

PostgreSQL database performance optimization

Qiang Wang

 Bachelor Thesis

 Business information Technology

 2011

 Abstract

 12.04.2011

Business Information Technology

Authors

Qiang Wang

Group
X

The title of your thesis

PostgreSQL database performance optimization

Number of pages
and appendices
47 + 7

Supervisors

Martti Laiho

The thesis was request by Marlevo software Oy for a general description of the

PostgreSQL database and its performance optimization technics. Its purpose was to

help new PostgreSQL users to quickly understand the system and to assist DBAs to

improve the database performance.

The thesis was divided into two parts. The first part described PostgreSQL database

optimization technics in theory. In additional popular tools were also introduced. This

part was based on PostgreSQL documentation, relevant books and other online

resources. The second part demonstrates the optimization process in practice with 3

test cases. Each case was created from a different aspect.

The thesis concludes PostgreSQL database optimization is different from others. Users

should have enough knowledge about it before performing database optimization

tasks. Especially for those who come from SQL server and DB2 world.

Key words

Indexing, Database, PostgreSQL, Performance, Open source, Configuation

Table of contents

1. Introduction .. 1

1.1 Background and research problem .. 1

1.2 The scope of the work .. 2

2. What is database performance optimization .. 3

3. Popular Postgres management tools ... 5

3.1 pgAdmin III ... 5

3.2 phpPgAdmin .. 6

3.3 Aqua Data Studio... 7

3.4 psql command line tool... 8

4. Performance optimization technics ... 10

4.1 Optimize database configuration ... 10

4.1.1 max_connections .. 11

4.1.2 shared_buffers... 11

4.1.3 effective_cache_size ... 11

4.1.4 work_mem ... 12

4.1.5 fsync ... 12

4.1.6 synchronous_commit ... 12

4.1.7 wal_buffers .. 13

4.1.8 wal_sync_method ... 13

4.1.9 random_page_cost ... 13

4.2 Database table indexing .. 14

4.2.1 B-tree index ... 14

4.2.2 Hash indexes ... 15

4.2.3 GiST ... 15

4.2.4 GIN indexes .. 16

4.2.5 Cluster operation .. 16

4.2.6 Bitmap index scan .. 17

4.2.7 Bitmap heap scan .. 17

4.2.8 Join index design ... 17

4.2.9 Cost estimation in index design .. 18

4.3 Postgres query explain ... 20

4.4 Postgres procedural language ... 23

4.5 Prepared Statement Execution .. 23

4.6 System monitoring and query logging ... 24

4.6.1 System monitoring ... 24

4.6.2 Query logging ... 26

5. Index design and performance labs ... 28

5.1 Clearing cache .. 29

5.2 Test case 1: load customers basic information .. 31

5.3 Test case 2: list all tasks ordered by a customer .. 36

5.4 Test case 3: prepared query execution .. 42

6. Conclusion .. 45

7. Recommendation ... 47

Bibliography ... 48

Attachments ... 52

Prepared Query Execution with PHP ... 52

Abbreviation

DDL: Data Definition Language or Data Description Language

RAM: random-access memory

DBA: database administrator

WAL: write ahead logging (a standard approach to transaction logging)

GiST: Generalized Search Tree

QUBE: Quick upper-bound estimate

LRT: Local response time

TR: number of random touches

TS: number of sequence touches

NF: number of fetch calls

MVCC: Multiversion concurrency control

1

1. Introduction

Nowadays software enables business process ever faster and simpler. People are saving

either their business data or personal data in electronic form, which leads binary

information increased significantly year by year. As one of the most popular data

storage, the database management system development has been developed by various

companies and communities. There is variety of database management systems:

commercials or non-commercials, relational or non-relational and etc. Since the

hardware cost and bandwidth is not any more the bottleneck of data processing,

database performance optimization bears a considerable amount of attentions from

database administrators.

PostgreSQL database management system (later on will use Postgres instead) which

was first released at year 1995, is the world's most advanced open source database. A

notable amount of application is running on top of it. It has more than 15 years of

active development and a proven architecture that has earned it a strong reputation for

reliability, data integrity, and correctness (PostgreSQL 2010a). Compared with the

other open source database system, the extensible functionalities and capabilities of

Postgres attracted great interests from DBAs and software developers. And even

further, with GNU General Public License, one could not only use the database system

free, but also modify and redistribute the database system in no matter what kind of

format.

1.1 Background and research problem

Marlevo HR business software is designed and used mainly by small and medium sized

company for human resource and customer relationship management. The software

has been under active development and use for the last 6 years. Using Marlevo HR

software user can access and manipulate needed information through web browser.

Currently the amount of data stored in software‟s Postgres database became larger and

it is growing at a geometrical speed. Investment on extending network bandwidth,

increasing memory size and CPU capability kept the service response time to a

reasonable level. In order to maintain and even shorten the responding time in the

2

future without too much investment on hardware, tuning database should be the

solution.

The primary goal of this thesis project was to identify necessary actions to perform in

order to achieve better Postgres database performance. The thesis is divided into two

parts; the first part listed theories in general on how Postgres database should be

optimized in order to have better data processing; the second part describes how these

optimization strategies can be implemented in practice. The theoretical section is

collected from database related books, magazines, Postgres user manuals and

documentation. Empirical part contains a serial of test cases which were generated

from training systems. These cases reveal the common design and implementation of

Marlevo Software, and it could be useful also for other software design and

implementation.

1.2 The scope of the work

The research result is meant to apply for Postgres 9.0 which was released at

04.10.2010. Earlier versions may not be compatible with this thesis report. The

research was carried out under *nix platforms, so the research result is not meant to

apply to other platforms. This thesis will mostly concentrate on Postgres configuration

tuning and query optimization.

Hardware, underlying operating system and application side optimization will not be

covered in the thesis project. However in order to help readers to have better

understanding, some relative concepts or terminologies may also be introduced briefly.

The thesis work was done with data provided by Marlevo Software Oy.

3

2. What is database performance optimization

A real production environment is formed with a serial of different components,

hardware like CPU and memory, software like underlying operating system. Postgres is

installed on top of the operating system and communicate with other components of

the production environment either directly or indirectly. Every production

environment is unique with its configuration; if it is not properly configured the overall

performance will be degraded. Within the Postgres, retrieving the same information

can have many different alternatives, some work faster but the rest are not. (Mullins

2002, 251) (Microsoft 2010a)

The goal of database performance optimization is to maximize the database

throughput and minimize connections to achieve the largest possible throughput. It is

neither a one-time nor a one day or two‟s work. It should be considered throughout

the development process. Already from the beginning of software development,

significant performance improvements can be achieved by designing the database

carefully. (Mullins 2002, 251) (Microsoft 2010a) However how database design affects

the performance is not the topic of this thesis project.

Mullins mentioned five factors that affect database performance, they are:

- workload

- resource

- optimization

- contention

Workload consists of online transactions, batch jobs, ad hoc queries, data warehousing

analysis, and system commands directed through the system at any given time. The

workload can be quite different during the period of a day, week or month. (Mullins

2002, 250-251)

4

Optimization in relational database is unique from other types of system optimization

in that query optimization is primarily accomplished internal to the DBMS. (Mullins

2002, 251)

Contention is the condition where two or more components of the workload are

attempting to user a single resource in a conflicting way. As contention increases,

throughput decreases. (Mullins 2002, 251)

5

3. Popular Postgres management tools

Postgres database can be created and managed by a variety of different tools. Generally

most users prefer using psql query tool, which provides a complete management

command set. But unfortunately the psql query tool is a little user un-friendly and

requires some background knowledge of command lines. In this chapter briefly

described some of the most popular Postgres management tools including psql query

tool. Most of them are free and available without expenses. Aqua data studio comes

with an expense, but beside its comprehensive ability of database administration, it also

provides some advanced functionality that can hardly found from others.

3.1 pgAdmin III

PgAdmin III is the open source tool for Postgres database (PostgreSQL 2010b). It is a

powerful database administration and implementation tool shipped with default

Postgres installation. It can be used on both *nix and Windows operating system to

manage Postgres database since version 7.3 (pgAdmin 2011).

