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Agile software methodologies are the state of art methodologies used on current software 
projects. Testing is one of the main pillars of agile development and many of the practices 

are common among various flavours of the methodologies. Despite their wide-spread 
adoption in different domains, agile testing practices still seem to be a novel concept on 

embedded programming projects. This is specifically true when it comes to hardware 
design modeling. Thus, the goal of this project was to introduce the main concepts of agile 
testing and demonstrate their application on an Field Programmable Gate Array (FPGA) 

platform. 
 
The project was conceptually divided into two parts. The first one was the design and 

implementation of an FPGA development board. The second part focused on developing 
hardware design modules with a suitable hardware description language and ultimately 
building a contained testing system to demonstrate the most important agile testing 

practices. 
 
The result of the first phase was a working FPGA development board and an Ethernet 

extension board. During the second phase example hardware models were designed with 
MyHDL. Unit tests were implemented before the actual modules, thus adopting a test-

driven development (TDD) approach. The tests were automated with the help of a 
continuous integration server. A viable process for a functional testing routine was also 
outlined. 

 
Based on the outcomes, it can be concluded that agile testing practices can be 
successfully utilized even in the specific domain of digital design. The natural continuation 

of this project would be the implementation of the suggested functional testing routine.  
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1 Introduction 

 

Requirements often change significantly over the lifetime of a technology project. It 

may be a result of change in the client's business processes, new technological 

breakthroughs, organizational restructuring and other reasons. [1] Situations such as 

these are especially relevant to the field of software development. 

 

Traditional software development practices established in the past assume a set of 

well-defined phases of the whole project such as design, implementation and testing. 

These practices, generally known as ‘waterfall’, rely on the assumption that 

requirements are fixed and the process of producing software is predictable. 

Unfortunately, most of the time, both of the assumptions are wrong. This is the main 

issue that the so-called agile software methodologies aim to address. [2] Extensive 

testing regime is an integral part of these methodologies and therefore they have 

introduced different practices which are commonly referred to as ‘agile testing’.  

 

Software development for embedded systems has its peculiarities compared to 

traditional methods. Typically, an embedded system is considered to be a resource-

constrained computer system with a specific function, for example a mobile phone or a 

washing machine controller.  

 

Digital design by itself is considered a separate field of embedded development. Field 

Programmable Gate Array (FPGA) chips implement digital circuit designs modeled with 

so-called hardware description languages (HDLs) [3,21]. In other words, HDLs are 

effectively used to create hardware modules. Therefore, rarely is digital design with 

HDL considered software development, even though in my opinion it clearly is. 

 

Having introduced the main concepts, the goal of the project is to demonstrate the use 

of agile software testing practices in the very specific field of digital design with HDL. 

The project is inspired by my personal experience with agile development and the 

realization that many of the practices are general in nature when it comes to 

technology and particularly programming projects. 
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2 Agile Software Methodologies 

 

Agile testing, as the term suggests, relates to agile software methodologies. Even 

though, in my opinion, many of the testing practices presented in the current paper do 

not necessarily require an agile process in place, it is important to explain the 

principles of agile software development in order to gain insight into the full benefits 

that the practices are able to provide. This chapter presents the key notions behind 

agile software methodologies (also simply referred to as ‘agile development’ or ‘agile 

methodologies’) and an overview of a popular agile methodology, namely Extreme 

Programming (XP). 

 

2.1 The Agile Manifesto 

 

In 2001 a number of established names in the agile world forged the principles of agile 

software methodologies and embodied them in the so-called agile manifesto which is 

presented in the following quotation [4,27]. 

 

Individuals and interactions over processes and tools 
Working software over comprehensive documentation 
Customer collaboration over contract negotiation 

Responding to change over following a plan 
 
That is, while there is value on the items on the right, we value the items 
on the left more [5] 

 

The agile manifesto is well known and often cited in related literature. The principles 

quoted above lay the foundations of the agile software development philosophy. 

However, these are not rules carved in stone and methodologies may place different 

weight on the four aspects of the manifesto. 

 

2.2 Extreme Programming Values 

 

There are five values that XP emphasizes. [1] They are easy to comprehend and strike 

as obvious. However, as this fact may be misleading to people who adopt the software 

methodology for the first time, the XP community has ensured that each of the values 
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is well explained and justified. Figure 1 depicts the five XP values. The following 

paragraphs provide further insight into their meaning and the reasoning behind them. 

 

 

Figure 1. Extreme programming values. Adapted from Holcombe (2008) [1,21] 

 

Research has shown that the reason for most failures of software development 

projects is breakdowns in communication. XP acknowledges this issue and identifies 

three levels of communication that require particular attention. The first one is the 

communication among the clients themselves. It must be ensured that they respond 

adequately to their business needs in setting the requirements for the project. The 

second tier is the client-developer channel because it is vital that programmers 

understand the business value certain functionality brings. Finally, the communication 

among the development team is crucial for the success of the project. At all times all of 

the members must be involved in planning and decision-making. The rest of the XP 

values aim at supporting this third communication level. [1] 

 

Feedback represents a specific aspect of communication that is worth outlining. At all 

times developers should seek  active feedback from the customers. [1] This provides 

for a natural self-alignment of the project goals in a way that brings the best value to 

the customer. Additionally, developers should be constantly aware of the quality of 

their progress and the general view of their commitment to the common goals [1]. 
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In the field of technology, especially software development, it is common that novel 

solutions emerge with fast pace. This fact is naturally tempting for the software 

engineer who is always eager to learn and experiment. However, in most cases using 

cutting edge technology could be not only adventurous but also threatening to the 

success of the project. Therefore, the XP value of simplicity matches well the famous 

Einstein quote: “Everything should be made as simple as possible but no simpler”. [1] 

 

Due to the fact that XP is a methodology that differs significantly from the traditional 

methods of software development, it requires that people have the courage to initiate 

and sustain change. Naturally, for good team relationships, respect is of indispensable 

value. [1] 

 

2.3 Extreme Programming Activities 

 

There are 12 basic practices of XP [1]. To a large extent they are typical of most of the 

agile software development methodologies. The following paragraphs present the 

activities which XP is most famous for. The practices related to testing are discussed in 

greater detail in chapter 3. 

