
Lawal Olufowobi

SMS BASED

ANDROID ASSET TRACKING

SYSTEM

Technology and Communication

2011

VAASAN AMMATTIKORKEAKOULU

Information Technology Degree Programme

TIIVISTELMÄ

Tekijä Lawal Olufowobi

Opinnäytetyön nimi SMS- ja Android-pohjainen seurantajärjestelmä

Vuosi 2011

Kieli Englanti

Sivumäärä 50 liitettä

Ohjaaja Johan Dams

Arvokkaiden esineiden kuten esimerkiksi autojen, moottoripyörien ja lemmikkien

turvaaminen on yhä useammin yksityishenkilöiden ja pienien yritysten huolena

turvallisuuspalveluyrityksien sijaan. Tämä luo tarpeen helppokäyttöiselle ja

halvalle seurantaratkaisulle suuren yleisön käyttöön.

Tässä projektissa esitetään ratkaisu ongelmaan hyödyntäen kännykkää WRD

Systems Ltd:n tarjoaman SMS-pohjaisen GPS jäljittimen seuraamiseen. SMS-

pohjainen ratkaisu soveltuu erityisesti sijainteihin jossa GPRS-verkko ei

välttämättä ole saatavilla.

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology Degree Programme

ABSTRACT

Author Lawal Olufowobi

Title SMS Based Android Asset Tracking System

Year 2011

Language English

Pages 50

Name of Supervisor Johan Dams

As security increasingly becomes not just the concern of security institutions but

also that of small companies and individuals, there is a need to offer a solution for

everyday common problems of monitoring and tracking valuable assets such as

cars, pets, motor-bikes and other valuables. This solution has to be cheap,

convenient and inexpensive to be adopted by the general mass of people.

This project provides such a solution with the use of a mobile phone for

monitoring an SMS-based GPS tracker provided by WRD Systems Ltd especially

in locations where GPRS may not be available.

Keywords: Android, GPS, SMS, Tracking, Geographic Location, Maps.

ACKNOWLEDGEMENT

To my mother, she taught me life. To my father who made me know, I don't have

the luxury of failing! To my grandfather, the only sincere Nigerian politician I

know, who died during my study year and whose funeral I couldn't attend.

To Johan Dams, my supervisor, a mentor and teacher. To Dr Yang Liu, an

instructor of admirable intelligence. And to all teachers in VAMK and elsewhere

that have impacted my life.

ABBREVIATIONS

UI User Interface

SDK Software Development Kit

GPS Global Positioning System.

SMS Short Message Service

NMEA National Marine Electronics Association

OS Operating System

UTC Coordinated Universal Time

SIM Subscriber Identity Module

API Application Programming Interface

GPX GPS Exchange Format

KML Keyhole Markup Language

IDE Integrated Development Environment

SQL Structured Query Language

AES Advanced Encryption Standard

6

CONTENTS

1 INTRODUCTION ..8

1.1 Introduction of WRD Systems Ltd..8

1.2 Existing Solutions and the merit for this project..8

1.3 Scope and Limitation..9

2 MOBILE-PHONE APPLICATION DEVELOPMENT10

2.1 Why Android? ...10

2.2 Android Development..12

2.2.1 Android SDK and Eclipse...14

2.2.2 Android Debug Bridge..14

3 OVERVIEW AND SYSTEM COMPONENTS ...16

3.1 Application Requirements..17

3.1.1 Asset Management ...17

3.1.2 Location Management ...18

3.1.3 Data Management ..20

3.2 Tracker Communication...20

3.2.1 Receiving data..20

3.2.2 Sending data..23

4 APPLICATION DESIGN AND IMPLEMENTATION......................................24

4.1 System Development Methodology...24

4.2 Application Implementation ..24

4.2.1 GUI Classes..26

4.2.2 Data Classes ...29

4.2.3 Service Classes ..30

4.2.4 Utility Classes ..32

4.3 Data Persistence..33

4.3.1 SQLite...33

4.3.2 Entity Diagrams..34

4.3.3 Data Security..35

4.4 GUI...35

7

4.5 Testing..37

4.5.1 JUnit Testing...37

4.5.2 Tracker Communication Testing...38

5 CHALLENGES...39

5.1 Calculation Distance between two locations..39

5.2 Creating Boundaries...41

5.3 Map Spanning...44

5.4 UI Controls...45

5.5 Data Security..46

6 CONCLUSION..47

8

1 INTRODUCTION

With global mobile phone subscribers estimated to 4.5 billion by 2012 [1], the

mobile phone is by far the most adopted consumer electronic in the world. As

their processing power increases, the ability to leverage their mobility and

computing power to solve daily problems increases. From playing games, bar-

code scanning, photography, to social networking, mobile phones have become

integral part of our modern existence. Hence, applications that have been

traditionally confined to desktop computing are steadily being adapted for mobile

phones. One of these applications is that of monitoring and tracking. While

desktop computing still offers more processing power, the mobile phone has the

advantage of constant reachability and mobility that desktop computing lacks with

comparable rich user experience.

1.1 Introduction of WRD Systems Ltd

WRD Systems Ltd is a technology company that provides, among other things,

an active asset tracking management solution, called IAM. It can locate the

position, speed and direction of an asset anywhere in the world with an accuracy

of up-to 15 feet. Their product is currently in use in countries such as Algeria and

the USA [2].

