

Bachelor‟s Thesis (TUAS)

Information Technology

2011

Aaron Pratt

RICH INTERNET APPLICATION
DEVELOPMENT WITH THE
VAADIN JAVA FRAMEWORK

BACHELOR‟S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree Program in Information Technology

15.8.2011 | 39 pages

Instructor: Patric Granholm

Aaron Pratt

RICH INTERNET APPLICATION DEVELOPMENT
WITH THE VAADIN JAVA FRAMEWORK

The purpose of this work was to design and create a new, custom web application to assist the
client in the planning of musical events involving organizing groups of people and set lists of
songs specific to each event. Future versions should handle communicating with people that
are scheduled as well as managing a song database with music-related editing features.

This thesis documents the planning and implementing of this application and describes the
various the technologies and tools which made it a reality. The project was implemented using
the Eclipse programming environment on a Windows 7 machine utilizing the Java programming
language together with the Vaadin framework to provide the client-server communication
handling as well as user interface components.

The completed application utilized several libraries and packages in cooperation with Vaadin to
enable this Java-based Rich Internet Application to meet the demands set forth for it by the
client. The finished product will be configured in a production environment on a web server to
enable global access to the client.

KEYWORDS:

Programming, web application, Java, Vaadin, database

TABLE OF CONTENTS

1 PROJECT OVERVIEW 1

1.1 Introduction 1

1.2 Background 1

1.3 Project Requirements 2

1.4 Technologies Used 3

1.5 Design 5

1.6 Testing and Validation 5

2 SYSTEM AND DEVELOPMENT TOOLS 7

2.1 Operating System 7

2.2 Preparation and Mockups 7

2.3 Java IDE and Tools 11

2.4 Database 13

3 IMPLEMENTATION 15

3.1 Programming Tasks 15

3.2 Database 34

4 CONCLUSIONS AND SUMMARY 38

REFERENCES 41

APPENDICES 42

1 Source Code 42

2 Database Configurations 105

2.3.1 Eclipse IDE 11

2.3.2 Vaadin Plugin 11

2.3.3 Apache Tomcat 12

2.3.4 Gliffy 13

3.1.1 Business Logic 15

3.1.2 User Interface 18

3.1.3 Services 29

3.2.1 Database Connectivity 34

3.2.2 Database Structure 36

0

TURUN AMK:N OPINNÄYTETYÖ | Aaron Pratt

ACRONYMS, ABBREVIATIONS AND SYMBOLS

AJAX Asynchronous Javascript and XML

API Application Protocol Interface

CRUD Create / Read / Update / Delete

DB Database

GUI Graphical user interface

GWT Google Web Toolkit

HTML HyperText Markup Language

IDE Integrated Development Environment

IRC Internet Relay Chat

JPA Java Persistence API

JSF JavaServer Faces

JVM Java Virtual Machine

MVC Model-View-Controller. An architectural pattern used to isolate

“business logic” from user interface.

ORM Object Relational Mapper

OS Operating System

PDF Portable Document Format

PHP PHP: Hypertext Preprocessor

POJO Plain Old Java Object

RIA Rich Internet Application

SQL Structured Query Language

MySQL An SQL database technology. A subsidiary of Oracle

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

WAMP Windows, Apache, MySQL, PHP

XHTML eXtensible HyperText Markup Language

1

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

1 Project Overview

1.1 Introduction

The goal of this project was to provide a system for a local church organization to

assist their music teams and leadership in planning and arranging their weekly events.

This system should be an all-in-one place to organize a variety of tasks such as: song

selection, music editing, personnel scheduling, and communication. This would save

time and confusion by having one single tool to provide all the functionality that

previously took multiple environments to handle. Not only that, but automation of tasks

involving music theory, such as automatic transposition of key, would increase

productivity and decrease planning time on a weekly basis. This also takes away the

need for storing multiple copies of a single song in the database, one for each desired

key, as the single entry can be altered with a single click of the mouse.

It was decided to deploy this system as a web application rather than a local desktop

program. This makes it possible for multiple users to access the information without the

need to download or install any piece of software or plugins on their local machines, as

all that is needed is a connection to the Internet. Many frameworks and tools exist to

build such an application, but Vaadin (developed by Vaadin Ltd in Turku, Finland) suits

the project requirements perfectly. Section 1.4 (Technologies Used) contains a

thorough description of Vaadin and what it provides.

1.2 Background

Being a staff member of Calvary Chapel Turku, the church for which this application is

being developed, made understanding the system in place, and the needs of this new

application clear and simple. The problem points with the current team planning

method included:

 Too many methods of communication

o (Email, phone calls, SMS, Facebook…)

 Emailing attachments back and forth for any small change in the music plan

2

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 Too much work by hand that could be automated and streamlined

Previous experience with the Java programming language was somewhat limited to

only a few small projects as well as courses in the basics of Java and Swing. Swing is

Java‟s primary Graphical User Interface (GUI) widget toolkit which can be used to

build, for example, a desktop application. An introduction to Vaadin came through a

one week intensive course, held at Åbo Akademi, where attendants were taught the

very basics of how to create a web application from scratch using the Vaadin

framework. Teams of two were then formed and given three to four days to create their

own simple web applications. The fact that my own limited experience with Java and

Vaadin demonstrates the usefulness of a framework like Vaadin in that it is not too

difficult to learn. Vaadin is easy to pick up because it scales well to both small projects

to learn the basics with, as well as large, professional corporate applications.

1.3 Project Requirements

The initial demands for the new application were reasonably limited as the actual

needs and functionalities were few. A main request was for a sense of

straightforwardness and that the program would be easy to use, rather than

overcomplicated with excess components. The requirements for the first version were:

 Availability from any internet connected computer

 An archive of uploadable song sheets and tablature

 Creating events with: a date, band members assigned, a set list of songs

 Automatic transposing of a song‟s key by selecting the desired one (2nd version)

 Communication to/with team members (some email system) (2nd version)

Although the minimum requirements are few, ideas and possibilities for further

development were discussed and could eventually lead to a much more

comprehensive and feature rich environment. This could result in further development

in the future which could perhaps make the application marketable as either a free or a

paid system available to multiple organizations on the internet. This extension of the

application could be very interesting and open up many possibilities. The author and

the staff at Calvary Chapel Turku like the idea of providing others with a free, open

source tool for anyone to use and benefit from. At the same time, if it is decided to

3

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

make some sort of “premium services”, this could provide a beneficial source of

income.

1.4 Technologies Used

Java

The main programming language to be used for this project is Java. Java was

developed by James Gosling of Sun Microsystems (now a subsidiary of Oracle) in

1995 as a truly object-oriented programming language. It shares some similarities with

other languages, such as C++ in its object oriented approach and even syntax, but has

perhaps a simpler object model. Java source code is saved as a .java file type and is

usually compiled to a class file with a .class extension which can run on any Java

Virtual Machine (JVM). Running class files on a JVM allows Java programs to be

supported and run on almost any OS architecture including Windows, Linux, Mac OS,

and UNIX. Whether developing a desktop or a web application, having fewer

implementation dependencies can vastly improve productivity by allowing the same

code to run a program on any one of these architectures.

Java is essentially a set of libraries that defines its syntax and functionality. Outside of

its own libraries, Java can be accompanied by other libraries with additional software

which can provide resources such as graphics, communication over networks, and

database interaction. This allows Java to be easily extendable to fit the specific needs

of a software project. In fact, libraries specifically for graphics and database interaction

were added in order for this project function the way it should. (Lewis and Loftus 2001)

Vaadin

Alongside of Java itself, Vaadin was one of these libraries just mentioned and was the

main technology that made this application possible. Vaadin is a Java framework for

creating modern Rich Internet Applications (RIA). As it is a server-side Ajax web

application development framework, it allows developers to build powerful web

applications in the same manner as traditional desktop frameworks like AWT or Swing.

The server-driven model of Vaadin means that the application code is run on the

4

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

server, but the user interaction is handled by a client-side engine running in the

browser. This model provides several advantages. Firstly, the developer can focus on

writing application logic instead of worrying about client-side technologies like HTML

and Javascript. Since the client-side engine is built on GWT-based widgets and runs as

Javascript in the web browser, there is no need to install plug-ins. Vaadin applications

run out of the box on all Ajax-capable browsers. Second, the server-side architecture

allows developers to use the power and flexibility of Java in web applications. Using

Java‟s object-oriented programming also allows for creating easily extendable and

maintainable applications. Running the code on the server also provides a layer of

security and hides the application code from being seen. (Grönroos 2010, 2)

Not only does Vaadin handle all of the client-server communications and free the

developer to focus on the application itself, but it is also a vast library of UI components

(just as Swing provides in building desktop applications). These components, such as

Buttons, TextFields, Tables, and Labels, comprise the user interface which utilizes

event listeners and data bindings to communicate both with each other, as well as the

actual Java application logic. Having a clear separation between the UI and “domain

logic” allows a developer to implement a proper Model-View-Controller (MVC) design

pattern as shown in Figure 1.1. Using an MVC architecture allows the program to be

divided into separate, complete sections that can each be developed on their own.

Perhaps the greatest advantage is that the application logic can be written and

unchanged, while the physical view of the application can be altered to change the look

and feel of the program.

Figure 1.1. Simple MVC architecture design.

The focus of the Vaadin method can be simplified in three concepts. First, through the

use of the built-in, out-of-the-box components and themes, Vaadin applications can

have a great look and feel. However, developers also have access to add-on

5

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

components and themes, as well as the ability to create their own custom themes, to

give even more options. Second, Vaadin Ltd strives to make their applications perform

well and scale well to any size project. Performance is always important, especially

with all the processing power in computers and smartphones today, as consumers

want a product to work fast and reliably. Finally, productivity in application development

is a major goal within the company. With a system like Vaadin that allows the

programmer to concentrate the program itself and not all the client-server interactions,

skilled programmers should be able to create entire projects from start to finish in a

much smaller amount of time than was previously possible. Productivity and speed of

development is actually one of the major goals for even more improvement at Vaadin in

2011.

The beauty of programming with Vaadin is that very few other tools than writing Java

code is necessary. Section 2 (System and Development Tools) describes in more

detail the other tools used, such as a Java IDE, server, and database system.

1.5 Design

The direction for the layout and design of the application was to achieve a clean,

structured, and easy to understand interface. In planning for the design, research and

comparisons were made with similar concept sites and applications, some of which

contained powerful tools and options. However, the design and confusing layout of

these applications deterred people at times from using their services due to a sense of

frustration at the apparent complexity. Therefore, the overall design strategy should

seek to achieve a simple, professional, and clean interface that is inviting to users.

Mockups and design examples are shown later in Section 2.2 (Preparation and

Mockups).

1.6 Testing and Validation

The testing phase was one area of this project that suffered, primarily due to a lack of

time for proper testing. Naturally, during the process of developing an application like

this, debugging and error correction occur every step of the way. All components and

6

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

aspects related to the application‟s use were tested during development and after

completion of the project to ensure functionality.

7

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

2 System and Development Tools

2.1 Operating System

The programming tasks were carried out in a Microsoft Windows environment on the

personal computer of the author. The particular version used was the currently newest

version, Windows 7 64-bit. Vaadin is available and can be used on a number of

different operating systems. They officially support the following OS types:

 Windows

 Linux

 Mac OS X Tiger or Leopard

 Other UNIX based operating systems, such as Sun Solaris

Regardless of OS type, Vaadin is supported on a wide array of all major web browsers.

Since Vaadin is used to specifically create web applications, it is important that users

are not limited to only one or two browsers that can access the applications made with

it. As of the newest release of Vaadin, 6.6.1, the following web browser technologies

are supported for application viewing:

 Mozilla Firefox 3 and 4

 Safari 4 and 5

 Google Chrome (latest version)

 Opera 10 and 11

 Internet Explorer 6, 7, 8, and 9

2.2 Preparation and Mockups

The Preparation phase was a larger and more integral part of this project than it would

perhaps normally be. This is primarily due to the fact that, as previously stated, the

author had little experience in Java programming techniques. Furthermore direct

experience with Vaadin was limited to only a one week introductory project. Therefore,

8

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

considerable time was spent examining documentation on writing web apps with

Vaadin.

Fortunately, their website (vaadin.com) is very well built and contains several key

resources for developers. There are sample projects and tutorials varying from both

small to medium sized projects which illustrate proper techniques. Of course, the entire

API (Application Protocol Interface) is archived for referencing all Vaadin components

and their classes and methods in the same way that any Java library API is indexed.

