recent versions allow blocking several rows, if the

option has been explicitly activated. [16;22]

Figure 13. HBase Data Organization [24]

Figure 13 shows the structure of a table in HBase.

Table Cells

The HBase data is modeled as a multidimensional map in which values (the table cells)

are indexed by four keys:

value = Map(TableName, RowKey, ColumnKey, Timestamp)

27

where:

- TableName is a string

- RowKey and ColumnKey are binary values (Java byte[])

- Timestamp is a 64-bit integer (Java long)

- value is an uninterrupted array of bytes (Java byte[])

Binary data is encoded in Base64 for transmission over the wire. The row key is the

primary key of the table and is typically a string. Rows are sorted by row key in

lexicographic order. [25]

Regions

Tables are divided into raw range called regions. Each region has subsets of table’s

rows. A region is defined by including its first row and excluding last row along with an

identifier generated randomly. Mainly a table has one region but if the table size

exceeds the threshold then it gets split into two equal regions. As the table grows, the

number of its regions grows. Regions are the units that get distributed over an HBase

cluster.

4.4 HBase in Action

HBase maintains the current list, state, recent history, and location of all regions on the

cluster with an internal catalogue tables –ROOT and .META. As shown in figure 14, the

-ROOT- table contains the list of .META table regions.

Figure 14. -ROOT and .META Tables

28

The .META table keeps the information of all user-space regions [16] by including a

HRegionInfo object containing information such as the start and end row keys, status

of region whether the region is on-line or off-line, etc. and the address of the

HRegionServer that is currently serving the region. The .META table can grow as the

number of user regions grows. [22]

Regions are redeployed when there is need of load balancing or if HRegionServer

crashes. Region can be in disabled or enabled state or may be deleted, all these

transaction of regions states are updated to catalog tables to keep current state of

regions. Figure 15 shows HBase cluster members.

Figure 15. HBase cluster members [16]

As shown in figure 15, clients find the location of user region by consulting ZooKeeper

cluster, -ROOT and .META region step by step as explained earlier in figure 10.

Write Requests

When a HRegionserver receives a write request, it first writes to a commit log and then

adds to an in-memory cache called Memcache. When this cache fills, its content is

flushed to the filesystem. The commit log is hosted on HDFS, so it remains available

29

through a HRegionserver crash. If HRegionserver is no longer reachable, it is

considered as dead and master splits the dead HRegionserver’s commit log by region.

On reassignment, regions that were on the dead HRegionserver, before they open for

business, pick up their just-split file of not yet persisted edits and replay them to bring

themselves up-to-date with the state they had just before the failure[16,347].

Read Request

For read request, the region’s memcache is consulted first. If sufficient versions are

found to satisfy the query, then it returns. Otherwise, flush files are consulted in order,

from newest to oldest until sufficient versions are found or until it run out of flush files

to consult. [16,348;22]

4.5 HBase Uses

HBase should be used when there is a need for the following:

- Fault-tolerance: Replication is built in to provide fault tolerance, high

availability and locality.

- Random access: Random access of real time read/write access to data

stored in HDFS.

- Sparse data: When data is non-structured or semi-structured, not

homogeneous or having complex data model, then HBase is a good choice.

In HBase records, data are addressed with a row key/column family/cell

qualifier/timestamp. Heterogeneous data can store much anything in a

column family without having to know what it will be in advance. This

allows to store one-to-many relationships in a single row. A given row can

have any number of columns in each column family, or none at all.

- Large data set: A relational database fails with large data with big queries

or table scans with big tables, with terabytes or petabytes. Standard RDBMS

cannot process such workload in a timely and in cost-effective manner.

30

Processing such data raises waits and deadlocks nonlinearly with

transaction size and concurrency. HBase table scans run in linear time, and

row lookup or update times are logarithmic with respect to the size of the

table.

- Scalability: Scalability is one of the facts where traditional RDBMS fails.

Most RDBMSs are single process system, so scaling such database means

replacing the existing hardware with more expensive hardware which have

more CPU, RAM, and disk space. [16,361]. The scaling of an RDBMS usually

involves loosening ACID restrictions, forgetting conventional DBA wisdom,

and losing most of the desirable properties that made relational databases

so convenient in the first place [16,361]. HBase is distributed over numbers

of commodity servers so scaling in HBase is very simple and cost effective.

- Reliability: HBase has replication mechanism to avoid single node of

failure. Backups are available to provide reliability of data.

[16,361;26;27]

HBase should not be used in the following cases:

- If the data model is simple and the entities are homogenous then probably

RDBMS is a good choice. Mapping object to table is simple and has ability to

query on non-primary-key values.

- When data is not large and can fit into standard RDBMS definitely there is

no need of HBase. RDBMSs are fixed-schema, row-oriented databases with

ACID properties and a sophisticated SQL query engine. The emphasis is on

strong consistency, referential integrity, abstraction from the physical layer,

and complex queries through the SQL language. It is easy to create

secondary indexes, perform complex inner and outer joins, count, sum,

sort, group, and page the data across a number of tables, rows, and

columns. Mainly small-volume to medium-volume applications, there is no

substitute for the ease of use, flexibility, maturity, and powerful feature set

31

of available open source RDBMS solutions such as MySQL and PostgreSQL

[16,361].

- Another case when HBase shouldn’t be used is to store large amounts of

binary data. RDBMSs are built to be fast metadata stores.

- Finally, when SQL is required HBase cannot be used as HBase does not

support SQL.

[16,361;26;27]

4.6 HBase vs Relational Database

Table 1 lists the HBase and SQL benefits.