1.2 Existing Solutions and the merit for this project

The present solution provided by WRD Systems involves a tracking unit, a SIM-

based gateway and a software that runs on a Laptop or Desktop PC. The gateway

hardware is always connected to the laptop or PC, so when a location update is

requested, the tracker sends the location to the gateway via SMS and the desktop

application then reads the data off the gateway [2]. Figure 1 depicts the

connection between the hardware in the existing system.

9

This project eliminates the need for the gateway hardware, thus cutting cost in two

folds. First, we have the fact that the cost of the gateway hardware is totally

eradicated. Secondly, the maintenance cost of this SIM-based hardware is also

eliminated as this project allows users to leverage an existing SIM-based

hardware, the mobile phone. This project therefore cuts down on initial price,

maintenance cost and increases customer satisfaction by making the application

more reachable for users. Figure 2 illustrates the proposed system.

Also worth noting is that this solution is server-less and does not require a

monthly fee. While other tracking solution vendor exist such as VisiRun [3],

TrackPeers [4] and BizSpeed [5] and others, none of them offers this option. This

is particularly of major concern to companies and individuals who do not want

their location information to be held by a third-party. At the time of writing, we

are unaware of any Android SMS-based Asset Tracking application.

1.3 Scope and Limitation

This project supports the Android OS platform only and makes communication

with the tracker through SMS messages only. The architecture, security and

Figure 1: Existing System

Figure 2: Proposed System

10

accuracy of the tracking unit itself are beyond the scope of this project.

2 MOBILE-PHONE APPLICATION DEVELOPMENT

Mobile phone application development comes with its own unique set of

challenges. While advancements have been made in processing power, touch

interface and internet connectivity; battery longevity is still a major drawback.

Therefore, application developers must find a way to conserve power as much as

possible when using battery-draining resources such as the GPS receiver.

Responsiveness is also a paramount factor in a mobile phone application, a 100 to

200 milliseconds delay is noticeable by a user [6], and therefore the application

must always find a way of engaging the user while doing resource intensive work.

Also, due to the small screen size of mobile phones, mobile phone developers

must find creative ways to provide easy navigations from one functionality to

another.

Mobile phone development also lacks cross-platform tools like those that can be

found in desktop software development in which a developer can write the source

code once and run it on different operating system. Due to lack of such tool, time

and other resource constraints, one of the mobile platforms has to be chosen for

this project.

2.1 Why Android?

Android is a software stack for mobile devices that includes an operating system,

middle-ware and key applications. Android includes the application framework,

the Dalvik virtual machine, media support, integrated browser and optimized

graphics support. It also includes support for GPS, Blue-tooth, Accelerometer,

Camera, WIFI and 3G Networks amidst other things [6]. Figure 3 below shows

the major components of the Android operating system. This project directly

makes use of the Applications and the Application-framework layer and also

makes use of the SQLite library.

11

Presently, the dominant mobile phone Operating System are Apples' iOS, Google's

Android, Nokia's Symbian, BlackBerry's OS and Microsoft's Windows Mobile.

The criteria considered for choosing are, the market share, tablet support, the ease

of application development, supported desktop platform and the license of the

application. Table 1 compares these operating systems according to the license,

programming language and the officially supported development platform.

Figure 3: Android Architecture[6]

12

License Programming Language
Development
Os Platform

Android
Open
Source

Mainly Java Cross Platform

iOS Proprietary Objective-C Mac Only

Windows
Mobile

Proprietary
Dot NET languages
(C#, C++, VB. Net)

Windows Only

Blackberry
Os

Proprietary Java Windows

Symbian Proprietary C++ Cross Platform

 Table 1: Mobile Operating System Comparison

Android was preferred because of its open source nature, ease of development,

zero barrier to entry and pervasiveness. “It quickly gained attractions by

developers because of its fully developed features to exploit the cloud-computing

model offered by web resources and it also enhances that experience with local

data stores on the handset itself” [7]. Presently, it is the market leader in smart

phone[8]. Application written for the handset can also be easily deployed for

tablet devices with little or no technical changes needed.

Android is released under two different open source licenses. The Linux kernel

which it is based upon, is released under the GNU Public License (GPL) as is

required for anyone licensing the Linux operating system kernel. The Android

platform, excluding the kernel, is licensed under the Apache Software License

(ASL) [9].

2.2 Android Development

What goes on in an Android application is mainly divided into two, including the

visual part, which the user interacts with and the non-visual, which runs in the

background. The visual part is termed an activity. An activity is usually a single

screen that the user sees on the device at one time. An application typically has

13

multiple activities, and the user flips back and forth among them [10]. The

previous activity maybe paused or destroyed and the new one maybe newly

created or just resumed. Figure 4 below shows an activity life-cycle and the

different states which it can exist in.

The non-visual parts are called Services. They run in the background and don’t

Figure 4: Activity Life cycle [6]

14

have any user interface components. They perform actions such as polling data

from a server on the Internet, playing music in the background etc. They are

responsible for those actions that must continue while the user flips between

activities of the same or different applications.

BroadcastReceiver is also an important component of Android development. It is

the system's way of alerting applications of certain events in the systems when

they occur. For example, the system broadcasts an SMS arrival event when a new

SMS arrives on the mobile phone. Subsequently all application that are registered

to receive this events will be notified and each of them will respond accordingly.