Vaadin also hosts its own forum where questions, comments, and even bugs can be

reported and discussed by anyone with a valid user-id and password (accounts are

free). Perhaps the two most beneficial resources they have are the Book of Vaadin and

their two chat channels. The book is currently in version 6.4 and was written by their

own developer, Marko Grönroos, to provide an overview of Vaadin and explain all the

integrated UI components, architecture, how to write and deploy a web application, and

the Vaadin data model. This book is available in printed form and is freely available

online or in PDF format. The website even contains functional examples with source

code and working components that further demonstrate examples from the Book of

Vaadin. They have both an IRC (Internet Relay Chat) channel as well as a Skype

group where users can ask questions and get immediate feedback and assistance.

After reviewing the many resources from Vaadin‟s website and other real world

example projects, the next step in preparation was to plan out the application

architecture in an effort to maintain a type of MVC structure that can be built upon and

expanded with little complications. Although the final structure did differ in small ways

from the original design, planning these steps did help keep the code organized and

the coding process clear. For example, it was decided that the coding procedure

should be methodical by working on tasks in this order:

1. Create the “business logic”

a. Models

2. Design layouts

a. Main layout structure

b. Views for adding and showing various components

3. Write the services and database classes

9

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Taking the time to plan out the UI of the application benefited the coding process by

having actual images of the design to refer to. Balsamiq (www.balsamiq.com, 2011) is

an excellent tool for creating mockups and wireframe designs. It has both an online and

a desktop application for quickly making mockups of UIs that can be specific for

desktop, web app, or even mobile applications. These mockups can be made in a

matter of minutes and they look great, which helps inspire good design and

implementation. Figure 2.1 shows an example of what the main layout and UI structure

would look like. The left side of the screen would have the logo and space for a

calendar and possible other components, while the main layout contains a tabSheet

where the bulk of all work is done. Figure 2.1 shows the People tab selected were team

members can be added, edited, and deleted. Figure 2.2 displays the Songs tab with an

open modal window with which to add and edit songs.

Figure 2.1. A mockup design of the main layout and “People View”.

10

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Figure 2.2. “Song View” with modal window for adding a new song.

Finally, Figure 2.3 displays a simple use case scenario in order to have a clear goal for

what services and functionalities would be provided.

Figure 2.3. Use Case Diagram of functionality.

11

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

2.3 Java IDE and Tools

2.3.1 Eclipse IDE

The environment chosen for all programming tasks on this project was the open source

tool suit Eclipse, specifically Eclipse IDE for Java EE Developers (Helios Version).

Eclipse is a standalone application that, on Windows, does not require installation by

an .exe file but is by itself a runnable program. The Enterprise Edition is a tool for Java

EE and web application developers with a Java IDE (Integrated Development

Environment) and tools for JPA (Java Persistence API), JSF (JavaServer Faces), and

others.

Before being able to run Eclipse, or to run a Vaadin application inside of it, a Java

runtime environment (JRE) must be installed on the development machine. If there is

no JRE found, the Vaadin application will fail to start as the batch file will fail and close

immediately (Grönroos 2009, 13). At this point, it is very important to make sure that

the JRE and Eclipse versions are compatible with each other, namely that they are

either both 32-bit versions, or both 64-bit versions. In this instance, the JDK 6.0 64-bit

and Eclipse JEE 64-bit versions were chosen. It could be noted that in a 64-bit

Windows 7 environment, either a 32 or 64-bit option could be chosen, as long as the

same is used for both pieces of software.

2.3.2 Vaadin Plugin

Installing Vaadin is the next step to be able to create the application in Eclipse, and this

is very simple and easy to do. Vaadin has created a plugin for both the Eclipse and

NetBeans IDEs; therefore, it is easily integrated in either environment. Simply

searching for Vaadin in Eclipse‟s “Install New Software” wizard will yield a window

where all that is needed is to check the boxes and click install as shown in Figure 2.4.

At the time this project began, 6.5.7 was the current stable release of Vaadin.

12

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Figure 2.4. Installing the Vaadin Eclipse Plugin.

2.3.3 Apache Tomcat

In order to run the web application, the files must be served somehow. Though far from

the only compatible option, perhaps the most popular server to use in Vaadin

application development is Apache Tomcat. Tomcat is a lightweight Java server that

can be used in both development and production environments. Tomcat is developed

in an open and participatory environment and even powers many large-scale, mission-

critical web applications despite being lightweight. (tomcat.apache.org, 2011)

For this project, Apache Tomcat version 6.0.32 was chosen as the development server.

Prior use and familiarity showed that Tomcat was a dependable and powerful choice.

Vaadin officially supports Tomcat version 4.1 or later.

13

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

2.3.4 Gliffy

A tool called gliffy was used to create all of the UML and Use Case diagrams for the

project. Gliffy is an online design tool that is growing in popularity. It has customers in

over 40 countries that use it for personal use, small businesses, academic studies, and

even large global corporations, such as Cisco, Dell, Pandora, Pixar, Apple, Adobe, and

even MIT. It is a versatile system that supports numerous diagram and chart types

such as: flow charts, network diagrams, site map software, UML diagrams, and

business process modeling software. (www.gliffy.com, 2011)

Some tools for drawing UML and database entity diagrams are over-complicated and

difficult to understand, much less to implement. Gliffy is very straightforward and yields

quick results that can be customized quite a bit to look great.

2.4 Database

Depending on the needs and functionalities of a web app, most production applications

require the ability to store and retrieve data and information. That is why these types of

apps can be referred to as CRUD applications (Create/Read/Update/Delete). Although

several storage options exist for Vaadin applications, even a simple file system can be

utilized; most often a database is the preferred method to fulfill this requirement.

As previously mentioned, Vaadin is currently making strides to make development

even more streamlined and faster. Databases and data persistence is one of these

areas. Most Vaadin professionals use some sort of Object Relational Mapper (ORM)

such as Hibernate or JPA as a Java persistence framework. Using these tools

simplifies database connectivity compared to writing traditional SQL queries, and can

be a more productive method. As of 2011, Vaadin has now released a plugin for Spring

Roo so that developers can take advantage of both Vaadin and Roo simultaneously

which makes it possible to create a fully functioning, attractive, and data persistent

application in a matter of hours or minutes. Explaining Roo is beyond the scope of this

paper and will not be further mentioned.

It was decided that for this project, these newer methods would not be used relating to

the database configuration. This decision was two-fold. First, as an academic

assignment, writing traditional SQL was more reflective on the author‟s actual training

http://www.gliffy.com/

14

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

at TUAS (Turku University of Applied Sciences). The second and larger reason,

however, was that learning a new technology like Hibernate or Roo did not fit into the

timeline allowed by this project. It should be mentioned though that these technologies,

especially Roo, show tremendous signs of inspiring developers as they open up a

world of possibilities in application development with so much ease, once the

technology has been learned.

MySQL was chosen as the database management system as it is widely used and

documented and is reliable. During development, it was specifically used from inside

WAMP (Windows, Apache, MySQL, PHP) due to the fact that WAMP was already

installed from other software projects on the local machine and was ready to deploy.

The only other requirement from WAMP was to create a new database in phpMyAdmin

for this project. Deciding to go with these technologies also made sense as the final

production server environment supplies MySQL databases with phpMyAdmin.

Therefore, moving the database over to the production server would be compatible and

straightforward.

15

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

3 Implementation

The implementation stage is where the bulk time and effort on this project was spent.

Once Eclipse, along with the Vaadin plugin as well as the Tomcat server, is installed

and set up, work could begin on building the actual application. At this point the

theoretical information would become practical assignments deriving physical code and

real world results.

As previously stated, a design method was in place in order to systematically approach

the separate logical pieces of the application. This section will follow that chronological

structure as close as possible in order to be a proper documentation of the coding

process. Although the project attempted to maintain a proper MVC architecture, some

structures may have overlapped to a degree, perhaps mostly due to lack of experience

with Vaadin and GUI application development.

It should be stated that this document is not meant to be a full “tutorial” on how to

create a Vaadin application from the ground up. The purpose is, however, to document

and report the general procedures and results of this software development project.

Therefore, small details or certain specific steps might not be mentioned here, as they

will not be beneficial within the scope of this paper. Many tutorials and full instructions

on writing Vaadin application can be found on their website, as was discussed in

Section 2.2 on Preparation and Mockups.

3.1 Programming Tasks

3.1.1 Business Logic

Following the MVC pattern for software architecture, the first classes that need to be

written are the “domain logic” components. This represents the model classes that will

handle the behavior and data of the application. The models will respond to requests

for an item‟s, or POJO‟s (Plain Old Java Object), state as well as requests to change

that state. These requests come from the views (to display the state) and the

controllers (to change the state).

Writing the model classes was a rather quick process, especially when compared with

designing the UI and Controller classes. There is only a total of 3 entities needed to

16

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

fulfill the Use Case determined for this project: Happening, Person, and Song. In the

event that further development will occur and the program will be extended to add more

functionality, several more entities will be needed such as: Group and Instrument.

Java is defined as an object-oriented programming language. Although not the only

“objects” used in this application, the model classes can be referred to as objects (or

POJOs). As an example, each team member added to the application is stored as an

instance of the Person class. Each Person is an object which can be viewed, edited,

updated, and deleted. These interactions take place by means of the Person class‟

methods, such as constructors and the getters and setters. The same holds true for the

Happening and Song classes.

// Constructor

public Person(int personId, String fName, String lName, String email,

String phoneNumber){

 this.personId = personId;

 this.fName = fName;

 this.lName = lName;

 this.email = email;

 this.phoneNumber = phoneNumber;

}

 //Getters and setters

public void setfName(String fName) {

 this.fName = fName;

}

public String getfName() {

 return fName;

}

From the above example, there is a getter and setter for a person‟s first name. In this

case, the setfName() method is called upon by a controller class when creating a

person, to store the name given in the database. The getfName() method is used by

a view to retrieve the name and insert it into a table which displays all properties of all

the people in the database (Fig 3.1).

Figure 3.1. Example of table retrieving properties from getter methods.

17

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

The Song class is structured similarly with variable for a song‟s title, author, key, and

lyrics with chords. There are two features of this entity that should be pointed out. First,

the songText variable should be able to hold enough information comparable to

around one to two pages of a typical rich text formatted document (MS Word for

example). A String was used in the Java class and the data type used in the MySQL

database for storing this data was a LONGTEXT.

private String songText; // the mysql data type used is LONGTEXT

CREATE TABLE `songs` (

...

`song_text` LONGTEXT

)

The second important part of the Song class is key variable. This is the one property of

a song that a user will not add any new data for. The key is set as a String variable

which is set later in the SongView class as a predefined set of options that a user can

choose from. This list of options provides all of the possible keys in which music can be

played. The user has only to choose which key he/she will set the song in.

String[] available_keys = new String[]

{"C", "Db", "D", "Eb", "E", "F", "F#", "G", "Ab", "A", "Bb", "B"};

The demands from the model entities in this project were quite light, as it is a simple

set up. Most of the “magic” and interesting features take place in the UI components

and the controllers which tie the UI and models together. It is important though, no

matter how large or small a project might be, to take special care in writing clean, error

free model objects, as they are the building blocks so to speak of the entire application.

One way of keeping track of the Java classes is through the use of UML (Unified

Modeling Language) diagrams. Depending on the size of the project and the

experience of the programmer, taking the time to draw-up UML diagrams might not

always be beneficial. However, many developers are quite keen on always planning

and tracking their work the proper way, and UMLs are an excellent way of documenting

and doing just that. Figure 3.2 displays a UML diagram of the data package

(com.aaronpratt.teamplanner.data) for the Team Planner Application.

18

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Figure 3.2. UML Diagram of the data package.

3.1.2 User Interface

The second aspect from the MVC architecture that needs to be implemented is the

View. The view provides the user interface that is the only direct part of the program

that end users will see and directly interact with. The models provided the “application

logic” which is the foundation for a functional program, and the controllers will provide

the interaction of those models together with the database. Not only that, but the

controllers tie these functionalities together with the UI to make it a working graphical

system. Therefore, the sole purpose of the view classes are to, as implied, provide an

interface with which to view the data and resources inside the program. This means

that the view should be separate from any “logic” and database transactions in order to

maintain a true MVC structure. The reasons and advantage of programming this way is

that no matter what the user interface looks like, the underlying structure never

changes, but continues to work as it should. This means that changes can be made, or

even an entirely new design of the GUI can be made which then ties together with the

models and controllers, but should not require modifications to them.

The view classes do, however, contain some similarities to “logical components”, but

these are not considered part of the “business logic” or controllers themselves and

19

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

should be understood correctly. The views implement methods from the models and

controllers in order to retrieve data to be displayed by the UI. This is partially done

using listeners, such as ClickEvents or ValueChangeEvents, which are actually

methods of the UI components themselves. These methods provide functionality for the

graphical components, instead of having a button that does nothing.