Table 1. Benefits of SQL and HBase

SQL benefits HBase benefits

- Joining: easy to get all products in an

order with their product information in a

single query.

- Secondary indexing is possible

- Realtime analysis: Group by and order

by allows simple statistical analysis

- Dataset scale

- Read/Write scale: read/write is distributed

as tables are distributed across nodes

- Replication is automatic

- Batch analysis

RDBMS vs Hbase

Cost: RDBMS usually need expensive disks. Have a single node and requires a backup

server with same specifications. Hbase is designed for commodity hardware.

Reliability: RDBMS has slave replication and single node failure. Hbase has built in

replication and backups are available. [16;28]

32

5 Recommendation and Search System Development

5.1 Analysis

In big software organizations successful products is one of the most important aspects

of organization achievement. Team formation directly affects the performance of the

team and the product development quality. Staffing is an important issue to be

analyzed when software development is undertaken as a value-driven business.

Creating competence-based competitiveness is a great challenge because competence

identification and consequently, its management, helps in innovation, decision support,

faster process and product quality improvement, and constitute an important input to

the creation of the firm’s organizational knowledge. The finding a value driven

developer-to-project assignment is a complex task. Predicting the compatibility of one

employee with other team members is much more complex. [30;31;32]

Tieto is a huge company that focuses on project-based work, such as consulting or

ITservice businesses, which has team-based work structure as the standard way of

working. Employees are frequently staffed to project teams and dispersed as soon as

the project ends. Hence, the effectiveness of work teams becomes crucial for the

success of Tieto. So, Tieto Company is regularly facing with the problem of staffing

new projects in terms of finding an employee that best fits with the project and the

team.

Tieto competence database contains records for approx. 15.000 employees and 3.500

possible competences. Assigning employees to projects, based on their list of

competences and project requirements requires a scalable and efficient system to

process such large set of data.

Tieto’s existing staffing system only supports common keyword-based search and filter

techniques that focus solely on a candidate's technical skill set. A required candidate

can be filtered by required compulsory competences and non compulsory competences

of a given project. Search process is based on standard database queries which are

time consuming process to make a search in 15.000 employees of 3.500 competencies.

33

It just considers a match between employee’s competences with job competence

requirements. The existing system does not support the fitness of the employee with

team members in terms of interpersonal compatibility, which is equally important while

finding a team member for a particular project.

To develop such a smart, scalable recommendation and search system, a cloud cluster

of four servers was configured. Hadoop framework has been chosen to provide the

scalability and efficient data mining. HBase distributed column-oriented database on

top of Hadoop (Google Bigtable) was chosen for storing data.

Use Cases

Some of the use cases that have been carried out for this project are:

 A single person leaves the project, find replacement.

 Given a list of competence requirements, find matching persons.

 Given a complete list of requirements for new project, find a team.

 Given an incomplete list of competences for employee, estimate missing

competences.

Data Set

Sparsity of data causes problems for pre-determined clustering according to

competences. The user should give relevant feedback to focus the search.

Table 2. Missing data

Employee C++ Java SQL JavaEE

102 2 3 0 2

106 4 0 3 0

107 3 3 1 ?

Moreover, inference of missing competences may be challenging but highly desirable,

as summarized in table 2

34

5.2 Development Environment

Four Linux servers were used to build a cluster for cloud environment. Hadoop

framework and HBase file storage were installed at each server in which one server

node is acting as master (as NameNode) and others are slaves (as DataNodes).

HBase tables were created to store Employees Competence Data (of Tieto company).

Runtime Environments

Hadoop engine was deployed over the 4 node cluster and Java runtime was setup to

use the common Hadoop configuration, as specified by the NameNode (master node)

in the cluster

Software and Language Versions

 Hadoop Official release 0.20.1

 HBase official release 0.20.6

 Java, JDK 1.6.0_23

 Tomcat 6.0.29

 Jersey for REST Services

Hardware Specification of Each Hadoop Node:

Hadoop clusters have identical hardware specifications for all the cluster nodes. Table

3 lists the specification of nodes.

Table 3. Specification of cluster nodes

Operating system SUSE Enterprise Linux 11 (32-bit)

Memory 2048MB

Processor 2 V CPU

Disk space 40 GB

35

5.3 System Architecture

Figure 16 shows the layered stack of Recommendation and Search System:

Figure 16. System Architecture

As shown in figure 16, Linux is used as an operating system and Java runtime

environment is installed on top of it. Other main components of the System are

explained as follows:

- Hadoop is installed on Java Runtime Environment.

- HDFS stores input and output files.

36

- HBase stores data in tables.

- MapReduce framework has been used to create tables in HBase and loads

input data from HDFS to HBase tables.

- Application layer includes recommendation algorithms and search logics.

- REST Services have been deployed to retrieve the output results from

HBase tables.

- REST Client sends HTTP requests and receives HTTP responses from target

REST WebServices

- Eclipse RCP Client is GUI to show the search and recommendation results

and interacting with end-user.

Figure 17 illustrates the component interactions.

Figure 17. Workflow

37

The recommendation was based on K-N-N algorithm to find the replacement of a

person leaving from the project. The competence data of employees and project data

were two input files for processing. These two data files were loaded to HDFS and

saved in CSV file format. The lists of competences of employees were grouped.

Grouping was done on the basis of target use i.e. where competences can be used. For

example, competence can be used for mobile, networking, server side development, or

for management etc.

MapReduce implements this logic of clustering the competence lists into groups of

competence. MapReduce function reads input files from HDFS, processes them and

creates table in HBase to store the output data in table format. Data mining involves

the finding the distance between employees based on their competence.

