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This thesis project was done in association with Alimetrics Ltd Espoo. The main goals of 
this project was to find out whether commercial ready-to-use polymerase chain reaction 
(PCR) reagents (master mix) fulfill the quality criteria required and whether they can be 
easily implemented for different instruments and matrixes. 
 

PCR is an extensively applied, sensitive and versatile tool used to amplify small amounts of 
DNA to a large number of copies. With the quantitative real-time polymerase chain 
reaction (qPCR) the specific amount of bacteria in the sample matrix can be quantified. 
However, possible reagent derived contaminations are considered to hamper the 
quantification and limit the utility of this otherwise excellent method when analyzing 
samples with a low number of DNA. Furthermore, the change of the both reagent and the 
instrument requires laborious optimization and validation steps that lead to extra costs. 
Therefore, for the end-user it is relevant to discover the reagent that contains as few 
reagent-derived contaminants as possible and can easily be adapted between different 
instruments if necessary.  
 
In this project four commercial reagents based on SYBR Green chemistry were compared 
with three instruments. As samples, nine DNA samples from different origins and three 
standard DNAs were used. No template controls were used to determine the purity of 
reagents. Each reagent with replicates was tested with all three instruments.  
 
According to the results, none of compared reagents were completely pure, each 
containing a foreign reagent-derived DNA that was detected in no template controls. 
Therefore, these reagents were not suitable for matrixes that were known to contain only 
small amounts of DNA. In addition, there were shown differences between instruments 
when tested with same reagent. Hence, none of the compared reagents fulfilled the 
quality requirements; nor can the reagents be implemented for different instruments and 
matrixes. 
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Opinnäytetyö tehtiin Alimetrics Oy:lle Espoossa. Työn päätavoitteina oli selvittää 
täyttävätkö polymeraasiketjureaktiossa (PCR) käytettävät kaupalliset reagenssit (master 
mixit) niille asetettuja laatuvaatimuksia ja ovatko kyseiset reagenssit helposti 
implementoitavissa eri laitteistoille ja matriiseille.  
 
PCR on yleisesti käytetty erittäin tarkka ja monipuolinen DNA –tutkimusmenetelmä, jolla 
voidaan monistaa pieni määrä DNA:ta moninkertaiseksi. Kvantitatiivisella 
polymeraasiketjureaktiolla (qPCR) voidaan määrittää tarkasti näytteessä olevien bakteerien 
määrä, mutta reagenssien sisältämien epäpuhtauksien on havaittu häiritsevän määritystä 
sekä estävän hyvin pieniä bakteerimääriä sisältävien näytteiden luotettavan analysoinnin. 
Lisäksi sekä reagenssin että laitteiston vaihto vaatii työläitä ja lisäkustannuksia tuovia 
optimointeja. Kuluttajan kannalta olisi olennaista löytää reagenssi, joka sisältäisi 
mahdollisimman vähän epäpuhtauksia ja olisi helposti toteutettavissa eri laitteistoilla 
tarpeen niin vaatiessa. 
 
Työssä verrattiin neljää SYBR Green –kemiaan perustuvaa kaupallista reagenssia sekä 
kolmea PCR –laitetta. Vertailussa näytteinä olivat yhdeksän eri DNA-näytettä, kolme 
standardi –DNA:ta sekä kontrollit ilman DNA:ta reagenssien puhtauden määrittämiseksi. 
Jokainen reagenssi rinnakkaisnäytteineen testattiin jokaisella laitteella.  
 
Tulosten mukaan mikään verratuista reagensseista ei ollut täysin puhdas, vaan sisälsivät 
reagenssien mukana tulevaa vierasta DNA:ta, joka voitiin havaita DNA:n monistumisena 
kontrollinäytteissä. Tämän vuoksi testatut reagenssit eivät myöskään olleet ideaalisia 
matriiseille joiden tiedettiin sisältävän vain vähän DNA:ta. Lisäksi myös laitteistolla todettiin 
olevan eroja samalla reagenssilla testattuna. Näin ollen mikään verratuista tuotteista ei 
täytä toivottuja puhtauskriteerejä eivätkä reagenssit ole suoraan implementoitavissa eri 
laitteiden kesken.   
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1 Introduction 

 

 

Polymerase chain reaction (PCR) is an extensively applied tool that is used to amplify a 

small amount of DNA to a large number of copies. PCR is a reaction that requires a 

large number of reagents and optimal conditions. However, this complex method offers 

an exact and versatile tool for DNA analysis. [1, p. 1.] 

 

Quantitative real-time polymerase chain reaction (qPCR) has become an extensively 

applied tool in molecular microbiology. It is a remarkable research tool that can provide 

valuable and reliable information in analyzing microbiological communities. However, 

there are some downsides in this otherwise excellent method. Especially reagent-

derived DNA contamination problems limit the utility of qPCR when a low detection 

limit is required. [2.] 

 

Therefore, it is relevant to discover the most suitable ready-to-use reagent mix, the 

master mix, for the end-user’s purposes at the most reasonable price. Flexible 

transition from one master mix to another could also provide major cost savings in 

routine analytics. The purpose of this project was to discover whether the different 

master mixes can be transferred and adapted to a new qPCR instrument platform 

without laborious assay optimization and validation steps. Moreover, another essential 

rationale was to find out whether some of the existing master mixes meet the required 

quality criteria in terms of minimal background DNA contamination. This would shed 

light on the applicability of these commercial reagents in the analysis of samples with 

low amounts of endogenous bacteria.  

 

Several approaches to reduce the amount of endogenous bacteria DNA in real-time 

PCR have been described in background literature. None of these methods, however, 

proved very effective and reproducible, especially when low copy numbers of bacterial 

ribosomal DNA (rDNA) have to be discriminated from contaminating endogenous DNA 

derived from the PCR reagents. Even if these procedures slightly decrease 

contamination levels, they induce redundant stages and costs to the application 
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protocol. These contamination risks are required to be considered among master mix 

manufacturers. [2; 3; 4; 5; 6.] 

 

This project was performed in association with Alimetrics Ltd.  During the past decade, 

Alimetrics team has actively developed and applied qPCR technique to assess the 

analysis of microorganisms in biological or industrial sample matrices. As they perform 

over 100,000 qPCR reactions annually, the intention is to further improve qPCR 

analytics comprising the science with reduced costs. [7.] 

 

2 Review of the Literature 

 

 

2.1 Polymerase Chain Reaction (PCR) 

 

In 1984 Kary Mullis developed the PCR method that involves the replication of DNA. 

The discovery was awarded the Nobel Prize in chemistry in 1993. The innovation to 

apply the Taq polymerase enzyme in PCR revolutionized the implementation of the PCR 

method. Nowadays there are number of techniques implemented in this widely 

accepted method among research and it can be routinely used in DNA amplification in 

vitro. [1, p. 3; 8, p. 149.] 

 

2.2 Principle of PCR 

 

The PCR analysis consists of three steps. First, the sample solution that contains the 

template DNA is heated (>90 ˚C). Heat breaks the hydrogen bonds between the base 

pairs and double stranded DNA (dsDNA) is denaturized as two single strands. Second, 

the solution is cooled down (50 -75 ˚C). Two single stranded oliconucleotides, i.e. 

primers, excessively present in solution, bind to opposite strands of the template single 

stranded DNA (ssDNA). The annealing temperature is primer-specific and primers are 

required to be complementary with the target strand. The third phase is the primer 

extension. The sample solution is heated again (72 -78 ˚C). At an optimal temperature 

a heat-stable polymerase initiates the DNA synthesis, polymerization, by adding 
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deoxyribonucleotide triphosphates (dNTPs), and a DNA strand identical to the template 

is synthesized. The synthesis initiates from the 3’ end and continues only at a raised 

temperature wherein the interaction between primers and template is highly specific. 

The principle of PCR is illustrated in Figure 1. [8, p. 149–150; 9, p. 385–387; 10, p. 

123–125; 11.] 

 

 
Figure 1. Polymerase chain reaction. [12, p. 12.] 

 

 

The three stages of thermal cycle (Figure 2), melting, annealing and extension are 

repeated in several n amounts of cycles. The optimal number of cycles is dependent on 

the initial concentration of template DNA. A typical PCR procedure consists of 15 to 40 

cycles and a PCR with 30 cycles is completed in 1–2 hours. The order of magnitude for 

the amplification coefficient is 106. Thus, one molecule of the template DNA can be 

polymerized to a million new identical DNA molecules in a short period of time. [9, p. 

385–387; 13, p. 108.] 
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Figure 2. Temperature profile of thermal cycle. [12, p. 41.] 