This section is where Vaadin really comes into place. The programming approach that

was taken in this project, in practice meant that only Java itself was needed for the

model classes; and Java together with SQL statements and JDBC connectors were

utilized in the controllers. In essence, the only aspect Vaadin was directly used for was

in implementing the GUI with its own graphical components, as well as a few add-ons

from the Vaadin directory. In reality, however, Vaadin does so much more for the

programmer. The difference between a desktop and web application is that a web app

is run in a browser over the Internet. This means that there are many other aspects

than just the UI that must be handled in order for the application to function remotely,

such as AJAX communication between the browser and the server. Vaadin also

removes the need for developers to learn and debug browser technologies like HTML

and JavaScript. (Marko Grönroos 2009, 1-2)

Vaadin has always had a fairly powerful set of UI components for developers to utilize

in application development. As anyone with experience in GUI development would

probably know, sometimes getting the design, layout, and alignment set properly can

be a cumbersome process. This is why Vaadin has introduced a tool to assist in the

design and implementation of Vaadin applications called the Visual Editor. This is now

a part of the package that comes with the Eclipse plugin. The visual editor is itself, in

fact, a Vaadin application that allows graphical components and layouts to be arranged

and edited in a drag-and-drop type manner. Almost all component attributes such as

name, caption, alignment, size, and expand settings can be configured easily. The

visual editor automatically compiles the actual code corresponding to the changes

made in the “design view”. This code can be then altered by hand in the “code view”;

however, that can lead to strange behavior when later attempting to use the design

view again. The display window has gridlines and allows components to snap in place

to keep them all properly aligned as shown in Figure 3.3.

20

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Figure 3.3. Layout editor of the Vaadin Visual Editor.

Figure 3.4. Component tree and property editor.

21

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

The starting point in any Vaadin application is the main application class itself. This is

where everything begins and where content is loaded from. It is just like any other class

with the exception that it must extend the Application class.

public class TeamPlannerApp extends Application

As far as the View is concerned, the only action that happens in this class is the

loading of the main application layout. The init method accomplishes essentially two

tasks. First, it sets the theme used in the application. It is very easy to change the

overall theme used in a Vaadin application using one of the built in themes, an add-on

theme, or even writing your own. Second, the main window is created and the content

is set to load the MainLayout and the HeaderLayout. This could be done inside the

init method, but a separate method is used so that in the next version of this

application (which will have multiple user login capabilities) the login page will be force

loaded first; and only after a successful login will the loadProtectedResources

method be called.

public void init() {

 setTheme("reindeer");

 // Set main window

 mainWindow = new Window("Worship Team Planner");

 setMainWindow(mainWindow);

 loadProtectedResources();

}

// load the main application in the window

public void loadProtectedResources (){

 //layout to hold header and main layout

 mainLayoutHolder = new VerticalLayout();

 mainLayoutHolder.setStyleName(Reindeer.LAYOUT_WHITE);

 //create new header and main layout

 mainLayout = new MainLayout(this);

 headerLayout = new HeaderLayout(this);

 //add components to layout

 mainLayoutHolder.addComponent(headerLayout);

 mainLayoutHolder.addComponent(mainLayout);

 mainLayoutHolder.setSizeFull();

 mainLayoutHolder.setExpandRatio(mainLayout, 1);

 //set new window content

 mainWindow.setContent(mainLayoutHolder);

}

22

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

The main application layout consists of two classes, the MainLayout and the

HeaderLayout. The header, as displayed in Figure 3.5, is a simple layout displayed as

a thin bar on the top of the window containing the application logo and a label. In future

versions that support user login, there will also be buttons such as “my account” and

“logout”.

Figure 3.5. Header Layout

The rest of the application lies inside two classes, the MainLayout and the SideLayout.

The SideLayout holds space for a calendar and will have more context menu options in

the next release of this application. These additional options will be for adding detailed

info about team members and songs. For example, additional information to help sort

through songs such as: tempo, beat-per-minute, themes, and genre will be added. The

MainLayout and SideLayout are divided using a fixed-in-place split panel as shown in

the example code below (Note: this is a snippet example and therefore, does not

contain all the parameters actually used).

// Add a horizontal split panel in the bottom area

splitPanel = new HorizontalSplitPanel();

splitPanel.setLocked(true);

addComponent(splitPanel);

// Add some content to the left side of split panel

sideBar = new SideLayout();

splitPanel.addComponent(sideBar);

// Add content to Right side of Split Panel

t = new TabSheet();

splitPanel.addComponent(t);

The MainLayout is essentially a tabSheet that provides navigation to separate views

specific to dealing with people, songs, or happenings (events). Each of these views is a

class on its own which has an instance created and added to the tabSheet. The

MainLayout is displayed in Figure 3.6.

// Create component containers for tabs

peopleTab = new PeopleView();

songTab = new SongView();

happeningTab = new HappeningView();

// add tabs. call the 3 main views

t.addTab(peopleTab, "People", null);

23

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

t.addTab(songTab, "Songs", null);

t.addTab(happeningTab, "Events", null);

t.addListener(this);

Figure 3.6. The main layout of the application

By separating the various components that make up the user interface as a whole it is

easier to keep the code clean and organized, as well as easier to debug because it is

less cluttered and confusing. This creates a larger number of Java files to deal with, but

each one has fewer lines of code. The fewer lines to scroll through in any individual

class the easier it becomes to locate specific functions and understand what is

happening in the code. The structure of the Views section is shown in Figure 3.7. Two

packages comprise the View architecture, the layouts and the views. The three classes

that make up the layouts have just been explained; the views package will be

examined next.

Figure 3.7. Layouts and View packages which form the UI

SideBar MainLayout

24

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Each of the three views (PersonView, SongView, and HappeningView) shares the

same basic design and functions. They provide four main operations: the ability to add

content, view content, edit content, and delete content. The specific way that those

functions are carried out varies slightly in each tab depending on the type of content

and the UI components needed for the data.

The first tab, which is also the view displayed upon loading the application, displays the

PeopleView content. The layout is simple so that it won‟t take hours of toiling with the

application to figure out how to use it. There are basically three component areas in the

view: a header label with a title for the menu page selected, buttons for initial actions,

and a table to display the people currently saved in the system (Figure 3.8). The label

is set to display content formatted as standard XHTML. So a standard header tag is

used to give the label its formatting according to the current theme of the application.

headerLable = new Label("Calvary Chapel Turku People");

headerLable.setStyleName("h2");

Buttons can be styled in several ways in Vaadin; in this case a link style is used. Only

two buttons are initially shown: the add people and email button. Additionally, the user

can right click on any row and get a menu with options like deleting a person. The

email button is not in this menu, but is displayed above because multiple rows can be

selected and therefore all selected people can be sent an email to.

emailButton = new Button("email");

emailButton.setStyleName("link");

addPeopleButton = new Button("add people");

addPeopleButton.setStyleName("link");

Lastly, the table for displaying the people is set with a few qualifications. It is set to a

maximum height of ten rows. When more than ten rows of data exist, it will

automatically enable scrolling. The table is styled to be without a border to give it a

sleeker look and feel. Selection and selecting multiple rows is enables as well as the

ability to reorder the columns. Finally customized header names are given; otherwise

the variable names would be used, such as fName instead of “First Name”.

// peopleTable

peopleTable = new Table("", personBean);

peopleTable.setWidth("97.0%");

peopleTable.setPageLength(10);

peopleTable.setStyleName(Reindeer.TABLE_BORDERLESS);

25

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

peopleTable.setSelectable(true);

peopleTable.setMultiSelect(true);

peopleTable.setImmediate(true);

peopleTable.setColumnReorderingAllowed(true);

peopleTable.setSortAscending(true);

peopleTable.setSortContainerPropertyId("fName");

//column headers

peopleTable.setVisibleColumns(new Object[]{"fName", "lName", "email",

"phoneNumber", "edit", "delete"});

peopleTable.setColumnHeader("fName", "First Name");

peopleTable.setColumnHeader("lName", "Last Name");

peopleTable.setColumnHeader("phoneNumber", "Phone Number");

peopleTable.setColumnHeader("edit", "");

peopleTable.setColumnHeader("delete", "");

peopleTable.setColumnWidth("phoneNumber", 100);

peopleTable.setColumnWidth("edit", 50);

peopleTable.setColumnWidth("delete", 50);

peopleTable.setColumnAlignment("edit", Table.ALIGN_CENTER);

peopleTable.setColumnAlignment("delete", Table.ALIGN_CENTER);

The last two columns in the peopleTable are “generated columns”. These columns

provide buttons with the ability to edit and delete a single table entry.

//edit button column

peopleTable.addGeneratedColumn("edit", new Table.ColumnGenerator() {

 private static final long serialVersionUID = 7190293891473776387L;

 public Component generateCell(Table source, Object itemId, Object

columnId) {

 //Item item = songTable.getItem(itemId);

 tableEditButton = new Button("edit");

 tableEditButton.setData(itemId);

 tableEditButton.setStyleName("link");

 tableEditButton.setImmediate(true);

 tableEditButton.addListener(new EditButtonListener());

 return tableEditButton;

 }

});

In order to get the data to be displayed in the table, a few simple steps must be taken.

Since multiple items will be displayed, an ArrayList is created to hold these items

and this list calls the controller method which selects all rows in the database people

table. Then a BeanItemContainer is used as a container for the multiple beans (or

POJOs) received from the database. This bean container is run inside a loop which

adds one bean at a time to the container, complete with its person data values from the

database. When the container has been filled from the DB, it is added to the table as

the container data source.

26

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

db = new PersonService();

list = new ArrayList<Person>();

list=db.getAllPeople();

// Create a container for beans

personBean = new BeanItemContainer<Person>(Person.class);

// Add some beans to it

for(Person person:list){

 personBean.addBean(new Person(person.getPersonId(),

 person.getfName(), person.getlName(),

 person.getEmail(), person.getPhoneNumber()));

}

// peopleTable

peopleTable = new Table("", personBean);

Figure 3.8 shows these elements in the finished “People” tab, together with test data in

the table.

Figure 3.8. PeopleView basic layout.

When the user clicks on the “add people” button, a modal window pops up in the center

of the screen with a form for creating a new person. The window can be closed by

saving the information, clicking the cancel button, or by clicking the “x” in the top right

corner (just as any standard application has a close icon). The input data is saved to

the database by calling a controller method (similarly to how data was added to the

table) from within the save button‟s ClickListener. Finally, the modal window is closed

by removing it from the main window.

27

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Figure 3.9. Modal window to add a person.

The “Songs” tab is almost identical in design to the “People” tab with a label, a few

buttons, and a table to view the songs. A table is used to sort through the archived

songs. This table shows the title, author, and key of a song, along with generated

buttons for deleting or editing a song. A modal window is used again as an area for

adding and editing songs. This window contains one of the more advanced built in

Vaadin components, a fully functioning rich text editor. When the save button is clicked,

its listener calls a controller method, passing the correct parameters to be stored in the

database. The listener then removes the modal window from the display as shown in

the code below.

db.createSong(title.getValue().toString(),

 author.getValue().toString(),

 keyBox.getValue().toString(),

 songTextArea.getValue().toString());

addSongSubwindow.getParent().removeWindow(addSongSubwindow);

28

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Figure 3.10. Modal window demonstrating how to add/edit a song.

The HappeningView shares the same basic approach as that of the PersonView and

SongView; however, it has one main functional difference. The general format of a

definition label, a button to add a new event, and a container of some sort to display

events is used. Since an event has not only multiple properties (like a song has a title,

author, key, and text), but some of these properties are themselves lists of objects

(multiple songs and multiple people assigned to a single event). A normal table does

not provide the type of functionality needed to display all this information. There could

be several methods of solving the problem of how to display this information in a clean,

organized fashion without a single event requiring a very large portion of the screen.

The choice used to solve this particular situation came in the form on a UI add-on

component called a TreeTable. Although this component was developed by Vaadin

and not a 3rd party developer, it is not yet implemented as a built-in component but is

available as a free add-on. This is, exactly as it sounds, a combination of the tree

structure and a table component. The table aspect provides a rich visual experience

with a more defined separation of items, while the tree provides a hierarchical structure

that can be minimized to show only the parent row (with the title and date, for example)

or maximized to display all the songs and people currently added to that event. This

component works nicely for the Happening table as a single event can have a

subgroup of people and songs. These subgroups can be collapsed or expanded to take

up as little or much space as needed as shown in Figure 3.11.

29

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Figure 3.11. Example of a TreeTable component.

3.1.3 Services

The models have been written to provide the objects and base upon which to build the

application, and the views have built the overall user interface. Now the final aspect of

the software that is needed is the controller. These controller classes tie the models

and views together, as well as provide the connection to the database where all

application data will be stored.