REST services provide access to output results stored in HBase tables. It also supports

basic database CRUD operations to the HBase table. New profiles of competences can

be created. Existing profiles can be updated and deleted. All profiles and a profile at a

time can be retrieved.

5.4 Loading Data to HBase

Competence data and project data were saved into HBase tables by using MapReduce.

As shown in figure 18, competence data and project data files were loaded as CSV files

in Hadoop distributed file system (HDFS). MapReduce function takes these files from

HDFS as input for mapper class and maps to an intermediate <key,value> pairs. Then

the reducer combines these intermediate pairs based on similar key to produce the

reduced output. And finally, loads this reduced output by creating table in HBase and

loading data to the created table.

38

Figure 18. Competence data load by MapReduce

Tieto competence database contains records for approx. 15.000 employees, 3.500

possible competences and 3000 projects. To get proper relationship between

employees, competence and projects competence data and project data are loaded in

three tables named “Employee”, “Competence” and “Project”.

A snippet of source code for mapping input CSV file to intermediate <key,value> pairs

in the MapReduce framework is given in the next page.

39

 /**
 * This method is called as many times as there are rows in CSV
 * file.
 * @param key the key
 * @param line the line from CSV file
 * @param context the map where the data is written from CSV file
 * @throws IOException Signals that an I/O exception has
occurred.
 * @throws InterruptedException the interrupted exception
 */
 @Override
 public void map(LongWritable key, Text line, Context context)
 throws IOException, InterruptedException {
 if (rowsWritten == 0) {
 rowsWritten = 1;
 // Skip the first row as its a "header" row
 return;
 }
 // Save the information from CSV file to map. Map item's

// key is the ID value of the CSV file's row

 String[] values =
line.toString().split(ProjectConstants.SeparatorChar);
 MapWritable map = new MapWritable();
 map.put(new
IntWritable(ProjectConstants.PROJECTSTARTDATEINDEX), new Text(
 values[ProjectConstants.PROJECTSTARTDATEINDEX]));
 map.put(new
IntWritable(ProjectConstants.PROJECTENDDATEINDEX), new Text(
 values[ProjectConstants.PROJECTENDDATEINDEX]));
 map.put(new IntWritable(ProjectConstants.ROLEINDEX), new
Text(
 values[ProjectConstants.ROLEINDEX]));
 map.put(new IntWritable(ProjectConstants.EMPLOYEEIDINDEX),
new Text(
 values[ProjectConstants.EMPLOYEEIDINDEX]));
 ImmutableBytesWritable outKey = new ImmutableBytesWritable(
 Bytes.toBytes(values[ProjectConstants.IDINDEX]));

 context.write(outKey, map);
 }
 }

5.4.1 Employee Table

The Employee table contains a list of competence of each employee. Employee_Id is

taken as the row key and Column family has three columns:

- Competence: lists all the competence of an employee.

Column name is “Competence”, qualifiers names are list of competences an

employee has and value is rating of competence rated by employees.

40

- Info: contains information such as last updated, country, region, reporting

level1 and reporting level2.

Column name is “Info”, qualifiers are “Country”, “LastUpdated”, “Region”,

“ReportingLevel1” and “ReportingLevel2”, and values are country, last

updated date, region, name of reporting level1, name of reporting level2

respectively.

- Project: gives the Project_Id of project an employee is currently assigned

to.

Column name is “Project”, qualifier name is Project_Id and value is type of

project.

Table 4 shows the employee table schema.

Table 4. Employee Table Schema

Row Column Families

 Info Competence Project

<Employee_ID>

Info:Country=value

Info:Region=value

Info:LastUpdated =value

Info:ReportingLevel1=value

Info:ReportingLevel2=value

Competence:<Compet

ence_Name>=rating

Project:<Projec

t_ID>= type

12345 Info:Country=Finland

Info:Region= Finnish Region

Info:LastUpdated=7/2/2009

8:24

Info:ReportingLevel1=Industries

Info:ReportingLevel2=TGF

Financial Services

Competence:Java=3

Competence:PHP =3

Competence:

J2EE_JSP=4

Competence:SQL=3

Project:1=inter

nal

41

Creating Employee Table

Below is the snippet of source code in Java for creating Employee table in HBase:

private static Boolean createTableInHBase(HBaseAdmin hbase, String tableName)
{
 Boolean result = false;

 HTableDescriptor desc = new HTableDescriptor(tableName);
 desc.addFamily(new HColumnDescriptor(Bytes
 .toBytes(Constants.employeeTcolumnName[0]), 15,
 HColumnDescriptor.DEFAULT_COMPRESSION,
 HColumnDescriptor.DEFAULT_IN_MEMORY,
 HColumnDescriptor.DEFAULT_BLOCKCACHE,
 HColumnDescriptor.DEFAULT_TTL, false)); // general info
 desc.addFamily(new HColumnDescriptor(Bytes
 .toBytes(Constants.employeeTcolumnName[1]), 15,
 HColumnDescriptor.DEFAULT_COMPRESSION,
 HColumnDescriptor.DEFAULT_IN_MEMORY,
 HColumnDescriptor.DEFAULT_BLOCKCACHE,
 HColumnDescriptor.DEFAULT_TTL, false)); // competence ID and
rating
 desc.addFamily(new HColumnDescriptor(Bytes
 .toBytes(Constants.employeeTcolumnName[2]), 15,
 HColumnDescriptor.DEFAULT_COMPRESSION,
 HColumnDescriptor.DEFAULT_IN_MEMORY,
 HColumnDescriptor.DEFAULT_BLOCKCACHE,
 HColumnDescriptor.DEFAULT_TTL, false)); // project ID and
type
 try {
 hbase.createTable(desc);
 System.out.println("SUCCESS: Table was created
succesfully");
 result = true;
 } catch (IOException e) {
 System.out.println("Wasn't able to create a table: '" +
tableName
 + "' in HBase");
 result = false;
 }

 return result;
 }
}

Figure 19 shows Employee table in HBase

42

Figure 19. HBase Employee Table

As illustrated in figure 19, based on schema in table 4 the Employee table is created in

HBase using the mapreduce framework using java as programming language.