2.2.1 Android SDK and Eclipse

The Android SDK provides the tools and APIs necessary to begin developing

applications on the Android platform using the Java programming language. The

SDK is available on Windows, Linux and Mac [6].

Eclipse is a multi-platform development environment that runs on all major

operating system. Android provides a plug-in for Eclipse that allows easy use and

control of the Android SDK facilities. This plug-in is called ADT Plugin (Android

Development Tool). Once installed the ADT plug-in is made to point to the SDK

location thereupon most of the SDK tools can then be accessed through Eclipse.

While other IDEs exist for Android development, Eclipse was preferred because

it's the officially supported environment [6].

2.2.2 Android Debug Bridge

Android Debug Bridge (adb) is a versatile tool that allows managing the state of

an emulator instance or an Android-powered device [6]. It is part of the tool

bundled with Android SDK. With it, one can issue commands to the emulator or

device and inspect or modify its internal states. Table 2 shows the adb commands

that was commonly used during the development of this project.

15

Command Description

devices Prints a list of all attached
emulator/device instances

shell Starts a remote shell in the target
emulator/device instance.

logcat Prints log data to the screen.

push <local> <remote> Copies a specified file from your
development computer to an
emulator/device instance.

pull <remote> <local> Copies a specified file from an
emulator/device instance to your
development computer.

 Table 2: Commonly used adb commands [6]

Some of Linux command line functions are also accessible through the adb. First,

the command adb shell has to be run to log in; afterwards, commands such as ps,

ls and top can then be run. While the Eclipse plug-in provides a GUI front-end to

most of the adb functionalities, the command line is well suited or sometimes

necessary to access the device or emulator. Command-line invocation is also

preferred, because sometimes the eclipse plug-in loses communication with the

emulator server.

During the development of this project, the command-line has been mainly used

in viewing the database, viewing the system logs and managing more than one

emulator at a time. Viewing the database is done by evoking the sqlite3 command

with the full path to the database location [6]. Figure 5 below shows the

invocation of the shell and the logcat command.

16

3 OVERVIEW AND SYSTEM COMPONENTS

The hardware involved in the project includes the tracker and the mobile phone to

which the application is installed. The tracker includes an SMS module and a GPS

receiver. The tracker obtains the location, direction and speed information from

the GPS receiver and sends it via SMS to a configured mobile phone number at

preconfigured intervals or when certain events occur. The application receives and

interprets the SMS, and shows the asset location on a map and performs other

associated logic that are described in 3.2.1. Figure 13 shows an overview of the

system components.

Figure 5: adb command line

17

3.1 Application Requirements

The application is targeted at any Android powered mobile device running at least

Android 2.2, Froyo. It should be intuitive to use and be locale aware. Users would

be offered feedback for important actions, to make them feel on track. Also when

user error occurs, the user should get simple and easy to understand error message

and what to do next.

3.1.1 Asset Management

An asset in the context of this project refers to a real world object to which the

tracker is attached; for example, a vehicle or truck. The user should be able to

register a new asset, edit and delete existing ones. Table 3 outlines the fields that

Figure 6: System Components Overview

18

are to be provided when registering an asset. It also describes the type of data

required for registration and from where the user will obtain them.

Field Data Type Source Compulsory

Unique
Identification
(UID)

String, not more than 10
characters.

Provided from the
tracker device.

Yes

Tracker Phone
Number

Phone Number Provided from the
tracker device.

Yes

Password Any combination of letters
and numbers between 3 and
10

Provided from the
tracker device.

Yes

Image Image types Provided by user
independently.

No

Asset type Description of the kind of
Asset being tracked, whether
vehicle, truck, digger etc.

Provided by user
independently.

Yes

Table 3: Registration requirements

At each instance of the application an asset must be selected and monitored. The

application should also allow user to select which asset is being actively

monitored.

3.1.2 Location Management

At each instance of the application, the last known location of the selected asset

must be visible on the map. The location of an asset, whether selected or not must

always be updated whenever a message meant for it arrives. The user should also

be able to view her location relative to the asset and the proximity of distance

should be made known to the user. The markers used to show the asset's last

location and those before it, should be different. Separate markers should also be

used to show the user's location.

One key feature needed is the ability to create a “geofence”, a circular boundary,

as shown in Figure 7 with a green circle. The asset is not expected to step out of

this geofence, so when it is determined to be out of it, some form of notification

19

should be used to alert the user of the violation. The notification alert can be by

sound or vibration or both, based on user preference.

Initially the tracker is configured to send location data only on request, however it

also has the ability to send data at some regular intervals or when certain events

occurs. User should have the ability to change this setting, and make the tracker

send data at some intervals as described in Table 5.

Figure 7: Mock up of Application

20

3.1.3 Data Management

The users should also have complete control over the location data and should be

given the option to delete them all or within some specified time range. It is

desirable that the location data should be exportable to other format such as the

GPX or KML format.

The tracker's password should not be visible or accessible to an external party.

Some form of obfuscation or encryption should be provided such that if the user

loses the phone, the trackers password is not easily obtainable from any of the

data storing mechanism employed. At no point should any unrelated user specific

data be stored or collected through the application to a web-server.

