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Cloud computing is one of the emerging technologies. This thesis aimed to outline cloud 
computing and its features. The thesis considered cloud computing for machine learning 
and  data  mining.  The  goal  of  the  thesis  was  to  develop  a  recommendation  and  search  
system using cloud computing. The main focus was on the study and understanding of 
Hadoop, one of the new technologies used in the cloud for scalable batch processing, and 
HBase data model which is a scalable database on top of the Hadoop file system.  
 
The thesis project involved the design, analysis and implementation phases for developing 
the search and recommendation system for staffing purpose. So, mainly the action 
research method was being followed for this project. 
 
Software project staffing is one of the main problems in software organizations. Searching 
for an employee based on simple queries to relational database is not sufficient to find a 
suitable match for a project. The Recommendation System based on Hadoop, HBase and 
MapReduce can efficiently recommend persons or teams from a set of available developers 
and according to project requirements. As a result this project developed an efficient 
staffing recommendation system on cloud computing platform, using Hadoop. 
 
The System recommends a list of persons that can replace the person leaving the project. 
The processing of data is very fast because of its parallel processing feature. This system 
takes  less  time  to  get  the  search  results  compared  to  other  system based  on  the  non-
scalable Oracle database. 
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Abbreviations and Terms 

 

ACID   Atomicity, Consistency, Isolation, Durability 

 

API  Application Programming Interface 

 

CRUD   Create, Retrieve, Update, Delete 

 

DBA   Database Administrator 

 

GNU    GNU's Not Unix 

 

HDFS   Hadoop Distributed File System 

 

HTTP   Hypertext Transfer Protocol 

 

IO   Input/Output 

 

IP   Internet Protocol 

 

JDK   Java Development Kit 

 

KNN   K-nearest Neighbor Algorithm 

 

MIME   Multipurpose Internet Mail Extensions 

 

OS   Operating System  

 

RDMS   Relational Database Management System 



 

REST   Representational State Transfer 

 

RPC   Remote Procedure Call  

 

SLAs   Service Level Agreements 

 

SQL   Structured Query Language 

 

TCP   Transmission Control Protocol 

 

UI   User Interface 

 

URL   Uniform Resource Locator 

 

XML   Extensible Markup Language 
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1 Introduction 

 

In the present day software era the ever growing data demands elastically scalable 

data centers which can be conveniently accessible with high quality in a secure way. 

This demand led to cloud computing as one of the emerging technologies of today. 

Cloud computing releases computer services, computer software, and data storage 

away from locally hosted infrastructure and into cloud-based solutions. The ability of 

the  cloud services  to  provide  apparently  an unlimited supply  of  computing power  on 

demand to users has caught the attention of industry as well as academia. In the past 

couple of years software providers have been moving more and more applications to 

the cloud[1]. 

 

Several big companies such as Amazon, Google, Microsoft, Yahoo, and IBM are using 

the cloud. Today, forward-thinking business leaders are using the cloud within their 

enterprise data centers to take advantage of the best practices that cloud computing 

has established, namely scalability, agility, automation, and resource sharing. By using 

a cloud-enabled application platform, companies can choose a hybrid approach to 

cloud computing that employs an organization's existing infrastructure to launch new 

cloud-enabled applications. This hybrid approach allows IT departments to focus on 

innovation for the business, reducing both capital and operational costs and 

automating the management of complex technologies. [2] 

 

Cloud  services  claim  to  provide  nearly  everything  needed  to  run  a  project  without  

owning any IT infrastructure. From e-mail, Web hosting to fully managed applications 

resources can be provided on–demand. This helps to reduce development cost and 

hardware cost. [3]  

 

Large corporations are regularly faced with the problem of staffing new projects. 

Assigning employees to projects based on their list of competences and project 

requirements requires complex queries. Cloud computing can provide a scalable 

method for answering these complex queries. 
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The goal of this thesis is to get an understanding of cloud computing. This includes the 

study and understanding of Hadoop Distributed File System (HDFS), HBase Data 

Storage  and  MapReduce.  The  main  goal  is  to  develop  and  implement  a  

recommendation and search system for staffing using cloud computing. This system is 

for competences mining and is based on cloud-based technology using Hadoop. 

 

If single person leaves a project, find replacement. From a given list of competence 

requirements, find a matching person. From a given complete list of requirements for a 

new project, find a team. From a given incomplete lists of competences for an 

employee, estimate missing competences. These are some use cases for this thesis. 

 

This thesis project is done at Tieto Company in collaboration with a Alto University, and 

I  am  one  of  the  research  team  members.  I  am  responsible  for  the  design  and  

implementation of the software. 

 

The study is to use Tieto Employee Competence Data for data mining as an input for 

searching and recommending the required profile. This study is done only for the data 

which has all the required information.  
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2 Conceptual Background 

2.1 Definition of Cloud Computing 

 

Cloud computing is basically services-on-demand over the Internet. It is a natural 

evolution of the widespread adoption of virtualization, service-oriented architecture and 

utility computing. [4]  

 

Definitions of Cloud Computing 

 

a) Cloud computing is a computing capability that provides an abstraction between 

the computing resource and its underlying technical architecture (e.g., servers, 

storage, networks), enabling convenient, on-demand network access to a 

shared pool of configurable computing resources that can be rapidly 

provisioned and released with minimal management effort or service provider 

interaction.[5] 

 

b) There is no formal definition commonly shared in industry, unlike for Web 2.0, 

and it is very broadly defined as on-demand provisioning of application, 

resources, and services that allow resources to be scaled up and down.[6] 

 

c) Clouds are a large pool of easily usable and accessible virtualized resources 

(such as hardware, development platforms and/or services). These resources 

can be dynamically reconfigured to adjust to a variable load (scale), allowing 

also for an optimum resource utilization. This pool of resources is typically 

exploited by a pay-per-use model in which guarantees are offered by the 

Infrastructure Provider by means of customized SLAs.[7] 

 

The Key features of cloud computing are: 

 Service: Everything, infrastructure, platform and software, is delivered as 

services. 

 Scalability: Resources can be dynamically scalable over data center without 

much difficulty 

 Cost effectiveness: It follows the “pay as use basis” model 
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 Interface: Independent of location, services are accessible as Web services 

via Web browsers 

 Availability 

 Virtualization 

 

Cloud computing includes a number of technologies such as Virtualization, Web 

services, Service Oriented Architecture, Web 2.0, Web Mashup. One of the key new 

technologies used in the cloud are scalable batch processing systems. The main 

reference implementation here is Google MapReduce and its open source 

implementation Apache Hadoop originally developed at Yahoo.  

 

Distribution and scalability are playing important roles in the cloud, and for that 

Hadoop can be used. Hadoop is a cloud computing program created to deal with the 

growing demands of modern computing and storage of massive amounts of data. 

Many companies, especially ones that operate through demanding websites, e.g. 

Amazon, Facebook, Yahoo, eHarmony and eBay, use Hadoop.[4]  

 

2.2  Apache Hadoop  

 

Hadoop is an open-source cloud computing environment that implements the 

MapReduce based on Google MapReduce. Hadoop is written in Java language; any 

machine that supports Java can run the Hadoop software. It has its own distributed file 

system called Hadoop Distributed File System (HDFS) which is based on GoogleFile 

System. Hadoop uses the HDFS to divide files among several nodes, with the processor 

of each node only working off their own storage. Hadoop is an Apache project. Hadoop 

enables the development of reliable, scalable, efficient, economical and distributed 

computing using very simple Java interfaces - massive parallel code without the pain.  

HDFS based database used mainly for batch processing is HBase which is heavily 

inspired by Google Bigtable. The main applications for Hadoop seem to be log analysis, 

Web indexing, and various data mining and customer analysis applications. 

 

HDFS and HBase are discussed in detail in chapters 3 and 4. 
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2.3 ZooKeeper 

 

ZooKeeper is a Hadoop’s distributed coordination service for building distributed 

applications. It provides a centralized service for managing queues of events, 

configuration maintenance, leader election, naming, distributed synchronization and 

providing group services. At its core, ZooKeeper is modeled after a straightforward, 

tree based, file system API [8]. It runs in Java and has bindings for both Java and C 

[9]. 

 

The  ZooKeeper  service  is  provided  by  a  cluster  of  servers  to  avoid  a  single  point  of  

failure. ZooKeeper uses a distributed consensus protocol to determine which node in 

the ZooKeeper service is the leader at any given time. 

 

Architecture 

 

There is only one leader among the servers and it  is elected at the startup. Figure 1 

showing the architecture diagram of Zookeeper. All servers store a copy of the data in 

memory. The main task of the leader is to coordinate and accept writes. All other 

servers are direct, read-only replicas of the master. This way, if the master goes down, 

any other server can pick up the slack and immediately continue serving requests. 

