

Saeed Ahmad

Developing a Bluetooth Ordering Application

Technology and Communication
 2011

2

ACKNOWLEDGEMENTS

First I would like to thank to God almighty who helped me and my parents who

prayed for me, then I like to thank to my supervisor for helping me to improve the

application. I like to thank also to my wife who supported me and always kept a

calm attitude in situations when I was stuck in development due to some error.

The next day was easy to find solution with fresh mind. I like to thank my friends

too who gave me encouragement.

3

Keywords Bluetooth implementation in J2ME

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Technology and Communication

ABSTRACT
Author Saeed Ahmad

Title Developing a Bluetooth Ordering Application
Year 2011

Language English

Pages 47 + 1 Appendices

Name of Supervisor Ghodrat Moghadampour

The Java Platform, Micro Edition (J2ME) is a widely adopted technology to, in a

controlled way, introduce third party developers to the otherwise inaccessible

platforms in mobile phones, and at the same time allows applications to run on

devices from different manufacturers and Java APIs for Bluetooth Wireless

Technology (JABWT) provide the basic structure for developing Java Bluetooth

applications . It also provides how different Bluetooth actions like inquiry and

service discovery are done with the Java API. Code samples are also included

highlighting the functionality available in JABWT. Connection to MySQL

database using Netbeans 6.9 is described as well. Pizza Restaurant Application is

wirelessly deployed on the users mobile whenever he enters the specified area,

such as the restaurant, enabling him to perform activities such as to see the menu

and rate list of pizzas, and to place order or to place complains or suggestions for

managers. The administrator of the application is entitled to see the list of orders,

to change the prices of food and to maintain the services provided by the

management. The customer can only make payment in cash. There was a

limitation at client’s side when getting database records from pizza restaurant

server to display rate list and menu, because only few libraries are available in

J2ME for small devices. But discussing with the supervisor separate functions for

reading and displaying multiple records from the server were developed.

4

CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

1 INTRODUCTION……………………………………………………………..….7

1.1 Objectives……………....………………………………………….…………8

2 RELEVANT TECHNOLOGIES..9

2.1 J2SE ...9

2.2 J2ME ...……………………………………………………………………….9

2.3 Java APIs for Bluetooth Wireless Technology...12

3 REQUIREMENTS ANALYSIS…………………………………………………13

3.1 Bluetooth System Requirements ... 13

3.2 Performance Requirements ... 14

3.3 Safety Requirements ... 14

3.4 Security Requirements .. 14

3.5 Software Quality Measures ... 14

3.6 Functional Requirements .. 15

3.7 Design and Implementation Constraints ... 15

3.8 Assumptions and Dependencies .. 16

4 APPLICATION DESCRIPTION..17

4.1 Bluetooth Control Center (BCC) ... 18

4.2 Capabilities of JSR 82 .. 18

 4.3 Pizza Restaurant Application Functional Scenario...20

 4.4 Functional Details...21

5 ANALYSIS AND DESIGN DETAILS..24

 5.1 Use Case Diagram...24

 5.2 User Classes and Characteristics...26

 5.3 Subsystem Partitioning..27

 5.4 Sequence Diagram...28

 5.5 Entity Relationship Diagram...29

5

5.6 Client Graphical User Interfaces ... 29

 5.7 Server Graphical User Interfaces..34

6 IMPLEMENTATION MODULE .. 37

6.1 Packages .. 37

6.2 Application Programming ... 37

 6.2.1 Stack Initialization ... 38

 6.2.2 Device Management ... 38

 6.2.3 Device Discovery .. 39

 6.2.4 Service Discovery ... 41

 6.2.5 Service Registration ... 41

 6.2.6 Communication .. 43

 6.3 Hardware Interfaces………………………………………………………….45

6.4 Software Interfaces.. 46

 7 CONCLUSIONS..47

 REFERENCES..48

6

LISTS OF PICTURES

Figure 1. Basic Architecture of Bluetooth followed in our Application p. 16

Figure 2. Functions details p. 25

Figure 3. Classes Diagram p. 26

Figure 4. Subsystem Diagram p. 27

Figure 5. Sequence Diagram p. 28

Figure 6. Entity-Relationship Diagram p. 29

Figure 7. Main Menu p. 30

Figure 8. Server Search p. 31

Figure 9. Menu p. 31

Figure 10. Pizzas List p. 32

Figure 11. Entering Order Details p. 32

Figure 12. Billing Information p. 33

Figure 13. Special Offers p.33

Figure 14. First Screen p. 34

Figure 15. Sending Application to Client p. 35

Figure 16. Client Connection to Server p. 36

Figure 17. Order Display Window p. 36

7

1 INTRODUCTION

Electronic commerce, known as e-commerce or ecommerce, includes the buying

and selling of products or services over electronic systems such as the Internet and

other computer networks. The amount of trade carried out electronically has grown

extraordinarily since the spread of the Internet.

A wide variety of commerce is carried out in this way, drawing on innovations in

electronic funds, supply chain management, Internet marketing, online transaction

processing, interchange of electronic data, inventory management systems, and

automated data collection systems. Modern electronic commerce uses the World

Wide Web at some point in the transaction's lifecycle, although it can cover even a

wider range of technologies such as e-mail.