 

Pair-programming is probably the most well-known XP practice. It means that two 

developers work on a single workstation (one keyboard and one screen) 

simultaneously. At the same time one of the programmers is coding, the other one is 

inspecting the code. Collaboration is highly valued. As the pair discusses issues, more 

ideas are generated and the probability of introducing faults in the program diminishes. 

Pairs change on a regular basis and an additional implication is that developers gain an 

overall picture of the whole application as they work on different parts of the source 

code. If properly managed, team relations and communication can be heavily 

improved. [1] 

 

The on-site customer XP practice recommends if possible to locate a customer in the 

developers' premises. This will naturally improve the client-developer communication. 

However, it may also introduce certain complications if the client operates in a fast-

changing business and he or she eventually becomes disconnected from the company's 

operations. [1] 
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The planning game and system metaphor are interrelated practices. At first the 

developers collect the so-called stories from the client during the planning game. A 

story describes a single piece of functionality that the application should implement. 

Based on a set of base stories, a skeleton of application architecture is built, which is 

referred to as the system metaphor. [1] 

 

Collective code ownership refers to the fact that the source tree belongs to all of the 

developers. Any programmer is allowed to work on different parts of the code. This 

approach also assumes that there is a more constructive spirit once a fault is found, 

due to the fact that the responsibility is shared. [1] 

 

The rest of the core 12 XP practices are presented in the following list: 

 

• test-first programming 

• small frequent releases 

• simplest solution approach 

• continuous integration 

• coding standards 

• refactoring 

• 40-hour week [1]. 

 

It must be pointed out that all of the 12 practices bear the same importance and are 

an integral part of the XP process. 
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3 Agile Testing 

 

The following is an overview of the most common practices used in agile software 

projects. It is important to note, however, that the techniques have not necessarily 

emerged together with the advent of agile development methodologies. Many of the 

ideas existed and the practices were applied well before it. However, it has not been 

until the surge of popularity of agile development that they received such widespread 

adoption as today. 

3.1 Software Testing Levels 

 

Before agile testing practices are introduced, it is essential that the different levels of 

software testing are clarified. Figure 2 depicts an interpretation of the popular V-model 

of software development. 

 

 

Figure 2. V-model of software development. Modified from Fewster and Graham (1999) [6,7] 

 

The V-model is often referenced in relation to the waterfall model of software 

development [1,7]. Nevertheless, in my opinion, the V-model is an excellent 

representation of the different abstraction levels of software testing in general. 

Depending on the context, there may be more stages. This paper focuses mainly on 

the lowest two levels, namely unit testing and functional testing. 
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At the top of the V-model, acceptance tests verify the software against the customer 

requirements. Successful acceptance testing must assure that the system under test 

fulfills its purpose and brings the desired customer value. Tests at this level should be 

meaningful to the end users of the system and often mimic direct end user actions. A 

relevant example for a web application would be the ability of the user to log in. 

 

System testing verifies the correct operation of the architectural entities of a system, 

for example, the communication between different servers once a user has issued a 

login request from a website. In the context of telecommunications, system testing 

could test the interworking between the different network nodes. 

 

Functional tests examine the operation of a single design unit, for example a software 

component, or a single piece of functionality that spans over several components. 

Compared to system testing, functional testing is more focused on a particular feature 

and its integration within the developed product, rather than the whole system the 

product operates in. An example could be verifying database transactions triggered by 

user activity upon login. 

 

At the lowest level of software testing, unit tests are implemented. This type of tests 

verifies the programming logic of the smallest software modules such as functions or 

class methods. For example, unit tests may test the software module validating the 

syntax of a username upon registration.  

 

3.2 Test-driven Development  

 

Test-driven development (TDD) is the practice of writing tests before writing the actual 

source code. Initially, this approach sounds counter-intuitive as the traditional workflow 

of software development has been to first implement and then test. [7,32] The TDD 

step cycle is presented in figure 3. 
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Figure 3. TDD step cycle [8,25] 

 

The first step in the TDD cycle is to implement a test which inevitably fails as the 

implementation is not in place yet. The software developer then implements the 

required functionality in order for the test to pass. Ideally, as illustrated in figure 3, so 

much code is written as to satisfy the requirements of the test – no more, no less. 

Finally, the source code may be improved if needed and the functionality verified with 

the existing test. 

 

It must also be pointed out that TDD may be applied at any of the described software 

testing levels as long as there is a clear set of requirements that must be fulfilled. The 

implemented tests will fail until the system under test satisfies the requirements. 

Additionally, as tests are implemented before the functionally, the pass-fail rate may 

provide useful progress metrics. 

 

There are several significant benefits which justify the test-driven development 

approach. Already the first step of designing a failing test prompts programmers and 

testers to focus on the actual use of the source code to be written [8,26]. Along with 

the rule to implement ‘just-enough’ code, this enforces the goal of development and 

improves customer-orientation.  