ZooKeeper allows the standby servers to serve reads. [8] 

 

 
Figure 1. Architecture [8] 

 

A limitation here is that every node in the cluster is an exact replica - there is no 

sharing  and  hence  the  capacity  of  the  service  is  limited  by  the  size  of  an  individual  

machine. [8]  
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2.4 MapReduce Programming Model 

 

MapReduce is a parallel programming model for processing large sets of data. Google 

introduced MapReduce in 2004 for distributed computing. This framework is 

implemented in C++ with interfaces in Python and Java. MapReduce consists of two 

main functions Map and Reducer. Computation takes input as a set of key/value pairs 

and produces output as set of key/value pairs. 

 

 
Figure 2. MapReduce 

 

As illustrated in figure 2, MapReduce function call splits the input data into N pieces. 

Mapper  maps  input  <key,  value>  pairs  to  a  set  of  intermediate  <key,  value>  pairs.  

Then all the intermediate pairs are sorted by unique keys, so that all the values of the 

same key are grouped together. The reducer reduces this grouped set of intermediate 

values. The outputs of all reduce functions are merged to produce the output of the 

complete MapReduce job. 
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2.5 Recommendation and Search Algorithms 

 

The recommendation algorithm is for analyzing data for a particular problem to find 

the items a user is looking for and to produce a predicted likeliness score or a list  of 

top N recommended items for a given user. Different algorithms can be used based on 

each use case. For this thesis, K-nearest neighbor has been used for finding a similar 

replacement of an employee leaving a project. User-based Collaborative Filtering 

Algorithm is used for predicting missing competences.  

 

2.5.1 K-Nearest Neighbor Algorithm 

 

The K-nearest neighbor algorithm (KNN) is part of supervised learning that has been 

used in many applications in the field of data mining, statistical pattern recognition and 

many  others.  KNN  is  a  method  for  classifying  objects  based  on  the  closest  training  

examples  in  the  feature  space.  An  object  is  classified  by  a  majority  vote  of  its  

neighbors. K is always a positive integer. The neighbors are taken from a set of objects 

for which the correct classification is known. It is usual to use the Euclidean distance, 

though other distance measures can also be used instead. [10] 

 

One of the advantages of the KNN is that it is well suited for multi-modal classes as its 

classification decision is based on a small neighborhood of similar objects (i.e., the 

major class). So, even if the target class is multi-modal (i.e., consists of objects whose 

independent variables have different characteristics for different subsets), it can still 

lead to good accuracy. A major drawback of the similarity measure used in the KNN is 

that it uses all features equally in computing similarities. This can lead to poor 

similarity measures and classification errors, when only a small subset of the features 

is useful for classification. [11] 

 

2.5.2 User-based Collaborative Filtering Algorithm 

 

A user-based collaborative filtering algorithm produces a recommendation list for the 

object  user  according  to  the  view  of  other  users.  The  assumption  is  that  users  with  

similar preferences will rate products similarly. Thus missing ratings for a user can be 
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predicted by first finding a neighborhood of similar users and then aggregating the 

ratings of these users to form a prediction. 

 

User rating data can be a matrix A(m,n), where m represents the number of users, n 

represents the number of items. Element R (at the ith line and jth column) represents 

the rating of the item j rated by user i.  User rating data matrix is shown in figure 3. 

[12] 

 

 
Figure 3. User-item rating data matrix [12] 

 

A cosine similarity algorithm can be used to measure the similarity between user i and 

j. Similarity between user i and user j is sim (i, j): 

 
 

Rating  of  item i  rated by  user  u  can be predicted by  rating  of  nearest  neighbors  set 

NBSu rated by user u. The predicted rating of item i rated by user u is: 

 

 

NBSu - the nearest neighbor set of user u; 

Pu,i – Predicted rating by user u on item i; 

sim(u,n) — the semblance between user u and n; 



9 

   

 — the rating of item i rated by user n; 

— the average rating of items rated by user u; 

 — the average rating of items rated by user n. 

 

According to the rating of items, select N items that have the highest rating to 

compose a recommendation set and recommend them to the object user. [12] 

 

2.6 REST Services 

 

REST is an architectural style which is based on Web standards and the HTTP protocol.  

In REST-based architecture everything is a resource. A resource is accessed via a 

common interface based on the HTTP standard methods. In REST architecture there is 

a  REST  server  which  provides  access  to  the  resources  and  a  REST  client  which  

accesses and modifies the REST resources. [13] Figure 4 shows the JAX RS 

Architecture. 

 

 

 
Figure 4. JAX RS Architecture 
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As  shown  in  figure  4,  every  resource  should  support  the  HTTP  common  operations.  

Resources are identified by global IDs (which are typically URIs). REST allows that 

resources have different representations, e.g. text, XML, JSON etc. The client can ask 

for specific representation via the HTTP protocol (Content Negotiation). The HTTP 

standard methods which are typically used in REST are PUT, GET, POST and DELETE. 

[13] 

 

Java, REST and Jersey 

 

Java technology (Java EE) defines standard REST support via JAX-RS (The Java API for 

RESTful  Web  Services)  in  JSR 311 . Jersey is the reference implementation for this 

specification. Jersey contains basically the core server and the core client. The core 

client provides a library to communicate with the server. [13] 

JAX-RS uses the following annotations to define the REST relevance of classes: 

 @Path 

 @GET 

 @POST 

 @PUT 

 @DELETE 

 @Consumes 

 @Produces 
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Figure 5. JAX RS in Action 

 

Figure 5 illustrates the technical implementation of JAX RS services.  
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3 Hadoop Distributed File System 
 

3.1 Overview 

 

Hadoop comes with a distributed filesystem called HDFS (Hadoop Distributed 

Filesystem). HDFS is highly fault-tolerant and is designed to be deployed on low-cost 

hardware. HDFS provides high throughput access to application data and is suitable for 

applications that have large data sets. 

 

The Hadoop filesystem is designed for storing petabytes of a file with streaming data 

access using the idea that most efficient data processing pattern is a write-once, read-

many-times pattern. HDFS stores metadata on a dedicated server, called NameNode. 

Application data are stored on other servers called DataNodes. All the servers are fully 

connected and communicate with each other using TCP-based protocols. 

 

3.2 Architecture 

 

HDFS is based on master/slave architecture. A HDFS cluster consists of a single 

NameNode (as master) and a number of DataNodes (as slaves). The NameNode and 

DataNodes are pieces of software designed to run on commodity machines. These 

machines typically run a GNU/Linux operating system (OS). The usage of the highly 

portable  Java  language  means  that  HDFS  can  be  deployed  on  a  wide  range  of  

machines. A typical deployment has a dedicated machine that runs only the NameNode 

software. Each of the other machines in the cluster runs one instance of the 

DataNodes software. The architecture does not preclude running multiple DataNodes 

on the same machine but in a real deployment one machine usually runs one 

DataNode. 

  

The existence of a single NameNode in a cluster greatly simplifies the architecture of 

the system. The NameNode is the arbitrator and repository for all HDFS metadata. The 

system is designed in such a way that user data never flows through the NameNode.   

 



13 

   

3.2.1 NameNode 

 

As illustrated in figure 6, NameNode manages the filesystem namespace, metadata for 

all the files and directories in the tree. 

 

 
Figure 6. HDFS Architecture[15] 

 

The file is divided into large blocks (typically 128 megabytes, but the user selectable 

file-by-file) and each block is independently replicated at multiple DataNodes (typically 

three, but user selectable file-by-file) to provide reliability. The NameNode maintains 

and  stores  the  namespace  tree  and  the  mapping  of  file  blocks  to  DataNodes  

persistently on the local disk in the form of two files: the namespace image and the 

edit log. The NameNode also knows the DataNodes on which all the blocks for a given 

file are located. However, it does not store block locations persistently, since this 

information is reconstructed from DataNodes when the system starts. 

 

On the NameNode failure, the filesystem becomes inaccessible because only 

NameNode knows how to reconstruct the files from the blocks on the DataNodes. So, 
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for this reason, it is important to make the NameNode resilient to failure, and Hadoop 

provides two mechanisms for this: Checkpoint Node and Backup Node. 

 

Checkpoint Node  

Checkpoint is an image record written persistently to disk. NameNode uses two types 

of files to persist its namespace: 

- Fsimage:  the latest checkpoint of the namespace 

- Edits: logs containing changes to the namespace; these logs are also called 

journals.  

NameNode creates an updated file system metadata by merging both files i.e. fsimage 

and edits on restart. The NameNode then overwrites fsimage with the new HDFS state 

and begins a new edits journal. 

The Checkpoint node periodically downloads the latest fsimage and edits from the 

active NameNode to create checkpoints by merging them locally and then to upload 

new checkpoints back to the active NameNode. This requires the same memory space 

as that of NameNode and so checkpoint needs to be run on separate machine. 

Namespace information lost if either the checkpoint or the journal is missing, so it is 

highly recommended to configure HDFS to store the checkpoint and journal in multiple 

storage directories. 

The Checkpoint node uses parameter fs.checkpoint.period to check the interval 

between two consecutive checkpoints. The Interval time is in seconds (default is 3600 

second).  The Edit log file size is specified by parameter fs.checkpoint.size (default size 

64MB) and a checkpoint triggers if size exceeds. Multiple checkpoint nodes may be 

specified in the cluster configuration file. 