3.2 Tracker Communication

Communication between the application and the tracker is done only through

SMS messages. Since both the tracker and mobile phone, are SIM based and

battery-powered devices, loss of battery and lack of SMS Gateway may cause

them not to receive a message. As for the tracker, when it regains connectivity or

power, it processes the first SMS it receives and discards any new ones it receives

while doing so. Therefore, the application should provide a way of ensuring its

state and that of the tracker stays synchronized with regards to update interval

described in 3.2.2. When the phone recovers from a loss of power or connectivity

it should be able to cope with the high volume of messages it may subsequently

receive.

From the tracker side, messages are only initiated when requested, or when

demanded to be sent at some certain intervals or certain event as further explained

in 3.2.2.

3.2.1 Receiving data

The message received from the tracker contains the GPS location information,

speed and direction of the asset being tracked encoded in a modified NMEA RMC

format. The RMC, Recommended Minimum Sentence C, is the NMEA version of

21

essential GPS pvt (position, velocity, time) data [11]. A complete data unit is

referred to as a sentence. An NMEA sentence begins with a dollar sign and the

letters GP, ($GP) and contains a number of fields, separated by commas. Each

field in the sentence is important in determining the location, velocity, direction of

the asset at a particular point in time except for the last field which is a checksum

to ensure the data has not been tampered with. The fields and their description are

shown in Table 4. Using the following NMEA sentence as a guide, the table

describes the fields and their interpretation.

$ GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

22

FIELD DESCRIPTION EXAMPLE INTERPRETATION

Sentence Type Shows it is an RMC RMC Sentence is RMC

Time Six-digit letters
describing the time the
data was taken in UTC

123519 12:35:19 UTC

Status The value can either be
A (Active) or V(Void)

A Good fix

Latitude Latitude value in degrees 4807.038 48° 7' 38.000"

Latitude direction The direction of latitude.
Can either be N or S
(North or South)

N North

Longitude Longitude value in
degrees

01131.000 11° 31' 000"

Longitude
direction

The direction of latitude.
Can either be E or W
(East or West)

E East

Speed Speed over the ground in
Knots

022.4 22.4 Knots

Track angle Track angle in degrees 084.4 84° 4'

Date Date when the data was
taken in the format
(ddmmyy)

230394 23rd of March 1994

Magnetic Variation Magnetic Variation 003.1 3° 1'

Magnetic Variation
Direction

Magnetic Variation
Direction

W West

Checksum Checksum to check the
validity of the data.
Starts with *

*6A Checksum value

Table 4: NMEA Fields

The NMEA sentence was modified by replacing the first 6 characters i.e.,

“$GPRMC” to '%$' followed by the four letters that uniquely identifies the asset.

Therefore for an asset with id, WXYZ, a sample message will be

%$WXYZ,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A.

23

3.2.2 Sending data

Messages sent to the tracker from the application are primarily to change how

often or under what circumstances the tracker sends location updates. All

messages sent should be made only with explicit consent of the user and the

monetary consequence should be made known to the user.

Primarily, the tracker sends location data when it receives command requesting it

to do so. However, it can also be configured either to work in a timing mode or in

a tracking mode. In the timing mode, the tracker sends location information

regardless of the state of the asset at specific time intervals. The interval between

each location updates vary from ten minutes to five hours as shown Table 5. In the

tracking mode however, location updates are only sent when variables such as the

speed and direction of the asset changes. Changing time interval in timing mode

or turning off updates can be done by sending commands to the tracker. The

commands and the format in which they are sent are listed and explained in Table

5 below. For the purpose of the illustration, we assume the password for the

tracker is BW1.

MESSAGE FORMAT EXAMPLE

Request immediate updates Password+ 'S' BW1S

Turn off updates Password+'R0' BW1R0

Change update interval to 10 minutes Password+'R1 BW1R1

Change update interval to 30 minutes Password+'R2 BW1R2

Change update interval to 1 hour Password+'R3' BW1R3

Change update interval to 2 hours Password+'R4' BW1R4

Change update interval to 5 hours Password+'R5' BW1R5

Change to tracking mode Password+'RT' BW1RT

Table 5: Message format to tracker

The characters in the SMS text message must be capitalized.

24

4 APPLICATION DESIGN AND IMPLEMENTATION

Based on the requirements described in 3.1 and the description of how the tracker

communication works in 3.2, the application has to be designed using the right

methodology, libraries, database design, programming design patterns whilst

delivering the best user experience possible on a mobile phone. Future

maintenance, security and testing must also be put in mind as the application is to

be developed in such a way that guarantees its robustness.

4.1 System Development Methodology

An agile development strategy was adopted in the development of this project.

Other strategy such as the Waterfall model will not be suitable for a couple of

reasons. Firstly, obtaining a complete analysis of the way the tracker works at the

beginning of the project was impractical. Only at certain stage of development

will additional information be demanded and obtained, because no formal

document detailing the internal workings of the tracker was obtainable from the

owner company. Secondly, requirements change so often, mainly due to the

constraints of mobile phone development, such as speed, size and usability. If

Waterfall was adopted, this will require a complete redesign of the system every-

time such changes occur. Lastly, considering that the project involves

communication without another product, the source of bugs found in each stage

has to be established before the project can move on. Had the Waterfall model

been adopted, testing will be delayed till the end, which means bugs found may

result to the rewrite the whole program.