5.4.2 Competence Table

The Competence table contains a list of competences, its hierarchy using parent-child

relationship and a list of employees belonging to that competence, along with general

information. The competence name is taken as the row key. Table 5 shows the

Competence table schema.

43

Table 5. Competence Table Schema

Row

Column Families

 Info

Parent Child Employee

<CompetenceName>

Parent:<Compete

nce_ID>=Compet

ence_Level

Child:<Compete

nce_ID>=Comp

etence_Level

Employee:

<Employee

_ID>=ratin

g

General Info:Level=

L1

 Child:Communic

ation=L2

Child:Language

=L2

Child:English=L3

Java Info:Level=

L3

Parent:SW

Development=L1

Parent:

Programming

languages=L2

 12234=3

23456=4

The Column Family has four columns as summarized in table 5:

- Info: indicates the level of competence.

Column name is “Info”, qualifier is “Level” and value is type of level.

- Parent: lists all upper level hierarchy of the competence.

Column name is “Parent”, qualifiers are upper hierarchy name list and value

is the level of parents.

- Child: lists all lower level hierarchy of the competence.

Column name is “Child”, qualifiers are lower hierarchy name list and value is

the level of child in hierarchy.

44

- Employee: lists all employees under the competence. Column name is

“Employee”, qualifier is employee_Id and value is rating of competence

rated by employee.

Figure 20. HBase Competence Table

Figure 20 shows the Competence table in HBase.

5.4.3 Project Table

The Project table contains a list of projects, general information of the project and a

list of employees to that project. Project_Id is taken as the row key. Table 6 gives the

schema of Project table.

45

Table 6. Project Table Schema

Row Column Families

 Info Member:

<Project_ID>

Info: start_date=value

Info: End_date=value

Member:<Employee_ID>=role

66476 Info:start_date=1.1.2009

Info:End_date=10.1.2015

Member: 16115=Consultant(A-)

Member: 147968=Developer(D+)

Member: 77421=Consultant(A-)

The Column family has two columns as summarized in table 6:

- Info: contains project information such as project start date, project end

date.

Column name is “Info”, qualifiers are “ProjStartDate” and “ProjEndDate”

and values are start date of project, end date of project respectively.

- Member: lists all employees of the project.

Column name is “Member”, qualifier is list of employee_Ids in the project

and value is type of role in the project.

Loading of Project Table

The snippet of the source code for loading the project data to the Project table is given

in the next page. The implementation is done in the reduce part of the MapReduce

framework.

46

/**
 * Processes the map and writes the data to the HBase.
 */
 public static class ReduceToTable extends
 TableReducer<ImmutableBytesWritable, MapWritable, Text> {
 HTable table ;
 @Override
 protected void reduce(ImmutableBytesWritable key,
 Iterable<MapWritable> values, Context context) throws
IOException,
 InterruptedException {
 table = new HTable(ProjectConstants.tableName);
 Put put = new Put(key.get());
 long timeStamp = System.currentTimeMillis();

 for (MapWritable value : values) {
 Iterator<Writable> iterator =
value.keySet().iterator();

 String pro_startDate = "";
 String pro_endDate = "";
 String employee_id = "";
 String role = "";

 while (iterator.hasNext()) {
 Writable mapValue = iterator.next();
 int next = ((IntWritable) mapValue).get();
 switch (next) {
 case
ProjectConstants.PROJECTSTARTDATEINDEX:
 pro_startDate = ((Text)
value.get(new IntWritable(

 ProjectConstants.PROJECTSTARTDATEINDEX))).toString();

 break;
 case
ProjectConstants.PROJECTENDDATEINDEX:
 pro_endDate = ((Text) value.get(new
IntWritable(

 ProjectConstants.PROJECTENDDATEINDEX))).toString();

 break;
 case ProjectConstants.EMPLOYEEIDINDEX:
 employee_id = ((Text) value.get(new
IntWritable(

 ProjectConstants.EMPLOYEEIDINDEX))).toString();

 break;
 case ProjectConstants.ROLEINDEX:
 role = ((Text) value.get(new
IntWritable(

 ProjectConstants.ROLEINDEX))).toString();

47

 break;
 }
 }

 if(put!=null){
 if(put.isEmpty()){

 put.add(Bytes.toBytes(ProjectConstants.columnName[ProjectConstants.FAMI
LYNAMEINFO]),

 Bytes.toBytes(ProjectConstants.qualifiers[ProjectConstants.QUALIFIERPRO
JECTSTARTDATE]),
 System.currentTimeMillis(),
Bytes.toBytes(pro_startDate));

 put.add(Bytes.toBytes(ProjectConstants.columnName[ProjectConstants.FAMI
LYNAMEINFO]),

 Bytes.toBytes(ProjectConstants.qualifiers[ProjectConstants.QUALIFIERPRO
JECTENDDATE]),
 System.currentTimeMillis(),
Bytes.toBytes(pro_endDate));

 put.add(Bytes.toBytes(ProjectConstants.columnName[ProjectConstants.FAMI
LYNAMEMEMBER]),
 Bytes.toBytes(employee_id),
 System.currentTimeMillis(),
Bytes.toBytes(role));
 table.put(put);

 }else {
 timeStamp = timeStamp + 1l;
 if(!employee_id.isEmpty()){
 put = new Put(key.get());

 put.add(Bytes.toBytes(ProjectConstants.columnName[ProjectConstants.FAMI
LYNAMEMEMBER]),
 Bytes.toBytes(employee_id),
 timeStamp,
Bytes.toBytes(role));
 table.put(put);
 }
 }
 }

 }

 }
 }

Figure 21 shows Project table created in HBase based on the above code snippet.