 

With time, writing tests for each piece of functionality as the software product develops 

produces a comprehensive test set. This reduces the risk of refactoring activities which 

may break functionality. Additional implication is the improved sense of security in the 
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software developers of future changes in the code base. [7,33] Creativity and 

innovation are boosted as programmers need not fear so much to experiment and can 

easily verify the results of their work. 

 

3.3 Test Automation 

 

The idea of test automation is to delegate as much as possible of the manual testing 

performed by software testers to computers. That is not to say that computers can 

replace people. The goal is to offload the most laborious, repetitive and clerical work 

from testers to machines. Intellectual tasks such as identifying tests scenarios and 

designing the actual test scripts are still performed by software testers. At this point in 

time the tasks performed by the so-called test automation frameworks in general 

include execution, comparison and reporting. [6,17-18] 

 

The greatest benefit of a test automation regime is running more tests more often with 

less time [6,9]. This is especially valued in the context of regression testing. 

Regression testing is an activity which verifies that new versions of the software have 

not introduced defects in pre-existing functionality. Running automated regression 

tests does not require much effort, as the tests have already been implemented [6,9]. 

 

Often, tests cannot be performed manually, for example, performance tests which 

would require millions of actions per second from the tester. On the other hand, some 

tests that take a prohibitively long time and are not meant to be executed often do not 

justify the effort to be automated. Such considerations have to be regularly made 

when automating tests. [6] 

 

A typical automated test would have to perform several tasks: 

 

1. pre-processing 

2. test actions and dynamic comparison 

3. post-execution comparison 

4. post-processing [6]. 
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Often the system under test must be set up before the test can be executed [6,176]. 

For example, a web application test would need to start and configure a browser, or 

create entries in a test database. 

 

Once the system is set up, test scripts must reproduce the test scenario envisioned by 

the test engineer. For, example a test may want to verify that a user is able to log in 

by using the correct username and password. The test scripts should then fill in the 

correct fields and press a ‘Login’ button. If a ‘Welcome’ page should be opened, the 

test script could verify this by checking the page title – this is referred to as ‘dynamic 

comparison’, that is a comparison which is made during the test execution [6,107]. 

 

After the actual test has been completed, the system should be brought to its pristine 

state from before the test started. The actions required are known as post-processing 

[6,176]. Just before the post-processing the test scripts may want to examine internal 

log files for errors. Since this comparison is done after the actual test run, it is referred 

to as ‘post-execution comparison’ [6, 108]. Finally, the test status (pass or fail) and 

relevant artifacts such as logs or created files. must be collected and reported [6]. 

 

Test automation is a challenging activity which, however, is an indispensible part of 

current software development. Among the greatest challenges are maintaining 

testware (such as reference data, scripts and reports), building scripts which can 

handle unexpected errors, and creating quality tests. 

 

3.4 Continuous Integration (CI) 

 

Continuous integration is an activity that aims to integrate the software components of 

the product after each software change. This avoids the painful integration cycle after 

months of development. [9,xx] Continuous integration produces a build which ideally 

comprises several activities such as compiling the source code, inspecting it against 

quality criteria, deploying the application and running tests on the target system [9,4]. 

The results are then reported to the developer. Figure 4 presents the core parts of a CI 

system. 
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Figure 4. The core componets of a CI system. Modified from Duvall (2007) [9,5]. OpenOffice 

Draw computer shapes by Lautman (2010) [10] 

 

A version control repository which manages the changes made to all software assets is 

a prerequisite for CI [9,7]. The action of introducing changes to the artifacts managed 

by the repository uses the term ‘commit’. 

 

The CI server is polling the version control server for recent changes to the code base. 

Once a change is detected, the CI server executes the build script which performs 

most of the actions involved in integrating and testing the build. After the completion 

of the build script, activities results are stored on the CI server and reported in a 

suitable format, for example a web page. [9,5] 

 

From a software developer perspective the flow has several steps. First, the software 

must be integrated locally, so that the developer has confidence that his or her 

changes will not break the common build. Then the programmer commits the changes 

and waits for the results report. Therefore, it is also crucial that the integration tasks 

performed by the build script do not take too much time. Time-consuming activities, 

such as running a full regression test suite could be executed during a nightly build. In 

case the results from the CI server indicate errors, the developer must correct the 

issues and apply the changes as soon as possible, so that the work of other people is 

not blocked. [9,5-10] 
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4 Digital System Design Methodology 

 

Digital design refers to the design of digital circuits which need to fulfill specific 

functional requirements while at the same time adhere to constraints such as cost, 

performance or power consumption. The design of complex systems is made possible 

by a layer of logical abstractions, the most significant of which is representing 

information in discrete form. [3, 1-3] 

 

4.1 Programmable Logic Devices 

 

The traditional approach to implementing digital designs on integrated circuits has 

been the so-called application-specific integrated circuits (ASICs). ASICs provide the 

best speed, die size and power consumption metrics. To put it simply, the reason is 

that ASICs implement only specific functionality which, once embedded on the 

integrated circuit, cannot change. However, the same fact presents some significant 

drawbacks such as increased design time and inability to correct possible design 

defects or update the functionality. [10,249] 

 

In contrast to ASICs, programmable logic devices (PLDs) are integrated circuits which 

include reconfigurable general-purpose logic resources. This allows for rapid design 

cycle and the ability to update the digital design when the product is already in 

production. The price for this flexibility is reduced speed and increased power 

consumption as compared to ASICs. Nevertheless, PLDs have become popular 

solutions because they are still able to deliver high performance with a significantly 

shortened time to market. [10, 250] 

 

Complex programmable logic devices (CPLDs) and field programmable gate arrays 

(FPGAs) form the mainstream of PLDs on the market. CPLDs are a viable solution for 

simple control applications. These ICs offer lower logic density (number of logic 

elements) and speeds compared to FPGAs. Demanding applications which require 

heavy data processing are addressed by FPGAs. Both types of devices provide many 
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different features within their segment and may be programmed one or multiple times. 