PgAdmin III offers a variety of features like:

- native Postgres access and powerful query tool with color highlighting

- access to all Postgres objects like tables, views, constraints and etc

- database configuration and routine maintenance task management

- wild range of server-side encoding supporting

- users, group and privileges management

It has a visualized query explainer which users can utilize for reading query execution

plans. (PostgreSQL 2010b) (pgAdmin 2011) Example below illustrates a typical case of

how users can benefit from using it.

SELECT w.rowid, w.name AS worker_name, c.name AS customer_name

FROM worker w LEFT JOIN customer c ON (w.parent=c.rowid)

LIMIT 10;

6

Figure 3.1 text based query explainer

Figure 3.2 visualized query explainer

3.2 phpPgAdmin

phpPgAdmin is a web-based client under GNU General Public License. It is written in

PHP programming language and can be installed on a webserver. The browser-based

interface it provides is a convenient way for users to perform database administration

tasks like:

- manage users and groups

- create database, schema, tablespaces, table, view, sequence and functions

- manage tables, indexes constraints, triggers, rules and procedures

- access table data

- import and export data from / into variety formats

In order to use phpPgAdmin on the webserver, Apache has to be installed first.

(PostgreSQL 2010b) (Wikipedia 2010c) (Matthew & Stones 2005, 129-130).

7

Figure 3.3 phpPgAdmin print screen

3.3 Aqua Data Studio

Aqua Data Studio is a management tool for database query, administration and

development. It supports all major relational database management system, like SQL

server, DB2, Oracle, MySQL and PostgreSQL. It has been localized for over 20

different languages and can be run on multiple operating systems. With its integrated

toolset, users can easily browser and modify database structure, objects, database

storage and maintain security. Via Aqua Data Studio, users can easily import and

export a database from / into another database management system. Postgres users

can use this application to easily create and maintain relational database diagram of

their database. However it is a commercial database management tool. The average

monthly fee per database user is about 400 US dollar. But a 14 days trial license can be

utilized to gain some hand on experience. (PostgreSQL 2010b)

8

Figure 3.4 creating ER diagram in Aqua Data Studio

3.4 psql command line tool

psql is a terminal-based front-end to Posgres. It is part of the core distribution of

Postgres available in all environments and works similarly. Users can issue queries

either by manually typing SQL command interactively or executing from a file. Users

can perform any kind of database management task via using psql command line tool.

psql commands are categorized into two different types:

- internal psql meta commands

- SQL commands

psql meta commands are used to perform operations which are not directly supported

in SQL. These commands are meant to, for example, listing database tables and views,

executing external scripts and etc. psql meta commands all start with “\” and cannot

be spread across multiple lines. (PostgreSQL 2010c) (Matthew & Stones 2005, 113-

115) Running command “\timing” in the command line tool will switch on or off the

time counter of query execution. It shows how much time Postgres takes to complete a

task.

9

Figure 3.5 List database using psql meta command

Figure 3.6 Log into database “thesis_testing” and view the structure of table

“workers”.

Figure 3.7 Issue an SQL command

10

4. Performance optimization technics

Performance of a database can be impacted by both internal factors and external

factors. Internally, database settings and structure, indexing design and

implementation, they all affect the database performance in one way or another.

Externally, the physical database design like data file and log file distribution,

underlying operating system, they can also form unexpected bottle neck if not well

configured. In additional, as more is stored in the database, the possibility of database

performance degradation increases. (Mullins 2002, 260)

In Postgres database data accessing can be divided into the following steps:

- transmission of query string to database backend

- parsing of query string

- planning of query to optimize retrieval of data

- retrieval of data from hardware

- transmission of results to client

(Frank)

Factors affects the Postgres database performance and what should be improved in

order to retain good database performance were described in detail during this chapter.

4.1 Optimize database configuration

In Postgres configuration settings, there are many parameters affecting the

performance of the database system (PostgreSQL 2010c). The default configuration in

Postgres is meant for wide compatibility instead of high availability. So if running

default installation without tuning necessary parameter, the Postgres database system

cannot benefit much from system resource. (PostgreSQL 2011e) Most tunable

parameters are in a file called postgresql.conf which is located under Postgres‟ data

directory. Postgres‟ configuration optimization can be quite a time consuming task and

it requires a good understanding of other parts of the system. In this chapter, only the

most common tunable parameters will be stated and introduced. Although there are

many different ways to configure Postgres‟ configuration besides editing the

11

configuration file, here it is means editing the configuration file directly. (Gregory 2010.

125)

4.1.1 max_connections

This number determines the maximum number of concurrent connections allowed in

database server. The default setting is normally 100 connections, but could be less

depending on the operating system‟s kernel settings. (PostgreSQL 2010c) Since every

time when opening a new connection will cause some overhead to the database and

bears a part of shared memories, it is not encouraged to set this number higher than

actually needed. If more than a thousand concurrent connections are needed, it is

recommended to use connection pooling software to reduce overhead. (Frank)

(PostgreSQL 2010c) (PostgreSQL 2011c) One can use the top monitoring tool which

is introduced in chapter 4.6 to observe the amount of connections is actually needed by

the application.

4.1.2 shared_buffers

This parameter determines how much system memory is allocated to Postgres database

for data caching. Having higher shared_buffer value allows more data to be saved in

caches and then reduce necessary disk reads (PostgreSQL 2011e). It is the simplest way

to improve the performance of a Postgres database server. By default the

shared_buffer value is normally set to 32MB which is pretty low for most modern

hardware. (Frank) On a system having more than 1 GB memory, it is good practice to

allocate 25% of the total RAM, in case of a system having less than 1 GB RAM,

allocate 15% out of total RAM is good. (PostgreSQL 2011e)

4.1.3 effective_cache_size

This parameter is used for the query planner to determine how much memory is

available for disk caching. It actually does not allocate any memory to the database, but

based on this number; the planner will decide whether enough RAM is available if

index is used to improve the performance. Normally having this parameter to hold half

12

of the total RAM is a reasonable setting. More than ¾ of the total memory would lead

the query planner to have a wrong estimation. (PostgreSQL 2011e) (Frank) (Gregory

2010, 141)

4.1.4 work_mem

This parameter determines how much memory is allocated to in-memory sort

operation. If high values is set, then the query will execute very fast compared with

using disk-based sort. By default it is set to be 1 MB. (Gregory 2010, 142) It is a

parameter of per-sort rather than per-client. In case a query containing more than one

sort operations, the actual memory required will be work_mem times the number of

sort operations. (PostgreSQL 2011e) It is difficult to predict how many sort operations

are needed per client. One way to calculate suitable value is to see how much free

RAM is around after shared_buffers is allocated, divide by max_connections, and then

take a part of that figure and then divided by two. (Gregory 2010, 142) Sort operations

include ORDER BY, DISTINCT, GROUP BY, UNION AND merge joins

(EnterpriseDB 2008, 22).

4.1.5 fsync

With this parameter turning on, Postgres will ensure that data changes will be written

back to disks. So that in case of operating system or hardware failure, the database can

always return to a consistent state. However it will cause additional overhead while

doing WAL. It not recommended of setting this parameter to off, instead turning off

synchronous_commit under noncritical circumstance improve the database

performance. (PostgreSQL 2010c) (Frank) (Gregory 2010, 143-144)

4.1.6 synchronous_commit

Synchronous commit guarantees a transaction is committed and changes on data are

written into disk permanently before it is recorded as complete in WAL. This ensures

no data will lose under any circumstances. However, it is known that disk access is

quite an expensive operation, having synchronous_commit on will cause significant

13

overhead in a transaction time. The risk of having this parameter off is the data loss of

the most recent transactions before power off or hardware failure. Normally under

noncritical environment, it is a good way to have it disabled. (PostgreSQL 2010c)

(Gregory 2010, 141-142) (PostgreSQL 2011e)

4.1.7 wal_buffers

This parameter indicates the amount of shared memory allocated for WAL data. The

default value is quite small (normally 64 KB). Increasing the default value is helpful for

write heavy database system. Up to 16MB is normally a good practice with modern

servers. (PostgreSQL 2010c) (Gregory 2010, 138) (PostgreSQL 2011e)

4.1.8 wal_sync_method

This parameter defines the way how Postgres will force WAL updates out to disk. By

default the system will use “fdatasync”. However it is better to have it set to as

“fsync_writethrough” if possible, it is considered to be safe and efficient. (PostgreSQL

2010c) (Gregory 2010, 138) (PostgreSQL 2011e)