48

Figure 21. Project Table

Based on these table schemas Employee, Competence and Project tables were created

in HBase using Java. Then data was loaded to these tables using competence data and

project data files.

49

Figure 22. List of HBase Tables

Figure 22 shows a list of tables in HBase using HBase explore and putty.

5.5 Using RESTful Services

Basic database queries following CRUD pattern were implemented as REST Services.

A RESTful Web service was developed on Java platform with the JAX-RS reference

implementation Jersey. Eclipse was used as a development environment and Tomcat

as servlet container. The actual versions of these products were Java 1.6, Tomcat 6.0

and JAX-RS 1.1. (Jersey 1.4).

In REST architecture, everything is a resource. A resource is accessed via common

interface based on the HTTP standard methods. REST server provides access to the

resources and a REST client accesses and modifies the REST resources. Server must

support the HTTP common operations (GET, POST, PUT and DELETE). Resources are

identified by global IDs (which are typically URIs). [33]

50

It typically defines the base URI for the services, the MIME-types its supports (XML,

JSON, text). Here are the URIs and HTTP methods that correspond to the resources in

the application:

Resource URI Path HTTP Methods

ProfileService /profiles GET, POST, POST, DELET

5.5.1 Server

Server com.tieto.reloud.hbase.restservices.server contains the following Java classes as

shown in figure 23:

- ProfileService
This class registers itself as CRUD resources via @PUT, @GET, @POST and

@DELETE annotation respectively. Via the @Produces annotation it defines

that it delivers MIME type "text" code. It also defines via the "Path"

annotation that its service should be available under the URL "profiles".

- HBaseHandler
This class acts as handler to access the table from HBase. This class

process HBase table.

- ProfileDataObject
Creates profile in object form.

- ProfileDataSet
Creates a list of profiles from Row_Id

Figure 23. REST server classes

51

Here is a snippet of the source code from the ProfileService class:

/**
 * Rest web-service for profiles' CRUD operations. The services are accessed
 * with http://baseURI/restservice/profiles for getting all profiles' IDs,
 * create or update a profile or via
 * http://baseURI/restservice/profiles/profileID for getting and a deleting a
 * profile
 */

@Path("/profiles")
@Produces(MediaType.TEXT_XML)
@Consumes(MediaType.TEXT_XML)
public class ProfileService {

 private ProfileDataSet profiles;
 private ProfileDataObject profile;
 @Context
 private final UriInfo uriInfo;
 @Context
 private final Request request;
 String id;

 public ProfileService(UriInfo uriInfo, Request request, String id) {
 this.uriInfo = uriInfo;
 this.request = request;
 this.id = id;
 }
 /**
 * @return {@link Response} instance with {@link ProfileDataSet}
 * instance or 404 in case of failure to fetch any profiles' IDs
 */
 @GET
 public Response getAllProfiles() {
 Response res;
 profiles = HBaseHandler.getInstance().getAllProfiles();
 if (!profiles.isEmpty()) {
 res = Response.ok().entity(profiles).build();
 } else {
 res = Response.status(Status.NOT_FOUND)
 .entity("Couldn't find any profile!").build();
 }
 return res;
 }
 /**
 * @return {@link Response} instance with {@link ProfileDataObject}
 * instance or 404 in case of failure to fetch any profiles' IDs
 */
 @GET
 @Path("{profileID}")
 public Response getProfile(@PathParam("profileID") int id) {
 Response res;
 profile = HBaseHandler.getInstance().getProfile(id);
 if (profile.getID() != 0) {
 res = Response.ok().entity(profile).build();
 } else {
 res = Response.status(Status.NOT_FOUND)

52

 .entity("Target profile doesn't exist!").build();
 }
 return res;
 }

 /**
 * @return {@link Response} instance with 200 if profile created
 * successfully or 403 otherwise
 */
 @POST
 public Response postProfile(ProfileDataObject object) {
 Response res;
 boolean success = HBaseHandler.getInstance().createProfile(object);
 if (success) {
 res = Response.ok().build();
 } else {
 res = Response.status(Status.FORBIDDEN)
 .entity("Target profile already exist!").build();
 }
 return res;
 }
 /**
 * @return {@link Response} instance with 200 if profile updated
 * successfully or 403 otherwise
 */
 @PUT
 public Response updateProfile(ProfileDataObject object) {
 Response res;
 boolean success = HBaseHandler.getInstance().updateProfile(object);
 if (success) {
 res = Response.ok().build();
 } else {
 res = Response.status(Status.FORBIDDEN).build();
 }
 return res;
 }
 /**
 * @return {@link Response} instance with 200 if profile deleted
 * successfully or 403 otherwise
 */
 @DELETE
 @Path("{profileID}")
 public Response deleteProfile(@PathParam("profileID") int id) {
 Response res;
 boolean success = HBaseHandler.getInstance().deleteProfile(id);
 if (success) {
 res = Response.ok().build();
 } else {
 res = Response.status(Status.FORBIDDEN)
 .entity("Target profile does not exist!").build();
 }
 return res;
 }

}

53

ProfileService Methods

The ProfileService class has five methods for processing the resources in RESTful
way:

- getAllProfiles retrieves all profiles from the HBase table;
- getProfile retrieves all information of a particular Id;
- postProfile is for adding new profile into the table;
- updateProfile is for updating existing profile from the table;
- deleteProfile is for deleting existing profile from the table.