 

 

After completed, the last cycle final extension is performed. The samples are incubated 

at a higher temperature (72 ˚C or more) from 5 to 15 minutes. In the final extension 

the projecting ends of synthesized dsDNA are filled and the Taq polymerase enzyme 

adds extra A deoxyribonucleotide triphosphates (dATPs) according the base pairing 

rules (A:T and G:C). The polymerase enzyme catalyzes the synthesis of dsDNA from 

the 5’ end to the 3’ end. [1, p. 34; 14.] 

 

In this thesis only the quantitative real-time polymerase chain reaction (qPCR) is 

discussed more closely in chapter 2.4 as it was the technique applied in the 

experiment. 

 

2.3 Master Mix 

 

Other PCR reagents besides the template DNA and paired primers are available as 

ready-to-use PCR premixes, master mixes. The master mix contains a polymerase 

enzyme (Taq polymerase in most cases), dNTPs and a buffer in optimal concentration 

for the reaction. [1, p. 26; 14.] 

 

Commercial master mixes are available in two different kind of assays based either on 

a dsDNA binding dye or on a probe. The mostly applied dsDNA binding dye is SYBR 

Green I. [15.] 
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Master mixes are usually provided as 10X concentrations. In most implementations 1X 

or 2X concentrations are required; thus, the buffer is diluted with sterile laboratory 

water. The final reaction volume is obtained by adding the template DNA and 

complementary primers. [14.] 

 

Nowadays most manufacturers specialized in biochemical solution have a wide 

selection of master mixes optimized for different applications. They are convenient in 

use and enable reproducibility. [16.] 

 

2.3.1 Polymerase enzyme 

 

The polymerase enzyme initiates the primer extension on ssDNA. The polymerase 

extends the annealed primer by adding complementary dNTPs on the template 

sequence (Figure 3). [13, p. 107–108.] 

 

  
Figure 3. Primer extension and dsDNA polymerization by a polymerase enzyme. [1, p. 5.] 

 

 

The first polymerase enzymes used in PCR were heat labile; thus, it was required that 

a fresh enzyme be added on each cycle. Later the discovery of a heat-stable enzyme 

facilitated the PCR protocol. [1, p. 35.] 
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An enzyme originated from bacterium Thermus aquaticus, Taq is the most applied 

polymerase enzyme in PCR. The Taq polymerase enzyme was first isolated by Thomas 

D. Brock. It is highly heat-stable; therefore, it can tolerate the high temperatures of 

thermal cycling without getting denaturized. However, this convenient heat stable 

enzyme has a relatively low replication fidelity as its downside. Hence new heat stable 

polymerase enzymes are isolated in order to improve the proofreading activity. [17, p. 

245–246.] 

 

2.3.2 Deoxyribonucleotide triphosphates (dNTPs) 

 

The presence of all four deoxyribonucleotide triphosphates (dATP, dCTP, dGTP and 

dTTP) in reaction is essential for new DNA strand formation so that the DNA synthesis 

and amplification can take place. In general concentrations between 50 –200 μM are 

applied. It is also important to have all four dNTPs present in equimolar concentration. 

As dNTPs interact with Mg2+ ions, their concentration level must exceed the Mg2+ 

concentration. [1, p. 25; 8.] 

 

Too low concentrations of dNTPs in reaction may decrease the efficiency, while too 

high concentrations can hamper the fidelity of PCR. [1, p. 25.] 

 

2.3.3 Magnesium 

 

The magnesium concentration affects the reaction specificity and efficiency. The 

presence of Mg2+ in the reaction is crucial for the polymerase action of the Taq 

polymerase enzyme as a soluble complex is formed between the Mg2+ ions, the 

polymerase and the DNA. In general commercial buffers contain 1.5 mM of Mg2+ in 1X 

concentration. However, Mg2+ has an equimolar binding with dNTPs and, therefore, the 

dNTP concentration in the buffer affects the free Mg2+ concentration. [1, p. 24; 14.] 

 

A low Mg2+ concentration may help in eliminating non-specific priming,although too 

low concentration of free Mg2+ ions in reaction may induce a low yield of the desired 

product. In high Mg2+ concentrations (excess Mg2+ ions in reaction) the Taq 
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polymerase enzyme has higher probability to make errors. Excess Mg2+ ions can also 

hamper the denaturation during amplification. [1, p. 24; 15.] 

 

DNA polymerases are relatively sensitive to the fluctuation of the Mg2+ ion 

concentration; thus, it should be optimized individually for each template-primer 

combination. [13, p. 110.] 

 

In master mixes, magnesium is present as Magnesium chloride (MgCl2). Some buffers 

are supplied with a separate magnesium stock solution. This allows free optimization of 

the Mg2+ concentration for the end user. Thus, it is always important to make sure 

whether magnesium is added in the commercial master mix used or not. [1, p. 25; 15.] 

 

2.3.4 Primers 

 

The primer, a short nucleotide complementary to the target sequence of the template 

DNA acts as a starting point for new dsDNA synthesis. In DNA amplification there are 

always two kinds of primer used, forward and reverse. In general, primers are from 10 

to 30 base pairs (bp) long. The length of a primer is important since it is required to 

find and match the desired sequence in the template. The length of the primer 

increases the specificity as, on the other hand, a shorter primer has more options for 

binding and, thus, a higher chance to make mistakes. [1, p. 26; 12, p. 12.] 

 

Two important points must be considered when new primers are designed. First, the 

primers should not be complementary with each other or with itself. Thus, the 

possibility of primers to join together (self-priming) is avoided and the formation of 

primer dimers is hindered. As primer dimers take a conformation as a dsDNA (Figure 

4), it results in giving false positive signals when the SYBR Green I chemistry is applied 

in quantification. [1, p. 27; 12, p.12; 13, p. 110.] 
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Figure 4. Primer dimer formation due to self-priming resulting in a false positive signal. [1, p. 

26.] 

 

 

Another issue that needs to be taken into account is A:T and G:C pairing. Melting 

temperatures (Tm) between the forward and the reverse primers should not vary more 

than 5 ˚C as primers are required to melt and anneal at nearly equal temperatures. Tm 

is the temperature where the primer is half adhered to the template DNA and half 

loose in the reaction solution. Since the primer with a higher content of G:C pairing 

requires an increased temperature to melt, the number of pairings in both primers 

should be nearly equal. Tm can be calculated according Equation 1. For primer design 

there are generally used commercial computer programs. [1, p. 27–28; 12, p. 12; 13, 

p. 110.] 

 

     (   )   (   )    (1) 

 

Where 

 (A+T) is the number of A and T bp in primer sequence 

 (G+C) is the number of G and C bp in primer sequence 

  

However, calculated Tm is usually too high for annealing. Therefore annealing 

temperature Ta is generally calculated from Tm according equation 2. [13, p. 110.] 

 

               (2) 

 

In some cases even a lower Ta is required; therefore, it is specified experimentally. [13, 

p. 110.] 
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2.3.5 Buffer 

 

Tris-HCl is a bipolar buffer that has a pH range from 6.8 to 8.3. The function of Tris-

HCl in buffer is to keep the pH at an optimal level for polymerase activity. The optimal 

pH and ionic strength of the buffer may vary by the polymerase used in the reaction. 

[1, p. 24.] 

 

The presence of salt ions in the solution is known to lower the melting temperature 

(Tm). Potassium Chloride (KCl) is also considered to contribute to primer and 

polymerase annealing. However, too high salt concentrations may result in aberrant 

products through primer mismatching. [1, p. 24.] 

 

2.4 Quantitative Real-Time Polymerase Chain Reaction (qPCR) 

 

qPCR has become an extensively applied tool in molecular microbiology that allows a 

quantitative measurement of the desired DNA in a homogenous assay. It is considered 

to be the most advanced method for DNA detection. In qPCR a small amount of the 

specific fragment of the DNA can be rapidly amplified and the product measured as it 

emerges (Figure 5). The detection is enabled by several chemistries that generate a 

fluorescent signal. qPCR has many advantages when compared to traditional PCR 

methods. It enables fast results with high sensitivity, specificity, throughput and 

absolute quantification. Furthermore, the specificity can be adjusted from individual 

bacterial strains to the phylum level or for the quantification of functional genes. [7; 

18; 19; 20;] 

 

 
Figure 5. Amplicon measurements in traditional and real-time PCR. [7]. 
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qPCR analytics comprises a number of applications used in various fields of diagnostics, 

e.g. medicine, forensic, molecular science and testing. It is used routinely in 

laboratories for example for pathogen detection, viral quantification, quality controlling 

and assay validation. [8, p. 151; 9; 15; 18.] 