4.2 Application Implementation

From the requirements obtained in 3.1, a use case can be made for the application.

This is illustrated by diagram Error: Reference source not found.

25

Implementation of the use cases was done by using the right data structures and

programming pattern. Since Android application is primarily written in Java,

which is an object-oriented language, classes were written to separate logic and

data structures. The classes in the application can be broadly divided into those for

UI, background services, data-structure and utilities. A broad class diagram

showing how the activity and services classes are connected is Figure 9.

Figure 8: Use Case Diagram

26

4.2.1 GUI Classes

Classes that display user interface in Android must extend the Activity class or a

class that does so. The following classes are responsible for the user interface in

the application. MainMapActivity, MapStoryActivity, SMSLogActivity,

SetGeofenceActivity, RegisterAssetActivity, SelectAssetActivity,

ViewAssetDetails, ApplicationSetting and AssetPreference.

The MainMapActivity class is the main entry point for the application. It displays

a map and overlays the location markers on the map if they are available. It also

houses the main menu of the application. From the main menu some of the other

activities can be launched. It also houses a sliding layout by the right, with which

visible location markers are toggled on and off on the map. The class diagram of

the MainMapActivity is shown in Figure 10 below.

Figure 9: A broad class diagram

27

The DrawerHandler class is responsible for routing event from the components

inside the slider view to the MainMapActivity class to process. It also handles the

display of an asset image in the slider if available.

The RegisterAssetActivity class displays a form which is filled by the user to

perform asset registration. It then handles the saving of the data entered into the

database. It is also used when if the user needs to edit the details of an already

existing asset. The class diagram of the RegisterAssetActivity class is shown in

Figure 11 below.

Figure 10: MainMapActivity

28

SetGeoFenceActivity class handles the UI and associated logic for creating the

“Geofence”. The class displays a map and detects the latitude and longitude of

the position the user taps on the map. This point is set as the centre of the

geofence. When the radius is changed, the class overlays on the map a

proportionate transparent circle that shows the extent of the geofence. Figure 12

shows the UI that is generated from this class.

Figure 11: RegisterAssetActivity Class diagram

29

SMSLogActivity displays the list of SMS received or sent by the application. It

provides a button with which user can delete the logged SMS.

The MapStoryActivity class is used to animate the display of asset location on the

map, thereby showing sequentially how the map has been updated and time and

speed difference between each data.

4.2.2 Data Classes

The data classes are classes used to hold logically related data. They include

Asset, AssetType, AssetData, SMSlogs, GeofenceData and NMEA class. These

classes have logical equivalence to tables in the database. They transform the data

in the table into Java objects. The first three classes are equivalent to tables asset,

asset_type, asset_data and sms_log table respectively as described in 4.3.2. The

GeofenceData class is class that holds a subset of the Asset data, its geofence

radius and center position. In the case of NMEA, it takes as input the raw NMEA

Sentence described in 3.2.1 and parses and validates the contained data in it such

as latitude, longitude, speed, time, which then becomes values for asset data. The

class diagram of the NMEA is shown in Figure 13 below.

Figure 12: Geofence Creation UI

30

4.2.3 Service Classes

Service classes are responsible for the non-visual part of the application. They

include the MessageProcessingService, SmsMessageSender and

SmsMessageReceiver class. The SmsMessageReceiver class is more accurately

describe as a BroadcastReceiver. It is a service that is started by the system when

a new SMS arrives on the phone. It determines if the message is meant for the

application. If it is, it starts the MessageProcessingService and passes the SMS to

it for further processing. It passes the SMS to the MessageProcessingService class

because the receiver is only started for a few seconds before it is killed by the

system. Figure 14 below shows the process that starts when a new SMS arrives on

the mobile-phone for the application.

Figure 13: NMEA class diagram

31

MessageProcessingService class is a service that processes the SMS messages it

receives from the SMSMessageReceiver class and insert the relevant fields to the

database. It also handles firing of notifications to signal a new SMS for the

application has been received or show that the concerned asset is out of its

geofence.

SmsMessageSender class is started whenever the application needs to be send an

SMS to the tracker. In addition to sending the SMS, it also dynamically register

for a BroadcastReciever for the Sent SMS to receive validation that it was truly

sent and then logs the SMS. The class diagram of the services is shown in Figure

15 below.

Figure 14: Events on new SMS

32

4.2.4 Utility Classes

Some utility classes were written to group functions together according to context.

This is to avoid repetition of the same functions in different classes, these

functions are grouped together according to their context. They include

SQLDBAdapter, StringUtils, MapUtils, Helper and ViewUtils class.

SQLDBAdapter class extends the SQLiteOpenHelper class and is used to manage

database queries. It handles the opening of the database, executing the queries,

converting the result of the queries into Java Object and closing the database

afterwards. This class is needed because it separates database concerns away from

other classes.

The StringUtils, MapUtils, ViewUtils classes are responsible for common

manipulation done on strings, map data and UI components respectively. The

Helper class is a general purpose class that aggregate functions that doesn't fit any

of these three categories. The class diagram of these classes is shown in Figure 16

below.