The @Produces annotation specifies the MIME type. Here, the annotation specifies that
it returns a text:

 @Produces(MediaType.TEXT_XML)

5.5.2 Client

The Client has been created with namespace com.tieto.reloud.hbase.restservices.client

and includes the following Java classes as shown in figure 24:

- ProfileRestClient
It is client to the server to access resources and return response code.

- ProfileDataObject
Creates profile in object form.

- ProfileDataSet
Creates a list of profiles from Row_Id

Figure 24. REST Client classes

54

Table 7 shows the CRUD operations implemented using REST.

Table 7. GUI CRUD operations

1 GUI

2 Get All

Profile

3 Create

new

Profile

55

4 Update id

31012011

5 Delete Id

31012011

As summarized in table 7, the graphical user interface of the CRUD operations can get

all profiles, create a new profile, update an existing profile and delete an existing

profile.

5.6 Data Mining

5.6.1 Competence Data Analysis

Total number of employee in data set is 15480. Total number of competences in

dataset is 3516. Total number of competences of all employees in dataset is 361579.

The above data set concludes that on an average every employee has 23 competences

and the dimension of the feature vectors (one entry for every possible competence) is

56

3516, so the data has the potential of being quite sparse. Figure 25 shows frequency

of the occurrences of competences.

Figure 25. Competence plot

From figure 25 it is clear that the majority of competences are quite rare. From the

plot, value (x, y)=(1, 3516) means that 3516 competences occur at least once in the

data set.

So, if a threshold is set of 20 occurrences then the rarest 2/3 of all competences can

be eliminates from the data set, which could help quite a bit in clustering.

Figure 26 shows the distances of all employees with respect to the one employee id.

57

Figure 26. Distances of all employees with respect to the one id

Figure 26 shows that distances in high-dimensional space are not really informative for

these "competence points". The search for employee needs to be restricted to relevant

regions in the dataset. A mixture of hard and soft constraints could help the search for

relevant employee.

Figure 27 shows the distribution of the number of competences over employee

population.

58

Figure 27. Number of competence over employee population

Figure 27 illustrates that median is 18, average is 23.35 and maximum is 266.

5.6.2 Project Data Analysis

There are around 7000 employees assigned to various projects in Tieto. Figure 28

shows the cumulative distribution for the total number of projects a person has been

assigned to (not necessarily at the same time of course).

59

Figure 28. Distribution of number of projects a person has been assigned to

As shown in figure 28, around 85% of the employees have been assigned to less than

five projects in total but there are a few people who were assigned to more than

twenty projects. About 80% of the employee ids in the project data set are also in the

competence data set. The employees that are assigned to 20+ projects are likely line

managers or other formal owners of the project.

So, search results are only limited to people with some sort of developer role. Seeing

20+ projects for any person means that he does not have anything real to do with the

project.

These are the different roles in the dataset:

- Absence

- Consultant(A-)

- Delivery Owner

- Developer(D+)

- Implementation(D)

60

- Management Consultant(A+)

- Planning, Customer Support(C)

- PRM Project Manager(B)

- Program Manager

- Project Assistant

- Project Leadership(B+)

- Project Manager

- SAP Developer(D++)

- Senior Consultant(A)

- Subcontractor(S1)

- Subcontractor(S2)

- Subcontractor(S3)

- System Specialist(D-)

The following roles are considered while processing the data:

- Consultant(A-)

- Developer(D+)

- Implementation(D)

- Management Consultant(A+)

- Senior Consultant(A)

- Subcontractor(S1)

- Subcontractor(S2)

- Subcontractor(S3)

If one could somehow identify "replacement events" in the project database (person A

leaves, person B joins directly afterwards with the same role). This implies that A and

B have similar competences then one could use this information to fine-tune the

distance metric for KNN and also for the recommendation engine.

61

5.6.3 Recommendation

Identifing replacement events

The search is restricted to the roles mentioned above and also when there are

potential replacements where person B replaces a "large" number of other employees

in the same project (these assignment dates seem to be clustered) then all these

replacements are rejected and also when they exceed a certain number (here: max 2

replacements). There is an indegree limit for replacements: when in the same project

the same person was potentially replaced by a "large" number of other employees, all

of these are rejected and if the number is large than the limit (here: again 2).

By this method replacement event comes out to be 130. For every one of these (tuple

(A, B, project)) one can then determine the relative position of B within the

neighborhood of A, i.e. by sorting the whole population with respect to distance to A

and checking at which position B is. Here the intuition would be that B would tend to

be somewhere close to A in the competence space.

Finding replacement event also makes use of the competence tree (comparing

competence prefixes). Further, it is normalized in order to try to avoid problems when

either A or B has a lot of competence records, which the other one has not.

62

Figure 29. Relative distance histogram

Figure 29 shows the relative position of B to A (1.0 means the employee id furthest

away from A, something very close to zero means very close compared to the other

employee in the competence database).

Basically the plot shows that around 23% of the 130 replacement cases, the relative

distance of B to A was below 0.05. So, the project data and the competence data are

meaningful for comparisons.