 

2.4.1 DNA amplification in qPCR 

 

When DNA is amplified, the run has three different phases: exponential, linear and 

plateau (Figure 6). In exponential phase, if a 100% reaction efficiency is assumed, the 

product is doubled in each cycle repeated. In qPCR data is measured in this phase as it 

provides the most reliable data for quantification. The exponential amplification of PCR 

can be described according Equation 3. [18; 21, p. A-8.] 

 

      (    )
       (3) 

 

where 

 Xn = number of target molecules cycle n (in order n ≥ m) 

 Xm = number of target molecules cycle m (in order m ~ n) 

 EX = target amplification efficiency (from 0 to 1) 

 n – m = number of cycles run between cycle m and cycle n 

 

In linear phase amplification the process has already consumed some of the reagents. 

Hence, the reaction starts to slow down and growth does not occur in exponential 

scale anymore. The plateau phase, also known as the end point phase, is the last 

phase in amplification where the reaction reaches its end and no new dsDNA is 

synthesized. [18.] 
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Figure 6. Three phases in DNA amplification. [18.] 

 

 

As quantification data is collected in exponential phase of amplification, it is necessary 

to determine the level of detection, the Threshold line. The Threshold line is the level 

in which the fluorescent intensity is greater than the background. The Cycle Threshold 

(Ct) is the amplification cycle where the sample reaches the Threshold line. The 

Threshold line and Ct are illustrated in Figure 7. [18.] 

 

 
Figure 7. The Threshold line and Cycle Threshold in amplification plot. [18.] 
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The Ct values of samples with unknown concentration are compared to known 

standards series (Figure 8). Thus, the exact concentration of samples can be 

determined. [18.] 

 

 
Figure 8. Amplification plot of Clostridium leptum standard series. The curves with Ct value of 7 
contains 1∙10 8 copies, Ct value 10 1∙10 7 copies, Ct value between 13 and 14 1∙10 6 copies, Ct 
value 17 1∙10 5 copies, Ct value between 20 and 21 1∙10 4 copies, Ct value between 23 and 24 
1∙10 3 copies and Ct value between 27 and 28 1∙10 2 copies. (Copyright Alimetrirics Ltd.)  

 

 

2.4.2 SYBR Green I 

 

SYBR Green I, (2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2, 3-dihydro-3-methyl 

(benzo-1, 3-thiazol-2-yl) methylidene]-1-phenylquinolinium), is a green-emitting 

cyanine dye. It binds non-specifically to dsDNA and emits a fluorescent signal. 

Therefore the intensity of fluorescence is proportional to the amount of dsDNA in 

amplification (Figure 9). [22; 23; 24.] 
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Figure 9. SYBR green I dye chemistry. [18.] 

 

 

SYBR Green I is a simple and economical solution as qPCR chemistry since there is no 

probe required. It is sensitive, flexible and safe to use and it does not inhibit PCR. 

However, the use of SYBR Green I may cause false positives if primer dimers or other 

artifacts are synthesized during amplification. This may prevent the use of SYBR Green 

I chemistry in some situations. [11; 19; 23; 25;] 

2.4.3 qPCR instrumentation 

 

As the implementation of the qPCR analysis is promptly increasing in the field of 

research, instrumentation and techniques are getting more advanced. Higher 

throughput time for samples, simplicity and fast analyzing time are due to a high 

degree of automation. As PCR analysis gets more automated, the hands-on-time of 
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samples decreases. Therefore, the possibilities of contaminations due to handling are 

reduced. [12, p. 312–313; 19.] 

 

The qPCR analysis is most commonly performed with a 96-well formatted instrument. 

The 48- and 384-well formats with a reaction volume from 5 to 100 µl are also 

implemented. Instruments consist of a thermal block cycler (Peltier element block or 

heated air), an excitation source (a tungsten halogen, a LED, a high intensity xenon 

lamp or an argon ion laser) and a detection unit (a CCD camera, a PMT, emission 

filters or photodetectiondiodes). Excitation spectrums can be selected with various 

filters with a wavelength range from 350 nm to 750 nm. The data is collected and 

analyzed by separate a desktop the data station. [16; 26; 27.] 

 

Various manufacturers, such as Applied Biosystems, Hybaid, Eppendorf, Stratagene 

and Roche, supply PCR instruments. Figure 10 illustrates a Roche LightCycler® 480 

instrument that was applied in this project. [1, p. 57–58.] 

 

 
Figure 10. Roche LightCycler® 480 Instrument.[16.] 
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2.5 16S ribosomal RNA gene 

 

The living cells can be classified in three different families, domains: the Bacteria, the 

Eucaryota and the Archaea (Figure 11). Bacteria are further classified as prokaryotes 

and all the animal cells and fungi as eukaryotes. [28, p. 1.] 

 

 
Figure 11. Phylogenetic tree of families. [29.] 

 

 

The cell structure of prokaryotes differs from eukaryote by several features. The 

prokaryotic cell is not surrounded by the nuclear membrane in contrast to eukaryotic 

cell. The formation of chromosomes also varies as they are circular in prokaryotes and 

linear in eukaryotes. The cytoplasm of eukaryotes contains cell organelles such as 

mitochondria, Golgi apparatus and peroxisomes. In prokaryotes the cytoplasm is highly 

undifferentiated. Prokaryotic cells, thus bacteria also, are surrounded by a cell wall 

which is more substantial compared to the plasma membrane surrounding eukaryotic 

cells. [28, p. 2.] 

2.5.1 Ribosome and ribosomal RNA in prokaryotes 

 

The ribosome is the part in the cell that where the protein synthesis occurs. The 

messenger RNA (mRNA) delivers the genetic information to ribosomes. The ribosome 
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attaches itself on the mRNA and starts to read the information of base sequences that 

the mRNA contains. [13, p. 20; 30.] 

 

The ribosomal RNA (rRNA) is the component in ribosomes that catalyzes the peptide-

bond formation. [8, p. 25.] 

 

The formation of a prokaryotic ribosome consists of two subunits, a large subunit (50S) 

and a small subunit (30S). The 16S rRNA molecule is located in small 30S subunit with 

21 different proteins. The 16S gene is one of the most conserved genes. The 16S gene 

marks evolutionary distances and relatedness of different organisms, even though the 

absolute rate of change in the 16S gene between species is unknown. Therefore, the 

16S gene is an excellent tool for bacterial identification at genus and species level. [8, 

p. 823; 30.] 

 

2.5.2 Universal primers for 16S rRNA gene 

 

In 1980s it was evidenced that a comparison of the stable part of the genetic code can 

determine phylogenetic relationships of all life forms. Since then, the 16S ribosomal 

RNA gene has been found to be most commonly used part of the gene for this 

purpose. [30.] 

 

Bacterial detection by PCR is extensively applied by using the 16S ribosomal RNA (16S 

rRNA) gene as a target sequence. In prokaryotes, the 16S rDNA occurs in at least one 

copy in a genome and contains several conserved regions, which have remained 

constant throughout the evolution nearly in all bacterial species. Thus, the universality 

of these gene fragments makes the 16S rDNA an ideal target in the qPCR when the 

intention is to analyze the total bacterial load in the samples of interest. The length of 

the 16S rRNA gene is approximately 1,550 bp and between the conserved regions 

there are located variable regions that enable group- or species-specific targeting 

(Figure 12). [2; 3; 4; 7.] 
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Figure 12. Conserved and variable regions in 16S rRNAgene. [7.] 

 

 

However, the performance of this broad-range rDNA PCR approach, especially when 

applied to samples with low bacterial counts, can be crucially affected by the 

amplification of the contaminant DNA present in the PCR reagents. In a number of 

occasions cross-reaction with the unwanted DNA hampers the applicability of the qPCR 

technique by reducing the assay sensitivity as well as producing false-positive results. 

[2; 3; 4.] 

 

The 16A rRNA gene-targeted universal primers are applied to estimate the total 

bacterial load in complex communities. Several studies have reported the use of more 

than a single set of primers when bacteria were detected. However, conserved regions 

of the 16S rDNA offer a tool for bacterial detecting with just one primer set as well. 

The variation in the number of copies of the 16S rRNA operons between species limits 

the absolute determination of bacteria in a sample matrix by the qPCR. The qPCR is, 

nevertheless, still considered to be the most precise and sensitive method applied 

when detecting bacteria from a difficult matrix with a multi-species population and 

possible impurities. Bergey’s Manual of Systematic Bacteriology offers great 

information on universal 16S priming since it covers references on bacterial taxonomy 

and uses the 16SrRNA gene sequence analysis as the cornerstone. [6; 30.]  

