Attachment 3

Example calculation Excel base

Support reactions from Staad calculations (steel frame)

Example calculation made with DL+INS+WIND(+X) (See attachment Staad picture Sheet No. 13) User inserts chosen load case from support reactions report here:

Load case: DL+INS+WIND(+X)

			,			
Node	FX	FY	FZ	МХ	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1	-100,503	-137,168	-16,268	-3,346	-0,102	4,428
2	-100,875	-145,233	16,593	-1,994	-0,001	5,121
3	-3,189	589,687	-0,182	-0,104	-0,001	7,289
4	-3,434	590,562	-0,144	-0,051	-0,001	7,946

Forces effecting the stack foundation

density of the ground =

	FX	FY	FZ	МХ	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
1	100,503	137,168	16,268	3,346	0,102	-4,428
2	100,875	145,233	-16,593	1,994	0,001	-5,121
3	3,189	-589,687	0,182	0,104	0,001	-7,289
4	3,434	-590,562	0,144	0,051	0,001	-7,946

19 kN/m3

Ground filling calculation is optional. Only calculated when needed. **Insert height of the foundation**

h=	800 mm	foundation height			
	1729,8 kN	weight of the foundatio	n		
Ground filling weight: (calculate if needed)					
Height of t	he ground filling:		<mark>1000</mark> mm		
surface are	ea of foundation unde	r the ground =	1643,31 m2		

ground filling weight = 31222,89 kN insert 0, if ground filling not calculated!!!

Bearing pressure calculations

User inserts the perliminary dimensions here. Measures of the structure

Insert m	neasures A and B	
A=	9300 mm	length of the foundation
B=	9300 mm	length of the foundation
P=	33850,5 kN	
Mxx=	-5092 kNm	moment in direction x
Myy=	418,776 kNm	moment in direction y
ex=	Myy/P =	0,012 m
ey=	Mxx/P =	-0,150 m

Note!! Axes not equal with STAAD!!!

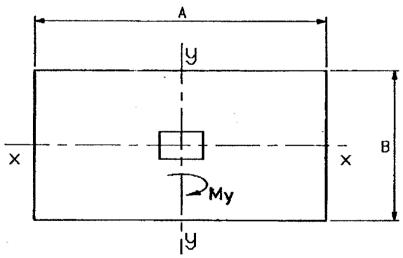


Figure 4. (Reinforced concrete, Analysis and design, S.S. Roy)

After inserting the tables and measures, the base gives a zone as a result. If the foundation is too small, calculation base commands to redesign the measures.

Variables for x and y

res x =	0,012	place of resultant in direction x		
res y =	0,150	place of resultant in direc	ction y	
LINE 1	resultant i	s inside Line 1	Overturning > 1.5	
LINE 2	resultant i	s inside Line 2		
LINE 3	resultant i	s inside Line 3	Resultant is in Zone2 Resultant is in Zone? Resultant is in Zone?	
LINE 4	resultant i	s inside Line 4	Resultant is in Zone?	
LINE 5	resultant i	s inside Line 5	Resultant is in Zone?	

Resultant is in Zone2

Based on the result of the zone, designer uses one of the following formula groups.

Resultant in Zone 1 of base

If factor of safety for overturning is less than 1,5. Redesign size of base.

Rectangular pad - uniaxial bending - no loss of contact					
p1=(P/A*B)+(6*Myy/A^2*B)	=	394,5	kN/m²		
p2=(P/A*B)-(6*Myy/A^2*B)	=	388,3	kN/m²		
Rectangular pad - uniaxial bending - loss of contact					
p1=2*P/((1,5*A)-(3*ex))*B	=	523,233	3 kN/m²		
x=1,5*A-3*ex	=	13,91	l m		

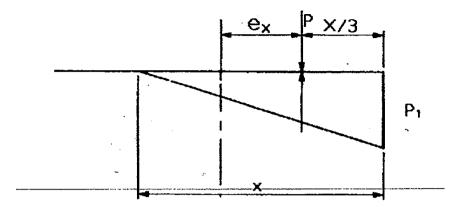


Figure 5. (Reinforced concrete, Analysis and design, S.S. Roy)

Resultant in Zone 2 of base

p1=(P/A*B)+(6*Myy)/(A^2*B)+(6*Mxx/(A*B^2))	=	356,522 kN/m²
p2=(P/A*B)+(6*Myy)/(A^2*B)-(6*Mxx)/(A*B^2))	=	432,488 kN/m ²
p3=(P/A*B)-(6*Myy)/(A^2*B)-(6*Mxx)/(A*B^2))	=	426,240 kN/m²
p4=(P/A*B)-(6*Myy)/(A^2*B)+(6*Mxx)/(A*B^2))	=	350,274 kN/m²