[10,255-257] 

 

4.2 Design Flow 

 

Due to the wide range of specific applications design projects must implement, it is 

difficult to establish a standardized design methodology [3,439]. Nevertheless, figure 5 

attempts to define the most important phases of the digital design flow. 

 

 

Figure 5. Digital system design flow. Modified from Ashenden (2008) [3,28] 

 

Failures which occur in any of the post-design phases and before manufacturing cause 

a transition to the previous phase or, if a design defect is identified, to the design 

phase; this has been omitted from figure 5 for the sake of simplicity. The actual digital 

circuit modeling occurs during the design phase. The digital logic is then verified 

usually using logic simulators. [3,28] 

 

Synthesis is the process of converting and optimizing the high level model of a digital 

system to produce a detailed structural model. This lower level of abstraction reached 

after the operation is the one of logical gates such as AND or OR. The structural 

model, also referred to as ‘refined design’, is essentially a description of the 

interconnection between primitive logic elements. Synthesis is performed by computer 

aided design (CAD) tools. [3,29-30] 

 

The physical implementation and verification phases depend on the implementation 

fabric, such as ASIC and FPGA. There are, however, several common steps which must 
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be performed. First, the circuit resources such as logical element type and count 

needed to implement the design must be determined. This is known as ‘mapping’. 

Then the exact place and route of interconnecting lines are specified during a so-called 

placement and routing phase. After mapping and placement and routing have taken 

place, more detailed estimates of system properties, such as propagation delays and 

power consumption, are made which aid the final physical verification. [3,30-31] 

 

The output files of the physical implementation phase are used in manufacturing for 

actual implementation of the design. On an FPGA chip this usually means programming 

the device. It is then that actual tests (and not simulations) can be executed against 

the running system. [3,31] 

 

4.3 MyHDL 

 

Hardware description languages (HDLs) are used to model digital designs. HDLs are 

much like standard programming languages but tailored for the specific field of digital 

design. The most prominent HDLs are VHDL and Verilog with other alternatives such 

as SystemC and C++. The main differences between HDLs are in their more advanced 

features whereas there is a high level of similarity of the basic features. [3,21]  

 

MyHDL is an open source Python package which allows Python to be used as a 

hardware description language [11,3]. Python is an open-source interpreted high-level 

object-oriented programming language. It is often labeled as a ‘scripting language’ 

because of its ease of use and rich set of utilities. Python is geared towards developer 

productivity and software quality [12,5-8]. 

 

There are several significant reasons why MyHDL was chosen for this final year project, 

even though the package is still under development. MyHDL utilizes many of the 

benefits of Python. Thus, it promotes rapid prototyping and the use of modern 

software development practices, such as unit testing, in hardware modeling. The key 

feature is that with certain limitations the MyHDL code can be converted into VHDL or 

Verilog, which allows to implement digital designs on PLDs. [11,3] 
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MyHDL is based on two Python features: generators and decorators. Generators are 

objects which can essentially be used as resumable functions. Thus, by using the 

generator’s method next() it is possible to return values based on the previous state 

of the object, as it is retained. A decorator is a piece of syntax placed in front of a 

function declaration and is used to convert a function into a callable object. Decorators 

are used in MyHDL to create specific generator objects depending on the type of 

hardware model, such as sequential or combinational logic. [11,6] Listing 1 presents a 

simple example of an incrementer module with asynchronous reset signal. 

 

ACTIVE_LOW, INACTIVE_HIGH = 0, 1 

 

def Inc(count, enable, clock, reset, n): 

    """ Incrementer with enable. 

    count -- output 

    enable -- control input, increment when 1 

    clock -- clock input 

    reset -- asynchronous reset input 

     n -- counter max value 

    """ 

 

    @always(clock.posedge, reset.negedge) 

    def incLogic(): 

        if reset == ACTIVE_LOW: 

             count.next = 0 

        else: 

            if enable: 

                count.next = (count + 1) % n 

         

return incLogic 

 

Listing 1. MyHDL incrementer with asynchronous reset design [11,26] 

 

In listing 1 @always is a decorator used with sequential logic, and the one used with 

combinational logic is @always_comb [11,86-87]. The decorator is creating the 

generator object and specifies the so-called sensitivity list of the module. The signals 
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on the sensitivity list cause the generator to resume operation, in other words, to 

produce the next output value [11,57]. The next value of the signal is determined by 

setting its next attribute. 

 

In order to convert the design to VHDL, it is necessary to create an instance of the 

incrementer module and the signals used by it. [69-70] Listing 2 shows just how 

simple this is. Once the Python script executes toVHDL()successfully, the VHDL files 

are created. 

 

m = 8 

n = 2 ** m 

 

count = Signal(intbv(0)[m:]) 

enable = Signal(bool(0)) 

clock, reset = [Signal(bool()) for i in range(2)] 

 

inc_inst = Inc(count, enable, clock, reset, n=n)  

inc_inst = toVHDL(Inc, count, enable, clock, reset, n=n) 

 

Listing 2. Converting the incrementer MyHDL design to VHDL [11,67-68] 

 

The most important class is visible in listing 2 and is namely intbv. This class 

implements an integer-like type which introduces operations such as indexing and 

slicing that Python does not provide. Additionally, intbv is designed so as to relieve 

designers from the burden that integer representation issues pose in VHDL and 

Verilog. The MyHDL-provided type handles integers very similarly to standard 

programming languages. [11,13-18] 

 

The MyHDL manual provides comprehensive information as to what exactly comprises 

the so-called convertible subset. The limitations apply to the code of the generators. 