 

2.6 Reagent derived contamination 

 

Difficulties in reaching high sensitivity and clear negative controls when ready-to-use 

PCR reagents are applied in qPCR analytics have been reported. Contamination can be 

potentially introduced from several sources in the reagent manufacturing process, e.g. 

water, plastic ware and inappropriate process conditions. [2; 3; 6.] 
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The contamination of the master mix with an unwanted DNA is commonly derived from 

the manufacturing process of enzymes. More closely it has been indicated that there 

are contaminations with a bacterial DNA in Taq polymerase enzymes, originated from 

its bacterial production host. As mentioned previously, there have been several 

approaches to reduce the unwanted DNA in PCR reagents, none of which are reported 

with outstanding results. These include the use of a long-wave UV light, ultra filtration, 

incubation with different restriction enzymes and the use of DNA cross-linking dyes 

such as propidiummonoazide. Currently only two different methods, DNAse and 

ethidiummonoazide treatments, have shown encouraging results in Taq polymerase 

decontamination. It should also be taken account that the degree of reagent-derived 

contamination may be batch-dependent. Thus optimization in decontamination 

procedures may also be required since unnecessary excessive consumption increases 

pre-PCR expenses. [2; 3; 4; 5; 31.] 

 

Since the PCR procedure is delicately disturbed by possible contaminants in the 

reaction, the correct working methods should be taken into account. Negative 

templates or negative primer controls are an efficient way to observe the possible 

contamination of reagents. [13, p. 109.]  

 

3 Aims of the Study 

 

 

The use of commercial master mixes is widely implemented in PCR analytics. However, 

there are several reports considering the contamination problems in commercial PCR 

reagents. Even though reagent manufacturers inform that their reagents fulfill the 

quality criteria set for the PCR analysis, the contaminations are still noticed in 

numerous occasions. Other problems occurred applying the PCR method are the lack 

of universality of master mixes in different PCR instruments and the suitability of 

master mix components for the amplification of bacterial DNA deriving from different 

matrices. 
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When changing from one master mix to another with same instrumentation or from an 

instrument to another with same master mix, there are laborious optimizations 

required. After all, the idea in the implementation of ready-to-use reagents and kits 

should be their simplicity and adaptability. 

 

The general goals of this study were i) to find out whether the quality criteria promised 

by manufacturers were fulfilled and ii) to test if the master mixes were easily 

implemented to different instrumentations without laborious optimizations. 

 

4 Materials and Methods 

 

 

4.1 Study design 

 

A total of four commercial PCR master mixes based on the SYBR Green I chemistry 

from different suppliers and referred as 1, 2, 3 and 4 were used. Two replicate plates 

with three different instruments were compared. Each plate contained 27 negative 

template controls (NTCs), 16 standards and 45 DNA extracts of different matrix types. 

 

All reactions were performed in a 2X Master mix concentration in a total volume of 

15μl. 

 

NTCs (Sigma-Aldrich mol.g. water) were used to control the background 

contamination. 

 

4.2 Samples 

 

All the DNA samples used in this study were provided by Alimetrics Ltd. The template 

DNAs were extracted from complex communities of DNA originated from different 

environments (Table 1). Each reaction contained 5μl of template.  

 

  



20 

 

 

Table 1. DNA sample origin and numbering.  

Sample DNA origin 

Matrix 1 Chicken caecum bacterial DNA 

Matrix 2 Chicken ileum bacterial DNA 

Matrix 3 Bacterial DNA from rye doe 

Matrix 4 Bacterial DNA from end product of card board process a 

Matrix 5 Bacterial DNA from end product of card board process b 

Matrix 6 Bacterial DNA from end product of card board process c 

Matrix 7 Fish digesta bacterial DNA 

Matrix 8 Human fecal bacterial DNA 

Matrix 9 Pig ileum bacterial DNA  

Matrix 10 No template control 

Matrix 11 Standard 1, Clostridium leptum 

Matrix 12 Standard 2, Bacillus subtilis 

 

 

Each matrix was tested in various dilutions (Table 2). 

 
Table 2. Dilution numbering and coefficients.  

Dilution 

number 

Dilution 

coefficient 

1 10 

2 100 

3 1000 

4 10000 

5 100000 

6 1000000 

7 10000000 

8 100000000 

9 16 

10 No dilution 

 

 

The plate configuration is illustrated in Figure 13. The standards are highlighted with 

the green color and the NTCs with the yellow color.  
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Figure 13. Plate set-up of the qPCR analysis. 
 

 

DNA extraction and purification 

 

As pretreatment, the sample was pipetted in an Eppendorf tube together with a 

washing buffer and ethylenediaminetetraacetic acid (EDTA). The solution was vortexed 

and centrifuged. The liquid phase was pipetted away and the pellet was stored for DNA 

extraction. 

 

In DNA extraction the pellet from the previous step was first suspended in a Tris-HCl 

buffer with EDTA and the Proteinase K enzyme. The mix was vortexed and incubated. 

After incubation the cells were dispersed and the DNA was extracted with a phenol-

chloroform-isoamyl alcohol mixture. The extraction phase was repeated to ensure the 

purity and yield of the product. Next, the water phase was collected and the DNA was 

precipitated with natrium chloride (NaCl) and isopropanol. The precipitate was 

centrifuged to the bottom of the Eppendorf tube, the liquid phase was tossed away 

and the precipitated DNA was washed twice with ice cold ethanol. The DNA pellet was 

dried and suspended in a TE buffer (Tris-Hcl with EDTA). 

 

 

4.3 Primers 

 

The 16S rRNA-targeted universal forward and reverse primers, Ali 613 and Ali 614, 

were used. Sequences of primers are illustrated in Table 2. The end product with these 

primers is 466 bp long. In each reaction primer, the concentrations were 20 pmol/μl.  

1 2 3 4 5 6 7 8 9 10 11 12

A matrix 11 matrix 4 matrix 5 matrix 6 matrix 9 matrix 1 matrix 2 matrix 8 matrix 7 matrix 3 matrix 12

dil 1 dil 9 dil 9 dil 9 dil 2 dil 2 dil 2 dil 2 dil 1 dil 1 dil 1

B matrix 11 matrix 4 matrix 5 matrix 6 matrix 9 matrix 1 matrix 2 matrix 8 matrix 7 matrix 3 matrix 12

dil 2 dil 9 dil 9 dil 9 dil 3 dil 3 dil 3 dil 3 dil 2 dil 2 dil 2

C matrix 11 matrix 4 matrix 5 matrix 6 matrix 9 matrix 1 matrix 2 matrix 8 matrix 7 matrix 3 matrix 12

dil 3 dil 9 dil 9 dil 9 dil 4 dil 4 dil 4 dil 4 dil 3 dil 3 dil 3

D matrix 11 matrix 4 matrix 5 matrix 6 matrix 9 matrix 1 matrix 2 matrix 8 matrix 7 matrix 3 matrix 12

dil 4 dil 9 dil 9 dil 9 dil 5 dil 5 dil 5 dil 5 dil 4 dil 4 dil 4

E matrix 11 matrix 4 matrix 5 matrix 6 matrix 9 matrix 1 matrix 2 matrix 8 matrix 7 matrix 3 matrix 12

dil 5 dil 9 dil 9 dil 9 dil 6 dil 6 dil 6 dil 6 dil 5 dil 5 dil 5

F matrix 11 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 12

dil 6 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 6

G matrix 11 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 12

dil 7 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 7

H matrix 11 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 10 matrix 12

dil 8 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 10 dil 8
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Table 2. Ali 613 and Ali 61416S rRNA universal primer sequences. 

Primer Sequence 

ALI 613 Forward TCCTACGGGAGGCAGCAGT 

ALI 614 Reverse GGACTACCAGGGTATCTAATCCTGTT 

 

The Ali 613 and Ali 614 primers  

 

Ali 613 and Ali 614 primers are designed to attach flanking the variable regions V3 and 

V4.  These regions are highlighted with the red color in Figure 14.  

 

 
Figure 14. Binding sites of the universal primers applied in this study. 

 

 

4.4 Standards 

 

As controlled standards, a 10-fold dilution series of 16S rRNA genes from three 

individual bacterial species, Bacillus subtilis, Clostridium leptum and Lactobacillus 

crispatus, were applied (Table 3). 

 

Table 3. Number of copies in standard dilution series 

Dilute Number of copies 

1 1∙108 

2 1∙10 7 

3 1∙106 

4 1∙105 

5 1∙104 

6 1∙103 

7 1∙102 

8 1∙101 
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Each reaction contained 5μl of standard.  

 

 

4.5 Instrumentation 

 

Quantitative Real-Time PCR amplification reactions were performed on 96-well plates 

(Thermo Scientific AB gene PCR Plate) with three different instruments: the Applied 

Biosystems ABI PRISM 7000 Sequence Detection System, the Eppendorf Mastercycler® 

ep realplex ^2 and the Roche LightCycler®480. Each plate was sealed. 