The overall method design for the controllers is quite simple, and can be compared to

the functionality of the “getters and setters” from the model classes. There is one

controller class for each model entity. Each class has a series of methods which

contain SQL queries for communicating with the database. Some of the methods add

data to the database by utilizing INSERT or UPDATE commands. These methods can

be thought of as “setters”, since they set values of certain properties which the DB then

stores in its tables. In practice, this will be the method called from a form, for example,

to add a new person instance to the team. Other methods request or “get” information

back from the database through the use of SELECT statements. This data can then be

called on from any UI component that can handle the specific content. For example,

the table shown previously in Figure 3.1 uses one of these methods to request all the

properties for all people instances in the DB and displays the people found in rows.

This demonstrates the power and flexibility of using the Model-View-Controller

architecture, as the actual queries only need to be written once and can be called

multiple times from anywhere in the application interface.

30

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

Figure 3.12. UML diagram of the service package.

The package for the controllers, com.aaronpratt.teamplanner.services, is

structured as shown above. The first class written is the DB.java class which contains

three methods. This class and its methods are called on by all the other three classes

in the package. The methods provide a streamlined way to disconnect from the

database. The reason for doing this is because every method that requests or inserts

data from the database needs to first connect to the DB, execute the statement, and

then disconnect. Instead of rewriting the code to sever the DB connection in every one

of these methods, that logic can be stored in the DB class methods and simply called

on whenever disconnection is needed.

public static void close(Statement ps){

 if(ps!=null){

 try{

 ps.close();

 }catch (SQLException ignore){

 }

 }

}

The code above is one such method. This method is used to close a prepared

statement, which can be thought of similar to a String variable which holds some

amount of written data. All queries used in the service package use

PreparedStatements as a type of wrapper for the actual SQL query (a detailed

explanation on PreparedStatements and JDBC is in section 3.2.1 on Database

Connectivity). Statements are used to execute queries, ResultSets are used to retrieve

31

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

data (in the case of a SELECT statement), and all database transactions take place

within a Connection to the DB. All three of these must be properly closed, which is

done by calling these methods. ResultSet and Connection closing methods are as

follows:

public static void close(ResultSet rs){

 if(rs!=null){

 try{

 rs.close();

 }catch (SQLException ignore){

 }

 }

}

public static void close(Connection connection) {

 if (connection!=null){

 try {

 connection.close();

 } catch (SQLException ignore) {

 }

 }

}

The PersonService class provides all the controllers related to interactions with people

instances. This, as well as the SongService and HappeningService classes, has only

one local variable which performs a similar functionality as the DB class did. This String

variable is merely for storing the database connection data (URL, user-id, password) to

help simplify all the database transactions. Instead of writing out the full URL with the

database username and password within every method which makes a transaction, the

variable name, in this case: databaseName, can be called instead.

private final static String databaseName =

 "jdbc:mysql://localhost:3306/team_planner?user=root&password=";

The next example shows the method for adding a new person to the database. The

parameters in this method are all the properties of a Person instance which the user

has entered into the form, in this case those properties are first name, last name, email,

and phone number. The first task to be done is to access the JDBC driver (the JAR file

library add-on that provides connection to the database). Next, a Connection variable is

made which creates the DB connection, calling the String databaseName with

connection data. Now that a connection is made, the SQL query can be written and

stored inside a PreparedStatement. Since the actual values are unknown until the user

inputs them in the UI, question marks are used which are then filled, in order, with user

32

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

input data as defined by the setString() statements. At this point, all the information

has been stored in the PreparedStatement, but is not actually executed in the database

until it is specified to do so by the executeUpdate() statement. The final task is to

properly close the database connection, which process was just described. The query

statement is closed first, followed by the actual connection to the database.

//create a person

public void createPerson(String fName, String lName, String email,

String phone){

 try {

 //Access driver from JAR file

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 //create variable for db connection

 Connection con = DriverManager.getConnection(databaseName);

 //create a query

 PreparedStatement st = con.prepareStatement

("INSERT INTO people (fName, lName, email, phone) VALUES(?,?,?,?);");

 //set input data to values

 st.setString(1, fName);

 st.setString(2, lName);

 st.setString(3, email);

 st.setString(4, phone);

 //execute the statement

 st.executeUpdate();

 //close transaction

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

}

Although persistence frameworks, such as Hibernate, assist developers by demanding

less for code in order to obtain the same result, this process is still quite straightforward

and easy to understand. At least in a smaller project, such as this one, where the

number of different DB transactions is somewhat limited, using the approach shown

here is not very time-demanding.

Retrieving data back from the database in order to display it in the UI is done in a very

similar manner as writing to the DB, with only a few minor adjustments. The method

should not be void in this case; but it should have a return type, as something is

being retrieved in order to be shown. If only a single specific table entry is being

33

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

requested, there will still be a method parameter in order to distinguish which entry is

being requested; but in the example below we are asking for all the entries from the

„people‟ database table, therefore no such specification is needed. An ArrayList is

created to hold all the people instances. The database connection and SQL statement

are written the same way as the previous example; followed by a ResultSet which

executes the query and then runs inside a while loop, adding the data to the person

instances. When the loop has completed the connections must be closed again, this

time starting with the ResultSet and then proceeding as before.

//get all people

public ArrayList<Person> getAllPeople(){

 ArrayList<Person> people = new ArrayList<Person>();

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con = DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT * FROM

people");

 ResultSet rs = st.executeQuery();

 while (rs.next()){

 people.add(new Person(rs.getInt(1), rs.getString(2),

 rs.getString(3), rs.getString(4),

 rs.getString(5)));

 }

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return people;

}

The HappeningService and SongService classes are structured the exact same way as

these examples from the PersonService class have displayed. Once the database itself

is set up and the connection has been successfully made from the Java files, the

controllers themselves are very simple to implement. The power and effectiveness of

the Controllers and the Models, while themselves quite simple to implement, displays

the beauty and advantages of Java‟s object oriented approach.

34

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

3.2 Database

3.2.1 Database Connectivity

Since it was decided not to implement Hibernate or another similar ORM, direct SQL

statements were used together with JDBC (Java Database Connectivity) as the

connection driver. JDBC was developed in the 1990s by Sun Microsystems with the

intent of being a “standard for data access on the Java Platform” (Jesse Davis 2010,

1). At that time it was merely a thin API that ran on top of an ODBC (Open Database

Connectivity) driver. Today it has been extended and rebuilt to be a fully featured

standalone data access standard and has virtually replaced the need for ODBC at all.

Through the years, JDBC has become much easier to deploy and utilize despite its

growth in power and features, because it is but a single JAR file to be added in the IDE.

Figure 3.13 illustrates these features and all that is under the hood of the JDBC driver.

Figure 3.13. „Anatomy of the JDBC driver‟ (Jesse Davis 2010, 4)

If a persistence layer like Hibernate or JPA is not used in tandem with JDBC, it is still

possible, of course, to implement a more direct SQL statement approach. One way to

execute SQL queries with this approach is to use PreparedStatements. There are,

35

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

naturally, several other options when using Java and JDBC, but a PreparedStatement

is often the most common choice for two reasons. First, if there are optional

parameters which need to be specified to the SQL statement or values that do not

convert easily to a string, such as a BLOB, a PreparedStatement handles these

scenarios best. Also, it can help defend against attacks such as SQL injection when

working with string values. Both of these benefited this particular project, as was

described in the section on services and controllers (3.1.3). (Jesse Davis 2010, 1)

Once the database is configured, which will be covered in the next section, setting up

the connection requires only a few simple steps. The first step in configuring JDBC is to

download the driver which is freely available on MySQL‟s website under „MySQL

Connector/J‟. The JAR file (in this case: mysql-connector-java-5.1.16-

bin.jar) needs to be added to the project‟s build path in Eclipse as shown in figure

3.14. At this point Vaadin requires the widget-set to be recompiled, which should be

prompted for automatically or can also be forced manually by simply clicking the

Vaadin plugin button.

Figure 3.14. JAR libraries added in this project. JDBC driver is highlighted.

Once these steps are complete, the only task left is to initialize the connection in the

java source code as was shown in configuring the controllers. It should be noted that

the URL used in this example to connect to the database is pointing to the local

machine (denoted by localhost); hence this is still during the development phase of

the project. Once this application is finished and in a production environment, this URL

should be changed to reflect the location of the actual production database.

//Access driver from JAR file

Class.forName("com.mysql.jdbc.Driver").newInstance();

// create variable for db connection

Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/testdb", "root", "root");

36

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

3.2.2 Database Structure

The structure of the database needed for the application reflects very closely the data

package and its model entities. The design approach was found by asking a few simple

questions. What are the requirements of the project? What does it need to do? What

„objects‟ are actually dealt with? This led to the same three main results as the models:

Happenings, People, and Songs should be the core elements that need to be dealt

with. Therefore, the database was separated into three tables as displayed in Figure

3.15.

Figure 3.15. UML diagram for the team_planner application‟s database.

Following good practice, data types were chosen as well as reasonable max values in

order to control and maintain the size of the tables. Each table contains fields that

match up to the variables of the corresponding model. For example, a person instance

built from the Person class has an id, first and last name, an email address, and a

phone number. Therefore, the „people‟ table has fields for those five attributes as well;

the same is true for the „events‟ and „songs‟ tables.

The events table in the database contains two fields that provide the ability to link

people and songs to a specific event. The person_id_list and song_id_list

store a list of numbers as simple String values. These numbers are the ids associated

to people and song objects. When an event is created which contains people and

songs, a list of the ids is created and stored in these instead of the actual names of

people and songs. When the event is called and displayed in the Happenings table,

those ids are read from the database and the proper names and song titles are shown.

The „songs‟ table has a few characteristics that are worth mentioning. The title and

author fields are standard and self-explanatory. The „key‟ field has a data type of

37

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

VARCHAR with a max length of 3. Since the content for what keys can be used are set

as a final static String, no actual modification to this variable will occur but will

be hard written in to the program. From a musical standpoint, there are seven notes in

any given scale; and there are seven major keys to choose from (C, D, E, F, G, A, B). If

each of these keys is thought of as having a full step between them, with the exception

of after E and after B, there is then a half step between each one. For example, instead

of actually counting: G, A, B… it would look like this: G, Ab, A, Bb, B… where the Ab

and Bb (pronounced „A flat‟) are the half steps. This means that the maximum length of

any „key‟ option will only be two characters long. An actual max length of „3‟ was

chosen because it can be good practice to allow slightly more space than the absolute

minimum theoretical requirement. The Last field, „song_text‟, is where the lyrics and

chord structures are stored in the database. A type of LONGTEXT is used to make

sure that enough space is available as the length of any given song can vary. On

average, most songs‟ lyrics should fill between one to two pages of a typical rich text

style document, and at max require three to even four pages. The LONGTEXT data

type should meet these requirements.

38

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

4 Conclusions and Summary

Looking back over the course of this project and the three main phases it took

(planning/design, implementing, documenting), there are several things I have learned

about working on software projects as well as about programming technologies.

Although implementation is typically the most time demanding and largest part of a

project, taking the time for proper R&D and planning of the application is a highly

valuable procedure. The process of developing any application will always require

some amount of learning and working out new methods during the programming itself;

however, planning out exactly what the needs of the application will be and how they

might be solved with what technologies can help make the coding process less

confusing and flow more smoothly.

Coding with Java can be very methodical and practical in task-solving. A strong grasp

of the utilized technologies always make a project run smoother; however, few

developers know everything and will need some source of input and ideas. As my

experience prior to this project with Java was very limited, I would strongly put myself in

this category. Especially in the beginning of the project, tasks took me much longer

than they would take even now, as I have a better grasp on the principles. It is safe to

say that with a little more experience, I would expect to be able to solve programming

tasks and future applications, for example, with Vaadin, much faster. The best way to

learn is by doing.

As of the publication of this thesis document, the application failed to meet all of the

needs and goals set out by the requirements and requested features. Most of the main

structure and functionalities of the application are intact, with a few features not yet fully

functional. Of the three main sections of the application, the People and Songs tabs are

complete and fully functional. The Event tab has still some bug-fixing to do as the

TreeTable component proved to be fairly complicated to deploy. Because of the time

that was required to debug and complete the main functions of the application and the

time frame allowed for this project, the two extra utilities, the transpose and email

utilities were not able to be included in the first version of this application.

Based on the problems mentioned above, the program could be considered as a failed

project. Because the demands set forth by the church organization were open to

39

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

flexibility, together with the likelihood of continued development past the bounds of this

thesis project, the application can be seen as not a complete failure but as still in

development.

As of the current configuration at the date of this publication, the entire web application

consists of 3648 lines of code throughout 5 packages and 15 separate class files.

Other than the native Vaadin UI components, two add-ons were used: the JDBC driver

for the MySQL connection and the TreeTable add-on component.