4.1.9 random_page_cost

By default in Postgres, the random disk access is considered 4 times slower than

sequence disk access. Base on this estimation, the query planner will decide whether it

will be faster by using table scan than index scan or vice versa. Depending on the

hardware, it is suggested to lower this number when fast disks are use, then query

planner will have a higher chance to use index scan. With current hardware, most

Postgres database administrators would prefer to have it with value of 2. However,

please note in case a query planner is making bad decisions, this should not be the first

place to look for answers. How autovacuum works is normally the factor affects the

decision of query optimizer. (Frank) (PostgreSQL 2010c) (Gregory 2010, 143)

(PostgreSQL 2011e)

14

4.2 Database table indexing

When database relations are very large, it is very inefficient and expensive to scan all

tuples of a relation to find those tuples that match a given condition. In most relational

database management system in order to avoid the scenario, indexes are created on

tables, it is considered as the single greatest tuning technical that a database

administrator can perform. It is helpful in the following scenarios:

- locating a single of a small slice of tuples out of the whole

- multiple table joins via foreign keys

- correlating data across tables

- aggregation data

- sorting data

However, indexing also has negative impacts on performance when data in a relation is

inserted or updated more often. During inserting or updating, if there are indexes

created on a relation, relative indexes have to be changed as well. So indexes need to be

monitored, analyzed, and tuned to optimize data access and to ensure that the negative

impact is not greater than positive impact. (Mullins 2002, 298-299) (PostgreSQL

2010c) (Mullins 2002, 261)

Postgres provides several index types: B-tree, Hash, GiST and GIN. Each index type

uses a different algorithm that is best suited to different types of queries. One can also

build customized index types. (PostgreSQL 2010c) (Gregory 2010, 225)

4.2.1 B-tree index

Balanced tree index is considered as the most efficient index type in Postgres database

system. As name implies, the index structure is balanced between its left and right side.

Theoretically it requires same travelling distance to any leaf page entry. It can be used

to locate a single value or a range of values efficiently if the indexed column is involved

in comparison categories of equal, greater than, smaller than or combinations of these

operators. B-tree index can also assist in string comparisons such as LIKE, pattern

matching if the comparison tries to match the beginning part of the column. However

15

in case of string comparison, if your database uses other locale other than C, one will

need to create index with a special mode for locale sensitive character by character

comparison. (PostgreSQL 2010c) (Gregory 2010, 225)

4.2.2 Hash indexes

Hash index can locate records very quickly when only equality comparison is involved

in the searching on an index. The hash index entry is organized in key and value pairs,

where the value point to the table record(s) contain(s) the key. Given a key, it requires

only one or two disk reads to retrieve the table record. It was quite a popular index

algorithm in the days when memory was relatively expensive and using B-tree index

caused more disk reads. However in Postgres, hash index operations are not WAL-

logged, which means it has to be rebuilt manually after system failure. Because of the

difficult of maintenance, it is not recommended of implementing Hash index in

production system. B-tree index is considered as a good alternative for handling equity

comparison. (PostgreSQL 2010c) (Lahdenmäki & Leach 2005, 70) (Ramakrishnan &

Gehrke 2003, 279-280) (Gregory 2010, 226)

4.2.3 GiST

B-tree index in Postgres can handle basic data type comparison like numbers and

strings using balanced tree structure. In case of customized data type or advanced data

type, using the B-tree index could not able to improve the performance. In order to

optimize this kind of data types, Generalized Search Tree (GiST) is introduced in

Postgres. It is an extensible data structure, which a domain expert can implement for

appropriate access method on customized data types or data types that go beyond the

usual equality and range comparisons to utilize the tree-structured access method.

GiST is also used in full text search by several of contrib modules. (Gregory 2010, 227)

(PostgreSQL 2011d) (PostgreSQL 2010a)

16

4.2.4 GIN indexes

In the regular index structure, a single key is normally associated with either one or

multiple values, so finding the desired index entries are relatively simple. But the

structure Generalized Inverted Index (GIN) holds is different. For GIN index, a value

can have multiple key associated with it. Like GiST, user-defined indexing strategies

can be implemented on GIN. It is also a way of implementing full-text search.

(Gregory 2010, 226 – 227) (PostgreSQL 2010c)

4.2.5 Cluster operation

In Postgres database, reading records randomly from disk is normally considered 4

times expensive than sequence disk read (Gregory 2010, 240). If records in the

database table are randomly distributed, retrieving more than one record will take

longer time because of random data access. Clustering a database table using an index

will reorganize the order of data records according to the index order, which in turn

will reduce the number of random disk access and speed up the process. (PostgreSQL

2010c)

The approach Postgres has taken for clustering is different from the SQL Server and

DB2, there is no additional penalty during transactions of having a clustered or

clustering index, it does not try to maintain the physical order of records and all new

data goes to the end of the table (PostgreSQL 2011c). CLUSTER is not a one-time

operation; one has to run CLUSTER every now and then to reorganize the order of

records. After the first time of clustering, Postgres will remember which index it was

clustered by. During the process of clustering, an exclusive lock is acquired on the

table, which will block other transaction from accessing. It is also a time consuming

process depending on the data size it holds and the workload of the server. So it is

recommended to run during evenings and weekend when others will not be disturbed.

Also remember to run ANALYZE after clustering to update the database statistics.

(PostgreSQL 2010c) (Gregory 2010, 258)

17

4.2.6 Bitmap index scan

A single index scan can only use query clauses that use the index‟s columns with

operators of its operator class and are joined with AND. For examples, an index (a, b)

is useful on query condition WHERE a=5 AND b=6 but not on query condition

WHERE a=5 OR b=6. Fortunately, Postgres has the ability to combine multiple

indexes to handle cases that cannot be implemented by single index scan. The system

can form AND and OR conditions across several index scans. To combine multiple

indexes, the system scan each needed index and prepares a bitmap in memory giving

the locations of table rows that are reported as matching that index‟s conditions. The

bitmaps are then ANDed and ORed together as needed by the query. Finally the actual

table rows are visited and returned. (PostgreSQL 2010a) (Gregory 2010, 418)

4.2.7 Bitmap heap scan

In Postgres database, data consistency is maintained by using a multi-version model

(MVCC). This means when a row is updated by a transaction, the database will create a

new version of the row and mark the previous one expired instead of overwriting the

old values. By doing this, lock contention is minimized to maintain reasonable

performance in multiuser environment. (PostgreSQL 2010c) But it comes with a price.

Unlike the Oracle implementation of MVCC that indexes are also versioned, in

Postgres, indexes do not have versioning information, therefore all available versions

of a row is present in the indexes. Only by looking at the tuple it is possible to

determine if it is visible to a transaction. (Dibyendu 2007, 5) So bitmap heap scan

means when a slice of an index is acquired by using bitmap index scan, no matter

whether the index is fat or not, the database will look at tuples by using the index map

to retrieve correct row version.

4.2.8 Join index design

 Joining tables together is the most difficult part in the index design. As more tables are

joined together, the amount of alternative access paths grows bigger. In case of 3 tables

for example, A, B and C joined together, the query planner will have 6 possible access

18

paths as: A B C, A C B, B A C, B C A, C A B and C B A. Although the final result will

be the same, but depending on table access order and join method in use; the elapsed

time in total will be quite different. The query optimizer has to evaluate all the possibly

access plans and then selects the best one to implement. However evaluating all

possible access plans can be quite time consuming in some cases, especially if there are

more tables involved. In such cases the query planner will just evaluate a couple of

access plans and uses one from them to query the result. This sometime definitely

increases the possibilities of choosing the wrong one.

In case the optimizer did not select the best access plan one can add the command

“SET join_collapse_limit = 1”in front of the query to be executed. It will limit the

query planner to follow the access plan as specified in the query. (Gregory 2010, 262 -

269)

In Postgres when declaring a foreign key constraint to a table an index is not

automatically created on the referenced column. In most cases tables are joined

together using primary keys and foreign keys, creating index on the foreign key

columns will give the optimizer the option to use an index scan instead of table scan if

index scan is considered to be faster. (PostgreSQL 2010c) (Lahdenmäki & Leach 2005,

136)

4.2.9 Cost estimation in index design

Before an index is created, one should ask itself questions like how much disk space

will be needed to store index entries, whether the index will improve the overall

database performance and how the index can help to speed up the database access.