Backup Node 

The Backup node has the same functionality as the Checkpoint node. In addition, it 

maintains an in-memory, up-to-date copy of the file system namespace that is always 

synchronized with the active NameNode state. Along with accepting a journal stream 

of the filesystem edits from the NameNode and persisting this to disk, the Backup node 
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also applies those edits into its own copy of the namespace in memory, thus creating a 

backup of the namespace. [14] 

Unlike the Checkpoint node, the Backup node has an up-to-date state of the 

namespace state in memory. The Backup node requires same RAM as of NameNode. 

The  NameNode  supports  one  Backup  node  at  a  time.  No  Checkpoint  nodes  may  be  

registered if a Backup node is in use. The Backup node takes care of the namespace 

data persistence and NameNode does not need to have persistent store. [14] 

3.2.2 DataNodes 

 

There are a number of DataNodes, usually one per node in the cluster, which manage 

storage attached to the nodes. HDFS exposes a file system namespace and allows user 

data to be stored in files. Internally,  a file is split  into one or more blocks and these 

blocks are stored in a set of DataNodes. The NameNode executes the file system 

namespace operations such as opening, closing, and renaming files and directories. It 

also determines the mapping of blocks to DataNodes. DataNodes store and retrieve 

blocks when requested (by clients or the NameNode), and they report back to the 

NameNode periodically with lists of blocks they are storing. The DataNodes are 

responsible for serving read and write requests from the file system’s clients. The 

DataNodes also perform block creation, deletion, and replication upon instruction from 

the NameNode. [15] 

 

DataNodes and NameNode connections are established by handshake where 

namespace ID and the software version of the DataNodes are verified. The namespace 

ID is assigned to the file system instance when it is formatted. The namespace ID is 

stored persistently on all nodes of the cluster. A different namespace ID node cannot 

join the cluster. 

 

A new DataNode without any namespace ID can join the cluster and receive the 

cluster’s namespace ID and DataNode registers with the NameNode with storage ID.  

A DataNode identifies block replicas in its possession to the NameNode by sending a 

block report. A block report contains the block id, the generation stamp and the length 

for each block replica the server hosts. The first block report is sent immediately after 

the DataNodes registrations. Subsequent block reports are sent every hour and provide 
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the  NameNode  with  an  up-to  date  view  of  where  block  replicas  are  located  on  the  

cluster. [16] 

 

3.2.3 HDFS Client 

 

Reading a file 

To read a file, HDFS client first contacts NameNode. It returns list of addresses of the 

DataNodes that have a copy of the blocks of the file. Then client connects to the 

closest DataNodes directly for each block and requests the transfer of the desired 

block.  Figure  7  shows  the  main  sequence  of  events  involved  in  reading  data  from  

HDFS. 

 

 

Figure 7. A client reading data from HDFS [16,63] 
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Writing to a File 

For  writing  to  a  file,  HDFS  client  first  creates  an  empty  file  without  any  blocks.  File  

creation is only possible when the client has writing permission and a new file does not 

exist in the system. NameNode records new file creation and allocates data blocks to 

list of suitable DataNodes to host replicas of the first block of the file. Replication of 

data makes DataNodes in pipeline. When the first block is filled, new DataNodes are 

requested to host replicas of the next block. A new pipeline is organized, and the client 

sends the further bytes of the file. Each choice of DataNodes is likely to be different.  

If a DataNode in pipeline fails while writing the data then pipeline is first closed and 

partial block on failed data node is deleted and failed DataNode is removed from the 

pipeline. New DataNodes in the pipeline are chosen to write remaining blocks of data. 

Figure 8 shows the steps involved in creating a new file, writing data to it and then 

closing the file. 

 

 

Figure 8. A client writing data to HDFS [16,66] 
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3.3 Replication Management 

 

The NameNode is responsible for block replication. Replica placement determines 

HDFS reliability, availability and performance. Each replica on unique racks helps in 

preventing data loses on entire rack failure and allows use of bandwidth from multiple 

racks when reading data. This policy evenly distributes replicas in the cluster which 

makes it easy to balance load on component failure. However, this policy increases the 

cost of writes because a write needs to transfer blocks to multiple racks. 

 

The NameNode keeps checking the number of replicas. If a block is under replication, 

then it is put in the replication priority queue. The highest priority is given to low 

replica value. Placement of new replica is also based on priority of replication. If the 

number of existing replicas is one, then a different rack is chosen to place the next 

replica. In case of two replicas of the block on the same rack, the third replica is placed 

on a different rack. Otherwise, the third replica is placed on a different node in the 

same rack as an existing replica.  

 

The NameNode also checks that all replica of a block should not be at one rack. If so, 

NameNode treats the block as under-replicated and replicates the block to a different 

rack and deletes the old replica. 

 

3.4 Features of HDFS 

 

Communication Protocols 

All HDFS communication protocols are layered on top of the TCP/IP protocol. A client 

establishes a connection to a configurable TCP port on the NameNode machine. It talks 

the ClientProtocol with the NameNode. The DataNodes talk to the NameNode using the 

DataNodes Protocol. A Remote Procedure Call (RPC) abstraction wraps both the Client 

Protocol and the DataNodes Protocol. By design, the NameNode never initiates any 

RPCs. Instead, it only responds to RPC requests issued by DataNodes or clients. [15] 
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Data Disk Failure, Heartbeats and Re-Replication  

 

The  primary  objective  of  the  HDFS  is  to  store  data  reliably  even  in  the  presence  of  

failures. The three common types of failures are NameNode failures, DataNodes 

failures and network partitions. [15] 

NameNode considers DataNodes as alive as long as it receives Heartbeat message 

(default Heartbeat interval is three seconds) from DataNodes.  If the NameNode does 

not receive a heartbeat from a DataNodes in ten minutes the NameNode considers the 

DataNodes  as  dead  and  stop  forwarding  IO  request  to  it.  The  NameNode  then  

schedules the creation of new replicas of those blocks on other DataNodes.  

Heartbeats  carry  information about  total  storage capacity,  fraction  of  storage in  use,  

and the  number  of  data  transfers  currently  in  progress.  These statistics  are  used for  

the NameNode’s space allocation and load balancing decisions. The NameNode can 

process thousands of heartbeats per second without affecting other NameNode 

operations. 

 

Cluster Rebalancing  

The HDFS architecture has data rebalancing schemes in which data is automatically 

moved from one DataNode to another if the free space threshold is reached. In the 

event of a sudden high demand for a particular file, a scheme might dynamically create 

additional  replicas  and  rebalance  other  data  in  the  cluster.  These  types  of  data  

rebalancing schemes are not yet implemented. [15] 

Data Integrity  

Block  of  data  can  be  corrupted  due  to  many  reasons  such  as  network  faults,  buggy  

software or faults in a storage device. So, at the time of file creation checksum is used 

and stored for each block. While retrieving a file, it is first verified with those 

checksums and if verification fails, then another replica of data is used. 
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Metadata Disk Failure  

Corrupted Fsimage and the EditLog may stop the HDFS functioning. For redundancy, 

NameNode is configured to have multiple copies of these files and are updated 

synchronously. 

Snapshots  

A Snapshot saves the current state of the file system at any instance of time. The main 

usage of  this  feature  is  to  rollback  to  the  previous  state  if  the  upgrading resulted  in  

data loss or corruption.   

3.5 Advantages and Disadvantages 

 

Advantages of the HDFS are: 

- Reliable storage - HDFS  is  a  fault  tolerant  storage  system.  HDFS  can  

significantly store huge amounts of data, scale up incrementally and can 

effectively handle the failure of significant parts of the storage infrastructure 

without losing data. 

- Commodity hardware - HDFS is designed to run on highly unreliable 

hardware and so is less expensive compared to other fault tolerant storage 

systems. 

- Distributed - HDFS data are distributed over many nodes in a cluster and so 

parallel analyses are possible and this eliminates the bottlenecks imposed by 

monolithic storage systems. 

- Availability - Block replication is one of the main features of HDFS. By default 

each block is replicated by the client to three DataNodes but replication factor 

can be configured more then 3 at creation time. Because of replication HDFS 

provides high availability of data in high demand. 

 

Limitations in HDFS are: 

- Architectural bottlenecks - There  are  scheduling  delays  in  the  Hadoop  

architecture that result in cluster nodes waiting for new tasks. More over disk is 

not  used  in  a  streaming  manner,  the  access  pattern  is  periodic.  HDFS  client  
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serializes computation and I/O instead of decoupling and pipelining those 

operations. 

- Portability limitations - HDFS being in Java could not able to support some 

performance-enhancing features in the native filesystem. 

- Small file - HDFS is not efficient for large numbers of small files.  

- Single MasterNode –  There  might  be  risk  of  data  loss  because  of  single  

NameNode. 

- Latency data access –  At  the  expense  of  latency  HDFS  delivers  a  high  

throughput of data. If an application needs low–latency access to data then 

HDFS is not a good choice. 