A sharp increase in the use of mobile applications and mobile devices within

enterprises means organizations will need a better way to manage their mobility

going forward, a recent study found.

Mobile software is designed to run on handled computers, personal digital assistants

(PDAs), enterprise digital assistant (EDAs), smart phones and cell phones.

Recent model cell phones have included the ability to run user-installed software.

Mobile development lists the differences among the various mobile softwares.

Areas of Mobile Application

 Mobile optimized search engines

 Mobile question and answer services

 Mobile directory search

 Mobile discovery services

 Mobile navigation services

http://en.wikipedia.org/wiki/Product_(business)
http://en.wikipedia.org/wiki/Service_(economics)
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Supply_chain_management
http://en.wikipedia.org/wiki/Internet_marketing
http://en.wikipedia.org/wiki/Online_transaction_processing
http://en.wikipedia.org/wiki/Online_transaction_processing
http://en.wikipedia.org/wiki/Online_transaction_processing
http://en.wikipedia.org/wiki/Inventory_management
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/E-mail

8

1.1 Objectives

The main objective of this topic was in the beginning to implement J2ME via

Bluetooth technology , to develop a software related to pizza shop and to understand

these technologies. And to make client server data transfer capabilities in software.

The Pizza Restaurant Application is wirelessly deployed on the users mobile

whenever he enters the specified area, such as the restaurant, enabling him to

perform activities such as to see the menu, and to place order. The administrator of

the application is entitled to see the list of orders, to change the prices of food and to

maintain the services provided by the management. The customer can only make

payment in cash.

9

2 RELEVANT TECHNOLOGIES

In this part I have described java technologies used to develop this application. This

application runs on desktop system at server side and on mobile devices at client side

that involves use of J2SE and J2ME vice versa and java Bluetooth API for Bluetooth

functionality on both sides.

2.1 J2SE

Java Platform Standard Edition is popularly used in Java language programming.

This is the platform commonly used to create portable applications that run on server

and desktop systems spanning most operating systems. J2SE features:

 Portability

 JDBC API for database access

 CORBA technology

 Java security

J2SE consists of two components: Core Java and Desktop Java. Core Java provides

back-end functionality, while Desktop Java provides GUI (Graphical User Interface)

functionality. J2SE contains both the J2SE Development Kit (JDK) and the Java

Runtime Environment (JRE).

2.2 J2ME

Java 2 Micro Edition combines a resource constrained JVM and a set of Java APIs

for developing applications for mobile devices. Device manufacturers install and pre-

package there device with this JVM and associated APIs. J2ME can be divided into

three parts /3/

- Configuration

- Profile

- Optional Packages

10

Configuration contains the JVM and some class libraries; profile is build on top of

these class libraries that provides a useful set of APIs. Optional Package is an

optional set of APIs which may or may not be used in development of application.

The most popular configurations and profiles of J2ME are Mobile Information

Device Profile (MIDP) and Connected Limited Device Configuration (CLDC).

2.2.1 Connected Limited Device Configuration (CLDC)

The Connected Limited Device Configuration (CLDC) has been designed for

resource-constrained devices like mobile phones, pagers, and mainstream personal

digital assistants. It defines the base set of application programming interfaces and a

virtual machine. CLDC can be used for writing applications for small devices. But it

gives very limited functionality. There is no way to provide a graphical user interface,

unless we use a profile to build an effective application. The only profile so far

available for small devices is the Mobile Information Device Profile (MIDP). Both

provide a solid Java platform for developing applications to run on devices with

limited memory, processing power, and graphical capabilities, since the MID profile

complements the CLDC configuration by minimising both power and memory

required for limited devices. /3/

2.2.2 Mobile Information Device Profile (MIDP)

Mobile Information Device Profile (MIDP) is a specification published for the use of

Java on embedded devices such as mobile phones and PDAs. MIDP is part of the

Java Platform, Micro Edition (Java ME) framework and sits on top of Connected

Limited Device Configuration, a set of lower level programming interfaces.

The Mobile Information Device Profile (MIDP) allows writing downloadable

applications and services for network-connectable mobile devices. When combined

with the Connected Limited Device Configuration (CLDC), MIDP is the Java

runtime environment for compact mobile information devices, such as cell phones

http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Embedded_device
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Java_Platform%2C_Micro_Edition
http://en.wikipedia.org/wiki/Framework
http://en.wikipedia.org/wiki/Connected_Limited_Device_Configuration
http://en.wikipedia.org/wiki/Connected_Limited_Device_Configuration
http://en.wikipedia.org/wiki/Connected_Limited_Device_Configuration
http://java.sun.com/products/cldc/

11

and mainstream PDAs. /3/

2.2.2.1 MIDP Technology

Each Java technology has a reference implementation (RI), an API specification and a

technology compatibility kit (TCK) associated to it.

 Specification

 MIDP 2.0

MIDP 2.0 is a revised version of the MIDP 1.0 specification, and includes

new features such as greater connectivity, an enhanced user interface, over-

the-air (OTA) provisioning, multimedia and game functionality, and end-to-

end security. MIDP 2.0 is backward compatible with MIDP 1.0, and continues

to target mobile information devices such as mobile phones and PDAs.