(DBTechNet 2010) Query execution cost estimation has been difficult, because each

database is running in a unique environment and the elapsed time is closely related to

its underlying operating system and hardware. (Lahdenmäki & Leach 2005, 65 - 67)

QUBE (Quick Upper-Bound Estimate) is a cost estimation method introduced by

Tapio Lähdenmäki, who worked in IBM Finland. The objective of QUBE is to reveal

potential slow access problem during the design phase of a program. Utilizing QUBE

19

in the index design, one will get estimated elapsed time of a query execution. The

formula is:

LRT = TR x 10ms + TS x 0.01ms + F x 0.1ms

In this estimation method, it is assumed that one random disk touch takes 10

milliseconds; one sequence disk touch takes 0.01 milliseconds and transferring one data

tuple from disk to memory takes approximately 0.1 milliseconds. The CUBE variables

are explained in the following:

- LRT: local response time; how long it takes to execute a query in total

- TR: number of random disk touches; random disk access

- TS: number of sequential touches; sequence disk access

- F: number of successful fetch; how many piece of record to fetch

The QUBE cost estimation method tries to provide the worst scenario for the query

execution. Normally in reality, the total elapsed time will be shorter because of the

usage of caches. (Lahdenmäki & Leach 2005, 65 - 75)

Sequential touch & random touch

In book “Relational Database Index Design and the optimizers”, Lähdenmäki and

Leach (2005, 60-70) stated:

When the DBMS reads one index row or table row the cost is, by definition, one touch:

index touch or table touch. If the DBMS scans a slice of an index or table (the rows

being read are physically next to each other), reading the first row infers a random

touch. Reading the next rows take one sequential touch per row. With current

sequential touches are much cheaper than random touches.

Fetch processing

Accepted rows, the number of which will be determined by the number of fetch calls

issued, will require a great deal more processing. In QUBE estimate, worst scenario is

considered. Normally a row fetch takes 0.1 milliseconds (Lahdenmäki & Leach 2005,

71).

Filter factor

20

In QUBE estimate, filter factor plays an important role in LRT calculation. According

to Lähdenmäki and Leach‟s statement, the filter factor indicates the selectivity of a

predicate, which proportion of the source table rows satisfy the condition expressed by

the predicate. So for example, the predicate weekday = „Monday‟ will have the average

filter factor of 1/ 7 = 14.3 %. And a compound predicate weekday = ‟Monday‟ AND

month = „February‟, the average filter factor is 1/ 7 * 1 / 12 = 1.2%.

For ORed predicates like weekday = „Monday‟ OR month=‟February‟, the filter factor

calculation will not be straight forward. When predicates of a query are ORed together

with other predicates, the predicate may be able to participate in defining an index slice

only with multiple index access; otherwise the only feasible alternative would be a full

index scan. (Lahdenmäki & Leach 2005, 92 - 93)

4.3 Postgres query explain

As mentioned in previous chapters, when running a query, Postgres can have many

alternatives to choose from, some work faster than the others or vice versa and

Postgres tries to work out the best one. Also depending on the structure and size of

the database, Postgres may not choose the access path as one expected or didn‟t use

the indexes which are meant for it. For the purpose of observing the behavior of

Postgres, the built-in utilities of query explain can be used to check the query execution

plan and the elapsed time of the query execution in each plan node and in total. Query

explain is quite an important and useful tool one can use. (Matthew & Stones 2005,

349 - 350)

The syntax of query explain is like this:

EXPLAIN [(option [, …])] statement

Where options can be one of:

- ANALYZE: the data type is Boolean; it run the append query and show the actual

run times, the default value is false, changes on data will write into disk.

- VERBOSE: the data type is Boolean; it displays additional information regarding

the plan. Specially; include the output column list for each node in the plan tree,

schema-qualify table and function names, always label variables in expression with

21

their range table alias, and always print the name of each trigger for which statistics

are displayed. The default value is false.

- COST: the data type is Boolean; it is used to include information on estimated

started up and total cost of each plan node as well as estimation on number of rows

and width of each row. The default value for COST is true.

- BUFFERS: the data type is Boolean; it includes information on buffer usage like the

number of shared blocks hits, reads and writes, the number of local block hits,

reads, and writes, as well as the number of temp blocks reads and writes. Shared

blocks, local blocks, and temp blocks contain tables and indexes temporary tables

and temporary indexes, and disk blocks contain tables and materialized plans,

respectively. This parameter may only be used with ANALYZE parameter. The

default value is false.

- FORMAT: specifies the output format. It scan be set as TEXT, XML, JSON or

YAML. The default value is TEXT.

(PostgreSQL 2010c)

The example below demonstrate how query explain can be used to check out the query

execution plan.

And the query execution plan is shown as follow:

EXPLAIN ANALYZE

SELECT rowid, name

FROM customer

WHERE parent=48

ORDER BY name;

22

Figure 4.1 Explain in command line

When reading the query plan, one should read it from bottom to top:

1. Postgres is doing bitmap index scan on index “idx_parent_name” to get the index

bitmap

2. Postgres is doing bitmap heap scan on table customer with the usage of index

bitmap from step 1 to retrieve qualified values

3. Postgres sorts the records in the order of customer name. The sort method is quick

sort (sort happens in main memory), and memory used is 115 KB.

Visualized query explain is shown in picture below.

Figure 5.3 Explain in pgAdmin

In figure 5.2, Postgres explain listed figures like costs and actual times in every step.

Each of them is used to serve a different purpose:

- Costs: costs are estimations of the time a node is expected to take; each node has

both “startup” cost and “total” cost. Cost unit is the cost of a sequential disk page

fetch.

- Actual times: actual time of “startup” cost and “total” cost measured in

milliseconds.

- Rows: “rows” in cost means the estimated number of records that Postgres will

return; “rows” in actual times means how many records Postgres really returns. The

difference between the two numbers indicates if Postgres did good estimation or

not. If the difference is big, it is most likely because database statistics is out of date.

- Width: how many bytes each record return in current node. This is useful to figure

the size of data return in each node.

- Loops: It indicates how many times a node executes. If it has value other than one,

then the actual time and row values will be per loop.

23

(EnterpriseDB 2008, 7-10) (Gregory, S. R239 - 241)

4.4 Postgres procedural language

Stored procedure can be used to implement centralized logic in the database instead of

implementing it in the application side. Stored procedures can run directly within the

database engine, which makes it have direct access to the data being accessed. It can

minimize the round trips between the database and application and at the same time

save the processing time. In addition, using stored procedure instead of dynamic SQL

will prevent the database from SQL injection. (Wikipedia 2011b)

In Postgres stored procedure can be implemented in a variety of languages including

PL/pgSQL, PL/Tcl and etc. (PostgreSQL 2010c). By default PL/pgSQL installed

during database installation. In case one prefers to use other language to build stored

procedure then the language should be installed first by issuing command

CREATELANG (Matthew & Stones 2005, 276-277). Creating stored procedures in

PL/pgSQL is quite difficult for beginners with only instructions from Postgres online

manual. The book “Beginning Database with PostgreSQL” provides very

comprehensive step by step examples on how to utilize stored procedures to the

database.

4.5 Prepared Statement Execution

In PHP Manual, Prepared Statements are described as “it can be thought of as a kind

of compiled template for the SQL that an application wants to run, that can be

customized using variable parameters”. It offers two major benefits:

- The query only needs to be parsed once, but can be executed multiple times with

the same or different parameters.

- The parameters to prepared statements do not need to be quoted, this avoid SQL

injection from occurring. ”

Gregory has the same conclusion about Prepared Statement in his book “PostgreSQL

9.0 High Performance”. But in addition, he points out that Prepared Statement

24

Execution could slow down the responds speed in some cases. He says “When a

statement is prepared, the query optimizer can only produce a generic query plan for it,

but not knowing anything about the actual values that are going to be requested. When

you execute a regular query, the statistics about each column available to the optimizer

can sometimes do much better than this.”

4.6 System monitoring and query logging

Postgres database performance is tied directly to the underlining operating system and

how queries are executed. A database administrator needs to know what the database is

doing right now and what has caused the degradation of database performance. In this

chapter tools were introduced to facilitate system monitoring and query logging

4.6.1 System monitoring

By monitoring the operating system activities, one could know whether the database

instance was started; how much resources each process consumes; what the bottleneck

of the server is and so on. Here are a couple of popular tools used in *nix operating

system:

vmstat

Virtual memory statistics (vmstat) is a system monitoring tool available in most *nix

operating system. It displays the most valuable summary about operating system

memory, process, interrupts paging and block I/O. (Wikipedia 2011c, Gregory 2010,

326) Figure 4.1 below shows the summary of operating system in 3 seconds‟ interval,

the memory unit is MB.