After working on this project, I have decided that in future applications and even in

further development of this application, it will be highly beneficial to learn a proper ORM

like Hibernate to handle the actual data CRUD actions. Even better than Hibernate

would be to learn how to utilize Spring Roo in a web application as it streamlines the

object relational mapping so well that it can literally take only minutes to have a fully

functioning simple application.

There are a few aspects of Vaadin I would point out based on my experience. The

Visual Editor is a great tool that helps to quickly put together and have a clear view in

mind (literally) of the desired layout of the application. In my personal experience, it

seems that the visual editor is not yet perfected, but maybe has a few bugs in it yet.

This is, of course, natural that any complex software would not be completely bug-free.

Outside of a few strange behaviors, the editor did help speed up the UI development,

which is exactly what it is meant for.

Another focus point would be Vaadin‟s data model. Since almost any advanced

application will deal with data structures, the developer will need to utilize the data

model (properties, items, containers). Although much of it is simple to understand and

use, for someone with little experience, parts of it can be difficult to grasp. Careful

study through the Book of Vaadin and the many example and forums available from

vaadin.com is a valuable use of time.

This project has served a useful purpose as I seek to learn more and enter into the IT

field, specifically application development. It has provided me with more experience

than any other project so far and will hopefully be a springboard into future projects and

opportunities.

40

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

41

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

REFERENCES

Davis J. 2010. Unbreakable Data Access for Any Application: Performance, Functionality, and
Reliability for Enterprise Applications. NC, USA: DZone, Inc. Also available at
http://refcardz.dzone.com.

Grönroos M. 2009. Book of Vaadin. 6.2 Edition. Turku: OY IT Mill Ltd.

Grönroos M. 2010. Getting Started with Vaadin. NC, USA: DZone, Inc. Also available at
http://refcardz.dzone.com.

Lewis J.; Loftus W. 2001. Java Software Solutions: Foundations of Program Design. Boston,
Massachusetts: Addison-Wesley.

2001. Balsamiq Studios, LLC. Consulted 3.6.2011 http://balsamiq.com/.

2011. Gliffy, Inc. Consulted 8.6.2011 http://www.gliffy.com/.

1999-2011. The Apache Tomcat Foundation. Consulted 6.6.2011 http://tomcat.apache.org/.

http://refcardz.dzone.com/
http://refcardz.dzone.com/

42

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

APPENDICES

1 Source Code

//TeamPlannerApp.java

package com.aaronpratt.teamplanner;

import com.aaronpratt.teamplanner.layouts.HeaderLayout;

import com.aaronpratt.teamplanner.layouts.LoginLayout;

import com.aaronpratt.teamplanner.layouts.MainLayout;

import com.aaronpratt.teamplanner.layouts.RegistrationLayout;

import com.vaadin.Application;

import com.vaadin.service.ApplicationContext;

import com.vaadin.ui.VerticalLayout;

import com.vaadin.ui.Window;

import com.vaadin.ui.themes.Reindeer;

/**

 * The Application's "main" class

 */

public class TeamPlannerApp extends Application implements

ApplicationContext.TransactionListener {

 private static final long serialVersionUID = -

6342939979093918711L;

 private static ThreadLocal<TeamPlannerApp> currentApplication =

new ThreadLocal<TeamPlannerApp>();

 Window mainWindow;

 String currentUser;

 private LoginLayout loginLayout;

 private RegistrationLayout regLayout;

 private HeaderLayout headerLayout;

 private MainLayout mainLayout;

 private VerticalLayout mainLayoutHolder;

 @Override

 public void init() {

 //setTheme("runo");

 setTheme("reindeer");

 setCurrent(this);

 if (getContext() != null) {

 getContext().addTransactionListener(this);

 }

 // Set main window

 mainWindow = new Window("Worship Team Planner");

 setMainWindow(mainWindow);

 loadProtectedResources();

 // Login required, set login layout for main window

43

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 //mainWindow.setContent(new LoginLayout(this));

 }

 /***

 * load the main application in the window

 */

 public void loadProtectedResources (){

 //layout to hold header and main layout

 mainLayoutHolder = new VerticalLayout();

 mainLayoutHolder.setStyleName(Reindeer.LAYOUT_WHITE);

 //create new header and main layout

 mainLayout = new MainLayout(this);

 headerLayout = new HeaderLayout(this);

 //add components to layout

 mainLayoutHolder.addComponent(headerLayout);

 mainLayoutHolder.addComponent(mainLayout);

 mainLayoutHolder.setSizeFull();

 mainLayoutHolder.setExpandRatio(mainLayout, 1);

 //set new window content

 mainWindow.setContent(mainLayoutHolder);

 //addListener(mainLayout.getHeader());

//.getUserChangeListener());

 //setUser(user);

 }

 /***

 * load the registration layout in the window

 */

 public void loadRegistration(){

 regLayout = new RegistrationLayout(this);

 mainWindow.setContent(regLayout);

 }

 /***

 * load the login layout in the window

 */

 public void loadLogin(){

 loginLayout = new LoginLayout(this);

 mainWindow.setContent(loginLayout);

 }

 /**

 * @return the current application instance

 */

 public static TeamPlannerApp getCurrent() {

 return currentApplication.get();

 }

 /**

 * Set the current application

 */

 public static void setCurrent(TeamPlannerApp application) {

 if (getCurrent() == null) {

 currentApplication.set(application);

 }

 }

44

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 public void removeCurrent() {

 currentApplication.remove();

 }

}

//Happening.java

package com.aaronpratt.teamplanner.data;

import java.io.Serializable;

import java.util.ArrayList;

import java.util.List;

/**

 * Model class

 * @author Aaron Pratt

 */

public class Happening implements Serializable{

 private static final long serialVersionUID = -

1821842964693261145L;

 private String title;

 private String date;

 private String personList;

 private String songList;

 private List<PersonHappening> peopleInEvent = new

ArrayList<PersonHappening>();

 private int eventId;

 /**

 * Constructors

 */

 public Happening(int eventId, String title, String date, String

personList, String songList){

 this.eventId = eventId;

 this.title = title;

 this.date = date;

 this.personList = personList;

 this.songList = songList;

 //addPeopleToEvent(people);

 }

 public Happening(int eventId, String title, String date){

 this.eventId = eventId;

 this.title = title;

 this.date = date;

 }

 public Happening(){

 }

 // method to add multiple people to single event instance

45

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 private void addPeopleToEvent(List<Person> people) {

 for(Person person : people){

 peopleInEvent.add(new PersonHappening(person));

 }

 }

 // getters and setters

 public String getDate() {

 return date;

 }

 public void setDate(String date){

 this.date = date;

 }

 public String getTitle() {

 return title;

 }

 public void setTitle(String title){

 this.title = title;

 }

 public int getEventId(){

 return eventId;

 }

 public void setEventId(int eventId){

 this.eventId = eventId;

 }

 public String getPersonList(){

 return personList;

 }

 public void setPersonList(String personList){

 this.personList = personList;

 }

 public String getSongList(){

 return songList;

 }

 public void setSongList(String songList){

 this.songList = songList;

 }

 public List<Person> getPerson() {

 List<Person> people = new ArrayList<Person>();

 for(PersonHappening personEvent : peopleInEvent){

 people.add(personEvent.getPerson());

 }

 return people;

 }

 public boolean isValid() {

 for(PersonHappening personEvent : peopleInEvent){

 if(!personEvent.isValid()){

 System.out.println("Error: PersonEvent for person " +

personEvent.getPerson().getfName()+"

"+personEvent.getPerson().getlName() + " was invalid!");

 return false;

 }

 }

 return true;

 }

}

46

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

//Person.java

package com.aaronpratt.teamplanner.data;

import java.io.Serializable;

/**

 * Model class

 * @author Aaron Pratt

 *

 */

public class Person implements Serializable {

 private static final long serialVersionUID = 4428060321751014797L;

 String fName;

 String lName;

 String email;

 String phoneNumber;

 int personId;

 String fullName;

 /**

 * Constructor

 * @param fName

 * @param lName

 * @param email

 * @param phoneNumber

 */

 public Person(int personId, String fName, String lName, String

email, String phoneNumber){

 this.personId = personId;

 this.fName = fName;

 this.lName = lName;

 this.email = email;

 this.phoneNumber = phoneNumber;

 }

 public Person(int personId, String fName, String lName, String

email){

 this.personId = personId;

 this.fName = fName;

 this.lName = lName;

 this.email = email;

 }

 public Person(){

 }

 public Person(String fName) {

 this.fName = fName;

 }

 //Getters and setters

47

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 public void setfName(String fName) {

 this.fName = fName;

 }

 public String getfName() {

 return fName;

 }

 public void setlName(String lName) {

 this.lName = lName;

 }

 public String getlName() {

 return lName;

 }

 public void setEmail(String email){

 this.email = email;

 }

 public String getEmail(){

 return email;

 }

 public void setPhoneNumber(String phoneNumber) {

 this.phoneNumber = phoneNumber;

 }

 public String getPhoneNumber() {

 return phoneNumber;

 }

 public int getPersonId(){

 return personId;

 }

 public String getFullName(){

 fullName = fName + " " + lName;

 return fullName;

 }

}

//PersonHappening.java

package com.aaronpratt.teamplanner.data;

public class PersonHappening {

 private Person person;

 public PersonHappening(Person person) {

 this.person = person;

 }

 public Person getPerson(){

 return person;

 }

 public boolean isValid() {

 // TODO Auto-generated method stub

 return false;

 }

48

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

}

//Song.java

package com.aaronpratt.teamplanner.data;

import java.io.Serializable;

public class Song implements Serializable {

 private static final long serialVersionUID = -

4636644268111161376L;

 String title;

 String author;

 String key;

 String songText; // the mysql data type used is LONGTEXT

 int songId;

 /***

 * Constructors

 */

 public Song (int songId, String title, String author, String key,

String songText){

 this.title = title;

 this.author = author;

 this.key = key;

 this.songText = songText;

 this.songId = songId;

 }

 public Song (int songId, String title, String author, String key){

 this.title = title;

 this.author = author;

 this.key = key;

 this.songId = songId;

 }

 public Song() {

 // TODO Auto-generated constructor stub

 }

 //Getters and Setters

 public void setTitle(String title) {

 this.title = title;

 }

 public String getTitle() {

 return title;

 }

 public void setAuthor(String author) {

 this.author = author;

 }

 public String getAuthor() {

49

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 return author;

 }

 public void setKey(String key) {

 this.key = key;

 }

 public String getKey() {

 return key;

 }

 public void setSongText(String songText) {

 this.songText = songText;

 }

 public String getSongText() {

 return songText;

 }

 public int getSongId(){

 return songId;

 }

 public void setSongId(int songId){

 this.songId = songId;

 }

}

//HeaderLayout.java

package com.aaronpratt.teamplanner.layouts;

import com.aaronpratt.teamplanner.TeamPlannerApp;

import com.vaadin.annotations.AutoGenerated;

import com.vaadin.terminal.ThemeResource;

import com.vaadin.ui.AbsoluteLayout;

import com.vaadin.ui.Alignment;

import com.vaadin.ui.Button;

import com.vaadin.ui.Button.ClickEvent;

import com.vaadin.ui.CustomComponent;

import com.vaadin.ui.Embedded;

import com.vaadin.ui.HorizontalLayout;

import com.vaadin.ui.Label;

public class HeaderLayout extends CustomComponent {

 @AutoGenerated

 private AbsoluteLayout mainLayout;

 @AutoGenerated

 private Label headerLabel;

 @AutoGenerated

 private HorizontalLayout horizontalLayout;

 @AutoGenerated

 private Button logoutButton;

 @AutoGenerated

 private Button myAccountButton;

 @AutoGenerated

50

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 private Embedded logoImage;

 private static final long serialVersionUID = 731143019429023080L;

 private TeamPlannerApp app;

 /**

 * The constructor should first build the main layout, set the

 * composition root and then do any custom initialization.

 *

 * The constructor will not be automatically regenerated by the

 * visual editor.