Table 8 shows recommendation results based on KNN queries to the competence data.

Along with KNN queries it also shows the list of competences and differences between

two employees’ competences.

63

Table 8. Recommendation Results

Descriptions GUI Results

Recommend-

ation

operations:

“KNN ID”

operation

computes k

nearest

neighbors of

ID (k=10 by

default)

64

“Print ID”

operation

prints

competences

for

employee_ID

“Diff ID1

ID2”

operation

shows

differences

between

employee

ID1 and ID2

Table 8 illustrates the GUI implementation of recommendation and search results.

65

6 Conclusion

Hadoop is an open-source cloud computing implementation and provides all its

necessary features such as scalability, reliability and fault tolerance. As one of the

goals, this project explored the Hadoop and its architecture and how HDFS supports

cloud computing features to deliver cloud services.

HBase is an open source, non-relational, distributed, column-oriented database model

[34] also known as Hadoop database. It provides random, realtime read/write access

to Big Data. HBase hosts very large tables - billions of rows X millions of columns – on

top clusters of commodity hardware. HBase provides Bigtable-like capabilities on top of

Hadoop. [35]

The main goal of the project was to build recommendation and search system for

staffing using Cloud based technology Hadoop. So, Hadoop was installed on a four

node cluster, and HBase was installed on top of Hadoop to provide scalable data

storage.

 In a competitive market, a software development organization’s major goal is to

maximize value creation for a given investment [31]. Therefore, resource management

is a very crucial factor in enterprise-level value maximization. An efficient staffing

system is required to balance between project technical needs and organizational

constraints.

At Tieto Company, Recommendation and Search System is developed to fulfill the

present demand of team-based work structures where all the jobs assigned to

employees, not only with respect to fulfill all the assigned tasks but also considering

candidates fitness with the team members in terms of interpersonal compatibility.

The system recommends a list of persons that can replace the person leaving the

project. The recommendation system takes less time compared to the old search

system which was based on the non-scalable Oracle database. Even a simple search

query was taking much time to find from 15000 employees and 3000 competences.

Now the new developed system is based on Hadoop. Data processing is done in the

66

Hadoop MapReduce framework which supports parallel processing. Thus, fetching any

kind of search result from the HBase database is quite fast. Finding a person to replace

the leaving person from the project is based on the distance-based algorithm KNN.

First all the competences are clustered into groups and then the distance between the

competences of the leaving employee and other available employees have been

calculated in a required cluster. Those who are nearer to the leaving employee would

be in recommendation list for replacement.

In this project, recommendation is given for finding a replacement for a leaving person

from a project. The system also finds persons as per competences requirements. The

recommendation system can be extended to recommend the formation of a new team.

If a complete list of competence requirements for a project is given, then the system

should suggest the team.

Current implementation is based on declared competences (the competences that are

saved to the database by the employee) and project data (the information of the

employee’s current project and history of his/her previous project he/she was assigned

to). In the case an employee missed to update his/her new competences to the

database, then the competence data itself is not accurate. Then a recommendation

based on this inaccurate data would result in inferior recommendation. In future work,

this missing data of competence of an employee can be manipulated based on other

employee’s competence list, assuming employees working in the same project will also

share the same competence. Also then a recommendation could be done with the

latest manipulated competence data.

67

References

1 10 reasons Why Cloud Computing is the Wave of the Future, April 29,
2009, by Gilberto J. Perera [online]
URL: http://laptoplogic.com/resources/10-reasons-why-cloud-computing-
is-the-wave-of-the-future [Accessed Dec, 2010]

2 Why Cloud Computing [online]

URL: http://www.appistry.com/cloud-info-center [Accessed Dec, 2010]

3 Virtual Trade Show: 10 Best Practices For Cloud Computing, By Jennifer

Bosavage, CRN, May. 12, 2010 [online]
URL: http://www.crn.com/news/networking/224701700/virtual-trade-
show-10-best-practices-for-cloud-computing.htm [Accessed Dec, 2010]

4 Wikipedia on cloud computing [online]

URL: http://en.wikipedia.org/wiki/Cloud_computing [Accessed Dec, 2010]

5 The Cloud Pyramid: Cloud Computing Glossary [online]

URL: http://pyramid.gogrid.com/glossary/ [Accessed Dec, 2010]

6 Cloud Computing Bootcamp by Marina Fisher, Nov 29, 2008 [online]
URL: http://blogs.sun.com/marinafisher/entry/cloud_computing
[Accessed Dec, 2010]

7 Luis M. Vaquero Luis Rodero-Merino Juan Caceres Maik Lindner. A Break

in the Cloud: Towards a Cloud Definition. January 2009

8 Distributed Coordination with ZooKeeper [online]

URL: http://www.igvita.com/2010/04/30/distributed-coordination-with-
ZooKeeper/ [Accessed Sept, 2010]

9 Apache Hadoop ZooKeeper [online]

URL:
http://hadoop.apache.org/ZooKeeper/docs/current/ZooKeeperOver.html
[Accessed Sept, 2010]

10 K Nearest Neighbor Algorithm Implementation and Overview By saharkiz,

4 Feb 2009 [online]
URL: http://www.codeproject.com/KB/recipes/K_nearest_neighbor.aspx
[Accessed Jan, 2011]

11 Classification Algorithms on Text Documents Fall, 2001, YANCONG ZHOU

and HYUK CHO [online]
URL:
http://www.cs.utexas.edu/users/hyukcho/classificationAlgorithm.html
[Accessed Jan, 2011]