 Reference Implementation

MIDP RI 2.0

The MIDP RI is targeted at device manufacturers who want to port this J2ME

profile to another platform.

 Technology Compatibility Kit

The CLDC TCK can be licensed from Sun to verify a CLDC

implementation on an exclusive platform.

 Development Tools

Sun Java Wireless Toolkit offers complete development support for

developing MIDP applications in combination with today's leading

assimilated development environments (IDEs.)

http://wwws.sun.com/software/communitysource/j2me/midp/download20.html
http://java.sun.com/products/sjwtoolkit/

12

NetBeans Mobility Pack is a Java Integrated Development Environment

(IDE) for developing applications that can be installed to Java technology-

enabled mobile devices.

2.3 Java APIs for Bluetooth Wireless Technology

While Bluetooth hardware has progressed, there has been no standardized way to

develop Bluetooth applications - until JSR 82 came into play. It is the first non-

proprietary standard for developing Bluetooth applications by using the Java

programming language. It hides the complexity of the Bluetooth protocol stack

behind a set of Java APIs that allows to focus on application development rather than

the low-level details of Bluetooth. JSR 82 is based on version 1.1 of the Bluetooth

Specification. /1/

Like all JSRs, the Java APIs for Bluetooth are also developed through the Java

Community Process. Its expert group has members representing 20 companies.

JSR 82 has two optional packages: the core Bluetooth API and the Object Exchange

(OBEX) API. The latter is transport-independent and can be used without the former.

http://developers.sun.com/prodtech/javatools/mobility/downloads/index.jsp

13

3 REQUIREMENTS ANALYSIS

 In this part I have described application in terms of hardware, performance, security,

quality, safety, functional requirements and implementation constraints.

3.1 Bluetooth System Requirements

The Java APIs for Bluetooth target devices with the following characteristics:

 (application memory requirements are additional)

 Bluetooth wireless network connection

 Compliant 512K minimum of total memory available (ROM and

RAM) implementation of the J2ME Connected Limited Device

Configuration (CLDC)

The underlying Bluetooth system upon which the Java APIs will be built must also

meet certain requirements:

 The underlying system must be "competent," in compliance with the

Bluetooth Qualification Program, for at least the Generic Access Profile,

Service Discovery Application Profile, and Serial Port Profile.

 The system must hold three communication layers as defined in the 1.1

Bluetooth Specification, and the implementation of this API must have access

to them: (SDP), Radio Frequency Communications Protocol (RFCOMM),

Logical Link Control and Adaptation Protocol (L2CAP) and Service

Discovery Protocol.

 The system should provide a Bluetooth Control Center (BCC), a control panel

almost similar to the application that allows a user to define specific values

for certain configuration parameters in a stack.

OBEX support should be provided in the fundamental Bluetooth system or by the

implementation of the API. The OBEX protocol provides assistance for object

14

exchanges, and forms the basis for Bluetooth profiles such as the Synchronization

Profile and the File Transfer Profile. /1/

3.2 Performance Requirements

The performance requirements of our systems are:

 Our system should provide 24 hours service for ease of customers.

 High response times are expected of the system.

 If the system has been stuck due to some reasons the system should be able to

regain its original state in minimum time.

 Pizza Shop Application is designed such that the system settings are not

disturbed by its usage.

3.3 Safety Requirements

The safety requirements for our system are:

 Special protection must be provided against harmful external agents such as

viruses, key loggers, and hackers.

 If some data infected with viruses succeeds to enter the system, then effected

files should not be able to upload.

3.4 Security Requirements

The security requirements for our system are:

 Users are allowed to access the system by Mobile application only. Extra

privileges are given to personnel such as managers and owners.

 All the data that is being entered should be scanned through an anti-virus

scheme.

 No person other than the manager should have the right to access database and

change the information or data residing there.

3.5 Software Quality Measures

The following are some software quality attributes of our system:

15

3.6 Functional Requirements

 The manager will be able to cancel or clear an order or update the menu list.

Functional requirement to enforce this rule is login through a user name and a

password in the operating system.

 The user will only be able to see the information relating the restaurant that is

permitted by the authorities, like menu list, the price list, etc. Also, the user is

permitted to change his order within 5 minutes of the prior placement.

3.7 Design and Implementation Constraints

Design and implementation constraints are:

 The developers should keep in mind the memory constraint for RAM (not less

than 512MB) and hard disks (40GB recommended) for the server system.

 For our ease we shall be using Unified Modeling Language, because we are

well familiar of this. This is a constraint on our designing procedure not to use

language other than UML.

 The development platform is Java.

 The IDE used for the development of the application must be NetBeans IDE

6.9.

16

 As we have the database in MYSQL, so the application needs to be developed

accordingly. /2/

 The credit card verification is not implemented in this version.

3.8 Assumptions and Dependencies

 Our system depends on rules and regulations like database licensing.

 The system is supposed to provide 24-hr service.

 The users are assumed to have mobile phones with the Bluetooth capability

enabled.

17

4 APPLICATION DESCRIPTION

 This figure describes how this application functions in actual working environment.