Better flexibility is available for testbenches and pure modeling scenarios where the full 

power of Python may be unleashed. [11,57] In general the allowed types are integer 

and boolean with certain variations of lists. Even though this may sound quite 

restrictive, in my personal experience the language feels more flexible than VHDL. 
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5 Design and Implementation of the FPGA Board 

 

An embedded FPGA board was designed for the purposes of the project. The work 

name of the board is Poart (the leading ‘p’ is intentional). The ideology behind Poart is 

to create an FPGA board with a minimum amount of circuitry for the chip to run and 

provide extension ports so that it can be used for various applications by designing an 

extension board. Additionally, an Ethernet extension board was implemented to 

facilitate the development of some type of network application. 

 

5.1 Poart 

 

Simplicity is one of the core values of Poart. This can already be seen from the block 

diagram presented in figure 6. 

 

 

Figure 6. Poart block diagram. 

 

The core of the development board is the EP2C8Q208C8N FPGA manufactured by 

Altera and part of the company’s Cyclone II family of devices. The device was chosen 

because of my familiarity with Altera products. The Cyclone II FPGAs target low-cost 

embedded and digital signal processing (DSP) applications [13,17]. The highlights of 

the chip used on the board are the following [13]: 

 

• 8256 logic elements 

• up to 138 user input/output pins 

• 165 888 total RAM bits 

• 18 embedded multipliers 
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• 2 PLLs (phase-locked loops) 

• 8 clock inputs 

• maximum clock frequencies of 320 MHz. 

 

The Cyclone FPGA can generally be configured (programmed) by various means. For 

the purpose of this project, first an on-board serial configuration device was 

programmed which then automatically configured the FPGA. The serial configuration 

device used non-volatile memory which allowed for the design to be retained even if 

the board is powered down, as the FPGA relies entirely on SRAM cells, in other words, 

volatile memory. 

 

The power block in figure 6 provides the necessary power voltages to all of the other 

blocks of Poart. Finally, all of the pins which do not have a special purpose related to 

power or configuration are connected to the extension ports. 

 

Appendix 1 provides a brief hardware guide to Poart, including more detailed 

information about, for example, power source requirements, clock inputs and extension 

port connections. 

 

5.2 Ethernet Extension Board 

 

The Ethernet extension board connects to one of Poart’s extension ports. The board 

provides an Ethernet controller and a LAN port with the required magnetics. The core 

of the extension board is the Microchip ENC624J600 Ethernet controller. Its most 

important features are presented below: 

 

• Integrated MAC and 10/100Base-T PHY 

• Auto-negotiation supported 

• SPI or parallel control interfaces 

• 24Kbyte transmit/receive SRAM buffer 

• CRC generation and security engine blocks 

• +3.3V power supply voltage [14,1]. 
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The extension board is designed so as to allow for the utilization of all of the control 

interface modes. The interface mode can be set by several SMD resistors placed on the 

top side of the printed circuit board. Further details about the board are presented in 

appendix 2. 

 

5.3 Printed Circuit Boards 

 

Mentor Graphics PADS CAD software was used to design the schematics and produce 

the PCB layout. The PADS autorouter was extensively used during the routing phase. 

There are settings which specify how rigorous the phases of autorouting are. The 

autorouter proved indispensible in routing LVDS (low voltage differential signal) pairs 

of traces which pose requirements such as equal trace lengths. 

 

Despite the sophisticated capabilities of the PADS autorouter, manual routing was still 

required. The problem arises from the fact that not all of the significant information for 

the types of traces could be provided to the autorouter. Prioritization of routing order 

did help. However, clock and power signals still required manual optimizations. 

Nevertheless, the performance of the autorouter was impressive and in my personal 

opinion shortened the PCB design time by several folds. The printed circuit boards are 

shown in figure 7 below. 

 

 

Figure 7. The Ethernet extension board connected to Poart 
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6 Development and Testing on the FPGA Board 

 

6.1 Quartus 

 

Altera provides a full development environment for their programmable logic devices. 

The free version of the software is called Quartus Web Edition. Compared to the 

licensed product it supports fewer device families and lacks some advanced features 

such as incremental compilation. [15] Nevertheless, the shortcomings of Quartus Web 

Edition (referred to simply as ‘Quartus’) are marginal in the context of small projects. 

 

Quartus by itself provides all of the tools required for a successful design flow – from 

synthesis to programming an actual device. The basic steps are to create a project in 

the Quartus environment, specify details such as target device and top-level entity 

name, compile the design and finally configure the PLD. After the full compilation 

process various analysis reports are generated which may provide crucial information 

for the live design. [16,464] 

 

The synthesis tool supports VHDL, Verilog, as well as Altera-specific formats, such as 

the so-called Block Design Format which is generated by a Quartus schematic drawing 

utility [15,463]. Namely the support for VHDL and Verilog provides the entry point for 

MyHDL to the design flow. Converted MyHDL designs are ready to be immediately 

included as Quartus project resources. 

 

The Quartus environment provides a graphical integrated development environment 

(IDE). All of the functionality is available also through a command-line interface. 

[16,739] This allows for flexible configurations with scripts and ultimately makes the 

case of continuous integration. 