 

One of the major advantages of the HDFS is scalability. Besides its limitations, 

HDFS is highly in demand when data sets are very large where scalability plays 

an important role. 
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4 HBase a Scalable, Distributed Database 

 

4.1 Overview 

 

HBase is the open-source distributed column-oriented database system for the 

management of a large volume of structured data. HBase includes most of the 

functionalities provided by Google BigTable. HBase is written in Java and it is the 

Hadoop application to use real-time read/write random-access to very large datasets. 

HBase can scale linearly by adding nodes; it does not support backward scaling.  

 

Data in HBase are organized in tables, rows and columns. Each particular column can 

have several versions for the same row key. It does not support SQL but it is able to 

host very large, sparsely populated tables on clusters made from commodity hardware. 

 

HBase can be accessed through technologies such as Java Client/API and MapReduce. 

HBase classes and utilities in the org.apache.hadoop.HBase.mapred package facilitate 

using HBase as a source and/or sink in MapReduce jobs. REST server, Thrift Gateway 

API and Iruby Shell are also used to access HBase. [16,350-353;22] 

 

History/ background of HBase: 

 

The HBase project was started by Chad Walters and Jim Kellerman of Powerset at the 

end  of  2006.  It  was  modeled  after  Google’s  “BigTable”.  The  first  HBase  release  was  

bundled  as  part  of  Hadoop  0.15.0.  HBase  became  a  Hadoop  subproject  at  the  

beginning  of  2008.  HBase  has  been  in  production  use  at  Powerset  since  late  2007.  

Other production users of HBase include WorldLingo, Streamy.com, OpenPlaces, and 

groups at Yahoo! and Adobe. [16,344] 

 

4.2 Architecture 

 

There are three major components of the HBase architecture:  

HBaseMaster, HRegionServer and HBase Client. 
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Figure 9. HBase Architecture 

 

As illustrated in figure 9, HBase master manages the HBase cluster by assigning 

regions to registered HRegionServers, and responsible for recovering HRegionServer 

failures. 

 

HRegionServers carries zero or more regions and responsible for handling client 

read/write requests. It contacts HBaseMaster to get a list of regions to serve. 

HRegionServers also send notifications to the HBaseMaster that it is alive. 

 

The HBase client’s main task is to find HRegionServers that are serving the particular 

row range of interest. As explained in figure 10, on instantiation, HBase client directly 

contacts HBaseMaster to find the location of the -ROOT region. Then, the client 

contacts that region server and scans the -ROOT region to find the .META region that 

will contain the location of the user region. Then the client contacts HRegionServer 
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serving that region and issues the read or write request. Above information is cached 

in the client so that subsequent requests need not go through this process. [22] 

 

 
Figure 10. Client Communication 

 

If  a  region  is  reassigned  either  by  the  master  for  loads  balancing  or  because  a  

HRegionServer has died, the client will rescan the .META table to determine the new 

location of the user region. If the .META region has been reassigned, the client will 

rescan the -ROOT region to determine the new location of the .META region. If the -

ROOT region has been reassigned, the client will contact the master to determine the 

new -ROOT region location and will locate the user region by repeating the original 

process described above. [22] 

 

4.3 Data Model  

 

HBase uses a data model which is similar to Google BigTable’s data model. The 

applications keep the rows of data in labeled tables. Each row has a sorting key and an 
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arbitrary number of columns. Table row keys are byte arrays. Sorting of table rows can 

be done by row key and the table’s primary key. 

 

 
Figure 11. Row Oriented Database Table (RDBMS Model) [23] 

 

Figure 11 shows a row-oriented database table layout. 

 

 
Figure 12. Column Oriented Database Tables (Multi-value sorted map) [23] 

 

Figure 12 shows how a column-oriented database table differs from a row-oriented 

database table when same data is loaded to it. 

 

Column Families 

 

Rows of one table can have a variable number of columns. A column name is of the 

form  "<family>:<label>"  with  an  arbitrary  string  of  bytes.  A  table  is  created  with  a  

<family> set, known as “column families”. All column family have same prefix for 

example: book:author and book:publication columns  are  members  of  book  column  

family.  The  family  name  must  be  string  whereas  the  label  can  be  of  any  arbitrary  

bytes. 
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Column can be updated by adding new column family members as per the update 

request by client. Example: book:science can be added to column family book as long 

as book exists otherwise not.  

 

A  new  <label>  can  be  used  in  any  writing  operation,  without  any  previous  

specification. HBase stores “column families” physically grouped on the disk, so the 

items in a certain column have the same particular read/write characteristics and 

contain similar data. By default only single row may be locked at a time. Row writes 

are  always  atomic,  but  single  row  may  be  locked  to  perform  both  read  and  write  

operations on that row atomically. Recent versions allow blocking several rows, if the 

option has been explicitly activated. [16;22] 

 

 
Figure 13. HBase Data Organization [24] 

 

Figure 13 shows the structure of a table in HBase. 

 

Table Cells 

 

The HBase data is modeled as a multidimensional map in which values (the table cells) 

are indexed by four keys: 

value = Map(TableName, RowKey, ColumnKey, Timestamp) 
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where: 

- TableName is a string 

- RowKey and ColumnKey are binary values (Java byte[]) 

- Timestamp is a 64-bit integer (Java long) 

- value is an uninterrupted array of bytes (Java byte[]) 

Binary data is encoded in Base64 for transmission over the wire. The row key is the 

primary key of the table and is typically a string. Rows are sorted by row key in 

lexicographic order.  [25] 

  

Regions 

 

Tables are divided into raw range called regions. Each region has subsets of table’s 

rows. A region is defined by including its first row and excluding last row along with an 

identifier generated randomly. Mainly a table has one region but if the table size 

exceeds the threshold then it gets split into two equal regions. As the table grows, the 

number of its regions grows. Regions are the units that get distributed over an HBase 

cluster. 

 

4.4 HBase in Action 

 

HBase maintains the current list, state, recent history, and location of all regions on the 

cluster with an internal catalogue tables –ROOT and .META. As shown in figure 14, the 

-ROOT- table contains the list of .META table regions. 

 

 
Figure 14. -ROOT and .META Tables 
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The .META table  keeps  the  information of  all  user-space regions  [16]  by  including a  

HRegionInfo object containing information such as the start and end row keys, status 

of  region  whether  the  region  is  on-line  or  off-line,  etc.  and  the  address  of  the  

HRegionServer that is currently serving the region. The .META table can grow as the 

number of user regions grows. [22] 

 

Regions are redeployed when there is need of load balancing or if HRegionServer 

crashes. Region can be in disabled or enabled state or may be deleted, all these 

transaction of regions states are updated to catalog tables to keep current state of 

regions. Figure 15 shows HBase cluster members. 

 

 
Figure 15. HBase cluster members [16] 

 

As shown in figure 15, clients find the location of user region by consulting ZooKeeper 

cluster, -ROOT and .META region step by step as explained earlier in figure 10. 

 

Write Requests 

 

When a HRegionserver receives a write request, it first writes to a commit log and then 

adds to an in-memory cache called Memcache. When this cache fills, its content is 

flushed to the filesystem. The commit log is hosted on HDFS, so it remains available 
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through a HRegionserver crash. If HRegionserver is no longer reachable, it is 

considered as dead and master splits the dead HRegionserver’s commit log by region. 

On reassignment, regions that were on the dead HRegionserver, before they open for 

business, pick up their just-split file of not yet persisted edits and replay them to bring 

themselves up-to-date with the state they had just before the failure[16,347]. 

 

Read Request  

 

For read request, the region’s memcache is consulted first. If sufficient versions are 

found to satisfy the query, then it returns. Otherwise, flush files are consulted in order, 

from newest to oldest until sufficient versions are found or until it run out of flush files 

to consult. [16,348;22] 

 

4.5 HBase Uses 

 

HBase should be used when there is a need for the following: 

 

- Fault-tolerance: Replication is built in to provide fault tolerance, high 

availability and locality. 

 

- Random access: Random access of real time read/write access to data 

stored in HDFS. 

 

- Sparse data: When data is non-structured or semi-structured, not 

homogeneous or having complex data model, then HBase is a good choice. 

In HBase records, data are addressed with a row key/column family/cell 

qualifier/timestamp. Heterogeneous data can store much anything in a 

column family without having to know what it will be in advance. This 

allows to store one-to-many relationships in a single row. A given row can 

have any number of columns in each column family, or none at all. 

 

- Large data set: A relational database fails with large data with big queries 

or table scans with big tables, with terabytes or petabytes. Standard RDBMS 

cannot process such workload in a timely and in cost-effective manner. 
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Processing such data raises waits and deadlocks nonlinearly with 

transaction size and concurrency. HBase table scans run in linear time, and 

row lookup or update times are logarithmic with respect to the size of the 

table.  

 

- Scalability: Scalability  is  one  of  the  facts  where  traditional  RDBMS  fails.  