First level shows that Bluetooth uses radio signals to communicate with other

Bluetooth device. In 2
nd

 level the operating system checks and installs Bluetooth

hardware driver and after that our application detects Bluetooth stack in underlying

system. In the next level the Connected Limited Device Configuration (CLDC)

makes the base set of application programming interfaces and K virtual machine is a

java virtual machine which provides the basis for the CLDC reference

implementation. MIDP is the Java runtime environment for cell phones in our

application. Bluetooth API (Bluecove 2.1) conceals the complexity of the Bluetooth

protocol stack behind a set of Java APIs that allows us to concentrate on application

development rather than the low-level details of Bluetooth. At top level we are

interacting with the application using graphical user interfaces at the client and the

server side in pizza restaurant application.

 Figure 3. Basic Architecture of Bluetooth followed in our Application./1/

18

4.1 Bluetooth Control Center (BCC)

Bluetooth devices that execute this API may allow multiple applications to perform

concurrently. The BCC is a set of capabilities that allow a user or OEM to solve

contradictory application requests by defining precise values for certain configuration

parameters in a Bluetooth stack. BCC is the central authority for local Bluetooth

device settings. The BCC avoids any application from harming another. The BCC

might be an application with a separate API, a native application, or simply a group

of settings that are specified by the manufacturer and cannot be modified by the user.

BCC is not a class or an interface defined in the specification but an important part of

the security architecture. /1/

4.2 Capabilities of JSR 82

This API is intended to provide the following capabilities:

 Manage the local Bluetooth device settings and register services

 Discover Bluetooth devices and services in the neighborhood

 Setup RFCOMM, L2CAP, and OBEX connections between devices

 Using those connections, send and receive data (voice communication not

supported)

 Manage and control the communication connections

 Provide security for all the above options /1/

4.2.1 The API Architecture

The aim of the specification was to define an open, non-proprietary standard API that

can be used by all J2ME-enabled devices. That’s why it was designed using standard

J2ME APIs and CLDC/MIDP's Generic Connection Framework. Some important

features: /1/

19

 The JSR 82 specification addresses the Generic Access Profile, Service

Discovery Application Profile, Serial Port Profile, and Generic Object

Exchange Profile.

 The specification incorporates the OBEX, L2CAP, and RFCOMM

communication protocols in the JSR 82 APIs, primarily because all current

Bluetooth profiles are designed to use these communication protocols.

 The Service Discovery protocol is also supported. JSR 82 defines service

registration in detail in order to standardize the registration process for the

application programmer.

 The specification provides basic support for Bluetooth protocols and profiles.

It doesn't include specific APIs for all Bluetooth profiles simply because the

number of profiles is growing.

JSR 82 demands that the Bluetooth stack underlying a JSR 82 implementation be

qualified for the Service Discovery Application Profile, the Generic Access Profile,

and the Serial Port Profile. The stack must also provide access to its Service

Discovery Protocol, and to the RFCOMM and L2CAP layers.

Figure 1 shows where the APIs defined in this specification fit in a CLDC/MIDP

architecture. The APIs are designed in such a way that developers can use the Java

programming language to build new Bluetooth profiles on top of this API as long as

the core layer specification does not change. To promote this flexibility and

extensibility, the specification is not limited to APIs that implement Bluetooth

profiles. JSR 82 includes APIs for OBEX and L2CAP so that future Bluetooth

profiles can be implemented in Java, and these are already being used for that

purpose.

4.2.2 JSR 82 is Flexible

The JSR 82 APIs can work with both native Bluetooth stacks and Java Bluetooth

stacks. In the latter case the APIs call the stack directly; in the former case the APIs

go through the virtual machine, which will interface with the native stack. The

20

minimum configuration is CLDC. Because CLDC is a subset of CDC, applications

using these APIs should work on CDC devices. As I already noted, Java developers

can expand their options by creating new profiles. JSR 82 standardizes the

programming interface. Its two optional packages can be used with any of the J2ME

profiles. If the Generic Connection Framework Optional Package for J2SE (JSR 197)

is implemented, the JSR 82 APIs should work smoothly with J2SE.

1.3 Pizza Restaurant Application Functional Scenario

 Client Searching

In this module, the client is searched by the server. The server is active at all

times. The client will only be searched if he is in the range of the server. Plus

the client should have a Bluetooth-enabled mobile, and after he confirms the

request of the server, he can make the benefit of the services that are provided

by the restaurant.

 Connection Establishment

After the client is being detected by the server, the server instantly sends the

connection request to the client. After positive acknowledgment from the

client side, the connection will be established and then the server and the user

will easily be able to communicate with each other and exchange the

information.

 Data Transferring

When the connection is established, the server sends a .jar file to the client

which automatically installs the client application on the client’s mobile.

The application contains the restaurant menu, details of the services offered,

prices and types of the pizzas. User can then place orders, can see the rate list

and after placing the order he also receives the billing information.

http://www.jcp.org/en/jsr/detail?id=197

21

 Record Keeping

All the data that is coming from the client side is saved in the data base that is

maintained on the server side.

There are two types of records.

I). Client records

ii). Server records

There are a number of tables like order lists, order details, pizzas, special

offers, complaints and suggestions.

These tables contain information like lists of the items that are offered by the

restaurant, rate lists, different schemes like “buy one and get one free, and

also complaints and suggestions regarding the food and service offered by the

restaurant.