 */

 public HeaderLayout(TeamPlannerApp app) {

 buildMainLayout();

 setCompositionRoot(mainLayout);

 // TODO add user code here

 this.app = app;

 }

 @AutoGenerated

 private AbsoluteLayout buildMainLayout() {

 // common part: create layout

 mainLayout = new AbsoluteLayout();

 // top-level component properties

 setWidth("100.0%");

 setHeight("75px");

 // logoImage

 logoImage = new Embedded();

 logoImage.setWidth("242px");

 logoImage.setHeight("75px");

 logoImage.setCaption("Logo");

 logoImage.setImmediate(false);

 logoImage.setSource(new ThemeResource("common/img/logo.png"));

 mainLayout.addComponent(logoImage, "top:0.0px;left:0.0px;");

 // horizontalLayout

 //horizontalLayout = buildHorizontalLayout();

 //mainLayout.addComponent(horizontalLayout,

"right:9.0px;bottom:5.0px;");

 // headerLabel

 headerLabel = new Label();

 headerLabel.setWidth("-1px");

 headerLabel.setHeight("-1px");

 headerLabel.setStyleName("h2");

 headerLabel.setValue("CALVARY CHAPEL FINLAND");

 headerLabel.setContentMode(3);

 headerLabel.setImmediate(false);

 mainLayout.addComponent(headerLabel,

"top:5.0px;right:9.0px;");

 return mainLayout;

 }

 @AutoGenerated

 private HorizontalLayout buildHorizontalLayout() {

51

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 // common part: create layout

 horizontalLayout = new HorizontalLayout();

 horizontalLayout.setWidth("-1px");

 horizontalLayout.setHeight("26px");

 horizontalLayout.setImmediate(false);

 horizontalLayout.setMargin(false);

 horizontalLayout.setSpacing(true);

 // myAccountButton

 myAccountButton = new Button();

 myAccountButton.setWidth("-1px");

 myAccountButton.setHeight("-1px");

 myAccountButton.setCaption("my account");

 myAccountButton.setStyleName("small");

 myAccountButton.setImmediate(true);

 horizontalLayout.addComponent(myAccountButton);

 horizontalLayout.setComponentAlignment(myAccountButton, new

Alignment(

 48));

 // logoutButton

 logoutButton = new Button();

 logoutButton.setWidth("-1px");

 logoutButton.setHeight("-1px");

 logoutButton.setCaption("logout");

 logoutButton.setStyleName("small");

 logoutButton.setImmediate(true);

 horizontalLayout.addComponent(logoutButton);

 horizontalLayout.setComponentAlignment(logoutButton, new

Alignment(34));

 return horizontalLayout;

 }

}

//MainLayout.java

package com.aaronpratt.teamplanner.layouts;

import com.aaronpratt.teamplanner.TeamPlannerApp;

import com.aaronpratt.teamplanner.views.HappeningView;

import com.aaronpratt.teamplanner.views.PeopleView;

import com.aaronpratt.teamplanner.views.SongView;

import com.vaadin.terminal.Sizeable;

import com.vaadin.ui.HorizontalSplitPanel;

import com.vaadin.ui.TabSheet;

import com.vaadin.ui.TabSheet.SelectedTabChangeEvent;

import com.vaadin.ui.VerticalLayout;

import com.vaadin.ui.themes.Reindeer;

@SuppressWarnings("serial")

public class MainLayout extends VerticalLayout implements

TabSheet.SelectedTabChangeListener {

52

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 private HorizontalSplitPanel splitPanel;

 private SideLayout sideBar;

 private PeopleView peopleTab;

 private SongView songTab;

 private HappeningView eventTab;

 private TabSheet t;

 private TeamPlannerApp app;

 public MainLayout(TeamPlannerApp app) {

 this.app = app;

 this.setSizeFull();

 setMargin(false);

 // Add a horizontal split panel in the bottom area

 splitPanel = new HorizontalSplitPanel();

 splitPanel.setStyleName(Reindeer.SPLITPANEL_SMALL);

 splitPanel.setSplitPosition(242, Sizeable.UNITS_PIXELS);

 splitPanel.setSizeFull();

 splitPanel.setLocked(true);

 addComponent(splitPanel);

 // Add some content to the left side of split panel

 sideBar = new SideLayout();

 splitPanel.addComponent(sideBar);

 // Create component containers for tabs

 peopleTab = new PeopleView();

 songTab = new SongView();

 eventTab = new HappeningView();

 // create tabsheet

 t = new TabSheet();

 t.setStyleName(Reindeer.TABSHEET_SMALL);

 t.setSizeFull();

 // add tabs. call the 3 main views

 t.addTab(peopleTab, "People", null);

 t.addTab(songTab, "Songs", null);

 t.addTab(eventTab, "Events", null);

 t.addListener(this);

 // Add content to Right side of Split Panel

 //rightArea.setSizeFull();

 splitPanel.addComponent(t);

 }

 // tabsheet event listener

 public void selectedTabChange(SelectedTabChangeEvent event) {

 /*TabSheet tabsheet = event.getTabSheet();

 Tab tab = tabsheet.getTab(tabsheet.getSelectedTab());

 if (tab != null) {

 getWindow().showNotification("Selected tab: " +

tab.getCaption());

 }

 */

 }

53

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

}

//SideLayout.java

package com.aaronpratt.teamplanner.layouts;

import java.text.DateFormat;

import com.vaadin.annotations.AutoGenerated;

import com.vaadin.data.Property;

import com.vaadin.data.Property.ValueChangeEvent;

import com.vaadin.ui.CustomComponent;

import com.vaadin.ui.InlineDateField;

import com.vaadin.ui.VerticalLayout;

public class SideLayout extends CustomComponent implements

Property.ValueChangeListener {

 @AutoGenerated

 private VerticalLayout mainLayout;

 @AutoGenerated

 private InlineDateField calendar;

 private static final long serialVersionUID = 2243788466153753382L;

 /**

 * The constructor should first build the main layout, set the

 * composition root and then do any custom initialization.

 *

 * The constructor will not be automatically regenerated by the

 * visual editor.

 */

 public SideLayout() {

 buildMainLayout();

 setCompositionRoot(mainLayout);

 // TODO add user code here

 }

 @AutoGenerated

 private VerticalLayout buildMainLayout() {

 // common part: create layout

 mainLayout = new VerticalLayout();

 // top-level component properties

 setWidth("242px");

 setHeight("100.0%");

 // calendar

 calendar = new InlineDateField();

 calendar.setWidth("-1px");

 calendar.setHeight("-1px");

54

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 calendar.setImmediate(true);

 calendar.addListener(this);

 // Set the value of the PopupDateField to current date

 //calendar.setValue(new java.util.Date());

 // Set the correct resolution

 calendar.setResolution(InlineDateField.RESOLUTION_DAY);

 mainLayout.addComponent(calendar);

 return mainLayout;

 }

 public void valueChange(ValueChangeEvent event) {

 // Get the new value and format it to the current locale

 DateFormat dateFormatter =

DateFormat.getDateInstance(DateFormat.SHORT);

 String dateOut =

dateFormatter.format(event.getProperty().getValue());

 // Show notification

 getWindow().showNotification("Selected date: " + dateOut);

 }

}

//DB.java

package com.aaronpratt.teamplanner.service;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

/**

 * database connector class:

 * @author aaronandsarap

 */

public class DB {

 /**

 * close the current statement

 * @param ps Statement

 */

 public static void close(Statement ps){

 if(ps!=null){

 try{

 ps.close();

55

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 }catch (SQLException ignore){

 }

 }

 }

 /**

 * close the current resultset

 * @param rs

 */

 public static void close(ResultSet rs){

 if(rs!=null){

 try{

 rs.close();

 }catch (SQLException ignore){

 }

 }

 }

 /**

 * Close the current database connection

 * @param connection

 */

 public static void close(Connection connection) {

 if (connection!=null){

 try {

 connection.close();

 } catch (SQLException ignore) {

 }

 }

 }

}

//HappeningService.java

package com.aaronpratt.teamplanner.service;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.util.ArrayList;

import com.aaronpratt.teamplanner.data.Happening;

public class HappeningService {

 private final static String databaseName =

"jdbc:mysql://localhost:3306/team_planner?user=root&password=";

 //create an event happening

56

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 public void createEvent(String title, String date, String

personList, String songList) {

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("INSERT INTO

events (title, date, person_id_list, song_id_list) VALUES(?,?,?,?)");

 st.setString(1, title);

 st.setString(2, date);

 st.setString(3, personList);

 st.setString(4, songList);

 st.executeUpdate();

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 //get all event happenings

 public ArrayList<Happening> getAllEvents(){

 ArrayList<Happening> events = new ArrayList<Happening>();

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT * FROM

events");

 ResultSet rs = st.executeQuery();

 while (rs.next()){

 events.add(new Happening(rs.getInt(1),

rs.getString(2), rs.getTimestamp(3).toString())); //,

rs.getString(4), rs.getString(5)));

 }

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return events;

 }

 public Happening getEventById(int eventId){

 Happening theEvent = new Happening();

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT * FROM

events WHERE E_id = ?");

 st.setInt(1, eventId);

 ResultSet rs = st.executeQuery();

 rs.next();

 theEvent = new Happening(rs.getInt(1), rs.getString(2),

rs.getTimestamp(3).toString(), rs.getString(4), rs.getString(5));

57

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return theEvent;

 }

 public int getEventCount(){

 int count = 0;

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT

MAX(E_id) FROM events");

 ResultSet rs = st.executeQuery();

 rs.next();

 count = rs.getInt(1);

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return count;

 }

 //update an event happening

 public void editEvent(String eventId, String title, String date,

String personList, String songList){

 try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("UPDATE events

SET title = ?, date = ?, person_id_list = ?, song_id_list = ? WHERE

E_id = ?");

 st.setString(1, title);

 st.setString(2, date);

 st.setString(3, personList);

 st.setString(4, songList);

 st.setString(5, eventId);

 st.executeUpdate();

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 //delete an event happening

 public void deleteEvent(int eventId){

 try{

 Class.forName("com.mysql.jdbc.Driver");

58

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("DELETE FROM

events WHERE E_id = ?");

 st.setInt(1, eventId);

 st.executeUpdate();

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

}

//PersonService.java

package com.aaronpratt.teamplanner.service;

import java.sql.*;

import java.util.ArrayList;

import com.aaronpratt.teamplanner.data.Person;

/**

 * database connector class for person model

 * @author aaronandsarap

 */

public class PersonService {

 private final static String databaseName =

"jdbc:mysql://localhost:3306/team_planner?user=root&password=";

 //create a person

 public void createPerson(String fName, String lName, String email,

String phone){

 try {

 //Access driver from JAR file

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 //create variable for db connection

 Connection con =

DriverManager.getConnection(databaseName);

 //create a query

 PreparedStatement st = con.prepareStatement("INSERT INTO

people (fName, lName, email, phone) VALUES(?,?,?,?)");

 //set input data to values

 st.setString(1, fName);

 st.setString(2, lName);

 st.setString(3, email);

 st.setString(4, phone);

 //execute the statement

59

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 st.executeUpdate();

 //close transaction

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 //get all people

 public ArrayList<Person> getAllPeople(){

 ArrayList<Person> people = new ArrayList<Person>();

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT * FROM

people");

 ResultSet rs = st.executeQuery();

 while (rs.next()){

 //people.addAll(people);

 people.add(new Person(rs.getInt(1), rs.getString(2),

rs.getString(3), rs.getString(4), rs.getString(5)));

 }

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return people;

 }

 // get a single person

 public Person getPersonById(int personId){

 Person thePerson = new Person();

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT * FROM

people WHERE P_id = ?");

 st.setInt(1, personId);

 ResultSet rs = st.executeQuery();

 rs.next();

 thePerson = new Person(rs.getInt(1), rs.getString(2),

rs.getString(3), rs.getString(4), rs.getString(5));

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return thePerson;

 }

60

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 public int getPersonCount(){

 int count = 0;

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT

MAX(P_id) FROM people");

 ResultSet rs = st.executeQuery();

 rs.next();

 count = rs.getInt(1);

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return count;

 }

 //update a person's info

 public void editPerson(String personId, String fName, String

lName, String email, String phone){

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("UPDATE people

SET fName = ?, lName = ?, email = ?, phone = ? WHERE P_id = ?");

 st.setString(1, fName);

 st.setString(2, lName);

 st.setString(3, email);

 st.setString(4, phone);

 st.setString(5, personId);

 st.executeUpdate();

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 //delete a person

 public void deletePerson(int personId){

 try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("DELETE FROM

people WHERE P_id = ?");

 st.setInt(1, personId);

 st.executeUpdate();

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

61

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 }

 }

}

//SongService.java

package com.aaronpratt.teamplanner.service;

import java.sql.*;

import java.util.ArrayList;

import com.aaronpratt.teamplanner.data.Song;

public class SongService {

 private final static String databaseName =

"jdbc:mysql://localhost:3306/team_planner?user=root&password=";

 //create a song

 public void createSong(String title, String author, String key,

String songText){

 try {

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("INSERT INTO

songs (title, author, songKey, songText) VALUES(?,?,?,?)");

 st.setString(1, title);

 st.setString(2, author);

 st.setString(3, key);

 st.setString(4, songText);

 st.executeUpdate();

 DB.close(st);

 DB.close(con);

 }catch (Exception e){

 e.printStackTrace();

 }

 }

 //get all songs for table

 public ArrayList<Song> getAllSongs(){

 ArrayList<Song> songs = new ArrayList<Song>();