Figure 4.1 vmstat output

25

- r: the number of processes that are waiting for run time (Gregory 2010, 327).

- b: the number of processes that are in uninterruptible sleep, if other than 0, system

reboot might be needed (Gregory 2010, 327).

- swpd: the amount of virtual memory used, if other than 0, it indicates the system

runs out of memory, one should take this into account (Gregory 2010, 81, 327).

- free: the amount of idle memory (Gregory 2010 P327).

- buff: the amount of memory used as buffers (Gregory 2010, 327).

- cache: the amount of memory used as caches (Gregory 2010, 327).

- si / so: the amount of memory swapped in from / to disk (Gregory 2010, 327).

- bi / bo: the blocks received from / sent to a block device (Gregory 2010, 328).

- in: the number of interprets per second (Gregory 2010, 328).

- cs: the number of context switch per second, a dramatic drop of cs indicates the

CPU becomes less active due to, for example, waiting for disk drives (Gregory 2010,

328-329).

- us: the percentage of CPU time running external software code, for example

Postgres (Gregory 2010, 328).

- sy: the percentage of CPU time running operating system (Gregory 2010, 328).

- id: the percentage of CPU time free (Gregory 2010, 328).

- wa: the percentage of CPU time spent waiting for IO (Gregory 2010, 328).

top

top is an easy tool that can be utilized to get a snapshot of what the system is actually

doing right now. It lists the resource usage of each process and together with the

overall summary. By default processes are sorted in the order of CPU usage. One can

use -o field option to sort the process according the field value in descending order.

(Gregory 2010. 338) (Linux User's Manual. TOP)

26

Figure 4.2 top basic outputs

Figure 4.2 shows the overall statistics of the UNIX operating system and summary of

the processes which Postgres are running. In this case only selected amounts of

statistics were listed:

- PID: the id number of a process (Linux User's Manual. TOP).

- %CPU: the CPU usage of a process (Linux User's Manual. TOP).

- CSW: the number of context switches. It indicates how many thread is running in

parallel. (Linux User's Manual. TOP) (The Linux Information Project).

- TIME: the execution time (Linux User's Manual. TOP).

- VSIZE (VIRT in Linux): the total virtual memory used by current process (Linux

User's Manual. TOP).

- STATE (S in Linux): the status of current process (Linux User's Manual. TOP).

- COMMAND: command name (Linux User's Manual. TOP)

4.6.2 Query logging

With operating system level monitoring one can get a broad idea about how big the

Postgres database server workload is and how it cooperate with the rest parts of the

system. However, in order to get detailed information about slow queries and its

execution plan database level monitoring should be performed.

This part explains how to collect the queries that slow down server and utilize them to

improve performance of Postgres database.

Configure Posgtres to allow query logging

27

Even though query logging functionality is automatically shipped with Postgres 9.0, it

is not enabled by default due to the fact that query logging will cause additional

overhead, especially in production environment. In order to enable this functionality

some changes should be done in Postgres‟ configuration file “postgresql.conf”. Note

query logs here are kept in CSV format, and later on they can be easily imported to

database tables for analyzing purpose. (PostgreSQL 2010c, Error Reporting and

Logging) (Gregory 2010, 178)

Parameters need to be changed are kept in section “ERROR REPORTING AND

LOGGING” in postgresql.conf (short description in bracket):

- log_destincation = „csvlog‟ (the format of log records)

- logging_collector = on

- log_directory = „pg_log‟ (log file will placed into “pg_log” directory which can be

found under Postgres‟s data directory)

(Gregory 2010, 175-178)

Postgres database has to be restarted in order to make all changes take effect. After

that the database will start recording all executed queries into log file. Query logging

should be disabled afterwards so that it will not cause any overhead to the database.

Import query log into database table

Create the database table “postgres_log” according to instruction given by Postgres

online documentation: http://www.postgresql.org/docs/current/static/runtime-

config-logging.html. Then issue the command below to import log file into database.

 “COPY postgres_log FROM '/full/path/to/logfile.csv' WITH csv;”

This will then import query log into database table “postgres_log”. (Gregory 2010.

175-179)

http://www.postgresql.org/docs/current/static/runtime-config-logging.html
http://www.postgresql.org/docs/current/static/runtime-config-logging.html

28

5. Index design and performance labs

In the experimental lab, Postgres‟ EXPLAIN utility was used to observe how queries

were executed and its cost distribution. The test cases are to optimize slow and

frequently used queries. For the purpose of demonstrating the performance

optimization process, 4 database tables were created. And as in most production

environment, there were some indexes already created on these database tables. They

have some effects while performing query optimization tasks.

The database tables created are:

- customer (stores parent and children customers‟ information)

- company (stores big customers‟ information)

- worker (stores workers‟ information)

- task (keep book of customers and workers‟ tasks)

The relationship of database tables was shown in figure 5.1. Since the same database is

meant for many clients usage, in each of the four tables there is a column called

“parent”, it is designed as an indicator to identify to which client a record belongs to.

Testing environment and testing data are created as shown below for testing purpose:

- customer: about one hundred thousand records were randomly created with 1%

parent entries and 99.99% children entries.

- company: about two hundred thousand records were randomly created

- worker: about four hundred thousand records were randomly created

- task: about eight hundred thousand records were randomly created

29

Figure 5.1 database class diagrams

5.1 Clearing cache

Nowadays reading data from disk is still much slower than reading from memories. In

order to maintain the overall speed of the system, memory is used to cache the most

recent read data, so next time when the same data is requested; the system will read

directly from memory instead of disks.

In Postgres, in most cases when execute a query for the second time, the cost of query

execution will be much smaller than in the first time. This is called “hot” cache

behavior, meaning that the desired data was either stored database cache or in the

30

operating system caches; the database will read it directly from caches rather than from

disks (Gregory 2010, 237-238). But in this experimental lab, the “hot” cache behavior

is to be avoided.

Hot caches elimination in both Unix and Linux operating system is presented in below

section. It is ought to be performed each time before generating query execution plan.

In UNIX operating system (MAC):

- stop Postgres server

$ sudo –s

su postgres

pg_ctl stop –D Postgres/data/directory

- navigate to Users > your user name > Library > Caches and drag all items to Trash

- navigate to Macintosh HD > Library > Caches and drag all items to Trash

- restart

- start Postgres server

$ sudo –s

su postgres

pg_ctl start –D Postgres/data/directory

In Linux operating system:

- $ pg_ctl stop

- $ sudo –s

- # sync

- # echo 3 > /proc/sys/vm/drop_caches

- # exit

- $ pg_ctl start

(Gregory 2010, 237-238)

31

5.2 Test case 1: load customers basic information

This test case demonstrated how different indexes can affect the database

performance. The SQL query used in this test case was to querying customers‟ basic

information and lists them in ascending order of customer names.

In the CRM system, customers play quite an important role. Customers‟ basic

information needs to be loaded and listed for selecting when creating events like

adding a “meeting customer” calendar entry, creating employment agreement and so

forth. The query below is an example which is executed quite often for customers

information accessing.

It can be seen from figure 5.1 that index “idx_parent_level_status_name” seems to fit

the SQL query perfectly. But how this index will affect the query performance base on

both QUBE theory and query planer?

First here listed the filter factors for each index columns used in this case:

parent: 1 / 10 = 10 %

level: 99 990 / 100 000 = 99.99 %

status: 3 / 7 = 42.9 % (status IS NULL has no entry in testing data)

Then the calculation of the LRT based on QUBE:

Index parent, level, status, name TR = 1 TS = 4288

Table customer TR = 1 TS = 4288

Fetch 4288 * 0.1 ms

LRT TR = 2 TS = 8576

 2 * 10 ms 8576 * 0.01 ms

 20ms + 85.76ms + 428.8ms = 534.56 ms

SELECT rowid, name FROM customer

WHERE parent= :parent AND level=''

AND (status = '' OR status IS NULL OR status = 'current'

OR status = 'not_delivered')

ORDER BY name;

32

The calculation result of 534.56 milliseconds is quite acceptable response time if

retrieving 4288 rows from the database. However this estimation is got by using

QUBE theory; will the same result be produced in query explain?