Figure 15: Services Class diagrams

33

4.3 Data Persistence

Persisting data in an Android application can be done by either by storing it on the

device itself or transferring it through a network connection to a web server. The

latter was not used because the application is designed to be server-less. To store

the data on the device, one has the option of using the provided SQLite database

or creating and writing the data to a self-managed file. Using the database is more

suited to the project, as this will ensure data and referential integrity. It will also

allow complex data manipulation or queries to be easily made when obtaining

data.

4.3.1 SQLite

SQLite is an in-process library that implements a self-contained, server-less, zero-

configuration, transactional SQL database engine [12]. Android provides an

SQLite database with which any application can persist data. This database is

 Figure 16: Utility Classes

34

sand-boxed and can be accessed only from within the application that created it

[6]. While SQLite syntax is similar to that of any other SQL database, some of its

features such as Manifest typing and variable-length records are unorthodox.

Manifest typing implies that the column data-type does not restrict the data-type

that can be accepted [12]. So rather than the column type to be fixed as defined

when creating the table, the column type is more of a suggestion and this is known

as a type affinity [13]. Variable-length records means the length associated with a

column is not enforced and the size taken up by a column varies for each row

[12].

Despite these two unorthodox concepts, the application database design was still

done in the traditional manner. This is because it serves as a sort of documentation

and it expresses the intended logical structures. It poses no problem because

SQLite has a series of rules in mapping the traditional column types to its most

logical type affinity [13].

4.3.2 Entity Diagrams

Four tables were created, namely assets, assetsdata, assetstypes and smslogs. The

first three are used in persisting data related to the location data. The smslogs table

is used to log the SMS sent or received by the application. Figure 17 shows the

entity-relationship diagram of these tables.

35

4.3.3 Data Security

Values stored in the database are visible for anyone that can get hold of the mobile

phone database files. Therefore it is necessary to obfuscate the assets password

from being in plain text in the database. AES encryption was used to obfuscate the

password. The encryption could be done using the asset unique identifier or a

unique identification on the device if available. The encryption is applied before

the password is inserted into the database and decrypted when needed afterwards.

4.4 GUI

The layouts of UI controls in Android is primarily done using XML declarations

and can also be done in code at runtime. Using XML allows the separation of

logic from presentation. So changes can be easily made to the layouts without

modifying the source code. It also allow easy creation of layout for different

screen orientation which is then automatically handle by the framework when the

device orientation changes. Figures 18 and 19 shows such scenario.

 Figure 17: Entity Diagram

36

Figure 18: Sliding Drawer Landscape Layout

Figure 19: Sliding Drawer Portrait

37

Except in some cases, XML was used to create the UI for most of the activities'

layouts.

4.5 Testing

The agile methodology used in the development of the project demands that

testing is done at each cycle of development. For each of the functionalities

implemented, the application is tested and shown to the company's representative.

From the feedback obtained, bugs are fixed and some changes are made before

proceeding to the next feature.

The testing that was done can be categorized into those within the application

itself and that which involves communication with the tracker. The former is

primarily done using the Android provided testing framework and the latter, by

the use of a simulated tracker most often and the real tracker itself.

4.5.1 JUnit Testing

JUnit is an API that enables developers to easily create Java test cases. It provides

a comprehensive assertion facility to verify expected versus actual results [14].

Android provides a testing framework which is based on JUnit, that could be used

to test every aspect of the application at every level [6]. With the JUnit it is

possible to programmatically input text into fields, make selections, click buttons

and navigate the application., thereby making it possible to test the expected

outcome of events. This was particularly useful in guaranteeing some of the

applications logic still works when heavy changes were being made to the source

code. Figure 20 shows the test written to assert that the RegisterAssetActivity

class sets an error message if the user does not select an asset type.

38

It was also used in testing the application reaction to changes in system

configuration like screen orientation, lack of SMS, slow network connection etc.

4.5.2 Tracker Communication Testing

A separate Android application was written to simulate the functionalities of the

tracker. This was written at first when the tracker was unavailable and

subsequently used to avoid incurring too much cost of sending real SMS if the

actual mobile phone and tracker is used. The simulation was possible due to the

fact that Android provides the ability to have two emulator instances which can

communicate with each other via SMS. Also latitude and longitude values could

also be sent to an emulator to simulate its position. The simulator application was

written such that it sends it location information at some intervals as the tracker

would have done using the same NMEA format. Figure 6 is a screen-shot of both

the tracker simulator application and the real application side by side. Testing with

the actual tracker was performed also to ensure that functionalities work as

expected.

Figure 20: RegisterActivity Junit Test case

39

5 CHALLENGES

Every software projects comes with its own unique set of challenges and this

project is not an exception. Many of them where due to insufficient knowledge of

the Android API especially where it diverges from the standard Java way of doing

things. Others were more generic to the implementation of this project and it is

those that will be mentioned.