 

6.2 Unit Testing 

 

Probably the immediate and most obvious advantage of MyHDL is the ability to utilize 

the unit testing frameworks available for Python. The module ‘unittest’ even comes 

bundled with Python and is the standard unit testing framework used with it and 
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inherently MyHDL. Nevertheless, there are significantly more alternatives available and 

for this project the so-called ‘py.test’ framework was used. The reason was that 

MyHDL’s creator Jan Decaluwe suggests in one of his MyHDL examples, that py.test 

could be promoted as the unit test framework of choice for MyHDL in the future. [17] 

 

Poart’s extension board provides a pushbutton, but without a debouncing circuit. It is 

possible to design a hardware module with MyHDL that debounces the signal. Such a 

module may have different parameters such as sampling frequency, active level or 

enable signal. Let us assume that the enable signal is asynchronous and should force 

the output of the module to its inactive state. As this is a fairly small piece of the 

functionality a unit test can be written (in the spirit of TDD before the actual 

implementation is in place). A code snippet in appendix 3 presents the unit test. It also 

brings to light another advantage of MyHDL – designs may be written in such a way 

that they can be instantiated several times with different parameters, essentially 

producing different modules. 

 

Due to lack of time the interface to the Ethernet controller of the extension board was 

not implemented as originally planned. However, the unit testing capabilities provided 

by MyHDL would have been an indispensable tool when modeling the design. 

Additionally, a trace of the signals can be generated with MyHDL for debugging 

purposes. 

 

6.3 Functional Testing 

 

Despite the fact that there was no networking application implemented on Poart, as 

the development and testing tools were available this scenario was still considered. 

When it comes to functional testing, it would be necessary that a test controller 

interfaces with the board, for example by sending a packet and verifying if the received 

response is correct. 

 

In order to design and run automated tests, a test automation framework is needed. In 

my professional experience I have got acquainted with Robot Framework and found 

that it was a viable choice also for this project. Robot Framework is keyword-driven 
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and general purpose in nature [18]. It is open-source and becoming increasingly 

popular. Figure 8 presents the high level architecture of the framework. 

 

 

Figure 8. Robot framework architecture. Reprinted from the Robot Framework User Guide 

(2011) [18] 

 

Robot Framework specifies its own test data syntax for implementing keywords. The 

framework does not interface directly to the system under test (in this case this is 

Poart) but does it through test libraries. The test libraries themselves could be 

wrappers for the tools that do the actual work. [18] For example, in order to test a 

protocol that Poart implements, it would be necessary to use a test tool such as a 

network traffic generator (it should be noted that here I refer to a software application, 

not a separate piece of hardware). 

 

6.4 Test System Architecture 

 

Figure 4 in section 3.4 already presented the main concepts of a CI system. Naturally, 

the setup required to implement CI and test automation for Poart differs in several 

details. The most obvious implication is that tests must be run against the embedded 

board. Thus, an entity that connects to the board, configures it and runs the tests 

must be present. This entity can be called a ‘test controller’. The CI server instructs the 

test controller as to what test cases to run and then collects the results and any 

additional artifacts. The test automation framework and any specific tools, for example 

network traffic generators, should be installed on the test controller. Since 

configuration of the device must also be done through the controller, it is required that 

the Quartus environment is also installed. Figure 9 illustrates the architecture of the 

test system. 
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Figure 9. Test system architecture. OpenOffice Draw computer shapes by Lautman (2010) [10] 

 

It must be pointed out that the developer’s workstation and servers presented in figure 

9 refer to logical entities which may well be present on the same physical machine. In 

fact for the purpose of this project the development workstation and CI server resided 

on a single virtual machine. There is nothing that prevents the same machine to host 

the version control repository and act as a test controller as well. In fact this was the 

original plan for the system. Nevertheless, in a real industry project most often 

separate machines perform the different functions. 

 

The project was hosted on the Google Code website because it provided free storage 

and access to a Mercurial version control repository [19]. The CI server used on the 

project is Jenkins which is a prominent open-source project [20]. Jenkins, as already 

mentioned, was installed on a local virtual machine where all of the development took 

place. Thus it was not necessary to set up a web server. If the server is installed on a 

remote machine, it must be assured that the Quartus environment is also installed, so 

that Jenkins is able to compile the project. The installation process was extremely easy 

and Jenkins must be acknowledged for it.  

 

Jenkins is accessible and configurable through a web interface. The CI server was 

configured to poll the Mercurial repository every minute. An alternative would be to 

configure a periodical build. However, the 1 minute polling cycle provides the fastest 

feedback. If a change is detected, Jenkins pulls the newest version of the repository 

and triggers a build using the build script configured for the project. As an example, a 

pushbutton module and several unit tests were written in MyHDL. The build script 

simply calls py.test to execute the unit tests. Figure 10 presents a screenshot of the 

console output after a successful build. 
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Figure 10. Console output of a successful build in Jenkins 

 

If the changes break the unit tests, py.test would return an error visible from the 

console output and the build would be marked as failed. Jenkins, as well as any CI 

server, provides information about build history such as duration and status. This is 

illustrated in figure 11. In relation to this the number of builds that are kept is also 

configurable. This is important as in bigger projects storing the build artifacts may 

require a significant amount of disk space. 

 

 

Figure 11. Build duration and status trend in Jenkins 
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In the graph presented in figure 11, red signifies failed builds and blue successful 

builds. This is extremely useful information which provides insight into the ‘health’ of 

the code base.  

 

A full setup to test Poart would require the following steps: 

• execute unit tests 

• convert MyHDL code to VHDL 

• compile the Quartus project 

• program Poart 

• execute functional tests. 

 

The process of executing the unit tests with the latest version of the code has already 

been explained earlier in this section. However, it is also important to highlight that the 

unit tests do not depend on anything else, for example it is not required to compile the 

design before executing the tests, nor do they produce any input used by the other 

phases. This means that unit tests may be executed in parallel to the other activities 

and thus save time. The simplest way to accomplish this is to configure a separate 

independent build in Jenkins. 