12 Research and Improvement of Personalized Recommendation Algorithm

Based on Collaborative Filtering, Lijuan Zheng,Yaling Wang, Jiangang Qi,

68

Dan Liu, IJCSNS International Journal of Computer Science and Network
Security, VOL.7 No.7, July 2007

13 RESTful Webservices with Java (Jersey / JAX-RS) – Tutorial by Lars

Vogel, 30.12.2010 [online]
URL: http://www.vogella.de/articles/REST/article.html [Accessed Feb,
2011]

14 Apache Hadoop HDFS Users Guid [online]
URL: http://hadoop.apache.org/hdfs/docs/current/hdfs_user_guide.html
[Accessed Sept, 2010]

15 Apache Hadoop HDFS Architecture Guide. [online]

URL: http://hadoop.apache.org/hdfs/docs/current/hdfs_design.html
[Accessed Sept, 2010]

16 T. White, Hadoop: The Definitive Guide. O'Reilly Media, [online]

URL: http://oreilly.com/catalog/0636920010388/preview [Accessed Sept,
2010]

17 Jason Venner, Pro Hadoop book

18 The Hadoop Distributed File System Shvachko, Konstantin; Kuang,

Hairong; Radia, Sanjay; Chansler, Robert; Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th Symposium on Digital Object
Identifier: 10.1109/MSST.2010.5496972 Publication Year: 2010 IEEE
Conferences [online]
URL: http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
[Accessed Sept, 2010]

19 The Hadoop distributed filesystem: Balancing portability and performance

by Shafer, J.; Rixner, S.; Cox, A.L.;Performance Analysis of Systems &
Software (ISPASS), 2010 IEEE International Symposium on Digital Object
Identifier: 10.1109/ISPASS.2010.5452045 Publication Year: 2010 IEEE
Conferences

20 HDFS scalability: the limits to growth by Konstantin V. Shvachko [online]

URL: http://www.usenix.org/publications/login/2010-
04/openpdfs/shvachko.pdf [Accessed Sept, 2010]

21 Cloudera [online]

URL:
http://www.vmware.com/appliances/directory/uploaded_files/What%20is
%20Hadoop.pdf [Accessed Sept, 2010]

22 Apache Hadoop. [online]

URL: http://wiki.apache.org/hadoop/HBase/HBaseArchitecture#intro
[Accessed Sept, 2010]

23 BigTable Model with Cassandra and HBase [online]

69

URL: http://horicky.blogspot.com/2010/10/bigtable-model-with-
cassandra-and-HBase.html [Accessed Sept, 2010]

24 Toad World, Could DB [online]

URL: http://wiki.toadforcloud.com/index.php/Cassandra_Column_Families
[Accessed Sept, 2010]

25 Use HBase and Bigtable to create and mine a semantic Web by Gabriel

Mateescu [online]
URL: http://www.ibm.com/developerworks/opensource/library/os-
HBase/#data_model [Accessed Sept, 2010]

26 Matching Impedance: When to use HBase By bryan | Published: March

11, 2008 [online]
URL: http://blog.rapleaf.com/dev/2008/03/11/matching-impedance-
when-to-use-HBase/ [Accessed Sept, 2010]

27 HBase Available in CDH2 by Chad Metcalf, September 29, 2009 [online]
URL: http://www.cloudera.com/blog/2009/09/HBase-available-in-cdh2/
[Accessed Sept, 2010]

28 Hadoop/HBase vs RDBMS by Jonathan Gray [online]

URL: http://www.docstoc.com/docs/2996433/Hadoop-and-HBase-vs-
RDBMS [Accessed Sept, 2010]

29 Hadoop HBase-0.20.2 performance evaluation Carstoiu, D.; Cernian, A.;

Olteanu, A.; New Trends in Information Science and Service Science
(NISS), 2010 4th International Conference on Publication Year: 2010,
Page(s): 84 – 87 IEEE Conferences

30 Competence Mining for Team Formation and Virtual Community
Recommendation by Sérgio Rodrigues, Jonice Oliveira, Jano M. de Souza
[online]
URL:
http://www.sergiorodrigues.net/aulas/downloads/projetofinal/paper_Sergi
oRodrigues_CSCWD.pdf [Accessed Jan, 2011]

31 Staffing a software project: A constraint satisfaction and optimization-

based approach by Ahilton Barretoa, Márcio de O. Barrosb, Cláudia
M.L.Wernera [online]
URL:
http://homepages.dcc.ufmg.br/~colares/arquivos/@papers/@sbse/@aloc
_recursos/coppe_ufrj2007.pdf [Accessed Jan, 2011]

32 Decision support for team staffing: An automated relational

recommendation approach by Jochen Malinowski, Tim Weitzel, Tobias
Keim [online]
URL:
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V8S-
4NR185V-
6&_user=10&_coverDate=06%2F30%2F2008&_rdoc=1&_fmt=high&_ori

70

g=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId
=1612675937&_rerunOrigin=google&_acct=C000050221&_version=1&_
urlVersion=0&_userid=10&md5=c6e2c8edf7463273ffb5556ac02fe2c3&se
archtype=a [Accessed Jan, 2011]

33 Implementing RESTful Web Services in Java by Jakub Podlesak and Paul

Sandoz [online]
URL:
http://blogs.sun.com/enterprisetechtips/entry/implementing_restful_web_
services_in [Accessed Jan, 2011]

34 HBase [online]

URL: http://en.wikipedia.org/wiki/HBase [Accessed Sept, 2010]

35 Apache HBase [online]

URL: http://hbase.apache.org/ [Accessed Sept, 2010]