Most RDBMSs are single process system, so scaling such database means 

replacing the existing hardware with more expensive hardware which have 

more CPU, RAM, and disk space. [16,361]. The scaling of an RDBMS usually 

involves loosening ACID restrictions, forgetting conventional DBA wisdom, 

and losing most of the desirable properties that made relational databases 

so convenient in the first place [16,361]. HBase is distributed over numbers 

of commodity servers so scaling in HBase is very simple and cost effective.  

 

- Reliability: HBase has replication mechanism to avoid single node of 

failure.  Backups are available to provide reliability of data. 

[16,361;26;27] 

 

HBase should not be used in the following cases: 

 

- If the data model is simple and the entities are homogenous then probably 

RDBMS is a good choice. Mapping object to table is simple and has ability to 

query on non-primary-key values. 

 

- When data is not large and can fit into standard RDBMS definitely there is 

no need of HBase. RDBMSs are fixed-schema, row-oriented databases with 

ACID properties and a sophisticated SQL query engine. The emphasis is on 

strong consistency, referential integrity, abstraction from the physical layer, 

and  complex  queries  through  the  SQL  language.  It  is  easy  to  create  

secondary indexes, perform complex inner and outer joins, count, sum, 

sort,  group,  and  page  the  data  across  a  number  of  tables,  rows,  and  

columns. Mainly small-volume to medium-volume applications, there is no 

substitute for the ease of use, flexibility, maturity, and powerful feature set 
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of available open source RDBMS solutions such as MySQL and PostgreSQL 

[16,361]. 

 

- Another  case  when  HBase  shouldn’t  be  used  is  to  store  large  amounts  of  

binary data. RDBMSs are built to be fast metadata stores.  

 
- Finally, when SQL is required HBase cannot be used as HBase does not 

support SQL.  

[16,361;26;27] 

 

4.6 HBase vs Relational Database 

 

Table 1 lists the HBase and SQL benefits. 

 

Table 1. Benefits of SQL and HBase 

SQL benefits  HBase benefits 

- Joining: easy to get all  products in an 

order with their product information in a 

single query. 

- Secondary indexing is possible 

- Realtime analysis: Group by and order 

by allows simple statistical analysis 

- Dataset scale 

- Read/Write scale: read/write is distributed 

as tables are distributed across nodes 

- Replication is automatic 

- Batch analysis 

 

RDBMS vs Hbase 

 

Cost: RDBMS usually need expensive disks. Have a single node and requires a backup 

server with same specifications. Hbase is designed for commodity hardware. 

 

Reliability: RDBMS has slave replication and single node failure. Hbase has built in 

replication and backups are available. [16;28] 
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5 Recommendation and Search System Development 
 

5.1 Analysis  

 

In big software organizations successful products is one of the most important aspects 

of organization achievement. Team formation directly affects the performance of the 

team and the product development quality. Staffing is an important issue to be 

analyzed when software development is undertaken as a value-driven business. 

 

Creating competence-based competitiveness is a great challenge because competence 

identification and consequently, its management, helps in innovation, decision support, 

faster process and product quality improvement, and constitute an important input to 

the  creation  of  the  firm’s  organizational  knowledge.  The  finding  a  value  driven  

developer-to-project assignment is a complex task. Predicting the compatibility of one 

employee with other team members is much more complex. [30;31;32] 

 

Tieto  is  a  huge  company  that  focuses  on  project-based  work,  such  as  consulting  or  

ITservice  businesses,  which  has  team-based  work  structure  as  the  standard  way  of  

working. Employees are frequently staffed to project teams and dispersed as soon as 

the project ends. Hence, the effectiveness of work teams becomes crucial for the 

success of Tieto. So, Tieto Company is regularly facing with the problem of staffing 

new projects  in  terms of  finding an employee that  best  fits  with  the  project  and the  

team.  

 

Tieto competence database contains records for approx. 15.000 employees and 3.500 

possible competences. Assigning employees to projects, based on their list of 

competences and project requirements requires a scalable and efficient system to 

process such large set of data. 

 

Tieto’s existing staffing system only supports common keyword-based search and filter 

techniques that focus solely on a candidate's technical skill set. A required candidate 

can be filtered by required compulsory competences and non compulsory competences 

of  a  given  project.  Search  process  is  based  on  standard  database  queries  which  are  

time consuming process to make a search in 15.000 employees of 3.500 competencies. 
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It just considers a match between employee’s competences with job competence 

requirements. The existing system does not support the fitness of the employee with 

team members in terms of interpersonal compatibility, which is equally important while 

finding a team member for a particular project. 

 

To develop such a smart, scalable recommendation and search system, a cloud cluster 

of  four  servers  was  configured.  Hadoop  framework  has  been  chosen  to  provide  the  

scalability and efficient data mining. HBase distributed column-oriented database on 

top of Hadoop (Google Bigtable) was chosen for storing data. 

 

Use Cases 

 

Some of the use cases that have been carried out for this project are: 

 

 A single person leaves the project, find replacement. 

 Given a list of competence requirements, find matching persons. 

 Given a complete list of requirements for new project, find a team. 

 Given an incomplete list of competences for employee, estimate missing 

competences. 

 

Data Set 

 

Sparsity of data causes problems for pre-determined clustering according to 

competences. The user should give relevant feedback to focus the search.  

Table 2. Missing data 

Employee C++ Java SQL JavaEE 

102 2 3 0 2 

106 4 0 3 0 

107 3 3 1 ? 

 

Moreover, inference of missing competences may be challenging but highly desirable, 

as summarized in table 2 
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5.2 Development Environment 

 

Four  Linux  servers  were  used  to  build  a  cluster  for  cloud  environment.  Hadoop  

framework  and  HBase  file  storage  were  installed  at  each  server  in  which  one  server  

node is acting as master (as NameNode) and others are slaves (as DataNodes). 

HBase tables were created to store Employees Competence Data (of Tieto company). 

 

Runtime Environments 

 

Hadoop engine was deployed over the 4 node cluster and Java runtime was setup to 

use the common Hadoop configuration, as specified by the NameNode (master node) 

in the cluster 

 

Software and Language Versions 

 

 Hadoop Official release 0.20.1  

 HBase official release 0.20.6 

 Java, JDK 1.6.0_23 

 Tomcat 6.0.29 

 Jersey for REST Services 

 

Hardware Specification of Each Hadoop Node: 

 

Hadoop clusters have identical hardware specifications for all the cluster nodes. Table 

3 lists the specification of nodes. 

 

Table 3. Specification of cluster nodes 

Operating system SUSE Enterprise Linux 11 (32-bit) 

Memory 2048MB 

Processor 2 V CPU 

Disk space 40 GB 
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5.3 System Architecture 

 

Figure 16 shows the layered stack of Recommendation and Search System: 

 

 
Figure 16. System Architecture 

 

As shown in figure 16, Linux is used as an operating system and Java runtime 

environment is installed on top of it. Other main components of the System are 

explained as follows: 

- Hadoop is installed on Java Runtime Environment. 

- HDFS stores input and output files. 
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- HBase stores data in tables. 

- MapReduce framework has been used to create tables in HBase and loads 

input data from HDFS to HBase tables. 

- Application layer includes recommendation algorithms and search logics.  

- REST Services have been deployed to retrieve the output results from 

HBase tables.  

- REST Client sends HTTP requests and receives HTTP responses from target 

REST WebServices 

- Eclipse RCP Client is GUI to show the search and recommendation results 

and interacting with end-user. 

 

Figure 17 illustrates the component interactions. 

 

 
Figure 17. Workflow 
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The  recommendation  was  based  on  K-N-N  algorithm  to  find  the  replacement  of  a  

person leaving from the project. The competence data of employees and project data 

were  two  input  files  for  processing.  These  two  data  files  were  loaded  to  HDFS  and  

saved in CSV file format. The lists of competences of employees were grouped. 

Grouping was done on the basis of target use i.e. where competences can be used. For 

example, competence can be used for mobile, networking, server side development, or 

for management etc.  

 

MapReduce implements this logic of clustering the competence lists into groups of 

competence. MapReduce function reads input files from HDFS, processes them and 

creates table in HBase to store the output data in table format. Data mining involves 

the finding the distance between employees based on their competence.  

 

REST services provide access to output results stored in HBase tables. It also supports 

basic database CRUD operations to the HBase table. New profiles of competences can 

be created. Existing profiles can be updated and deleted. All profiles and a profile at a 

time can be retrieved. 

 

5.4 Loading Data to HBase 

 

Competence data and project data were saved into HBase tables by using MapReduce. 

As shown in figure 18, competence data and project data files were loaded as CSV files 

in  Hadoop distributed file  system (HDFS).  MapReduce function  takes  these  files  from 

HDFS as input for mapper class and maps to an intermediate <key,value> pairs. Then 

the reducer combines these intermediate pairs based on similar key to produce the 

reduced output. And finally, loads this reduced output by creating table in HBase and 

loading data to the created table.  
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Figure 18. Competence data load by MapReduce 

 

Tieto competence database contains records for approx. 15.000 employees, 3.500 

possible competences and 3000 projects. To get proper relationship between 

employees, competence and projects competence data and project data are loaded in 

three tables named “Employee”, “Competence” and “Project”. 