On the other side, the server sends the .jar file to the client, receives orders

from the client and also displays billing information on the user’s mobile.

 Dynamic Data Extraction

When the .jar file executes on mobile, the data that is to be shown on the

client side is dynamically obtained from the tables in the database residing on

the server side.

4.4 Functional Details

In depth detail of all the functions is explained as follows.

4.4.1 Client Searching

I). Start Server

The server is working at all times. The services of the server are limited to the

premises of the restaurant and outside of it, it will not work.

22

ii). Detection of Bluetooth Devices

When the customer enters the restaurant then the server that is always on and is

working will try to detect the Bluetooth of the customer.

4.4.2 Connection Establishment

I). Send Connection Request

When the server detects any Bluetooth-enabled device in its confines, it sends a

request to the customer to establish a connection in order to communicate with the

client.

ii). Connection to Customer

If customer accepts the connection-request from the server, connection is established.

The server gets the mobile ID of the user, and the communication between the server

and the client starts.

4.4.3 Data Transferring

I). Upload Jar File

After establishing the connection, the server sends a .jar file to the user, containing

the menu, rate list, and special deals offered by the restaurant.

ii). Client-to-Server Data Transfer

When customer gets to see the restaurant details, he can place the order to the server.

The “order” contains the information about the food ordered and the table number of

the ordering customer.

iii). Billing Information

23

After enter the order information client side software client can see the billing

information and change his order accordingly.

4.4.4 Record Keeping

I). Maintain Database on the Server

All the required data that is to be saved regarding orders of the customers,

Suggestions and complaints are kept in the database on the server. This data base

includes following tables:

 Order_Details

 Order_List

 Pizzas

 Suggestions_And_Complaints

 Schemes

4.4.5 Dynamic Data extraction

In this part the server takes orders from the database and sees if the customer has

updated or cancelled the order. If he has, then the server gets the update on the recent

order and makes sure of the accurate delivery.

24

5 ANALYSIS AND DESIGN DETAILS

Here I present use case diagrams, sequence diagrams, class diagrams , subsystem

diagrams and entity relationship diagrams to describe the application. I have client

application running on mobile device so I have used Java 2 Micron Edition for client

side GUI design and server application running on standalone PC. There I have used

Java 2 Standard Edition for server side GUI design.

5.1 Use Case Diagram

There are three actors in this diagram Server Application, Manager, and Client.

Manager updates special offers, pizzas and rate list and views database contents like

order details. Server application uploads client application and searches for the

clients. The client can place orders, view menu and rate list, avails special offers,

make suggestions and accepts server connection request.

25

Pizza Shop Application

Server Appl ication
Manager

Cl ient

Search The

Cl ient

Upload Cl ient

Appl ica iton

Update Special

Offers, Pizzas

and Rate Lists

View Database

Contents

Update Order Place Order
Accept Server

Connection Request

View Rate List and

Menu

Make Suggestions

and Compal ins

Avai l Special

Offers

 Figure 4. Functions details

26

5.2 User Classes and Characteristics

In our system there are two categories of classes;

5.2.1 Management

 The management class includes the administrator of Pizza Shop Application. Only

this class is fully able to use the complete functionality of the system, like viewing

system history, making updations, keeping track of orders and so on.

5.2.2 Users

The user will come to the restaurant enclave, get a .jar file from the server through a

wireless media, and then, on enabling the application, will be able to see the menu

and to place the order.

Management Users

1 1..*

Client

+Cl ientOperationsHandleThisClass:void

Server

+ServerOperationsHandlesThisClass:void

BlueDB

+DatabaseOperationsHandlesThisClass:void

Figure 5. Classes diagram

27

5.3 Subsystem Partitioning

The whole system is partitioned in to three major parts which are the back bones of

the system and they are inter-related with one another.

Client Application

Server Application

Database Connection

AccessDatabase

Accept Client Request

Send Confi rmation

Server

Server

Place OrderSend SuggestionView Menu and

Schemes

Cl ient

Cl ient

Database Connection

DBblue

Figure 6. Subsystem Diagram

28

5.4 Sequence Diagram

The server searches for Bluetooth enabled client, when it finds a device it sends a

connection request. When the client approves the request it sends a .jar file to the

client. The client opens the application and views schemes, menu and rate list.

Through application the client avails schemes, place orders, sends suggestions or

complaints and sees help option. The client receives order confirmations and gets

billing information.

Server Application Client
Client

Application

Search for The Client Module

Request For Connection

Places Order

Request Approved

Sends .jar file to the client

Uploads Client Application

Views Schemes, menu, Rate List

Avails Schemes

Receives Billing Information

Receives Confirmation of Order

Make Suggestions And Complains

Figure 7. Sequence Diagram

29

5.5 Entity Relationship Diagram

In this diagram there are 5 tables order lists, order details, pizzas, schemes,

complains. Order list contains general information of order like customer name, order

date and customer’s phone number. Order details table depends on orderlist table for

order id and has pizzas information and billing information.