Figure 5.2 customer data access with index “idx_parent_level_status_name”

In the query planner above, 3345 rows were returned and the actual time spent on

retrieving customer rowid - name values pairs is129.495 milliseconds.

The cost in figure 5.2 is as below:

- 3 Bitmap index scan: 30.082 (8.548+3.380 +18.154) milliseconds

- BitmapOr: 0.003 milliseconds

- Bitmap heap scan: 37.944 milliseconds

- Quick sort: 61.466 milliseconds

At first the query planner did 3 times Bitmap index scan on index

“idx_parent_level_status_name” to look for valid index entries. Then in step 2, it Ored

together all index entries from step 1 to build an index map. In step 3, with the bitmap

index, it performed Bitmap heap scan to access table records. Last, quick sort is

performed in the memory to sort results in the ascending order of customer name.

In index “idx_parent_level_status_name” the customer name already exists, and

customer rowid information is the only information which needs to get from the

database table. This probably caused a lot of random disk access and then slows down

33

the query execution. Most database administrator will consider of creating a fat index

by appending rowid to the end of index “idx_parent_level_status_name” to skip the

table access. How will it work with Postgres?

Figure 5.3 data access with fat index “idx_parent_level_status_name_rowid”

With fat index “idx_parent_level_status_name_rowid”, the total elapsed time is

142.118 milliseconds, 12.638 milliseconds more than before. The cost is distributed as

follow:

- 3 Bitmap index scan: 40.282 (6.504+3.607+30.171) milliseconds

- BitmapOr: 0.001 milliseconds

- Bitmap heap scan: 40.210 milliseconds

- Quick sort: 61.425 milliseconds

By using fat index, the total elapsed time did not become smaller as expected. And the

bitmap heap scan was still performed on table customer. How can it happen?

In chapter 4, it is mentioned that Postgres uses MVCC method which is different from

most of the other database system for concurrency control. Using this method, in

Postgres an index holds all versions of the data, only by consulting data tuple in the

table Postgres will know which version is valid. In figure 5.3, even though fat index is

DROP INDEX idx_parent_level_status_name;

CREATE INDEX idx_parent_level_status_name ON customer

USING btree (parent, level, status, name, rowid);

ANALYZE customer;

VACUUM customer;

34

created, it still needs to access the database table to figure out the right version.

Appending column rowid to the end of index “idx_parent_level_status_name_rowid”

will only make the index size bigger and cannot avoid table access.

In figure 5.2 and 5.3 both of the query planers performed sorting operation in the last

steps. It took approximately 60 milliseconds, around 50% of the total elapsed time. For

the purpose of reducing sorting cost, next database table customer will be clustered

using index “idx_parent_level_status_name”.

Figure 5.4 customer data access with clustered index

With clustered index on customer, this time the total elapsed time is 127.870

milliseconds. The distribution of the cost is:

- 3 times Bitmap index scan: 30.673 (10.856 + 3.434 + 16.383) milliseconds

- BitmapOr: 0.004 milliseconds

- Bitmap heap scan: 29.914milliseconds

- Sort: 67.279 milliseconds

After clustering the elapsed time of step Bitmap heap scan drop from 37.944

milliseconds to 29.914 milliseconds; however the sorting operation Postgres was 5.813

milliseconds longer. The reason of this is because customer‟s status is ORed together

in the where condition part of the query. Even though customer table is clustered

using index “idx_parent_level_status_name”, it only reduced the number of random

CLUSTER customer USING idx_parent_level_status_name;

ANALYZE customer;

VACUUM customer;

35

data access during each Bitmap heap scan node, but the dataset before sorting is still

unordered.

OR predicate is a quite difficult predicate for the optimizer. It cannot help in defining

the index slice, hence many database administrators use UNION to replace OR. Next

step demonstrated how UNION can be different from OR (customer table is still

clustered).

Figure 5.5 use UNION instead of OR

The cost is distributed as follow:

- 2 times Bitmap index & heap scan and one index scan: 47.685 milliseconds

- Append: 0.712 milliseconds

EXPLAIN ANALYZE

SELECT rowid, name FROM customer

WHERE parent= :parent AND level='' AND status=''

UNION

SELECT rowid, name FROM customer

WHERE parent= :parent AND level='' AND status='current'

UNION

SELECT rowid, name FROM customer

WHERE parent= :parent AND level='' AND

status='not_delivered'

ORDER BY name;

36

- HashAggregate: 6.397 milliseconds

- Sort: 57.296 milliseconds

Compared with figure 5.4, it saved about 20 milliseconds by using UNION instead of

OR. The elapsed time of sorting operation is also shorter.

5.3 Test case 2: list all tasks ordered by a customer

The previous test case demonstrated how different kinds of indexes affect the

performance of single table query execution. In some cases rather than retrieving

information from a single table more complicated queries were built to retrieve

information across several tables. This test case demonstrated how indexes can be

utilized for data selection from several database tables.

The HRM part of Marlevo software is developed for the usage of server different user

groups. Main users use it to estimate the workload of their employees; accountants use

it to prepare payroll and expense report; and employees use it to check their working

schedule. A report contains the following information was frequently used in the

system:

- start (from table task; the task start time)

- end (from table task; the task end time)

- assignment (from table task)

- customer name (from table customer)

- worker name (from table worker)

- company name (from table company, if a customer is a branch of a company)

The information is distributed among four tables and their relationship is defined via

foreign keys as shown in figure 5.1. Below is a sample query for retrieving the

information needed from the database tables. It is a star join and in the where part of

the clause there is only one condition t.parent =: parent which determines that table

task will be the outmost table.

37

Figure 5.6 query planner of joins

From figure 5.6 the total elapsed time is 7333.986 milliseconds with 82240 rows

returned. The cost distribution is like:

- Bitmap index scan on index “idx_parent_start”: 1265.540 milliseconds

- Bitmap heap scan on task: 138.302 milliseconds

- Sequence scan on worker: 1197.555 milliseconds

- Hash worker: 328.803 milliseconds

- Hash left join task and worker: 611.717 milliseconds

- Index scan on customer: 2386.164 milliseconds

- Index scan on company: 170.747 milliseconds

- Merge left join customer and company: 194.504 milliseconds

SELECT t.rowid, t.start, t.end, t.memo, t.assignment,

c.area, c.rowid AS customer_rowid, c.name AS

customer_name, w.rowid AS worker_rowid, w.name AS

worker_name, cp.name AS company_name

FROM task t

LEFT OUTER JOIN worker w ON w.rowid=t.worker

LEFT OUTER JOIN customer c ON t.customer=c.rowid

LEFT JOIN company cp ON cp.rowid=c.company

WHERE t.parent= :parent

ORDER BY t.start DESC, customer_name;

38

- Hash customer and company records: 184.086 milliseconds

- Hash left join task and customer: 449.445 milliseconds

- Sort, external merge: 407.123 milliseconds

Access order: task -> task to worker -> customer to company -> task to customer.

By default in Postgres, if the total amount of available access paths is more than 8, the

query planner will evaluate 8 of them and then select the best one to execute. In this

case, however, since there are only 6 access paths, the query planner will evaluate all of

them and then choose the best one to execute.

From this query planner, the following step cost more time than the others:

- Bitmap index scan on index “idx_parent_start”: 1265.540 milliseconds

- Sequence scan on worker: 1197.555 milliseconds

- Index scan on customer: 2386.164 milliseconds

Next the following action was performed to optimize the query execution.