 

Table 4. Instruments and numbering. 

Instrument number Instrument 

1 Applied Biosystems ABI PRISM 7000 

Sequence Detection System 

2 Eppendorf Mastercycler® ep realplex ^2 

3 Roche LightCycler®480 

 

 

The amplification comprised an initial hold step at 50 ˚C for 2 minutes, initial 

denaturation at 95 ˚C for 10 minutes, annealing and synthesis at 58˚C for 1 minute. 

The denaturation between cycles was performed at 95 ˚C for 15 seconds. Thermal 

cycles were run for 40 times. The melting curve analysis was not performed. 

 

4.6 Factual number of copies 

 

The detected Ct values of the samples were deduced to factual copy numbers from the 

Ct values of the standards. The intercept and slope of standard dilutions series were 

calculated and the number of copies were calculated according to Equation 4. 

 

            (4)  

 

Where 

 a is the intercept of standard Ct values and known number of copies 

 b is the slope of standard Ct values and known number of copies 
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x is the detected Ct value of sample 

 

As the Ct values detected were from samples with various dilutions, the dilution 

coefficients were taken into account to achieve the factual number of copies for each 

sample according equation 5. 

 

            
          (5) 

 

Where 

 a is the intercept of standard Ct values and known number of copies 

 b is the slope of standard Ct values and known number of copies 

x is the detected Ct value of sample 

z is the dilution coefficient 

 

Thus, all results are comparable.  

 

4.7 Statistical analysis 

 

One way ANOVA (analysis of variance) was used to find out whether differences in 

master mixes and instruments are significant. Differences were considered significant 

when P < 0.05. Statistical evaluations were calculated with data analysis and statistical 

software Stata. 

 

ANOVA is one of the most applied statistical analysis method and it is suitable for 

various kinds of studies. [32, p. 1.] 

 

ANOVA places no restriction on the number of groups or conditions that 

may be compared, while factorial ANOVA allows examination of the 

influence of two or more independent variables or factors on a dependent 

variable. [32, p. 1.] 

 

 



25 

 

 

5 Results and discussion 

 

 

Firs, ANOVA was executed t for all samples to find out whether there are significant 

differences in master mixes and in instrumentation at a general level. Table 5 displays 

the results (p-values) and those results that indicate significance in either master mix 

or instrument are highlighted with the yellow color  
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Table 5. P-values for master mixes and instruments by matrix. 

 

 

 

The results in Table 5 indicate that there are significant differences in the master mix 

in numerous matrixes.  For matrixes 2, 3, 4, 5, 6, 11, and 12 the master mix showed 

significance. As matrixes 4, 5 and 6 (Bacterial DNA samples from end product of card 

board process), significance was expected as they would be the matrixes with the 

lowest number of copies detected (when NTCs were not taken into account). The 

smaller the number of copies in the sample, the higher is the variance in results; thus, 

different master mixes gives different levels of results for such samples. The 

significance of master mix can also result from differences between matrixes. Since 

DNA samples in the experiment were derived from various origins, some of them may 

contain impurities in spite of properly executed extraction protocol. Impurities can act 

as inhibitors in the reaction, inhibiting the activity of polymerase enzyme or primers. 

Particularly ileum samples are challenging since they can contain plenty of possible 

disruptive components (Matrix 2). However, this presumption cannot be proven by this 

experiment.  

 

Note that NTCs (Matrix 10) are missing from Table 5 since the observations that are 

based on them and their significance is discussed later.  

 

In instrumentation, significance was found for matrixes 4, 5, 6 and 9. Again matrixes 4, 

5 and 6 were expected to produce such results because of their low number of copies. 

This results in a conclusion that different instruments have different levels of sensitivity 

Matrix p-value p-value

master mix instrument

1 0,0767 0,1568

2 0,0261 0,1367

3 0,0026 0,3009

4 0,0016 0,0000

5 0,0000 0,0016

6 0,0000 0,0001

7 0,5360 0,9487

8 0,0894 0,2355

9 0,151 0,0057

11 0,0410 0,2864

13 0,0741 0,4154
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and without optimizations that result in insufficient detecting when a low detection 

limit is required. 

 

5.1 Differences of master mixes between instrumentation 

 

Different master mixes were compared in all matrix types with each instrument 

individually to find out whether the master mixes show differences between 

instruments. Tables 6, 7, and 8 present the results for all matrixes with each master 

mix and each instrument. 
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Table 6. Variations between master mixes by matrix in Instrument 1. 

 

Matrix  Matrix  

1   Mastermix |        Mean   Std. Dev.       Freq. 2   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   8.450e+09   2.750e+09          10           1 |   1.233e+08    53506074          10

          2 |   1.218e+10   5.473e+09          10           2 |   2.422e+08   2.336e+08          10

          3 |   1.527e+10   1.759e+10          10           3 |   1.233e+08    82310388           9

          4 |   9.920e+09   5.754e+09          10           4 |   3.317e+08   4.086e+08          10

------------+------------------------------------ ------------+------------------------------------

      Total |   1.146e+10   9.719e+09          40       Total |   2.072e+08   2.500e+08          39

p-value 0,4367 p-value 0,1864

3   Mastermix |        Mean   Std. Dev.       Freq. 4 Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   2.630e+09   1.095e+09          10           1 |       17960   5104.9431          10

          2 |   3.610e+09   1.307e+09          10           2 |        3284   3922.4828          10

          3 |   4.730e+09   1.310e+09          10           3 |       14180   5438.5047          10

          4 |   2.039e+09   9.375e+08          10           4 |       17600   2366.4319          10

------------+------------------------------------ ------------+------------------------------------

      Total |   3.252e+09   1.529e+09          40       Total |       13256   7342.4267          40

p-value 0,0001 p-value 0,0000

5   Mastermix |        Mean   Std. Dev.       Freq. 6   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |        2876   1459.9787          10           1 |        2890    993.8142          10

          2 |       10050   3857.8203          10           2 |       10060    4140.102          10

          3 |        3136   2708.2245           5           3 |        2838   2314.6749           5

          4 |       22100   7978.4432          10           4 |       18700    4667.857          10

------------+------------------------------------ ------------+------------------------------------

      Total |   10455.429   9323.1503          35       Total |   9448.2857   7453.6973          35

p-value 0,0000 p-value 0,0000

7   Mastermix |        Mean   Std. Dev.       Freq. 8   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.103e+09   2.348e+09          10           1 |   3.590e+09   1.627e+09          10

          2 |   2.411e+09   5.054e+09          10           2 |   5.560e+09   1.972e+09          10

          3 |   1.677e+09   3.466e+09           8           3 |   3.810e+09   2.695e+09          10

          4 |   1.193e+09   2.514e+09          10           4 |   4.330e+09   1.296e+09          10

------------+------------------------------------ ------------+------------------------------------

      Total |   1.592e+09   3.414e+09          38       Total |   4.323e+09   2.042e+09          40

p-value 0,8325 p-value 0,1303

9   Mastermix |        Mean   Std. Dev.       Freq. 11   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   2.102e+08   1.582e+08          10           1 |   4.713e+08   3.369e+08          16

          2 |   3.301e+08   2.014e+08          10           2 |   4.324e+09   8.799e+09          16

          3 |   1.750e+08   1.186e+08           8           3 |   7.129e+09   1.608e+10          15

          4 |   4.350e+08   3.943e+08          10           4 |   1.751e+10   4.023e+10          16

------------+------------------------------------ ------------+------------------------------------

      Total |   2.935e+08   2.591e+08          38       Total |   7.362e+09   2.258e+10          63

p-value 0,1127 p-value 0,1708

13   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------

          1 |   1.526e+09   1.297e+09          16

          2 |   5.589e+09   1.024e+10          16

          3 |   2.969e+09   3.423e+09          14

          4 |   1.454e+10   3.291e+10          16

------------+------------------------------------

      Total |   6.259e+09   1.793e+10          62

p-value 0,1701



29 

 

 

With Instrument 1 (Table 6) significant differences between master mixes occurred in 

matrixes 3, 4, 5 and 6. In Matrix 3, Master mix 3 produced a higher result in the 

number of copies compared to others. In Matrix 4, Master mix 2 produced a 

significantly lower result. In matrixes 5 and 6 Master mix 4 produced higher results 

than other master mixes.  

 

Matrixes 4, 5, and 6 were known to be more difficult matrixes compared to other ones 

because of their relatively low number of copies. 

 

However, in matrixes 5 and 6 the lower number of frequencies in comparison with 

other master mixes may hamper the reliability of these results. 
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Table 7. Variations between master mixes by matrix in Instrument 2. 