Schemes

SchemesId

SchemeName

Complains

Complain_id

Complain

Customer

OrderDetails

OrderDetailsId

OrderId(FK)

OrderId

PizzaId

NoOfPizza

OrderPrice

Pizzas

PizzaId

PizzaName

Price

OrderList

OrderId

PhoneNo

OrderDate

Customer

relationship1

Figure 8. Entity-Relationship Diagram

5.6 Client Graphical User Interfaces

The screenshots/interfaces available to the users are given below:

In following figure the client has opened our software in his mobile device and we

can see his Bluetooth device is on. The client can choose to exit from our application

30

or choose device search option to search pizza server. In options command he can

choose to display Main Menu, if he is outside the range of pizza restaurant he can see

main menu but cannot place order from there before connecting to server which is

done by device search command.

Figure 9. Main Screen

In the following picture we can see the client searching for Pizza Restaurant Server.

The message “Searching Pizza Restaurant Server” displays after selecting Device

Search command.

31

Figure 10. Server Search

In the following picture we can see that the client is connected to the server. He can

see the menu to place order, check scheme, give feedback and see help.

Figure 11. Menu

32

In the following figure the client has chosen to place order and after that he can see

pizzas list and rate list to select for order.

Figure 12. Pizzas List

In the following figure the client is required to enter order detail, his name, phone

number, no of pizzas he likes to order and size of pizza.

Figure 13. Entering Order Detail

33

In the following figure the client can see billing information after entering order

details. The total cost is calculated from runtime by the software.

Figure 14. Billing Information

In this figure the client has selected 2
nd

 command show scheme and the following

figure shows him today’s discount offer from database server.

Figure 15. Special Offers

34

5.7 Server Graphical User Interfaces

This is the server’s side view of the application. This figure shows the first screen

which appears after running pizza restaurant server. There are two buttons; start

server and send application to client, both these perform different functions which are

shown in the next figures.

 Figure 16. First Screen

35

This figure is shown when the manager presses send application button on the

mobile. The following screen shows that the server is searching for Bluetooth

devices in the vicinity. When a device is found, it tries to find service on the device to

send application. When a service is found, the server sends application file

“Final.jar”, which automatically installs the client’s mobile device, and after

receiving the application the client can start using application at the same time.

 Figure 17. Sending Application to Client

The next figure displays the result of pressing Start Server button. We can see the

command prompt display that server is running and waiting for a client. Then a client

named Saied connects to the server and he places an order which is shown here at

command prompt level and in the next coming figure in pop up display.

36

Figure 18. Client Connecting to Server

The next figure shows an order coming from the client’s side. A pop up window

appears showing the order at server.

Figure 19. Order Display Window

37

6 IMPLEMENTATION MODULE

Implementation of Bluetooth programming is explained as follows.

6.1 Packages

The Java APIs for Bluetooth consists of two packages that depend on the CLDC

javax.microedition.io package:

 javax.Bluetooth: core Bluetooth API

 javax.obex: APIs for the Object Exchange (OBEX) protocol

Each of the above packages signifies a separate optional package, which means that a

CLDC implementation can include either package or both. MIDP-enabled devices are

expected to be the kind of devices to fit in this specification. Again, the OBEX APIs

are defined independently of the Bluetooth transport layer and packaged separately.

/1/

6.2 Application Programming

The anatomy of a Bluetooth application has five parts: /1/

 Stack initialization

 Device management

 Device discovery

 Service discovery

 Communication.

Now we explain one by one that how basic communication is done between

Server PC and Client (mobile)

38

6.2.1 Stack Initialization

The Bluetooth stack is the piece of software that controls your Bluetooth device, so

you need to initialize the Bluetooth stack before doing anything else. The

initialization process contains a number of steps whose purpose is to get the device

ready for wireless communication. Unfortunately, the Bluetooth specification leaves

implementation of the BCC to vendors, and different vendors handle stack

initialization differently. On one device, it may be a series of settings that cannot be

modified by the user, and on another it may be an application with a GUI interface.

For example, Atinav's Java Bluetooth solution requires the developer to initialize the

stack with a series of settings like the ones in the following code fragment - note well

that the APIs invoked are not part of JSR 82: /1/

For example:

// seting the port number

BCC.setPortNumber("COM1");

// seting the baud rate

BCC.setBaudRate(50000);

// set the connectable mode

BCC.setConnectable(true);

// set the discovery mode to General Inquiry Access Code

BCC.setDiscoverable(DiscoveryAgent.GIAC);

...

6.2.2 Device Management

LocalDevice and RemoteDevice are the two main classes in the Bluetooth APIs,

which provide the device-management capabilities defined in the Generic Access

Profile. LocalDevice depends on the javax.Bluetooth.DeviceClass class to

retrieve the device's type and the kinds of services it offers. The RemoteDevice class

represents a remote device (a device within a range of reach) and provides methods to

retrieve information about the device, including its Bluetooth name and address. The

following code fragment retrieves that information for the local device: /1/

39

...

// get the local Bluetooth device object

LocalDevice local = LocalDevice.getLocalDevice();

// get the Bluetooth address of the local device

String address = local.getBluetoothAddress();

// get the name of the local Bluetooth device

String name = local.getFriendlyName();

...

And following code fragment retrieves the information about a remote device:

...