CREATE INDEX task_idx_parent ON task USING btree (parent);

CREATE INDEX task_idx_worker ON task USING btree (worker);

CREATE INDEX customer_idx_parent ON customer USING btree

(parent);

CREATE INDEX company_idx_parent ON company USING btree

(parent);

CREATE INDEX worker_idx_parent ON worker USING btree (parent);

CLUSTER customer USING customer_idx_parent;

CLUSTER company USING company_idx_parent;

CLUSTER worker USING worker_idx_parent;

CLUSTER task USING task_idx_parent;

ANALYZE customer; ANALYZE company;

ANALYZE worker; ANALYZE task;

VACUUM customer; VACUUM company;

VACUUM worker; VACUUM task;

39

Figure 5.7 query performance after indexing foreign key column and clustering

In figure 5.7, the total elapsed time is 4835.502 milliseconds. The cost distribution is

like this

- Index scan on task: 261.725 milliseconds

- Sequence scan on worker: 910.240 milliseconds

- Hash worker: 335.629 milliseconds

- Hash left join task and worker: 532.272 milliseconds

- Index scan on customer: 1358.244 milliseconds

- Index scan on company: 279.589 milliseconds

- Merge left join customer and company: 170.244 milliseconds

- Hash records of customer and company: 103.039 milliseconds

- Hash left join task and customer: 450.632 milliseconds

- Sort, external merge: 433,888 milliseconds

Access order: task -> task to worker -> customer to company -> task to customer.

This time the structure of query execution plan is quite same as in figure 5.6, hence

their cost distribution is place in the table for the ease of comparison.

40

Steps Figure 5.6 Figure 5.7 Difference

Retrieve task data 1403.842 261,275 1142.567

Retrieve worker data 1197.555 910.242 287.313

Hash worker records 328.803 335.627 -6.824

Join task and worker 611.711 532.272 79.439

Retrieve customer data 2386.164 1358.244 1027.92

Retrieve company data 170.747 279.589 -108.842

Join customer and company 194.504 170.244 24.26

Hash customer and company records 184.086 103.039 81.047

Join task and customer 444.445 450.632 -6.187

Sort 407.123 433.888 -26.765

Figure 5.8 cost comparison of each access node

After adding proper indexes and clustering tables, the cost of data access on task and

customer drop dramatically. But still accessing data of inner table worker, customer

and company cost long time. According to Figure 5.1, each database table has column

“parent” which indicates to which Marlevo client does a record belongs to. Next step

more query conditions were added to the where part of the query to limit the return

result of inner tables.

SELECT t.rowid, t.start, t.end, t.memo, t.assignment,

c.area AS customer_area, c.rowid AS customer_rowid, c.name

AS customer_name, w.rowid AS worker_rowid, w.name AS

worker_name, cp.name AS company_name

FROM task AS t

LEFT OUTER JOIN worker AS w ON w.rowid = t.worker

LEFT OUTER JOIN customer AS c ON t.customer = c.rowid

LEFT JOIN company AS cp ON cp.rowid = c.company

WHERE t.parent = :parent AND c.parent = :parent

AND cp.parent = :parent AND w.parent = :parent

ORDER BY t.start DESC, customer_name;

41

Figure 5.9 Added more query condition in where clause for table joins

This time the total cost of the query execution is 1917.473 milliseconds. Here is the

cost distribution:

- Index scan on task: 277.108 milliseconds

- Index scan on customer: 111.298 milliseconds

- Index scan on company: 129.920 milliseconds

- Hash company: 15.574 milliseconds

- Hash join customer and company: 69.558 milliseconds

- Hash records of customer and company: 12.764 milliseconds

- Hash join task and customer: 196.246 milliseconds

- Index scan on worker: 237.208 milliseconds

- Hash: 31.233 milliseconds

- Hash join task and worker: 430.866 milliseconds

- Sort: 404,852 milliseconds

Access path: task -> customer to company -> task to customer -> task to worker.

42

Now cost in most access nodes have drop quite much. But the last access node of each

query execution plan “sort” has not changed too much, it was still around 400

milliseconds.

The sorting method “external merge” in used indicated that the amount of memory

allocated to Postgres for sorting operation is not enough. Hence Postgres has to swap

records into disk to perform the sort operation. Recall from chapter 4.1.4, sorting

operation on disk is normally slower compared to sorting in the main memory. So,

raise work_mem in Postgres‟ configuration to 15 MB will help to reduce the cost

future (the value of disk parameter in sort node).

5.4 Test case 3: prepared query execution

Test case 3 demonstrated how prepared query execution is different normal query

execution with both hot cache and cold cache. In this test case, query in figure 5.10 will

be used.

The query planner statistics is displayed as below:

-- 1. PREPARE THE SQL STATEMENT --

PREPARE get_customers (int) AS

SELECT rowid, name FROM customer

WHERE parent = $1

 AND level = ''

 AND status = 'not_delivered'

ORDER BY name;

-- 2. EXECUTE PREPARED SQL STATMENT --

EXECUTE get_customers (2);

-- 3. NORMAL QUERY EXECUTION STATEMENT --

SELECT rowid, name FROM customer

WHERE parent = :parent

 AND level = ''

 AND status = 'not_delivered'

ORDER BY name;

43

Figure 5.10 Prepared query execution with cold cache

Figure 5.11 Prepared query execution with hot cache

Below are the normal query executions:

Figure 5.12 Normal query execution with cold cache

Figure 5.13 Normal query execution with hot cache

As shown in figures above that the cost difference between prepared query execution

and normal query execution was not obvious when running a single query in Postgres

database. The prepared query execution takes even a little longer time than normal

query execution (a couple of milliseconds, for example). However in production

44

environment, the result may vary due to the huge amount of queries are running in

parallel. To maintenance higher availability and security of the database, it is a good

practice to implement prepared query execution.

In attachment 1, one can find the sample code of how to utilize prepared query

execution in PHP programming.

45

6. Conclusion

There is variety of factors affecting Postgres database performance. The thesis covered

database performance tuning technics from the aspects of database configuration

tuning and query optimization. In addition, some popular management and monitoring

tools are introduced in chapters 3 and 4.

Postgres database configuration tuning is the first thing a DBA should do after

installation. By default Postgres is configured for wilder compatibility instead of higher

availability. Without proper configuration, Postgres can hardly gain much benefit from

system resources and it sometimes lead users especially juniors to the conclusion that

Postgres is slower than other DBMS.

Performing Postgres database configuration tuning requires some background

knowledge on both hardware and underlying operating system. Changes must be

properly tested before deploying into a production environment; otherwise the

configuration tuning may even harm the overall performance. Users can use system

monitoring tool to keep track of their effects.

Query optimization is a different kind of optimization from other. It is implemented

within the database system. Most of relational database support some kinds of

optimization technics for fast data access. However, even though the idea of query

optimization is the same, different database management system has different

implementation. The most popular query optimization method is indexing. It is also a

main part of this thesis project.

Postgres uses MVCC algorithm to handle multi-users concurrent read and write access

to the same data. It is quite different from most other database management system.

Users must be aware of this while indexing on queries, especially for those who come

from SQL server and DB2 world. In Postgres, it is not encouraged to create fat

indexes due to the fact that the data tuple in tables always needs to be accessed to

46

determine the visibility of index values. Creating multiple small indexes instead of one

fat index will normally bring better performance.

In the experimental part of the thesis project, 3 test cases are created to demonstrate

how different indexes can affect the performance of query execution. For the

simplicity of understanding, the measurement unit in these test cases is millisecond.

47

7. Recommendation

For already running Postgres database management system, DBA should do the

following things to boost the database performance:

- check the database configuration files to see it is configured well

- use query logging utility to collect slow queries if Performance is degraded

- add necessary index to replace larger table sequence scan with index scan in the

query execution

- use EXPLAIN for evaluating the use of indexes

- re-evaluated the application logic to reduce database access

- replace dynamic query with prepare query execution to enhance performance and

security

48

Bibliography

Simon, R. & Hannu, K. 2010 PostgreSQL 9 Administration Cookbook

Published by Packt Publishing Ltd, ISBN: 978-1-849510-28-8 Quoted:23.01.2011

Lahdenmäki, T. & Leach, M. Relational Database Index Design and the optimizers

Published by John Wiley & Sons, Inc., ISBN: 13 978-0-471-71999-1 Quoted:

25.01.2011

Gregory, S. PostgreSQL 9.0 High Performance

Published by Packt Publishing Ltd, ISBN: 184951030X Quoted: 01.02.2011

DBTechNet 2010. DBTech EXT Index Design and Performance Labs URL:

http://www.dbtechnet.org/labs/idp_lab/IDPLabs.pdf. Quoted: 08.03.2011

Dibyendu, M 2007. A Quick Survey of MultiVersion Concurrency Algorithms URL:

http://simpledbm.googlecode.com/files/mvcc-survey-1.0.pdf Quoted: 02.03.2011

Enterprise DB 2008. Explaining Explain URL:

http://wiki.postgresql.org/images/4/45/Explaining_EXPLAIN.pdf Quoted:

21.03.2011

Mullins, C. 2002. Database Administration

Published by Pearson Education Corporate Sales Division, ISBN: 0-201-74129-6

Quoted: 15.12.2011

Molina, H., Ullman, J. & Widom, J. Database System The Complete Book 2nd edition

Published by Pearson Education International, ISBN(13): 0978-0-13-135428-9 Quoted:

02.01.2011

Connolly, T. & Begg, C. Database System 5th edition

Published by Pearson Education, ISBN(13): 978-0-321-52306-8 Quoted: 12.01.2011

http://www.dbtechnet.org/labs/idp_lab/IDPLabs.pdf
http://simpledbm.googlecode.com/files/mvcc-survey-1.0.pdf
http://wiki.postgresql.org/images/4/45/Explaining_EXPLAIN.pdf

49

Matthew, N. & Stones, R. Beginning Databases with PostgreSQL 2nd edition

Published by Berkeley, CA: Apress. ISBN: 1-59059-478-9 Quoted: 03.02.2011

Ramakrishnan, R & Gehrke, J. Database management systems 3rd edition

Published by McGraw-Hill. ISBN: 0-07-246563-8 Quoted: 18.02.2011

Elmasri, R. & Navathe, S. Database System 6th edition

Published by Berkeley, CA: Apress. ISBN: 0-13-214498-0 Quoted: 16.12.2011

Wikipedia 2010a, PostgreSQL

http://en.wikipedia.org/wiki/PostgreSQL. Quoted: 05.12.2010

Wikipedia 2010b, Database tuning

http://en.wikipedia.org/wiki/Database_tuning Quoted: 15.12.2010

Wikipedia 2010c, phpPgAdmin

http://en.wikipedia.org/wiki/PhpPgAdmin Quoted: 11.01.2011

Wikipedia 2011b, Stored procedure

http://en.wikipedia.org/wiki/Stored_procedure Quoted: 13.01.2011

Wikipedia 2011c, vmstat

http://en.wikipedia.org/wiki/Vmstat Quoted: 31.03.2011

PostgreSQL 2010a, About

http://www.postgresql.org/about/. Quoted: 05.12.2010

PostgreSQL 2010b, Community Guide to PostgreSQL GUI Tools

http://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools

Quoted: 14.12.2010

http://en.wikipedia.org/wiki/PostgreSQL
http://en.wikipedia.org/wiki/Database_tuning
http://en.wikipedia.org/wiki/PhpPgAdmin
http://en.wikipedia.org/wiki/Stored_procedure
http://en.wikipedia.org/wiki/Vmstat
http://www.postgresql.org/about/
http://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools

50

PostgreSQL 2010c, PostgreSQL 9.0.2 Documentation

http://www.postgresql.org/docs/9.0/static Quoted: 05.12.2010

PostgreSQL 2011a, Performance Optimization

http://wiki.postgresql.org/wiki/Performance_Optimization Quoted: 13.01.2011

PostgreSQL 2011b, GIN Indexes

http://developer.postgresql.org/pgdocs/postgres/gin-intro.html Quoted: 15.01.2011

PostgreSQL 2011c, How does CLUSTER ON improve index performance

http://www.postgresonline.com/journal/archives/10-How-does-CLUSTER-ON-

improve-index-performance.html Quoted: 21.02.2011

PostgreSQL 2011d, A Generalized Search Tree for Secondary Storage

http://gist.cs.berkeley.edu/gist1.html Quoted: 21.02.2011

PostgreSQL 2011e, Tuning Your PostgreSQL Server

http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server Quoted:

04.04.2011

Microsoft 2010a, Optimizing Database Performance

http://msdn.microsoft.com/en-us/library/aa273605%28v=SQL.80%29.aspx Quoted:

15.12.2010

IBM 2010a, Database performance optimization tasks

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=%2Frzatc%2

Frzatcperformanceoptimatrix.htm. Quoted: 15.12.2010

Embarcadero 2010a, Database Performance Optimization

http://www.embarcadero.com/solutions/database-performance-optimization.

Quoted: 15.12.2010

http://www.postgresql.org/docs/9.0/static
http://wiki.postgresql.org/wiki/Performance_Optimization
http://developer.postgresql.org/pgdocs/postgres/gin-intro.html
http://www.postgresonline.com/journal/archives/10-How-does-CLUSTER-ON-improve-index-performance.html
http://www.postgresonline.com/journal/archives/10-How-does-CLUSTER-ON-improve-index-performance.html
http://gist.cs.berkeley.edu/gist1.html%20Read%2021.02.2011
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://msdn.microsoft.com/en-us/library/aa273605%28v=SQL.80%29.aspx
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=%2Frzatc%2Frzatcperformanceoptimatrix.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=%2Frzatc%2Frzatcperformanceoptimatrix.htm
http://www.embarcadero.com/solutions/database-performance-optimization

51

Frank, W. Performance Tuning PostgreSQL

http://www.revsys.com/writings/postgresql-performance.html. Quoted: 15.12.2010

stackoverflow. How Indices Cope with MVCC

http://stackoverflow.com/questions/4841692/how-indices-cope-with-mvcc Quoted:

15.01.2011

PHP Manual. Prepared statements and stored procedures

http://php.net/manual/en/pdo.prepared-statements.php Quoted: 14.03.2011

Linux User's Manual. TOP

http://unixhelp.ed.ac.uk/CGI/man-cgi?top+1 Quoted: 31.03.2011

The Linux Information Project. Context Switch Definition

http://www.linfo.org/context_switch.html Quoted: 02.04.2011

Mac OS X: How to View Memory Usage With the "top" Utility Quoted: 21.03.2011

pgAdmin 2011. pgAdmin 1.12 online documentation

http://www.pgadmin.org/docs/1.12/index.html Quoted: 05.04.2011

http://www.revsys.com/writings/postgresql-performance.html
http://stackoverflow.com/questions/4841692/how-indices-cope-with-mvcc
http://php.net/manual/en/pdo.prepared-statements.php
http://unixhelp.ed.ac.uk/CGI/man-cgi?top+1
http://www.linfo.org/context_switch.html
http://www.pgadmin.org/docs/1.12/index.html

52

Attachments

Prepared Query Execution with PHP

<?php

/**

 * This php execution file is developed for

 * demonstrating how to utilze prepared query execution

 * */

$db = new db();

$query = "SELECT rowid, name FROM CUSTOMER WHERE status = $1 ORDER

BY name LIMIT 10";

$db->f_prepare_query('list_customer', $query);

$res = $db->f_prepare_execute('list_customer', array('ex'));

while($row = $db->f_get_object($res)){

 echo "
 ";

 echo $row->rowid." | ".$row->name;

}

$db->f_free_resource($res);

class db{

 static $conn = NULL;

 public function __construct(){

 $conf = array(

 'host' => 'localhost',

 'name' => 'thesis_testing',

 'port' => 5432,

 'user' => 'username',

 'pass' => 'password',

);

53

 if(self::$conn === null){

self::$conn = pg_connect("host={$conf['host']}

port={$conf['port']} dbname={$conf['name']}

user={$conf['user']}

password={$conf['pass']}");

 if(!self::$conn){

throw new Exception ('Can not connect to

database: '.$conf['name']);

 }

 }

 }

 public function f_query($query){

 if(!$rnt = pg_query(self::$conn, $query)){

throw new Exception('Query is not valid:

'.$query);

 }

 return $rnt;

 }

 public function f_free_resource($res){

 pg_free_result($res);

 }

 public function f_prepare_query($name, $query){

 $name = pg_escape_string($name);

$sql = "SELECT name FROM pg_prepared_statements

WHERE name = '{$name}'";

54

 if(!pg_num_rows($this->f_query($sql))){

 if(!pg_prepare(self::$conn, $name, $query)){

throw new Exception('Cannot

prepare query {$name} :'.$query);

 }

 }

 }

 public function f_prepare_execute($name, $parameters){

 $rnt = pg_execute(self::$conn, $name, $parameters);

 return $rnt;

 }

 public function f_get_object($res){

 $rnt = pg_fetch_object($res);

 return $rnt;

 }

 public function f_get_array($rnt){

 $rnt = pg_fetch_array($res);

 return $rnt;

 }

}

?>