5.1 Calculation Distance between two locations.

The first challenge was to find a suitable and easy way to calculate the distance

between two geographical location bases on their latitude and longitude. This

problem was solved by using the Great Circle Formula, which assumes the earth

to be sphere. If we take two geographical positions p and q as point on Spherical

Figure 21: Simulator and Application

40

Earth of radius R. It can then be proven that

If p, q represent two point on a sphere with radius R

∣pq∣=
2π R
360

⋅t . . . (1)

in radian

∣pq∣=R⋅t . . . (2)

We can represent these two points as vectors on a sphere from the center as

u⃗ and v⃗ whose spherical coordinate are(r1 ,θ1 ,ϕ1) and (r2 ,θ2 ,ϕ2) respectively

where r is the radius of the sphere

In rectangular cordinates

u = (rcosϕ1sinθ1 , rcos ϕ1 cosθ1 , rsinϕ1)

v = (rcosϕ2sinθ2 , rcos ϕ2 cosθ2 , rsinϕ2) . . . (3)

Using the great circle that passes through these two vectors,

u⃗⋅⃗v=∣u∣∣v∣⋅cost

t=arccos(
u
∣u∣

⋅
v
∣v∣

) . . . (4)

∣u∣=(rcos ϕ1 sinθ1)
2
+(rcosϕ1cosθ1)

2
+(rsinϕ1)

2
=r

∣v∣=(rcos ϕ2sin θ2)
2
+(rcos ϕ2cosθ2)

2
+(rsinϕ2)

2
=r

Therefore normalizing u and v cancels out r, thus

t=arcos [(sinθ1 cosϕ1sinθ2cosϕ2)+(cosθ1 cosϕ1cosθ2cos ϕ2)+(sin ϕ1 sinϕ2)]

On further reduction

t=arcos[cosϕ1 cosϕ2 cos (θ2−θ1)+sinϕ1sin ϕ2] . . . (5)

Hence substituting in [2], we obtain the distance between p and q

∣pq∣=R⋅arcos [cosϕ1cos ϕ2 cos(θ2−θ1)+sinϕ1sinϕ2]

 This is then implemented in code as shown in Figure 22 below.

41

5.2 Creating Boundaries

The creation of circular boundaries on the map presented another mathematical

challenge when the user is about to create a “geofence”. The point the user selects

on the map is considered the centre of the fence, the challenge was to correctly

overlay the circle of the right radius on the map at any zoom level of the map.

This was solved by recognizing that was really needed was the geographical

coordinates of location at 0 or 180 degrees from the centre of the geofence. That

means the longitude remains the same, but the offset on latitude is calculated and

accounted for. Then with the Android provided projection function, these

positions are then converted to pixel position on the screen, those are then used to

draw the circle. The mathematical derivation of this is described thus.

Figure 22: Great circle implementation

42

If p, q represent two point on a sphere and the position of q is unknown

The length of the arc formed from p to q on the great circle joining them is,

∣pq∣=
2π R
360

⋅t . . . (1)

where t is the angle substended by the arc joining them

Hence,

t=
360⋅∣pq∣

2 π R
. . . (2)

Since t is the angle between them, the angle of q can be obtained by adding

or subtracting t degree offset from that of p

As shown in the Figure 13 below, the angle formed by

x ô q=x ô p+ t̂ . . . (3)

where x is on the equator

x ô p is the latitude of p

x ôq is the latitude of q

43

It should be noted that this algorithm also assumes the earth to be a sphere.

The implementation in code of this derivation is presented in Figure 24 below.

Figure 23: New Latitude point

44

5.3 Map Spanning

Markers placed on the application map may sometimes be placed too wide apart,

hence the user may be left wondering where the other markers are located. Hence,

sometimes it is necessary to span the map to fit all the markers on the map. The

API provided function was not particular useful in achieving this result. The

pseudo code shown in Figure 25 below describes the technique developed to

achieve this.

Basically, what it does is to assume the earth as one big flat rectangle, and each

Figure 25: spanning algorithm

Figure 24: Obtaining new latitude on same longitude at some distance

45

latitude and longitude pairs represent point y and x respectively on a Cartesian

graph. The extremes of both axis is obtained, thus we obtain the smallest rectangle

that can fit all the points. The map can then be made to span to the width and

height of this rectangle from the centre of the rectangle.

5.4 UI Controls

The screen size of mobile phones limits the number of UI controls such as

buttons, check-boxes that can be visible to the user at any particular point. This

severely hinders accessibility to frequently used functions. Having exhausted the

six menu items Android allows be visible at once [6], an alternative way of

making the user access other important controls easily had to be found. It also had

to be done without clogging the main map area with the controls.

The solution that was adopted was to make use of the sliding drawer which

Android provides. The sliding drawer hides content out of the screen and allows

the user to bring it back to the screen [6]. The content of the sliding drawer was

then designed to be a layout that can house the needed UI controls. Figure 26

below is a screen-shot of the application when the sliding drawer is expanded

revealing previously hidden controls and the image of the asset. The checkboxes

in the slider toggles the visibility of the markers shown on the map and the button

is used to launch another activity that shows all the information about the asset.

46

5.5 Data Security

Obfuscating data described in 4.3.3 in came with another challenge. A reliable

source of key had to be found and it had to be done without the user being aware

of it. To solve this problem, the key for the encryption is either supplied from a

server each time the application is launched or from a unique identifier on the

device. The first option can not be used in respect to this application as it is

designed to be server-less. The second option is flawed because Android does not

provide a stable, unique device identifier [15]. Hence if the application provides a

unique identifier, then it is used, if not the application defaults to using the asset

unique identifier to encrypt its data. Using the asset unique identifier is a better

than nothing comprise because anyone with access to the source code can decrypt

it.

Figure 26: Slider exposing more controls

47

6 CONCLUSION

This project shows that smart phones such as Android, can be used as an

additional device that can be used for GPS telemetry with SMS as the medium of

data exchange, therefore a better alternative to the current model of WRD asset

tracking solution.