// get the device that is at the other end of

// the Bluetooth OBEX over RFCOMM connection,

// L2CAP connection, or Serial Port Profile connection

RemoteDevice remote =

 RemoteDevice.getRemoteDevice(

 javax.microedition.io.Connection c);

// get the Bluetooth address of the remote device

String remoteAddress = remote.getBluetoothAddress();

// get the name of the remote Bluetooth device

String remoteName = local.getFriendlyName(true);

...

The RemoteDevice class also provides methods to authorize, authenticate, or encrypt

data transferred between local and remote devices.

6.2.3 Device Discovery

Your Bluetooth device has no idea of what kind of other Bluetooth devices are in the

area. Perhaps there are mobile phones, laptops, printers, desktops, or PDAs in the

area. In order to find out the core Bluetooth API's DiscoveryAgent class and

DiscoveryListener interface provide the necessary discovery services.

A Bluetooth device can use a DiscoveryAgent object to obtain a list of accessible

devices, in any of three ways:

40

The DiscoveryAgent.startInquiry method puts the device into an inquiry mode.

To take advantage of this mode, the application should specify an event listener that

will respond to inquiry-related events. DiscoveryListener.deviceDiscovered is

called each time an inquiry finds a device. When the inquiry is completed or

canceled, DiscoveryListener.inquiryCompleted is invoked.

If the Bluetooth device doesn't want to wait for devices to be discovered, it can use

the DiscoveryAgent.retrieveDevices method to retrieve an existing list.

Depending on the parameter passed, this method will return either a list of devices

that were found in a previous inquiry (cached), or a list of pre-known devices that the

local device has told the Bluetooth Control Center it will contact often. /1/

These three code snippets demonstrate the various approaches:

...

// retrieve the discovery agent

DiscoveryAgent agent = local.getDiscoveryAgent();

// put the device in inquiry mode

boolean complete = agent.startInquiry();

...

...

// get the discovery agent

DiscoveryAgent agent = local.getDiscoveryAgent();

// return a list of devices found in a previous inquiry

RemoteDevice[] devices =

 agent.retrieveDevices(DiscoveryAgent.CACHED);

...

...

// get the discovery agent

DiscoveryAgent agent = local.getDiscoveryAgent();

// return a list of pre-known devices

RemoteDevice[] devices =

41

 agent.retrieveDevices(DiscoveryAgent.PREKNOWN);

...

6.2.4 Service Discovery

Once the local device has discovered at least one remote device, it can begin to search

for available services. The searchServices() method of the DiscoveryAgent class lets

you to search for services on the RemoteDevice. When services are found, the

servicesDiscovered() method will be called by the JVM if your object implemented

the DiscoveryListener interface. This callback method also passes in a ServiceRecord

object that pertains to the service for which you searched. With a ServiceRecord in

hand, you can do plenty of things, but you would most likely would want to connect

to the RemoteDevice where this ServiceRecord originated. Note that the API

provides mechanisms to search for services on remote devices, but not for services on

the local device. Service Discovery is just like Device Discovery in the sense that you

use the DiscoveryAgent to do the discovering. /1/

6.2.5 Service Registration

Before a service can be discovered by a Bluetooth device, it must first be registered

in the Service Discovery database (SDDB) and advertised on a Bluetooth server

device. The server is responsible for:

 Creating a service record that represents the service offered.

 Adding the service record to the server's SDDB, so it's visible and available to

clients.

 Registering the Bluetooth security measures related with the service (enforced

for connections with clients).

 Accepting connections from potential clients.

 Modifying the service record in the SDDB if the service's attributes change.

42

 Deleting or disabling the service record in the SDDB when the service is no

longer available.

The following annotated code fragment gives you a flavor of the effort involved in

registering a service using the Java APIs for Bluetooth: /1/

1. To create a new service record that describes the service, invoke

Connector.open with a server connection URL argument, and cast the result

to a StreamConnectionNotifier that represents the service:

...

StreamConnectionNotifier service =

 (StreamConnectionNotifier) Connector.open("someURL");

2. To acquire the service record created by the server device:

ServiceRecord sr = local.getRecord(service);

3. This indicates that the service is ready to accept a client connection:

StreamConnection connection =

 (StreamConnection) service.acceptAndOpen();

Note that acceptAndOpen blocks until a client connects.

4. When the server is ready to exit, this closes the connection and removes the

service record:

service.close();

...

43

6.2.6 Communication

 To use a service on a remote device for a local device, the two devices should share a

common communications protocol. For applications to access a wide variety of

Bluetooth services, the Java APIs for Bluetooth gives mechanisms that allow

connections to any service that uses RFCOMM, L2CAP, or OBEX as its protocol.

The application can access the service, if a service uses another protocol (such as

TCP/IP) layered above one of these protocols, but only if it implements the

supplementary protocol in the application, using the CLDC Generic Connection

Framework.

JSR 82 implements the OBEX API (javax.obex) independently of the core

Bluetooth API (javax.Bluetooth), because the OBEX protocol can be used over

several different transmission media - wired, Bluetooth radio, infrared and others.

OBEX API is an optional package which can be used either with the core Bluetooth

package or independently. /1/

6.2.7 Serial Port Profile

The RFCOMM protocol, layered over the L2CAP protocol, emulates an RS-232

serial connection. The Serial Port Profile (SPP) can make communication easy

between Bluetooth devices by providing a stream-based interface to the RFCOMM

protocol. Some capacities and constraints to note:

 A single Bluetooth device can have at most 30 active RFCOMM services.