 

  

Matrix  Matrix  

1   Mastermix |        Mean   Std. Dev.       Freq. 2   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   9.430e+09   4.057e+09          10           1 |   1.242e+08    51341558          10

          2 |   1.080e+10   4.109e+09          10           2 |   2.594e+08   2.407e+08          10

          3 |   6.840e+09   7.123e+09           5           3 |   1.544e+08    94283084           5

          4 |   9.210e+09   6.732e+09          10           4 |   6.522e+08   1.140e+09          10

------------+------------------------------------ ------------+------------------------------------

      Total |   9.389e+09   5.324e+09          35       Total |   3.180e+08   6.404e+08          35

p-value 0,621 p-value 0,2622

3   Mastermix |        Mean   Std. Dev.       Freq. 4   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   3.350e+09   2.205e+09          10           1 |       17990   11775.346          10

          2 |   3.940e+09   1.571e+09          10           2 |        4748   4908.6789          10

          3 |   4.960e+09   1.284e+09           5           3 |       25200   18444.511           5

          4 |   1.715e+09   1.213e+09          10           4 |       45900   10503.439          10

------------+------------------------------------ ------------+------------------------------------

      Total |   3.281e+09   1.947e+09          35       Total |   23210.857   19302.229          35

p-value 0,0051 p-value 0,0000

5   Mastermix |        Mean   Std. Dev.       Freq. 6   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |        2443   1532.4059          10           1 |        2960    2070.534          10

          2 |       12950   5801.5802          10           2 |       13580   3548.0198          10

          3 |        4820   3106.7668           5           3 |        4696   3672.8844           5

          4 |       52000    18299.97          10           4 |       52400   14369.721          10

------------+------------------------------------ ------------+------------------------------------

      Total |   19943.714   23230.448          35       Total |       20368   22389.561          35

p-value 0,0000 p-value 0,000

7   Mastermix |        Mean   Std. Dev.       Freq. 8   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.452e+09   2.736e+09           8           1 |   3.590e+09   1.971e+09          10

          2 |   1.607e+09   3.343e+09          10           2 |   6.590e+09   4.032e+09          10

          3 |   1.963e+09   4.381e+09           5           3 |   2.214e+09   8.891e+08           5

          4 |   9.123e+08   1.789e+09          10           4 |   4.790e+09   2.603e+09          10

------------+------------------------------------ ------------+------------------------------------

      Total |   1.413e+09   2.867e+09          33       Total |   4.593e+09   3.087e+09          35

p-value 0,9192 p-value 0,0328

9   Mastermix |        Mean   Std. Dev.       Freq. 11   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   2.549e+08   2.417e+08          10           1 |   4.831e+08   3.889e+08          16

          2 |   3.914e+08   2.277e+08          10           2 |   5.535e+09   1.200e+10          16

          3 |   1.844e+08   1.455e+08           5           3 |   1.129e+10   2.465e+10           8

          4 |   6.713e+08   9.335e+08          10           4 |   5.272e+10   1.344e+11          16

------------+------------------------------------ ------------+------------------------------------

      Total |   4.028e+08   5.450e+08          35       Total |   1.840e+10   7.437e+10          56

p-value 0,2712 p-value 0,1804

13   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------

          1 |   1.607e+09   1.551e+09          16

          2 |   8.669e+09   1.759e+10          16

          3 |   3.814e+09   4.598e+09           8

          4 |   5.365e+10   1.389e+11          16

------------+------------------------------------

      Total |   1.881e+10   7.650e+10          56

p-value 0,1947
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Instrument 2 (Table 7) gave quite similar results as Instrument 1. Again problems 

occurred with matrixes 3, 4, 5 and 6. In Matrix 3, Master mix 4 had lower results; in 

Matrix 4, Master mix 4 had a significantly higher result. The result with Master mix 2 , 

in contrast, was significantly lower when compared to those of other matrixes. The 

variation between master mixes 2 and 4 in Matrix 4 was quite remarkable. 

In Matrix 5 there was again remarkable variance in results between master mixes 1 

and 4, Master mix 4 producing the highest result. In matrixes 5 and 6 the results were 

similar to each other. Master mix 1 produced the lowest results and master mix 4 the 

highest. Again the variance between the lowest and highest results was significant. 

 

With Instrument 2 significant variation in results occurred also in Matrix 8. In this 

matrix (human fecal bacterial DNA), there was difference in results between master 

mixes 2 and 3. 

 

Again, it should be noticed that there were again a low number of frequencies in 

Master mix 3. 
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Table 8. Variations between master mixes by matrix in Instrument 3. 

 
 

Matrix  Matrix  

1   Mastermix |        Mean   Std. Dev.       Freq. 2   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   6.940e+09   2.195e+09           5           1 |   2.860e+08   3.109e+08           4

          2 |   5.440e+09   3.196e+09           5           2 |   5.060e+08   1.401e+08           5

          3 |   3.633e+10   3.174e+10           4           3 |   2.600e+08   3.305e+08           3

          4 |   1.910e+10   1.830e+10           5           4 |   9.294e+08   1.397e+09           5

------------+------------------------------------ ------------+------------------------------------

      Total |   1.593e+10   1.985e+10          19       Total |   5.354e+08   7.765e+08          17

p-value 0,0629 p-value 0,5974

3   Mastermix |        Mean   Std. Dev.       Freq. 4   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   4.730e+09   7.061e+09           5           1 |       37400    24825.39           5

          2 |   3.478e+09   3.771e+09           5           2 |       46250   57629.203           2

          3 |   8.040e+09   1.039e+10           5           3 |   135333.33   42253.205           3

          4 |   2.066e+09   2.020e+09           5           4 |   4066.6667   1724.3356           3

------------+------------------------------------ ------------+------------------------------------

      Total |   4.579e+09   6.497e+09          20       Total |   53669.231   56409.801          13

p-value 0,554 p-value 0,0041

5   Mastermix |        Mean   Std. Dev.       Freq. 6   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |       15175   9358.1961           4           1 |        9725   6593.6207           4

          2 |        7625   5415.0254           4           2 |       17200    16687.72           2

          4 |       17920   12182.446           5           4 |        8150   2648.8991           4

------------+------------------------------------ ------------+------------------------------------

      Total |   13907.692   9954.6858          13       Total |       10590   7775.6672          10

p-value 0,3158 p-value 0,439

7   Mastermix |        Mean   Std. Dev.       Freq. 8   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.250e+09   2.767e+09           5           1 |   9.750e+09   1.072e+10           5

          2 |   8.616e+08   1.867e+09           5           2 |   6.922e+09   7.679e+09           5

          3 |   7.004e+09   9.894e+09           2           3 |   3.600e+09   2.899e+09           4

          4 |   8.258e+08   1.830e+09           5           4 |   3.620e+09   2.722e+09           5

------------+------------------------------------ ------------+------------------------------------

      Total |   1.688e+09   3.712e+09          17       Total |   6.098e+09   6.975e+09          19

p-value 0,1975 p-value 0,4938

9   Mastermix |        Mean   Std. Dev.       Freq. 11   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   2.114e+08   2.263e+08           5           1 |   9.980e+08   1.067e+09           8

          2 |   1.225e+09   1.980e+09           5           2 |   4.204e+09   9.615e+09           7

          3 |   1.645e+09   1.775e+09           2           3 |   7.380e+08   4.748e+08           5

          4 |   1.640e+09   2.589e+09           4           4 |   4.537e+09   8.409e+09           8

------------+------------------------------------ ------------+------------------------------------

      Total |   1.065e+09   1.730e+09          16       Total |   2.764e+09   6.508e+09          28

p-value 0,6336 p-value 0,5946

13   Mastermix |        Mean   Std. Dev.       Freq.

------------+------------------------------------

          1 |   1.468e+09   2.442e+09           8

          2 |   2.132e+10   4.104e+10           8

          3 |   9.361e+09   1.369e+10           6

          4 |   8.048e+09   1.514e+10           8

------------+------------------------------------

      Total |   1.009e+10   2.350e+10          30

p-value 0,4135
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With Instrument 3 (Table 8) Matrix 4 was the only one that showed significance in the 

variation of results as master mixes 3 and 4 differed from each other.  

 

In its entirety, the results for Instrument 3 are considered to be unreliable as there 

were no replicate test plates run  

 

5.2 Differences of instruments between master mixes 

 

Different instruments were compared in all matrix types with each master mix 

individually to find out whether instruments show differences between master mixes.  

Tables 9, 10, 11 and 12 present the results for all matrixes with each instrument and 

each master mix. 
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Table 9. Variations between instruments by matrix in Master mix 1. 