The challenges found in this project were more than anticipated when drawing-up

the project plan. The amount of time needed to write out the thesis document, was

particularly underestimated. In retrospect, writing the thesis document should

have been included as a unit in the work cycle as part of the iterative Agile

approach taken in the project development. A lot of time could have been saved

there. Also the simulator used in testing and providing data to the application

could have been used to expand the use of the application for tracking another

Android mobile phone.

Like any software product or design, there is still room for improvement. Time

has not permitted some of the requirements such as the use of Open-Maps, to be

implemented. The use of Open-Maps will remove the license constraint attached

to the use of Google maps [16] for enterprise application. Due to shortage of

resources, testing has not been rigorous enough. While the application was

thoroughly tested with the emulator and a personal Android device, the

application still needs to be tested on more devices from the plethora of Android

devices in the market, which vary on manufacturer, size, speed and version of the

operating system. These are definitely source of future improvement if customer's

satisfaction is to be guaranteed.

On the tracker side, the cost of maintenance may still be an issue. Consider, a user

that chooses to receive constant updates at the longest interval of five hours for a

whole month, with an average text message price of 0.069€ per piece [17], that

means the user will incur a total of about

For a constant update of ten minutes, the user will receive 4,320 messages which

24 hrs
day

×
1 sms
5hrs

×
0.069 €

sms
×

30 day
month

≃ 10 € /month

48

will cost about 300€ a month. However, with telecommunications companies with

bulk SMS offerings, the bill may be reduce to about 30€ a month. Therefore the

inexpensiveness of the system is dependent on individual usage, frequency of use

and the relative value of asset which is being tracked. Another improvement that

could be made on the tracker is to add other sensor modules to measure other

environmental parameters such as temperature, humidity and pressure, this can

then widen the use of the tracking unit to other markets other than asset tracking.

Overall, the project has a substantial business value because it reduces hardware

and maintenance cost and increases customer's satisfaction.

49

References

[1] Cellular News. Available on the Internet: <URL: http://www.cellular-

news.com/story/29824.php>.

[2] WRD Systems Ltd Company Website. Available on the Internet: <URL:

http://www.wrdsystems.com>.

[3] VisiRun Company website. Available on the Internet: <URL:

http://www.visirun.com/>.

[4] Track Peers. Available on the Internet: <URL:

http://www.trackpeers.com/>.

[5] BizSpeed Company website. Available on the Internet: <URL:

http://www.bizspeed.com/>.

[6] Android developers. Available on the Internet: <URL:

http://developer.android.com/guide/>.

[7] Sayed Y. Hashimi, Satya Komatineni. 2009. Pro Android. .

[8] BBC News. Available on the Internet: <URL:

http://www.bbc.co.uk/news/technology-12481799/>.

[9] W.Frank Ableson, Charlie Collins, Robi Sen. 2008. Unlocking Android A

Developer's Guide. Manning Publications.

[10] Marko Gargenta. 2011. Learning Android. O' Reily.

[11] Sentence description of NMEA. Available on the Internet: <URL:

http://www.gpsinformation.org/dale/nmea.htm#RMC>.

[12] SQLite Official webpage. Available on the Internet: <URL:

http://www.sqlite.org/about.html>.

[13] Jay A. Kreibich. 2010. Using SQLite. O' Reilly.

[14] Erik Hatcher, Steve Loughran. 2002. Java Development with Ant.

Manning Publications.

[15] Android Official blogpost. Available on the Internet: <URL:

http://android-developers.blogspot.com/2011/03/identifying-app-

50

installation>.

[16] Google Maps API. Available on the Internet: <URL:

http://code.google.com/apis/maps/>.

[17] Dna Mobile Company. Available on the Internet: <URL:

http://www.dna.fi/en/privatecustomers/mobilecommunication/priceplans/S

ivut/>.

	1 INTRODUCTION
	1.1 Introduction of WRD Systems Ltd
	1.2 Existing Solutions and the merit for this project
	1.3 Scope and Limitation

	2 MOBILE-PHONE APPLICATION DEVELOPMENT
	2.1 Why Android?
	2.2 Android Development
	2.2.1 Android SDK and Eclipse
	2.2.2 Android Debug Bridge

	3 OVERVIEW AND SYSTEM COMPONENTS
	3.1 Application Requirements
	3.1.1 Asset Management
	3.1.2 Location Management
	3.1.3 Data Management

	3.2 Tracker Communication
	3.2.1 Receiving data
	3.2.2 Sending data

	4 APPLICATION DESIGN AND IMPLEMENTATION
	4.1 System Development Methodology
	4.2 Application Implementation
	4.2.1 GUI Classes
	4.2.2 Data Classes
	4.2.3 Service Classes
	4.2.4 Utility Classes

	4.3 Data Persistence
	4.3.1 SQLite
	4.3.2 Entity Diagrams
	4.3.3 Data Security

	4.4 GUI
	4.5 Testing
	4.5.1 JUnit Testing
	4.5.2 Tracker Communication Testing

	5 CHALLENGES
	5.1 Calculation Distance between two locations.
	5.2 Creating Boundaries
	5.3 Map Spanning
	5.4 UI Controls
	5.5 Data Security

	6 CONCLUSION