 A device can support only one client connection to any given service at a

time.

 Two devices can share only one RFCOMM session at a time.

 Up to 60 logical serial connections can be multiplexed over this session.

For a server and client to communicate using the Serial Port Profile, each must

perform a few simple steps.

44

As the following code fragment demonstrates, the server must:

1. Construct a URL that indicates how to connect to the service, and store it in

the service record

2. Make the service record available to the client

3. Accept a connection from the client

4. Send and receive data to and from the client

The URL placed in the service record may look something like:

btspp://102030405060740A0B0C0D0E100:4

This line of code tells that a client should use the Bluetooth Serial Port Profile to

make a connection to this service, which is identified with server channel 4 on a

device whose address is 102030405060740A0B0C0D0E100. /1/

...

// assuming the service UID has been retrieved

String PizzaServiceURL =

 "btspp://localhost:"+serviceUID.toString());

// more precisely:

String PizzaServiceURL =

 "btspp://localhost:10203040607040A0B0C0D0E100;name=Pizza

 Server";

try {

 //to create a server connection

 StreamConnectionNotifier notifier =

 (StreamConnectionNotifier) Connector.open(PizzaServiceURL);

 //to accept Bluetooth client connections

 StreamConnection connection = notifier.acceptAndOpen();

 //these lines of code are to prepare to send/receive data

 byte text[] = new byte[100];

 String tmp = "hello there, client";

 InputStream fromclient= connection.openInputStream();

45

 OutputStream toclient = connection.openOutputStream();

 //to send data to the Bluetooth client

 toclient.write(tmp.getBytes());

 //to read data from Bluetooth client

 fromclient.read(text);

 connection.close();

} catch(IOException e) {

 e.printStackTrace();

}

...

6.3 Hardware Interfaces

The following are some of the hardware requirements, which are necessary

for our system.

 Processor:

 Pentium 4 with 1.6GHz or greater

 The processor of good quality like Intel is recommended.

 Memory:

 RAM: 512 MB (at least 1 GB recommended)

 Hardware with 128 MB of texture memory (256MB recommended)

Hard Disk Space:

 At least 80GB (approx.) system hard disk space is required for

database and users accounts. So at least 80GB System hard disk space

is recommended for the system to work efficiently.

Mobile Unit:

46

 The application is designed to run on Java-enabled mobile phones.

Bluetooth provision is a compulsion.

 The current version of Pizza Shop Application is intended for only

Nokia 60 Series.

6.4 Software Interfaces

The following are some of the software requirements, which are necessary for our

system.

Operating System:

 The Windows based operating system including Windows 2000

Professional, Windows NT and Windows XP, Window Vista, Window

7.0 can be used for our system.

Programming Platform:

 The java language will be used as programming language. The

NetBeans IDE is used as the development environment. Java is used

because it is open source, powerful, relatively simpler and it is

productive.

Database:

Database will be in MYSQL, because it is more easy and understandable.

Toolkit:

Java Platform Micro Edition Software Development Kit 3.0

Java ME Platform SDK is a state-of-the-art toolbox for developing mobile applications.

It incorporates CLDC, CDC and Blu-ray Disc Java (BD-J) technology into one SDK.

Java ME SDK 3.0 is the successor to the popular Java Wireless Toolkit 2.5.2 and Java

Toolkit 1.0 for CDC. It provides a standalone development environment, device

emulation and a set of utilities for rapid development of Java ME applications. /1/

47

7 CONCLUSIONS

The most challenging part of the thesis was concerning internal details of Bluetooth

implementation part to make it functional and make the connection between the two

applications on two different devices. Many low level details which give error signals

when working within the actual scenario. There is a limitation in this application when I

try to send the application to all known devices then the Bluetooth API tries to use the

same port number for all opened connections for sending the application. How the port

number for any new opened connection can be changed remains unsolved.

The Bluetooth API sends the application to the first mobile but for every 2
nd

 mobile an

error message “Fail to connect to socket: [10048] only one connection allowed” is

shown. I have checked this application on Nokia and Samsung mobiles and I have shown

pictures for both mobiles that it is working. Instead of the Nokia mobile shown in

pictures, this application also functions successfully on Nokia mobile classic 6700.

However, there is a need to do more for all kind of mobiles for this application to work

with. Nokia S60 series is supported in this version and only Samsung GT-S3370E is

checked and it is working.

48

References

/1/ The Java APIs for Bluetooth Wireless Technology, .[accessed 10.6.2010]

.Available in www-form:

< URL: http://developers.sun.com/mobility/midp/articles/Bluetooth2/>

/2/ Connection to MySQL database Using Net beans, .[accessed 15.2.2011]

.Available in www-form:

< URL: http://www.netbeans.org/kb/60/ide/mysql.html>

/3/ Ghodrat Moghadampour , Wireless Java Programming , .[accessed 5.2.2010]

.Available on intranet

<URL: https://portal.puv.fi/course/view.php?id=699>

http://developers.sun.com/mobility/midp/articles/bluetooth2/
http://www.netbeans.org/kb/60/ide/mysql.html
https://portal.puv.fi/course/view.php?id=699