A snippet of source code for mapping input CSV file to intermediate <key,value> pairs 

in the MapReduce framework is given in the next page. 
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  /** 
   * This method is called as many times as there are rows in CSV 
   * file. 
   * @param key the key 
   * @param line the line from CSV file 
   * @param context the map where the data is written from CSV file 
   * @throws IOException Signals that an I/O exception has 
occurred. 
   * @throws InterruptedException the interrupted exception 
   */ 
  @Override 
  public void map(LongWritable key, Text line, Context context) 
  throws IOException, InterruptedException { 
   if (rowsWritten == 0) { 
    rowsWritten = 1; 
    // Skip the first row as its a "header" row 
    return; 
   } 
   // Save the information from CSV file to map. Map item's 

// key is the ID value of the CSV file's row 
 

   String[] values = 
line.toString().split(ProjectConstants.SeparatorChar); 
   MapWritable map = new MapWritable(); 
   map.put(new 
IntWritable(ProjectConstants.PROJECTSTARTDATEINDEX), new Text( 
    values[ProjectConstants.PROJECTSTARTDATEINDEX])); 
   map.put(new 
IntWritable(ProjectConstants.PROJECTENDDATEINDEX), new Text( 
    values[ProjectConstants.PROJECTENDDATEINDEX])); 
   map.put(new IntWritable(ProjectConstants.ROLEINDEX), new 
Text( 
    values[ProjectConstants.ROLEINDEX])); 
   map.put(new IntWritable(ProjectConstants.EMPLOYEEIDINDEX), 
new Text( 
    values[ProjectConstants.EMPLOYEEIDINDEX])); 
   ImmutableBytesWritable outKey = new ImmutableBytesWritable( 
    Bytes.toBytes(values[ProjectConstants.IDINDEX])); 
 
   context.write(outKey, map); 
  } 
 } 
 

 

5.4.1 Employee Table 

 

The Employee table contains a list of competence of each employee. Employee_Id is 

taken as the row key and Column family has three columns: 

- Competence:  lists all the competence of an employee. 

Column name is “Competence”, qualifiers names are list of competences an 

employee has and value is rating of competence rated by employees. 
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- Info: contains information such as last updated, country, region, reporting 

level1 and reporting level2. 

Column name is “Info”, qualifiers are “Country”, “LastUpdated”, “Region”, 

“ReportingLevel1” and “ReportingLevel2”, and values are country, last 

updated  date,  region,  name  of  reporting  level1,  name  of  reporting  level2  

respectively.  

- Project: gives the Project_Id of project an employee is currently assigned 

to.  

Column name is “Project”, qualifier name is Project_Id and value is type of 

project. 

 

Table 4 shows the employee table schema. 

Table 4. Employee Table Schema 

Row Column Families 

 Info Competence Project 

 

<Employee_ID> 

 

Info:Country=value 

Info:Region=value 

Info:LastUpdated =value 

Info:ReportingLevel1=value 

Info:ReportingLevel2=value 

 

Competence:<Compet

ence_Name>=rating 

 

 

Project:<Projec

t_ID>= type 

 

12345 Info:Country=Finland 

Info:Region= Finnish Region 

Info:LastUpdated=7/2/2009 

8:24 

Info:ReportingLevel1=Industries 

Info:ReportingLevel2=TGF 

Financial Services 

Competence:Java=3 

Competence:PHP =3 

Competence: 

J2EE_JSP=4 

Competence:SQL=3 

Project:1=inter

nal 

 

 

 

 

 

 

 



41 

   

Creating Employee Table 

 

Below is the snippet of source code in Java for creating Employee table in HBase: 

 

private static Boolean createTableInHBase(HBaseAdmin hbase, String tableName) 
{ 
  Boolean result = false; 
 
  HTableDescriptor desc = new HTableDescriptor(tableName); 
  desc.addFamily(new HColumnDescriptor(Bytes 
      .toBytes(Constants.employeeTcolumnName[0]), 15, 
      HColumnDescriptor.DEFAULT_COMPRESSION, 
      HColumnDescriptor.DEFAULT_IN_MEMORY, 
      HColumnDescriptor.DEFAULT_BLOCKCACHE, 
      HColumnDescriptor.DEFAULT_TTL, false)); // general info 
  desc.addFamily(new HColumnDescriptor(Bytes 
      .toBytes(Constants.employeeTcolumnName[1]), 15, 
      HColumnDescriptor.DEFAULT_COMPRESSION, 
      HColumnDescriptor.DEFAULT_IN_MEMORY, 
      HColumnDescriptor.DEFAULT_BLOCKCACHE, 
      HColumnDescriptor.DEFAULT_TTL, false)); // competence ID and 
rating 
  desc.addFamily(new HColumnDescriptor(Bytes 
      .toBytes(Constants.employeeTcolumnName[2]), 15, 
      HColumnDescriptor.DEFAULT_COMPRESSION, 
      HColumnDescriptor.DEFAULT_IN_MEMORY, 
      HColumnDescriptor.DEFAULT_BLOCKCACHE, 
      HColumnDescriptor.DEFAULT_TTL, false)); // project ID and 
type 
  try { 
   hbase.createTable(desc); 
   System.out.println("SUCCESS: Table was created 
succesfully"); 
   result = true; 
  } catch (IOException e) { 
   System.out.println("Wasn't able to create a table: '" + 
tableName 
       + "' in HBase"); 
   result = false; 
  } 
 
  return result; 
 } 
} 
 

 
  

 

Figure 19 shows Employee table in HBase 
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Figure 19. HBase Employee Table 

 

As illustrated in figure 19, based on schema in table 4 the Employee table is created in 

HBase using the mapreduce framework using java as programming language. 

 

5.4.2   Competence Table 

 

The Competence table contains a list of competences, its hierarchy using parent-child 

relationship and a list of employees belonging to that competence, along with general 

information.  The  competence  name  is  taken  as  the  row  key.  Table  5  shows  the  

Competence table schema. 
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Table 5. Competence Table Schema 

 

Row 

 

Column Families 

 
  Info 

 

Parent Child Employee 

<CompetenceName> 

 

 
Parent:<Compete

nce_ID>=Compet

ence_Level 

 

Child:<Compete

nce_ID>=Comp

etence_Level 

 

Employee:

<Employee

_ID>=ratin

g 

 
General Info:Level=

L1 

 

 Child:Communic

ation=L2 

Child:Language

=L2 

Child:English=L3 

 

 

 

 

 

Java Info:Level=

L3 

 

Parent:SW 

Development=L1 

Parent: 

Programming 

languages=L2 

 12234=3 

23456=4 

 

The Column Family has four columns as summarized in table 5: 

- Info: indicates the level of competence.  

Column name is “Info”, qualifier is “Level” and value is type of level. 

- Parent: lists all upper level hierarchy of the competence. 

Column name is “Parent”, qualifiers are upper hierarchy name list and value 

is the level of parents. 

- Child: lists all lower level hierarchy of the competence. 

Column name is “Child”, qualifiers are lower hierarchy name list and value is 

the level of child in hierarchy. 
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- Employee: lists all employees under the competence. Column name is 

“Employee”, qualifier is employee_Id and value is rating of competence 

rated by employee. 

 

 
Figure 20. HBase Competence Table 

 

Figure 20 shows the Competence table in HBase. 

 

5.4.3 Project Table 

 

The Project table contains a list  of projects, general information of the project and a 

list of employees to that project. Project_Id is taken as the row key. Table 6 gives the 

schema of Project table. 
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Table 6. Project Table Schema 

Row Column Families 

 Info Member: 

 

<Project_ID> 

 

Info: start_date=value 

Info: End_date=value 

 

Member:<Employee_ID>=role 

66476 Info:start_date=1.1.2009 

Info:End_date=10.1.2015 

 

Member: 16115=Consultant(A-) 

Member: 147968=Developer(D+) 

Member: 77421=Consultant(A-) 

 

The Column family has two columns as summarized in table 6: 

- Info: contains project information such as project start date, project end 

date. 

Column name is “Info”, qualifiers are “ProjStartDate” and “ProjEndDate” 

and values are start date of project, end date of project respectively. 

- Member: lists all employees of the project. 

Column name is “Member”, qualifier is list of employee_Ids in the project 

and value is type of role in the project. 