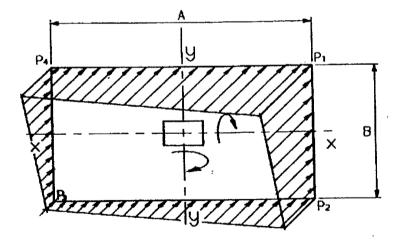


Figure 6. (Reinforced concrete, Analysis and design, S.S. Roy)

Resultant in Zone 3 of base

S=B/12*(B/ey+(B^2/ey^2-12)^(1/2))	=	47,45 m
tanα=(3*(A-2*ex))/(2(S+ey))	=	0,294
p1=(12*P/B*tanα)*(B+2*S/B^2+12*S^2)	=	570,86 kN/m²
p2=(S-(B/2))/(S+(B/2))*p1	=	468,96 kN/m²
x1=(S+(B/2))*tanα	=	15,3 m
x2=(S-(B/2)*tanα	=	12,6 m

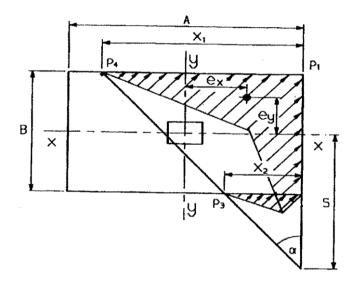


Figure 7. (Reinforced concrete, Analysis and design, S.S. Roy)

Resultant in Zone 4 of base

$t=A/12^{(A/e_x+(A^2/e_x^2-12)^{(1/2)})}$	=	1165,19 m
$\tan\beta=3(B-2^*e_{\gamma})/(2^*(t+e_x))$	=	0,012
p1=(12*P/A*tanβ)*(A+2*t/A^2+12*t^2)	=	507,51 kN/m ²
p4=(t-(A/2)/(t+(A/2))*p1	=	503,48 kN/m ²
y1=(t+(A/2))*tanβ	=	14,46 m
y2=(t-(A/2))*tanβ	=	14,34 m

0

p2 = 0

p3 =

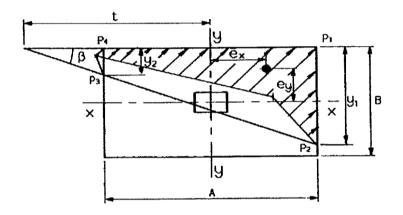


Figure 8. (Reinforced concrete, Analysis and design, S.S. Roy)

Resultant in Zone 5 of base

$k=(e_x/A)+(e_y/B)$	=	-0,015 m
p1=(P/A*B)*k*(12-3,9(6*k-1)*(1-2*k)*(2,3-2*k))	=	-128,91 kN/m²
p2=((S-(B/2))/(S+(B/2)))*p1	=	-105,90 kN/m²
p4=(t-(A/2))/(t+(A/2))*p1	=	-127,89 kN/m²
x1=(S-(B/2)*((t+(A/2)/(S+(B/2)))	=	961,01 m
y1=(t-(A/2))*((S+(B/2))/(t+(A/2))	=	51,68 m

p3 = 0

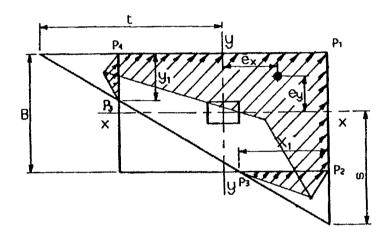


Figure 9. (Reinforced concrete, Analysis and design, S.S. Roy)

Zone areas in example foundation

Zone areas divided by straight lines, which has been given own equations

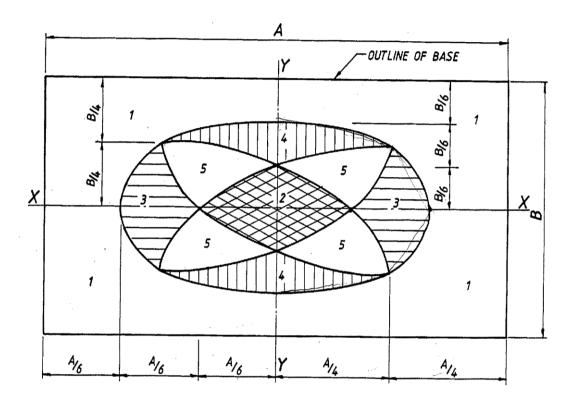


Figure 10. (Reinforced concrete, Analysis and design, S.S. Roy)