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT * FROM

songs ORDER BY title");

 ResultSet rs = st.executeQuery();

 while (rs.next()){

62

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 songs.add(new Song(rs.getInt(1), rs.getString(2),

rs.getString(3), rs.getString(4)));

 }

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return songs;

 }

 public Song getSongById(int songId){

 Song theSong = new Song();

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT * FROM

songs WHERE S_id = ?");

 st.setInt(1, songId);

 ResultSet rs = st.executeQuery();

 rs.next();

 theSong = new Song(rs.getInt(1), rs.getString(2),

rs.getString(3), rs.getString(4), rs.getString(5));

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return theSong;

 }

 public int getSongCount(){

 int count = 0;

 try {

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("SELECT

MAX(S_id) FROM songs");

 ResultSet rs = st.executeQuery();

 rs.next();

 count = rs.getInt(1);

 DB.close(rs);

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 return count;

 }

 //update a song

63

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 public void editSong(String songId, String title, String author,

String key, String songText){

 try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("UPDATE songs

SET title = ?, author = ?, songKey = ?, songText = ? WHERE S_id = ?");

 st.setString(1, title);

 st.setString(2, author);

 st.setString(3, key);

 st.setString(4, songText);

 st.setString(5, songId);

 st.executeUpdate();

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 //delete a song

 public void deleteSong(int songId){

 try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection(databaseName);

 PreparedStatement st = con.prepareStatement("DELETE FROM

songs WHERE S_id = ?");

 st.setInt(1, songId);

 st.executeUpdate();

 DB.close(st);

 DB.close(con);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

}

//HappeningView.java

package com.aaronpratt.teamplanner.views;

import java.text.DateFormat;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Date;

import java.util.HashSet;

import java.util.Set;

64

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

import com.aaronpratt.teamplanner.data.Person;

import com.aaronpratt.teamplanner.data.Song;

import com.aaronpratt.teamplanner.data.Happening;

import com.aaronpratt.teamplanner.service.HappeningService;

import com.aaronpratt.teamplanner.service.PersonService;

import com.aaronpratt.teamplanner.service.SongService;

import com.vaadin.annotations.AutoGenerated;

import com.vaadin.data.Container;

import com.vaadin.data.Property;

import com.vaadin.data.Property.ValueChangeEvent;

import com.vaadin.data.util.BeanItem;

import com.vaadin.data.util.BeanItemContainer;

import com.vaadin.event.DataBoundTransferable;

import com.vaadin.event.dd.DragAndDropEvent;

import com.vaadin.event.dd.DropHandler;

import com.vaadin.event.dd.acceptcriteria.AcceptAll;

import com.vaadin.event.dd.acceptcriteria.AcceptCriterion;

import com.vaadin.event.dd.acceptcriteria.And;

import com.vaadin.event.dd.acceptcriteria.ClientSideCriterion;

import com.vaadin.event.dd.acceptcriteria.Not;

import com.vaadin.event.dd.acceptcriteria.SourceIs;

import com.vaadin.terminal.gwt.client.ui.dd.VerticalDropLocation;

import com.vaadin.ui.AbsoluteLayout;

import com.vaadin.ui.AbstractSelect.AbstractSelectTargetDetails;

import com.vaadin.ui.AbstractSelect.VerticalLocationIs;

import com.vaadin.ui.Alignment;

import com.vaadin.ui.Button;

import com.vaadin.ui.Button.ClickEvent;

import com.vaadin.ui.Component;

import com.vaadin.ui.CustomComponent;

import com.vaadin.ui.HorizontalLayout;

import com.vaadin.ui.Label;

import com.vaadin.ui.PopupDateField;

import com.vaadin.ui.Table;

import com.vaadin.ui.Table.TableDragMode;

import com.vaadin.ui.TextField;

import com.vaadin.ui.TwinColSelect;

import com.vaadin.ui.VerticalLayout;

import com.vaadin.ui.Window;

import com.vaadin.ui.Window.Notification;

import com.vaadin.ui.themes.Reindeer;

public class HappeningView extends CustomComponent implements

Property.ValueChangeListener {

 @AutoGenerated

 private AbsoluteLayout mainLayout;

 @AutoGenerated

 private Button addEventButton;

 @AutoGenerated

 private Label headerLable;

 private static final long serialVersionUID = -

2508818236617842605L;

 //layouts

 private HorizontalLayout addEventLayout;

65

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 private HorizontalLayout buttons;

 private HorizontalLayout deleteLayout;

 //components

 Window subwindow;

 public Window editEventSubwindow;

 public Window deleteEventSubwindow;

 private Window addEventSubwindow;

 private Table eventSongSelector;

 private Table eventSongSelected;

 private Table eventTable;

 private Button saveEvent;

 private Button cancelEvent;

 protected Button tableEditButton;

 protected Button tableDeleteButton;

 private TextField eventTitle;

 private PopupDateField eventDate;

 private TwinColSelect eventPeopleSelector;

 private SongService songDB;

 private HappeningService eventDB;

 private PersonService personDB;

 private BeanItemContainer<Song> songBeanSelected;

 private BeanItemContainer<Happening> eventBean;

 private BeanItemContainer<Person> personBean;

 private HorizontalLayout editEventLayout;

 private TextField editEventTitle;

 private PopupDateField editEventDate;

 private TwinColSelect editPeopleSelector;

 private Table editSongsDrag;

 private Table editSongsDrop;

 private Button saveEdit;

 private Button cancelEdit;

 /**

 * The constructor should first build the main layout, set the

 * composition root and then do any custom initialization.

 *

 * The constructor will not be automatically regenerated by the

 * visual editor.

 */

 public HappeningView() {

 buildMainLayout();

 setCompositionRoot(mainLayout);

 // TODO add user code here

 }

 @AutoGenerated

 private AbsoluteLayout buildMainLayout() {

 // common part: create layout

 mainLayout = new AbsoluteLayout();

 // top-level component properties

 setWidth("100.0%");

66

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 setHeight("100.0%");

 // headerLable

 headerLable = new Label();

 headerLable.setWidth("-1px");

 headerLable.setHeight("-1px");

 headerLable.setStyleName("h2");

 headerLable.setValue("Calvary Chapel Turku Events");

 headerLable.setContentMode(3);

 mainLayout.addComponent(headerLable,

"top:5.0px;left:20.0px;");

 // addEventButton

 addEventButton = new Button("add event");

 addEventButton.setStyleName("link");

 addEventButton.setImmediate(true);

 addEventButton.addListener(new AddEventListener());

 mainLayout.addComponent(addEventButton,

"top:10.0px;right:36.0px;");

 //mainLayout.addComponent(buttonLayout,

"top:10.0px;right:36.0px;");

 // treeTable

 eventTable = buildEventTable();

 mainLayout.addComponent(eventTable,

"top:40.0px;left:20.0px;");

 return mainLayout;

 }

 private Table buildEventTable(){

 eventDB = new HappeningService();

 ArrayList<Happening> eventList = new ArrayList<Happening>();

 eventList=eventDB.getAllEvents();

 // Create a container for beans

 eventBean = new BeanItemContainer<Happening>(Happening.class);

 for(Happening happening:eventList){

 eventBean.addBean(new Happening(happening.getEventId(),

happening.getTitle(), happening.getDate(), happening.getPersonList(),

happening.getSongList()));

 }

 // Table

 eventTable = new Table("", eventBean);

 eventTable.setWidth("97.0%");

 eventTable.setPageLength(10);

 eventTable.setStyleName(Reindeer.TABLE_BORDERLESS);

 eventTable.setSelectable(true);

 eventTable.setSortAscending(true);

 eventTable.setSortContainerPropertyId("date");

 //edit button column

 eventTable.addGeneratedColumn("edit", new

Table.ColumnGenerator() {

 private static final long serialVersionUID =

6709348760708076615L;

67

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 public Component generateCell(Table source, Object itemId,

Object columnId) {

 //Item item = eventTable.getItem(itemId);

 tableEditButton = new Button("edit");

 tableEditButton.setData(itemId);

 tableEditButton.setStyleName("link");

 tableEditButton.setImmediate(true);

 tableEditButton.addListener(new EditButtonListener());

 return tableEditButton;

 }

 });

 //delete button column

 eventTable.addGeneratedColumn("delete", new

Table.ColumnGenerator() {

 private static final long serialVersionUID =

6709348760708076615L;

 public Component generateCell(Table source, Object itemId,

Object columnId) {

 //Item item = eventTable.getItem(itemId);

 tableDeleteButton = new Button("delete");

 tableDeleteButton.setData(itemId);

 tableDeleteButton.setStyleName("link");

 tableDeleteButton.setImmediate(true);

 tableDeleteButton.addListener(new

DeleteButtonListener());

 return tableDeleteButton;

 }

 });

 //column headers

 eventTable.setVisibleColumns(new Object[]{"title", "date",

"edit", "delete"});

 eventTable.setColumnHeader("edit", "");

 eventTable.setColumnHeader("delete", "");

 eventTable.setColumnWidth("edit", 50);

 eventTable.setColumnWidth("delete", 50);

 eventTable.setColumnAlignment("edit", Table.ALIGN_CENTER);

 eventTable.setColumnAlignment("delete", Table.ALIGN_CENTER);

 //eventTable.setColumnExpandRatio("title", 1);

 return eventTable;

 }

 /***

 * add event window

 * @return

 */

 private HorizontalLayout buildAddEventLayout() {

 // common part: create layout

 addEventLayout = new HorizontalLayout();

 addEventLayout.setSpacing(true);

 addEventLayout.setMargin(true);

 // top-level component properties

 setWidth("100%");

68

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 setHeight("100%");

 // Left side

 VerticalLayout left = new VerticalLayout();

 left.setSpacing(true);

 // eventTitle

 eventTitle = new TextField("Event Title:");

 eventTitle.setWidth("282px");

 eventTitle.setHeight("-1px");

 left.addComponent(eventTitle);

 // eventDate

 eventDate = new PopupDateField("Date and Time:");

 eventDate.setWidth("-1px");

 eventDate.setHeight("-1px");

 eventDate.setValue(new java.util.Date());

 eventDate.setResolution(PopupDateField.RESOLUTION_MIN);

 eventDate.addListener(this);

 eventDate.setImmediate(true);

 left.addComponent(eventDate);

 // eventPeopleSelector

 personDB = new PersonService();

 ArrayList<Person> listPeople = new ArrayList<Person>();

 listPeople=personDB.getAllPeople();

 // Create a container for beans

 personBean = new BeanItemContainer<Person>(Person.class);

 for(Person person:listPeople){

 personBean.addBean(new Person(person.getPersonId(),

person.getfName(), person.getlName(), person.getEmail(),

person.getPhoneNumber()));

 }

 eventPeopleSelector = new TwinColSelect("Add people to the

event:", personBean);

eventPeopleSelector.setItemCaptionMode(TwinColSelect.ITEM_CAPTION_MODE

_ID);

 eventPeopleSelector.setItemCaptionPropertyId("fullName");

 eventPeopleSelector.setWidth("-1px");

 eventPeopleSelector.setRows(8);

 eventPeopleSelector.setNullSelectionAllowed(true);

 eventPeopleSelector.setMultiSelect(true);

 eventPeopleSelector.setImmediate(true);

 eventPeopleSelector.addListener(this);

 left.addComponent(eventPeopleSelector);

 // Right side

 VerticalLayout right = new VerticalLayout();

 right.setSpacing(true);

 // eventSongSelector

 eventSongSelector = eventSongSelector();

 right.addComponent(eventSongSelector);

 // eventSongSelected

 eventSongSelected = new Table("Drop songs here:");

69

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 initializeSelected(new SourceIs(eventSongSelector));

 right.addComponent(eventSongSelected);

 // buttons

 buttons = new HorizontalLayout();

 buttons.setWidth("-1px");

 buttons.setHeight("-1px");

 buttons.setMargin(false);

 buttons.setSpacing(true);

 // saveEvent

 saveEvent = new Button("Save");

 saveEvent.setImmediate(true);

 saveEvent.addListener(new SaveButtonListener());

 buttons.addComponent(saveEvent);

 // cancelEvent

 cancelEvent = new Button("Cancel");

 cancelEvent.setImmediate(true);

 cancelEvent.addListener(new Button.ClickListener() {

 private static final long serialVersionUID = -

3845382681013653261L;

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

(addEventSubwindow.getParent()).removeWindow(addEventSubwindow);

 }

 });

 buttons.addComponent(cancelEvent);

 right.addComponent(buttons);

 right.setComponentAlignment(buttons, Alignment.BOTTOM_RIGHT);

 addEventLayout.addComponent(left);

 addEventLayout.addComponent(right);

 return addEventLayout;