 

The converting of MyHDL code and the compilation of Quartus must happen 

sequentially only after the first one had completed. In a small project where the 

conversion is a relatively short process, it would be practical that these two activities 

are executed in one build. It is then possible to configure that upon successful 

completion, another build is triggered which programs the board. Similarly, after 

successful programming, a final build can be triggered which executes the functional 

tests. By separating these activities in different builds it is easier to identify at which 

phase an error occured. 
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7 Discussion 

 

Testing is one of the main pillars of agile development. However, unfortunately it is not 

uncommon that the first encounter with testing practices for fresh graduates occurs in 

the field rather than in the university classrooms. Therefore, the information on agile 

testing presented in the current paper provides a good start for further exploration to 

students who are about to commence a career as a software developer, be it on 

embedded platforms. 

 

In fact the practices introduced are so general in nature that, in my opinion, they can 

be utilized in any type of programming projects. The field chosen for the project, 

namely digital design, was particularly challenging as it is not generally perceived as a 

software development activity due to the fact that the final product is a hardware 

design, rather than a program. It was therefore rewarding to demonstrate that by 

using open source tools, such as MyHDL, Jenkins, and Robot Framework, agile testing 

practices can be easily implemented in a digital design project. It is then also 

inherently true that embedded programming projects which use general purpose 

programming languages, such as C, could integrate even better. 

 

As the project proceeded, greater emphasis was put on agile testing and practices. 

Nevertheless, a significant part of the work involved the implementation of the 

underlying hardware platform. The experience was fulfilling and the outcome is a 

functioning extensible FPGA platform which may be used in a variety of applications 

and which challenge the capabilities of automated testing even further. 

 

The main challenge over the course of the project was the one of focus. The initial 

goals set for the reference application (the one to be tested) were too high and this 

occasionally led to frustration and procrastination. Nevertheless, in my opinion the 

delay and the subsequent outscoping of the originally aspired hardware design did not 

prevent me from achieving the goal of the project. 
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8 Conclusions 

 

The goal of the project was to present the basics of agile testing and ways that the 

related practices can be applied in the field of digital design. For this purpose a small 

test system was successfully built to illustrate the key components of continuous 

integration and test automation. 

 

Tools that facilitate agile testing are constantly evolving. The hardware description 

language MyHDL is an innovative project which allows for a more seamless integration 

with these tools than VHDL or Verilog. Based on Python, MyHDL promotes the use of 

modern software development practices in hardware modeling, such as test-driven 

development and unit testing. 

 

The outcome of the project was a successful demonstration that agile testing can be 

integrated with the design flow of digital systems. Unit tests were automated and 

executed by a continuous integration server. The flow of the system was the same as 

what would be expected of any other more common application.  

 

Future development of the system would require the implementation of functional tests 

by utilizing a test automation framework. The challenges lie in the integration with 

other testing tools such as network traffic generators and digital acquisition devices. 

The required steps were outlined in the report. 
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Appendix 1. Poart hardware user guide 

 

Poart input power voltage range: +6V to +20V. Note: The negative voltage (or 

ground) is connected to the tip of the connector.The PWR LED indicates that the board 

is on. The RST pushbutton resets the power of the board without the need to unplug it 

 

The onboard 32 MHz clock oscillator is connected to FPGA pin BANK1_23 (CLK0). 

 

Poart provides 2 100-pin external connectors. One of the external connectors is 

marked as J3, the second one, even though not marked on the PCB is referred to as 

‘J2’. This corresponds to the schematic component names. Table 1 and 2 present the 

pin map of the external ports. Pins not listed in the tables are left floating, i.e. no-

connects. FPGA pins are presented in the format ‘BANKx_y’. 

 

Table 1. Extension port J2 pin map 

J2 Pin Function J2 Pin Function 

1 Raw power voltage 2 Raw power voltage 

3 Raw power voltage 4 Raw power voltage 

5 GND 6 GND 

7 GND 8 GND 

9 +3.3V 10 +3.3V 

11 +3.3V 12 +3.3V 

13 BANK2_160 14 BANK2_185 

15 BANK2_161 16 BANK2_187 

17 BANK2_162 18 BANK2_188 

19 BANK2_163 20 BANK2_189 

21 BANK2_164 22 BANK2_191 

23 BANK2_165 24 BANK2_192 

25 BANK2_168 26 BANK2_193 

27 BANK2_169 28 BANK2_195 

29 BANK2_170 30 BANK2_197 

31 BANK2_171 32 BANK2_198 

33 BANK2_173 34 BANK2_199 
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35 BANK2_175 36 BANK2_200 

37 BANK2_176 38 BANK2_201 

39 BANK2_179 40 BANK2_203 

41 BANK2_180 42 BANK2_205 

43 BANK2_181 44 BANK2_206 

45 BANK2_182 46 BANK2_207 

47 BANK1_30 48 BANK2_208 

49 BANK1_31 50 BANK1_3 

51 BANK1_33 52 BANK1_4 

53 BANK1_34 54 BANK1_5 

55 BANK1_35 56 BANK1_6 

57 BANK1_37 58 BANK1_8 

59 BANK1_39 60 BANK1_10 

61 BANK1_40 62 BANK1_11 

63 BANK1_41 64 BANK1_12 

65 BANK1_43 66 BANK1_13 

67 BANK1_44 68 BANK1_14 

69 BANK1_45 70 BANK1_15 

71 BANK1_46 72 BANK1_24 

73 BANK1_47 74 BANK1_27 

75 BANK1_48 76 BANK1_28 

 