 

Loading of Project Table 

 

The snippet of the source code for loading the project data to the Project table is given 

in the next page. The implementation is done in the reduce part of the MapReduce 

framework. 
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/** 
  * Processes the map and writes the data to the HBase. 
  */ 
 public static class ReduceToTable extends 
 TableReducer<ImmutableBytesWritable, MapWritable, Text> { 
  HTable table ; 
  @Override 
  protected void reduce(ImmutableBytesWritable key, 
   Iterable<MapWritable> values, Context context) throws 
IOException, 
   InterruptedException { 
   table = new HTable(ProjectConstants.tableName); 
   Put put = new Put(key.get()); 
   long timeStamp = System.currentTimeMillis(); 
 
   for (MapWritable value : values) { 
    Iterator<Writable> iterator = 
value.keySet().iterator(); 
 
    String pro_startDate = ""; 
    String pro_endDate = ""; 
    String employee_id = ""; 
    String role = ""; 
 
    while (iterator.hasNext()) { 
     Writable mapValue = iterator.next(); 
     int next = ((IntWritable) mapValue).get(); 
     switch (next) { 
      case 
ProjectConstants.PROJECTSTARTDATEINDEX: 
       pro_startDate = ((Text) 
value.get(new IntWritable( 
       
 ProjectConstants.PROJECTSTARTDATEINDEX))).toString(); 
 
       break; 
      case 
ProjectConstants.PROJECTENDDATEINDEX: 
       pro_endDate = ((Text) value.get(new 
IntWritable( 
       
 ProjectConstants.PROJECTENDDATEINDEX))).toString(); 
 
 
       break; 
      case ProjectConstants.EMPLOYEEIDINDEX: 
       employee_id = ((Text) value.get(new 
IntWritable( 
       
 ProjectConstants.EMPLOYEEIDINDEX))).toString(); 
 
       break; 
      case ProjectConstants.ROLEINDEX: 
       role = ((Text) value.get(new 
IntWritable( 
       
 ProjectConstants.ROLEINDEX))).toString(); 
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       break; 
     } 
    } 
 
    if(put!=null){ 
     if(put.isEmpty()){ 
     
 put.add(Bytes.toBytes(ProjectConstants.columnName[ProjectConstants.FAMI
LYNAMEINFO]), 
      
 Bytes.toBytes(ProjectConstants.qualifiers[ProjectConstants.QUALIFIERPRO
JECTSTARTDATE]), 
       System.currentTimeMillis(), 
Bytes.toBytes(pro_startDate)); 
     
 put.add(Bytes.toBytes(ProjectConstants.columnName[ProjectConstants.FAMI
LYNAMEINFO]), 
      
 Bytes.toBytes(ProjectConstants.qualifiers[ProjectConstants.QUALIFIERPRO
JECTENDDATE]), 
       System.currentTimeMillis(), 
Bytes.toBytes(pro_endDate)); 
     
 put.add(Bytes.toBytes(ProjectConstants.columnName[ProjectConstants.FAMI
LYNAMEMEMBER]), 
       Bytes.toBytes(employee_id), 
       System.currentTimeMillis(), 
Bytes.toBytes(role)); 
      table.put(put); 
 
     }else { 
      timeStamp = timeStamp + 1l; 
      if(!employee_id.isEmpty()){ 
       put = new Put(key.get()); 
      
 put.add(Bytes.toBytes(ProjectConstants.columnName[ProjectConstants.FAMI
LYNAMEMEMBER]), 
        Bytes.toBytes(employee_id), 
        timeStamp, 
Bytes.toBytes(role)); 
       table.put(put); 
      } 
     } 
    } 
 
   } 
 
  } 
 } 
 

 
 

Figure 21 shows Project table created in HBase based on the above code snippet. 
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Figure 21. Project Table 

 

Based on these table schemas Employee, Competence and Project tables were created 

in HBase using Java. Then data was loaded to these tables using competence data and 

project data files. 
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Figure 22. List of HBase Tables 

 

Figure 22 shows a list of tables in HBase using HBase explore and putty. 

 

5.5 Using RESTful Services 

 

Basic database queries following CRUD pattern were implemented as REST Services. 

A RESTful Web service was developed on Java platform with the JAX-RS reference 

implementation Jersey. Eclipse was used as a development environment and Tomcat 

as servlet container. The actual versions of these products were Java 1.6, Tomcat 6.0 

and JAX-RS 1.1. (Jersey 1.4). 

In REST architecture, everything is a resource. A resource is accessed via common 

interface based on the HTTP standard methods. REST server provides access to the 

resources and a REST client accesses and modifies the REST resources. Server must 

support the HTTP common operations (GET, POST, PUT and DELETE). Resources are 

identified by global IDs (which are typically URIs). [33] 
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It  typically  defines  the  base URI  for  the  services,  the  MIME-types  its  supports  (XML,  

JSON, text). Here are the URIs and HTTP methods that correspond to the resources in 

the application:  

Resource  URI  Path   HTTP Methods 

ProfileService /profiles  GET, POST, POST, DELET 

 

5.5.1 Server 

 

Server com.tieto.reloud.hbase.restservices.server contains the following Java classes as 

shown in figure 23: 

- ProfileService 
This class registers itself as CRUD resources via @PUT, @GET, @POST and 

@DELETE annotation respectively. Via the @Produces annotation it defines 

that  it  delivers  MIME  type  "text"  code.  It  also  defines  via  the  "Path"  

annotation that its service should be available under the URL "profiles".  

- HBaseHandler 
This class acts as handler to access the table from HBase. This class 

process HBase table. 

- ProfileDataObject 
Creates profile in object form. 

- ProfileDataSet 
Creates a list of profiles from Row_Id 

 

 
Figure 23. REST server classes 
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Here is a snippet of the source code from the ProfileService class: 

 

/** 
 * Rest web-service for profiles' CRUD operations. The services are accessed 
 * with http://baseURI/restservice/profiles for getting all profiles' IDs, 
 * create or update a profile or via 
 * http://baseURI/restservice/profiles/profileID for getting and a deleting a 
 * profile 
 */ 
 
@Path("/profiles") 
@Produces(MediaType.TEXT_XML) 
@Consumes(MediaType.TEXT_XML) 
public class ProfileService { 
 
 private ProfileDataSet profiles; 
 private ProfileDataObject profile; 
 @Context 
 private final UriInfo uriInfo; 
 @Context 
 private final Request request; 
 String id; 
 
 public ProfileService(UriInfo uriInfo, Request request, String id) { 
  this.uriInfo = uriInfo; 
  this.request = request; 
  this.id = id; 
 } 
 /** 
  * @return {@link Response} instance with {@link ProfileDataSet}  
  * instance or 404 in case of failure to fetch any profiles' IDs 
  */ 
 @GET 
 public Response getAllProfiles() { 
  Response res; 
  profiles = HBaseHandler.getInstance().getAllProfiles(); 
  if (!profiles.isEmpty()) { 
   res = Response.ok().entity(profiles).build(); 
  } else { 
   res = Response.status(Status.NOT_FOUND) 
       .entity("Couldn't find any profile!").build(); 
  } 
  return res; 
 } 
 /** 
  * @return {@link Response} instance with {@link ProfileDataObject}  
  * instance or 404 in case of failure to fetch any profiles' IDs 
  */ 
 @GET 
 @Path("{profileID}") 
 public Response getProfile(@PathParam("profileID") int id) { 
  Response res; 
  profile = HBaseHandler.getInstance().getProfile(id); 
  if (profile.getID() != 0) { 
   res = Response.ok().entity(profile).build(); 
  } else { 
   res = Response.status(Status.NOT_FOUND) 
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       .entity("Target profile doesn't exist!").build(); 
  } 
  return res; 
 } 
 
 /** 
  * @return {@link Response} instance with 200 if profile created 
  *         successfully or 403 otherwise 
  */ 
 @POST 
 public Response postProfile(ProfileDataObject object) { 
  Response res; 
  boolean success = HBaseHandler.getInstance().createProfile(object); 
  if (success) { 
   res = Response.ok().build(); 
  } else { 
   res = Response.status(Status.FORBIDDEN) 
       .entity("Target profile already exist!").build(); 
  } 
  return res; 
 } 
 /** 
  * @return {@link Response} instance with 200 if profile updated 
  *         successfully or 403 otherwise 
  */ 
 @PUT 
 public Response updateProfile(ProfileDataObject object) { 
  Response res; 
  boolean success = HBaseHandler.getInstance().updateProfile(object); 
  if (success) { 
   res = Response.ok().build(); 
  } else { 
   res = Response.status(Status.FORBIDDEN).build(); 
  } 
  return res; 
 } 
 /** 
  * @return {@link Response} instance with 200 if profile deleted 
  *         successfully or 403 otherwise 
  */ 
 @DELETE 
 @Path("{profileID}") 
 public Response deleteProfile(@PathParam("profileID") int id) { 
  Response res; 
  boolean success = HBaseHandler.getInstance().deleteProfile(id); 
  if (success) { 
   res = Response.ok().build(); 
  } else { 
   res = Response.status(Status.FORBIDDEN) 
       .entity("Target profile does not exist!").build(); 
  } 
  return res; 
 } 
 
} 
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ProfileService Methods 

The ProfileService class has five methods for processing the resources in RESTful 
way:  

- getAllProfiles retrieves all profiles from the HBase table; 
- getProfile retrieves all information of a particular Id; 
- postProfile is for adding new profile into the table; 
- updateProfile is for updating existing profile from the table;  
- deleteProfile is for deleting existing profile from the table. 

The @Produces annotation specifies the MIME type. Here, the annotation specifies that 
it returns a text: 

    @Produces(MediaType.TEXT_XML) 

 

5.5.2 Client 

 

The Client has been created with namespace com.tieto.reloud.hbase.restservices.client 

and includes the following Java classes as shown in figure 24: 

- ProfileRestClient 
It is client to the server to access resources and return response code. 