 

  

Matrix  Matrix  

1  Instrument |        Mean   Std. Dev.       Freq. 2  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   8.450e+09   2.750e+09          10           1 |   1.233e+08    53506074          10

          2 |   9.430e+09   4.057e+09          10           2 |   1.242e+08    51341558          10

          3 |   6.940e+09   2.195e+09           5           3 |   2.860e+08   3.109e+08           4

------------+------------------------------------ ------------+------------------------------------

      Total |   8.540e+09   3.267e+09          25       Total |   1.508e+08   1.363e+08          24

p-value 0,3940 p-value 0,0894

3  Instrument |        Mean   Std. Dev.       Freq. 4  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   2.630e+09   1.095e+09          10           1 |       17960   5104.9431          10

          2 |   3.350e+09   2.205e+09          10           2 |       17990   11775.346          10

          3 |   4.730e+09   7.061e+09           5           3 |       37400    24825.39           5

------------+------------------------------------ ------------+------------------------------------

      Total |   3.338e+09   3.346e+09          25       Total |       21860   15078.959          25

p-value 0,5385 p-value 0,0284

5  Instrument |        Mean   Std. Dev.       Freq. 6  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |        2876   1459.9787          10           1 |        2890    993.8142          10

          2 |        2443   1532.4059          10           2 |        2960    2070.534          10

          3 |       15175   9358.1961           4           3 |        9725   6593.6207           4

------------+------------------------------------ ------------+------------------------------------

      Total |   4745.4167   5993.1446          24       Total |   4058.3333   3799.6472          24

p-value 0,0000 p-value 0,0014

7  Instrument |        Mean   Std. Dev.       Freq. 8  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.103e+09   2.348e+09          10           1 |   3.590e+09   1.627e+09          10

          2 |   1.452e+09   2.736e+09           8           2 |   3.590e+09   1.971e+09          10

          3 |   1.250e+09   2.767e+09           5           3 |   9.750e+09   1.072e+10           5

------------+------------------------------------ ------------+------------------------------------

      Total |   1.256e+09   2.461e+09          23       Total |   4.822e+09   5.283e+09          25

p-value 0,9599 p-value 0,0592

9  Instrument |        Mean   Std. Dev.       Freq. 11  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   2.102e+08   1.582e+08          10           1 |   4.713e+08   3.369e+08          16

          2 |   2.549e+08   2.417e+08          10           2 |   4.831e+08   3.889e+08          16

          3 |   2.114e+08   2.263e+08           5           3 |   9.980e+08   1.067e+09           8

------------+------------------------------------ ------------+------------------------------------

      Total |   2.283e+08   2.008e+08          25       Total |   5.814e+08   5.921e+08          40

p-value 0,8743 p-value 0,0810

13  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------

          1 |   1.526e+09   1.297e+09          16

          2 |   1.607e+09   1.551e+09          16

          3 |   1.468e+09   2.442e+09           8

------------+------------------------------------

      Total |   1.547e+09   1.626e+09          40

p-value 0,9795
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In Master mix 1 (Table 9) it was found that matrixes 4, 5 and 6 showed significance for 

instrumentation. In each of these matrixes Instrument 3 produced considerably higher 

results than instruments 1 and 2. This same phenomenon was also discovered with no 

template controls thus, conclusions are discussed later.  
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Table 10. Variations between instruments by matrix in Master mix 2. 

 
 

Matrix  Matrix  

1  Instrument |        Mean   Std. Dev.       Freq. 2  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.218e+10   5.473e+09          10           1 |   2.422e+08   2.336e+08          10

          2 |   1.080e+10   4.109e+09          10           2 |   2.594e+08   2.407e+08          10

          3 |   5.440e+09   3.196e+09           5           3 |   5.060e+08   1.401e+08           5

------------+------------------------------------ ------------+------------------------------------

      Total |   1.028e+10   5.076e+09          25       Total |   3.018e+08   2.375e+08          25

p-value 0,0409 p-value 0,0938

3  Instrument |        Mean   Std. Dev.       Freq. 4  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   3.610e+09   1.307e+09          10           1 |        3284   3922.4828          10

          2 |   3.940e+09   1.571e+09          10           2 |        4748   4908.6789          10

          3 |   3.478e+09   3.771e+09           5           3 |       46250   57629.203           2

------------+------------------------------------ ------------+------------------------------------

      Total |   3.716e+09   1.993e+09          25       Total |   7855.4545    18166.27          22

p-value 0,9012 p-value 0,0024

5  Instrument |        Mean   Std. Dev.       Freq. 6  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |       10050   3857.8203          10           1 |       10060    4140.102          10

          2 |       12950   5801.5802          10           2 |       13580   3548.0198          10

          3 |        7625   5415.0254           4           3 |       17200    16687.72           2

------------+------------------------------------ ------------+------------------------------------

      Total |   10854.167    5179.137          24       Total |   12309.091   5608.7439          22

p-value 0,1831 p-value 0,1637

7  Instrument |        Mean   Std. Dev.       Freq. 8  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   2.411e+09   5.054e+09          10           1 |   5.560e+09   1.972e+09          10

          2 |   1.607e+09   3.343e+09          10           2 |   6.590e+09   4.032e+09          10

          3 |   8.616e+08   1.867e+09           5           3 |   6.922e+09   7.679e+09           5

------------+------------------------------------ ------------+------------------------------------

      Total |   1.779e+09   3.835e+09          25       Total |   6.244e+09   4.210e+09          25

p-value 0,7649 p-value 0,8078

9  Instrument |        Mean   Std. Dev.       Freq. 11  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   3.301e+08   2.014e+08          10           1 |   4.324e+09   8.799e+09          16

          2 |   3.914e+08   2.277e+08          10           2 |   5.535e+09   1.200e+10          16

          3 |   1.225e+09   1.980e+09           5           3 |   4.204e+09   9.615e+09           7

------------+------------------------------------ ------------+------------------------------------

      Total |   5.336e+08   9.018e+08          25       Total |   4.799e+09   1.012e+10          39

p-value 0,1587 p-value 0,9339

13  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------

          1 |   5.589e+09   1.024e+10          16

          2 |   8.669e+09   1.759e+10          16

          3 |   2.132e+10   4.104e+10           8

------------+------------------------------------

      Total |   9.967e+09   2.228e+10          40

p-value 0,2589
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In Master mix 2 (Table 10) there was a significance for instrumentation in matrixes 1 

and 4. Again the differences were found in the results of Instrument 3.  
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Table 11. Variations between instruments by matrix in Master mix 3 

 

Matrix  Matrix  

1  Instrument |        Mean   Std. Dev.       Freq. 2  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.527e+10   1.759e+10          10           1 |   1.233e+08    82310388           9

          2 |   6.840e+09   7.123e+09           5           2 |   1.544e+08    94283084           5

          3 |   3.633e+10   3.174e+10           4           3 |   2.600e+08   3.305e+08           3

------------+------------------------------------ ------------+------------------------------------

      Total |   1.748e+10   2.114e+10          19       Total |   1.566e+08   1.479e+08          17

p-value 0,0969 p-value 0,4084

3  Instrument |        Mean   Std. Dev.       Freq. 4  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   4.730e+09   1.310e+09          10           1 |       14180   5438.5047          10

          2 |   4.960e+09   1.284e+09           5           2 |       25200   18444.511           5

          3 |   8.040e+09   1.039e+10           5           3 |   135333.33   42253.205           3

------------+------------------------------------ ------------+------------------------------------

      Total |   5.615e+09   5.095e+09          20       Total |   37433.333    48571.56          18

p-value 0,4930 p-value 0,0000

5  Instrument |        Mean   Std. Dev.       Freq. 6  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |        3136   2708.2245           5           1 |        2838   2314.6749           5

          2 |        4820   3106.7668           5           2 |        4696   3672.8844           5

------------+------------------------------------ ------------+------------------------------------

      Total |        3978   2887.4356          10       Total |        3767   3055.4434          10

p-value 0,3876 p-value 0,3666

7  Instrument |        Mean   Std. Dev.       Freq. 8  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.677e+09   3.466e+09           8           1 |   3.810e+09   2.695e+09          10

          2 |   1.963e+09   4.381e+09           5           2 |   2.214e+09   8.891e+08           5

          3 |   7.004e+09   9.894e+09           2           3 |   3.600e+09   2.899e+09           4

------------+------------------------------------ ------------+------------------------------------

      Total |   2.483e+09   4.677e+09          15       Total |   3.346e+09   2.387e+09          19

p-value 0,3643 p-value 0,4872

9  Instrument |        Mean   Std. Dev.       Freq. 11  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.750e+08   1.186e+08           8           1 |   7.129e+09   1.608e+10          15

          2 |   1.844e+08   1.455e+08           5           2 |   1.129e+10   2.465e+10           8