Table 2. Extension port J3 pin map 

J3 Pin Function J3 Pin Function 

1 Raw power voltage 2 Raw power voltage 

3 Raw power voltage 4 Raw power voltage 

5 GND 6 GND 

7 GND 8 GND 

9 +3.3V 10 +3.3V 

11 +3.3V 12 +3.3V 

13 BANK4_56 14 BANK4_81 

15 BANK4_57 16 BANK4_82 

17 BANK4_58 18 BANK4_84 
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19 BANK4_59 20 BANK4_86 

21 BANK4_60 22 BANK4_87 

23 BANK4_61 24 BANK4_88 

25 BANK4_63 26 BANK4_89 

27 BANK4_64 28 BANK4_90 

29 BANK4_67 30 BANK4_92 

31 BANK4_68 32 BANK4_94 

33 BANK4_69 34 BANK4_95 

35 BANK4_70 36 BANK4_96 

37 BANK4_72 38 BANK4_97 

39 BANK4_74 40 BANK4_99 

41 BANK4_75 42 BANK4_101 

43 BANK4_76 44 BANK4_102 

45 BANK4_77 46 BANK4_103 

47 BANK4_80 48 BANK4_104 

49 BANK3_133 50 BANK3_105 

51 BANK3_134 52 BANK3_106 

53 BANK3_135 54 BANK3_107 

55 BANK3_137 56 BANK3_108 

57 BANK3_138 58 BANK3_110 

59 BANK3_139 60 BANK3_112 

61 BANK3_141 62 BANK3_113 

63 BANK3_142 64 BANK3_114 

65 BANK3_143 66 BANK3_115 

67 BANK3_144 68 BANK3_116 

69 BANK3_145 70 BANK3_117 

71 BANK3_146 72 BANK3_118 

73 BANK3_147 74 BANK3_127 

75 BANK3_149 76 BANK3_128 

77 BANK3_150 78 BANK3_129 

79 BANK3_151 80 BANK3_130 

81 BANK3_152 82 BANK3_131 

83  84 BANK3_132 
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Appendix 2. Extension board hardware user guide 

 

The Ethernet extension board is designed to work with Poart’s J3 extension port. The 

POWER LED on the extension board is lit when the board is powered. 

 

For debug purposes the board provides two user programmable LEDs (L1 and L2) and 

a pushbutton (PB). 

 

Table 3. User programmable LEDs and PB pin mapping to Poart’s FPGA pins 

L1 BANK3_147 

L2 BANK3_146 

PB BANK3_149 

 

The following table presents the connections of the Ethernet controller to the FPGA. 

 

Table 4. Ethernet controller connections to the Poart FPGA 

Controller pin Function FPGA pin 

5 AD4 BANK4_68 

6 AD5 BANK4_69 

7 AD6 BANK4_70 

8 AD7 BANK4_72 

9 A5 BANK4_74 

10 A6 BANK4_75 

11 A7 BANK4_76 

12 A8 BANK4_77 

13 A9 BANK4_80 

19 A10 BANK3_105 

20 A11 BANK4_104 

33 CLKOUT BANK3_129 

34 INT/SPISEL BANK4_103 

35 AD8 BANK4_102 

36 AD9 BANK4_101 

37 AD10 BANK4_99 
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38 AD11 BANK4_97 

39 AD12 BANK4_96 

40 AD13 BANK4_95 

41 AD14 BANK4_94 

42 AD15 BANK4_92 

43 A12 BANK4_90 

44 A13 BANK4_89 

45 A14/PSPCFG1 BANK4_88 

48 WRH/B1SEL BANK4_87 

49 CS BANK4_86 

50 SO/WR/WRL/EN/B0SEL BANK4_84 

51 SI/RD/RW BANK4_82 

52 SCK/AL/PSPCFG4 BANK4_81 

53 AD0 BANK4_56 

54 AD1 BANK4_57 

55 AD2 BANK4_58 

56 AD3 BANK4_59 

57 A0 BANK4_60 

58 A1 BANK4_61 

59 A2 BANK4_63 

60 A3 BANK4_64 

61 A4 BANK4_67 

 



Appendix 3 

  1 (1) 

Appendix 3. MyHDL Unit test code snippet 

 

def enable_signal(): 

    """ Test the Enable signal functionality """ 

    Clk, Enable, PbIn_Low, PbOut_Low = [Signal(bool(0)) for i in range(4)] 

    PbIn_High, PbOut_High = [Signal(bool(1)) for i in range(2)] 

 

    clk_gen = clk_driver(Clk) 

 

    mut_active_high = pb_debouncer( 

                                   Enable 

                                   ,Clk 

                                   ,PbIn_High 

                                   ,PbOut_High 

                                   ,clkHz=100 

                                   ,activeLevel = ACTIVE_HIGH 

                                   ,samplingFrequency=100 

                                   ,numberOfEqualSamples=4 

                                  ) 

 

    mut_active_low = pb_debouncer( 

                                  Enable 

                                  ,Clk 

                                  ,PbIn_Low 

                                  ,PbOut_Low 

                                  ,clkHz=100 

                                  ,activeLevel = ACTIVE_LOW 

                                  ,samplingFrequency=100 

                                  ,numberOfEqualSamples=4 

                                 ) 

 

    @always(Clk.negedge) 

    def monitor(): 

        print "Time: %s" % now() 

        assert(1 == PbOut_Low)   # mut_active_low drives it high 

        assert(0 == PbOut_High)  # mut_active_high drives it low 

 

    return instances() 

 

def test_enable_signal(): 

    sim = Simulation(enable_signal()) 

    sim.run(10) # 10 time steps 

 