- ProfileDataObject 
Creates profile in object form. 

- ProfileDataSet 
Creates a list of profiles from Row_Id 

 

 
Figure 24. REST Client classes 
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Table 7 shows the CRUD operations implemented using REST. 

 

Table 7. GUI CRUD operations 

1 GUI  

 

2 Get All 

Profile 

  

3 Create 

new 

Profile  
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4 Update id 

31012011 

  

5 Delete Id 

31012011 

 

 

As summarized in table 7, the graphical user interface of the CRUD operations can get 

all profiles, create a new profile, update an existing profile and delete an existing 

profile. 

 

5.6 Data Mining 

 

5.6.1 Competence Data Analysis 

 
Total  number  of  employee  in  data  set  is  15480.  Total  number  of  competences  in  

dataset is 3516. Total number of competences of all employees in dataset is 361579. 

The above data set concludes that on an average every employee has 23 competences 

and the dimension of the feature vectors (one entry for every possible competence) is 
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3516, so the data has the potential of being quite sparse. Figure 25 shows frequency 

of the occurrences of competences. 

 

 
Figure 25. Competence plot 

 

From figure 25 it  is clear that the majority of competences are quite rare.  From the 

plot, value (x, y)=(1, 3516) means that 3516 competences occur at least once in the 

data set. 

So, if a threshold is set of 20 occurrences then the rarest 2/3 of all competences can 

be eliminates from the data set, which could help quite a bit in clustering. 

 

Figure 26 shows the distances of all employees with respect to the one employee id. 
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Figure 26. Distances of all employees with respect to the one id 

 

Figure 26 shows that distances in high-dimensional space are not really informative for 

these "competence points". The search for employee needs to be restricted to relevant 

regions in the dataset. A mixture of hard and soft constraints could help the search for 

relevant employee. 

 

Figure 27 shows the distribution of the number of competences over employee 

population. 
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Figure 27. Number of competence over employee population 

 

Figure 27 illustrates that median is 18, average is 23.35 and maximum is 266. 

  

5.6.2 Project Data Analysis 

 

There are around 7000 employees assigned to various projects in Tieto. Figure 28 

shows the cumulative distribution for the total number of projects a person has been 

assigned to (not necessarily at the same time of course).  
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Figure 28. Distribution of number of projects a person has been assigned to 

 

As shown in figure 28, around 85% of the employees have been assigned to less than 

five projects in total but there are a few people who were assigned to more than 

twenty projects. About 80% of the employee ids in the project data set are also in the 

competence data set. The employees that are assigned to 20+ projects are likely line 

managers or other formal owners of the project.  

 

So, search results are only limited to people with some sort of developer role. Seeing 

20+ projects for any person means that he does not have anything real to do with the 

project. 

These are the different roles in the dataset: 

- Absence 

- Consultant(A-) 

- Delivery Owner 

- Developer(D+) 

- Implementation(D) 
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- Management Consultant(A+) 

- Planning, Customer Support(C) 

- PRM Project Manager(B) 

- Program Manager 

- Project Assistant 

- Project Leadership(B+) 

- Project Manager 

- SAP Developer(D++) 

- Senior Consultant(A) 

- Subcontractor(S1) 

- Subcontractor(S2) 

- Subcontractor(S3) 

- System Specialist(D-) 

 

The following roles are considered while processing the data: 

- Consultant(A-) 

- Developer(D+) 

- Implementation(D) 

- Management Consultant(A+) 

- Senior Consultant(A) 

- Subcontractor(S1) 

- Subcontractor(S2) 

- Subcontractor(S3) 

 

If one could somehow identify "replacement events" in the project database (person A 

leaves, person B joins directly afterwards with the same role). This implies that A and 

B have similar competences then one could use this information to fine-tune the 

distance metric for KNN and also for the recommendation engine. 
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5.6.3 Recommendation 

 

Identifing replacement events 

 

The search is restricted to the roles mentioned above and also when there are 

potential replacements where person B replaces a "large" number of other employees 

in the same project (these assignment dates seem to be clustered) then all these 

replacements are rejected and also when they exceed a certain number (here: max 2 

replacements). There is an indegree limit for replacements: when in the same project 

the same person was potentially replaced by a "large" number of other employees, all 

of these are rejected and if the number is large than the limit (here: again 2). 

 

By this method replacement event comes out to be 130. For every one of these (tuple 

(A,  B,  project))  one  can  then  determine  the  relative  position  of  B  within  the  

neighborhood of A, i.e. by sorting the whole population with respect to distance to A 

and checking at which position B is. Here the intuition would be that B would tend to 

be somewhere close to A in the competence space.  

 

Finding replacement event also makes use of the competence tree (comparing 

competence prefixes). Further, it is normalized in order to try to avoid problems when 

either A or B has a lot of competence records, which the other one has not. 
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Figure 29. Relative distance histogram 

 

Figure  29 shows the  relative  position  of  B  to  A  (1.0  means the  employee id  furthest  

away from A,  something very  close  to  zero  means very  close  compared to  the  other  

employee in the competence database). 

 

Basically the plot shows that around 23% of the 130 replacement cases, the relative 

distance of B to A was below 0.05. So, the project data and the competence data are 

meaningful for comparisons. 

  

Table 8 shows recommendation results based on KNN queries to the competence data. 

Along with KNN queries it also shows the list of competences and differences between 

two employees’ competences. 

 

 

 

 



63 

   

Table 8. Recommendation Results 

Descriptions GUI Results 

 

Recommend-

ation 

operations: 

 

 

 

 
 

“KNN ID” 

operation 

computes k 

nearest 

neighbors of 

ID (k=10 by 

default) 
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“Print ID” 

operation 

prints 

competences 

for 

employee_ID 

 

 

“Diff ID1 

ID2” 

operation 

shows 

differences 

between 

employee 

ID1 and ID2 

  

Table 8 illustrates the GUI implementation of recommendation and search results. 
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6 Conclusion 
 

Hadoop is an open-source cloud computing implementation and provides all its 

necessary features such as scalability, reliability and fault tolerance.  As one of the 

goals, this project explored the Hadoop and its architecture and how HDFS supports 

cloud computing features to deliver cloud services.  

 

HBase is an open source, non-relational, distributed, column-oriented database model 

[34] also known as Hadoop database. It provides random, realtime read/write access 

to Big Data. HBase hosts very large tables - billions of rows X millions of columns – on 

top clusters of commodity hardware. HBase provides Bigtable-like capabilities on top of 

Hadoop. [35] 

 

The  main  goal  of  the  project  was  to  build  recommendation  and  search  system  for  

staffing using Cloud based technology Hadoop. So, Hadoop was installed on a four 

node  cluster,  and  HBase  was  installed  on  top  of  Hadoop  to  provide  scalable  data  

storage. 

 

 In a competitive market, a software development organization’s major goal is to 

maximize value creation for a given investment [31]. Therefore, resource management 

is a very crucial factor in enterprise-level value maximization. An efficient staffing 

system is required to balance between project technical needs and organizational 

constraints.  

 

At Tieto Company, Recommendation and Search System is developed to fulfill the 

present  demand  of   team-based  work  structures  where  all  the  jobs  assigned  to  

employees, not only with respect to fulfill all the assigned tasks but also considering 

candidates fitness with the team members in terms of interpersonal compatibility. 

 

The system recommends a list of persons that can replace the person leaving the 

project. The recommendation system takes less time compared to the old search 

system which was based on the non-scalable Oracle database.  Even a simple search 

query  was  taking  much  time  to  find  from 15000  employees  and  3000  competences.  

Now the new developed system is based on Hadoop. Data processing is done in the 
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Hadoop MapReduce framework which supports parallel processing. Thus, fetching any 

kind of search result from the HBase database is quite fast. Finding a person to replace 

the  leaving  person  from  the  project  is  based  on  the  distance-based  algorithm  KNN.  

First all the competences are clustered into groups and then the distance between the 

competences of the leaving employee and other available employees have been 

calculated in a required cluster. Those who are nearer to the leaving employee would 

be in recommendation list for replacement.  

 

In this project, recommendation is given for finding a replacement for a leaving person 

from a project. The system also finds persons as per competences requirements. The 

recommendation system can be extended to recommend the formation of a new team. 

If a complete list of competence requirements for a project is given, then the system 

should suggest the team.  

 

Current implementation is based on declared competences (the competences that are 

saved  to  the  database  by  the  employee)  and  project  data  (the  information  of  the  

employee’s current project and history of his/her previous project he/she was assigned 

to).  In  the  case  an  employee  missed  to  update  his/her  new  competences  to  the  

database, then the competence data itself is not accurate. Then a recommendation 

based on this inaccurate data would result in inferior recommendation. In future work, 

this missing data of competence of an employee can be manipulated based on other 

employee’s competence list, assuming employees working in the same project will also 

share the same competence. Also then a recommendation could be done with the 

latest manipulated competence data. 
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