          3 |   1.645e+09   1.775e+09           2           3 |   7.380e+08   4.748e+08           5

------------+------------------------------------ ------------+------------------------------------

      Total |   3.741e+08   7.102e+08          15       Total |   7.176e+09   1.744e+10          28

p-value 0,0111 p-value 0,5873

13  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------

          1 |   2.969e+09   3.423e+09          14

          2 |   3.814e+09   4.598e+09           8

          3 |   9.361e+09   1.369e+10           6

------------+------------------------------------

      Total |   4.580e+09   7.239e+09          28

p-value 0,1860
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In Master mix 3 (Table 11) there was a significance for instrumentation in matrixes 4 

and 9, Instrument 3 resulting in higher results. Note that in this master mix there are 

no results for instrument 3 in matrixes 5 and 6 as the instrument was not able to 

detect any amplification in these matrixes. Therefore, it can be concluded that Master 

mix 3 is not suitable reagent to be implemented with Instrument 3. 
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Table 12. Variations between instruments by matrix in Master mix 4 

 

  

Matrix  Matrix  

1  Instrument |        Mean   Std. Dev.       Freq. 2  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   9.920e+09   5.754e+09          10           1 |   3.317e+08   4.086e+08          10

          2 |   9.210e+09   6.732e+09          10           2 |   6.522e+08   1.140e+09          10

          3 |   1.910e+10   1.830e+10           5           3 |   9.294e+08   1.397e+09           5

------------+------------------------------------ ------------+------------------------------------

      Total |   1.147e+10   1.002e+10          25       Total |   5.794e+08   9.636e+08          25

p-value 0,1634 p-value 0,522

3  Instrument |        Mean   Std. Dev.       Freq. 4  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   2.039e+09   9.375e+08          10           1 |       17600   2366.4319          10

          2 |   1.715e+09   1.213e+09          10           2 |       45900   10503.439          10

          3 |   2.066e+09   2.020e+09           5           3 |   4066.6667   1724.3356           3

------------+------------------------------------ ------------+------------------------------------

      Total |   1.915e+09   1.261e+09          25       Total |    28139.13   17904.944          23

p-value 0,8234 p-value 0,0000

5  Instrument |        Mean   Std. Dev.       Freq. 6  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |       22100   7978.4432          10           1 |       18700    4667.857          10

          2 |       52000    18299.97          10           2 |       52400   14369.721          10

          3 |       17920   12182.446           5           3 |        8150   2648.8991           4

------------+------------------------------------ ------------+------------------------------------

      Total |       33224   20528.867          25       Total |   30983.333   21117.202          24

p-value 0,0001 p-value 0,0000

7  Instrument |        Mean   Std. Dev.       Freq. 8  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   1.193e+09   2.514e+09          10           1 |   4.330e+09   1.296e+09          10

          2 |   9.123e+08   1.789e+09          10           2 |   4.790e+09   2.603e+09          10

          3 |   8.258e+08   1.830e+09           5           3 |   3.620e+09   2.722e+09           5

------------+------------------------------------ ------------+------------------------------------

      Total |   1.007e+09   2.038e+09          25       Total |   4.372e+09   2.144e+09          25

p-value 0,9357 p-value 0,6264

9  Instrument |        Mean   Std. Dev.       Freq. 11  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------ ------------+------------------------------------

          1 |   4.350e+08   3.943e+08          10           1 |   1.751e+10   4.023e+10          16

          2 |   6.713e+08   9.335e+08          10           2 |   5.272e+10   1.344e+11          16

          3 |   1.640e+09   2.589e+09           4           3 |   4.537e+09   8.409e+09           8

------------+------------------------------------ ------------+------------------------------------

      Total |   7.343e+08   1.208e+09          24       Total |   2.900e+10   8.937e+10          40

p-value 0,2442 p-value 0,3792

13  Instrument |        Mean   Std. Dev.       Freq.

------------+------------------------------------

          1 |   1.454e+10   3.291e+10          16

          2 |   5.365e+10   1.389e+11          16

          3 |   8.048e+09   1.514e+10           8

------------+------------------------------------

      Total |   2.888e+10   9.113e+10          40

p-value 0,3784
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In Master mix 4 (Table 12) the significance for instrumentation was found in matrixes 

4, 5 and 6, Instrument 2 resulting in higher results in each of the three matrixes. The 

results for Master mix 4 differ from those of other master mixes. That in, this Master 

mix 4 implemented with Instrument 3 produced the lowest results. This indicates that 

master mix 4 is not suitable reagent to be implemented with instrument 3.   

 

With Instrument 3, it was noticed that the detection in general takes place with 

significantly higher Ct values. This was considered as a technical feature of this 

instrument, since the factual number of copies was similar to that other of instruments 

in those results where problems did not occur. 

 

When looking at these results, it should also be taken into account that the number of 

replications with Instrument 3 is not enough to produce reliable results.  

 

5.3 Master mix implementation on changing instrumentation 

 

All the p-values from tables 6 to 12 are collected in diagram (Figure 14). The values in 

the figure are in a minus logarithmic 10 -scale so that the ones that have a p-value 

below 0.05 are placed above the red line. 
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Figure 15. P-values of instruments between master mixes and master mixes between 
instruments. Number of copies of copies on y-axis.  

 

 

In Figure 14 it can be observed that in each master mix and instrument there can be 

found results that indicate that there were significances in master mixes between 

instrumentation. Therefore, any of the master mixes cannot be directly implemented 

with the instruments tested in this study. 

 

5.4 Levels of contaminations  

 

The contamination level of master mixes was studied with no template controls 

(NTCs). Since the manufacturers promise that there are no reagent-derived 

contaminations in master mixes that may hamper the quantification, there should be a 

significantly low number of copies detected in NTC samples or, in an ideal case, no 

copies detected at all.  

 

The average number of copies and the standard errors for each master mix and 

instrument were calculated. The results are illustrated in Figure 15. 
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Figure 16. Number of copies detected.  

 

 

The results show clearly that Master mix 4 had the highest number of copies detected 

in the NTCs. This suggests that Master mix 4 was highly contaminated. Master mixes 1 

and 3 had the lowest level of contamination. The results for these two master mixes 

were significantly higher with Instrument 3, as were also many of the results for the 

other matrixes.  

 

In Master mix 3 with Instrument 3 there was no detection at all. Since there was found 

similar problems with some matrixes that were detected successfully with other 

combinations of master mixes and instruments, and there are a relatively large number 

of copies detected with instruments 1 and 2 in Master mix 3; nevertheless, this result 

cannot be considered to prove the total purity of Master mix 3.  

 

From the results of the NTCs it can be also observed that instruments 1 and 2 produce 

quite similar results when implemented with master mixes 1, 2 and 3. However, since 

the quantification needs to be precise, the minor differences in the results show that 

transfer and adaption between instruments and master mixes is not possible without 

optimizations.  
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Note that in these results it should be taken into account that the detected numbers of 

copies in NTCs are not on the range of the standards that were detected reliably. The 

last three dilutions of the standards were not on the linear range. In standards, 1∙104 

copies were the smallest number that could be quantified in linear range of standards. 

Hence, the numbers determined in NTCs are not absolute. However, the results still 

indicate the impurities present in reagents since there were some copies detected.  

 

Note also that the abnormal result in Master mix 4 detected with Instrument 2 may 

also be due a human caused contamination.  

 

6 Conclusions 

 

 

In this project the general goals were to find out whether the master mixes contain 

reagent derived contaminants and if the master mixes were easily implemented to 

different instrumentations without laborious optimizations. 

 

There were found differences in master mixes and instruments with several matrixes. 

In this project there were intentionally several types of matrixes examined so that it 

could be investigated how many restrictions and requirements the DNA sample origin 

set when specifying a suitable master mix and instrument. 

 

Since some matrixes were proved to be more challenging, the next step could be a 

study with more replicates executed with complex matrixes. In this way there could be 

manufactured master mixes expressly for different matrix types, e.g. for ileum or blood 

samples.   

 

The current situation requires that the end user performs laborious and expensive 

experiments to find the most suitable reagent and instrument for each matrix type. 

Once the proper reagent is found, it might still need more optimizations, e.g. in Mg2+ 

concentration and, therefore, the expenses increase.  
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None of the master mixes was found to be completely pure. Thus, more studies to find 

new possible ways to reduce the amount of endogenous bacteria in PCR reagents 

should be done. However, at this point, if neither the manufacturers nor the end user 

can suggest any ways to bring PCR reagents to the desired level of purity, the 

detection of a low number of copies in bacterial samples set quite a challenge. 

Therefore, it is important to execute an adequate number of NTCs in each PCR assay 

so that the background and thereby the level of possible contamination can be 

determined.  
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