 }

 /***

 * song table source...drop from

 * @return

 */

 private Table eventSongSelector(){

 songDB = new SongService();

 ArrayList<Song> list = new ArrayList<Song>();

 list=songDB.getAllSongs();

 // Create a container for beans

 BeanItemContainer<Song> songBean = new

BeanItemContainer<Song>(Song.class);

 // Add some beans to it

 for(Song song:list){

 songBean.addBean(new Song(song.getSongId(),

song.getTitle(), song.getAuthor(), song.getKey()));

 }

70

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 // Bind a table to it

 eventSongSelector = new Table("Drag and drop a song to the

second table to add it to the event:", songBean);

 eventSongSelector.setWidth("700px");

 eventSongSelector.setPageLength(8);

 eventSongSelector.setColumnExpandRatio(songBean.firstItemId(),

1);

 eventSongSelector.setImmediate(true);

 eventSongSelector.setSelectable(true);

 eventSongSelector.setNullSelectionAllowed(true);

 eventSongSelector.setMultiSelect(true);

 eventSongSelector.setSortAscending(true);

 eventSongSelector.setSortContainerPropertyId("title");

 eventSongSelector.setVisibleColumns(new Object[]{"title",

"author", "key"});

 eventSongSelector.setColumnWidth("key", 35);

 eventSongSelector.setColumnAlignment("key",

Table.ALIGN_CENTER);

 eventSongSelector.setColumnExpandRatio("title", 1);

 // enable drag and drop options

 eventSongSelector.setDragMode(TableDragMode.ROW);

 eventSongSelector.setDragMode(TableDragMode.MULTIROW);

 return eventSongSelector;

 }

 /***

 * song table destination...drop to

 * @return

 */

 @SuppressWarnings({ "static-access" })

 private void initializeSelected(final ClientSideCriterion

acceptCriterion){

 // Create a container for beans

 songBeanSelected = new BeanItemContainer<Song>(Song.class);

 songBeanSelected.addItem(new Song(0, "title", "author",

"key"));

 // table properties

 eventSongSelected.setContainerDataSource(songBeanSelected);

 eventSongSelected.setWidth("700px");

 eventSongSelected.setPageLength(8);

 eventSongSelected.setStyleName(Reindeer.TABLE_BORDERLESS);

 //eventSongSelected.setImmediate(true);

 //eventSongSelected.setSelectable(true);

 //eventSongSelected.setNullSelectionAllowed(true);

 //eventSongSelected.setMultiSelect(true);

 eventSongSelected.setVisibleColumns(new Object[]{"title",

"author", "key"});

 eventSongSelected.setColumnWidth("key", 35);

 eventSongSelected.setColumnAlignment("key",

Table.ALIGN_CENTER);

eventSongSelected.setRowHeaderMode(eventSongSelected.ROW_HEADER_MODE_I

NDEX);

 eventSongSelected.setColumnExpandRatio("title", 1);

71

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 eventSongSelected.removeAllItems();

 // enable drag and drop features

 eventSongSelected.setDragMode(TableDragMode.ROW);

 eventSongSelected.setDragMode(TableDragMode.MULTIROW);

 // drop handler

 eventSongSelected.setDropHandler(new DropHandler() {

 private static final long serialVersionUID = -

7005945929912511061L;

 public AcceptCriterion getAcceptCriterion() {

 //return new And(acceptCriterion, AcceptItem.ALL);

 //return new Not(VerticalLocationIs.MIDDLE);

 return new And(new SourceIs(eventSongSelected),

VerticalLocationIs.MIDDLE);

 //return AcceptAll.get();

 }

 public void drop(DragAndDropEvent event) {

 // Wrapper for the object that is dragged

 DataBoundTransferable t =

(DataBoundTransferable)event.getTransferable();

 // Make sure the drag source is one of the two tables

 if (t.getSourceComponent() != eventSongSelector &&

 t.getSourceComponent() != eventSongSelected)

 return;

 AbstractSelectTargetDetails target =

(AbstractSelectTargetDetails) event.getTargetDetails();

 // Get ids of the dragged item and the target item

 Object sourceItemId = t.getData("itemId");

 Object targetItemId = target.getItemIdOver();

 // Do not allow drop on the item itself

 if (sourceItemId.equals(targetItemId))

 return;

 Song bean = null;

 if (sourceItemId instanceof BeanItem<?>) {

 bean = (Song)

 ((BeanItem<?>) sourceItemId).getBean();

 }

 else if (sourceItemId instanceof Song) {

 bean = (Song) sourceItemId;

 }

 // On which side of the target the item was dropped

 VerticalDropLocation location =

target.getDropLocation();

 // The table was empty or otherwise not on an item

 if (targetItemId == null) {

 songBeanSelected.addItem(bean); // Add to the end

 }

 // Drop at the top of a subtree -> make it previous

 else if (location == VerticalDropLocation.TOP) {

72

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

songBeanSelected.addItemAt(songBeanSelected.indexOfId(targetItemId),

bean);

 }

 // Drop below another item -> make it next

 else if (location == VerticalDropLocation.BOTTOM) {

 songBeanSelected.addItemAfter(targetItemId, bean);

 }

 }

 });

 }

 /***

 * edit event window

 */

 @SuppressWarnings("serial")

 private HorizontalLayout EditEventWindow(Happening editable) {

 int eventId = editable.getEventId();

 //getWindow().showNotification("" + songId);

 HappeningService db = new HappeningService();

 editable = db.getEventById(eventId);

 //getWindow().showNotification("" + editable.getSongId());

 // common part: create layout

 editEventLayout = new HorizontalLayout();

 editEventLayout.setSpacing(true);

 editEventLayout.setMargin(true);

 // top-level component properties

 setWidth("100%");

 setHeight("100%");

 // Left side

 VerticalLayout left = new VerticalLayout();

 left.setSpacing(true);

 // eventTitle

 editEventTitle = new TextField("Event Title:",

editable.getTitle());

 editEventTitle.setWidth("282px");

 editEventTitle.setHeight("-1px");

 left.addComponent(editEventTitle);

 // eventDate

 editEventDate = new PopupDateField("Date and Time:");

 //editEventDate.getDateFormat()

 editEventDate.setValue(editable.getDate());

 editEventDate.setWidth("-1px");

 editEventDate.setHeight("-1px");

 editEventDate.setResolution(3);

 left.addComponent(editEventDate);

 // eventPeopleSelector

 personDB = new PersonService();

73

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 ArrayList<Person> listPeople = new ArrayList<Person>();

 listPeople=personDB.getAllPeople();

 // Create a container for beans

 personBean = new BeanItemContainer<Person>(Person.class);

 for(Person person:listPeople){

 personBean.addBean(new Person(person.getPersonId(),

person.getfName(), person.getlName(), person.getEmail(),

person.getPhoneNumber()));

 }

 editPeopleSelector = new TwinColSelect("Add people to the

event:", personBean);

editPeopleSelector.setItemCaptionMode(TwinColSelect.ITEM_CAPTION_MODE_

ID);

 editPeopleSelector.setItemCaptionPropertyId("fullName");

 editPeopleSelector.setWidth("-1px");

 editPeopleSelector.setRows(8);

 editPeopleSelector.setNullSelectionAllowed(true);

 editPeopleSelector.addListener(new

Property.ValueChangeListener() {

 public void valueChange(ValueChangeEvent event) {

System.out.println(event.getProperty().getType().getName());

 if (event.getProperty().getValue() != null)

System.out.println(event.getProperty().getValue().getClass().getName()

);

 }

 });

 editPeopleSelector.setImmediate(true);

 left.addComponent(editPeopleSelector);

 // Right side

 VerticalLayout right = new VerticalLayout();

 right.setSpacing(true);

 // eventSongSelector

 editSongsDrag = editSongsDrag();

 right.addComponent(editSongsDrag);

 // eventSongSelected

 editSongsDrop = editSongsDrop(); //(new

SourceIs(eventSongSelected));

 right.addComponent(editSongsDrop);

 // buttons

 buttons = new HorizontalLayout();

 buttons.setWidth("-1px");

 buttons.setHeight("-1px");

 buttons.setMargin(false);

 buttons.setSpacing(true);

 // saveEvent

 saveEdit = new Button("Save");

 saveEdit.setImmediate(true);

 saveEdit.addListener(new SaveButtonListener());

 buttons.addComponent(saveEdit);

74

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 // cancelEvent

 cancelEdit = new Button("Cancel");

 cancelEdit.setImmediate(true);

 cancelEdit.addListener(new Button.ClickListener() {

 private static final long serialVersionUID = -

3845382681013653261L;

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

(editEventSubwindow.getParent()).removeWindow(editEventSubwindow);

 }

 });

 buttons.addComponent(cancelEdit);

 right.addComponent(buttons);

 right.setComponentAlignment(buttons, Alignment.BOTTOM_RIGHT);

 editEventLayout.addComponent(left);

 editEventLayout.addComponent(right);

 return editEventLayout;

 }

 /***

 * song table source...drop from

 * @return

 */

 private Table editSongsDrag(){

 songDB = new SongService();

 ArrayList<Song> list = new ArrayList<Song>();

 list=songDB.getAllSongs();

 // Create a container for beans

 BeanItemContainer<Song> songBean = new

BeanItemContainer<Song>(Song.class);

 // Add some beans to it

 for(Song song:list){

 songBean.addBean(new Song(song.getSongId(),

song.getTitle(), song.getAuthor(), song.getKey()));

 }

 // Bind a table to it

 editSongsDrag = new Table("Drag and drop a song to the second

table to add it to the event:", songBean);

 editSongsDrag.setWidth("700px");

 editSongsDrag.setPageLength(8);

 editSongsDrag.setColumnExpandRatio(songBean.firstItemId(), 1);

 editSongsDrag.setImmediate(true);

 editSongsDrag.setSelectable(true);

 editSongsDrag.setNullSelectionAllowed(true);

 editSongsDrag.setMultiSelect(true);

 editSongsDrag.setSortAscending(true);

 editSongsDrag.setSortContainerPropertyId("title");

 editSongsDrag.setVisibleColumns(new Object[]{"title",

"author", "key"});

75

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 editSongsDrag.setColumnWidth("key", 35);

 editSongsDrag.setColumnAlignment("key", Table.ALIGN_CENTER);

 editSongsDrag.setColumnExpandRatio("title", 1);

 // enable drag and drop options

 editSongsDrag.setDragMode(TableDragMode.ROW);

 editSongsDrag.setDragMode(TableDragMode.MULTIROW);

 return editSongsDrag;

 }

 /***

 * song table destination...drop to

 * @return

 */

 @SuppressWarnings({ "static-access" })

 private Table editSongsDrop(){

 // table with selected songs

 editSongsDrop = new Table("Drop songs here:");

 // Create a container for beans

 songBeanSelected = new BeanItemContainer<Song>(Song.class);

 songBeanSelected.addBean(new Song(0, "title", "author",

"key"));

 // list of songs in event

 String selected_songs = "";

 Object itemId = songBeanSelected.firstItemId();

 for (int i = 0; i<songBeanSelected.size(); i++){

 selected_songs += ((Song)itemId).getSongId();

 if (itemId != songBeanSelected.lastItemId()){

 itemId = songBeanSelected.nextItemId(itemId);

 selected_songs += ",";

 }

 }

 // table properties

 editSongsDrop.setContainerDataSource(songBeanSelected);

 editSongsDrop.setWidth("700px");

 editSongsDrop.setPageLength(8);

 editSongsDrop.setStyleName(Reindeer.TABLE_BORDERLESS);

 //eventSongSelected.setImmediate(true);

 //eventSongSelected.setSelectable(true);

 //eventSongSelected.setNullSelectionAllowed(true);

 //eventSongSelected.setMultiSelect(true);

 editSongsDrop.setVisibleColumns(new Object[]{"title",

"author", "key"});

 editSongsDrop.setColumnWidth("key", 35);

 editSongsDrop.setColumnAlignment("key", Table.ALIGN_CENTER);

editSongsDrop.setRowHeaderMode(editSongsDrop.ROW_HEADER_MODE_INDEX);

 editSongsDrop.setColumnExpandRatio("title", 1);

 // enable drag and drop features

 editSongsDrop.setDragMode(TableDragMode.ROW);

 editSongsDrop.setDragMode(TableDragMode.MULTIROW);

76

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 // drop handler

 editSongsDrop.setDropHandler(new DropHandler() {

 private static final long serialVersionUID = -

7005945929912511061L;

 public AcceptCriterion getAcceptCriterion() {

 //return new And(acceptCriterion, AcceptItem.ALL);

 return new Not(VerticalLocationIs.MIDDLE);

 //return AcceptAll.get();

 }

 public void drop(DragAndDropEvent event) {

 // Wrapper for the object that is dragged

 DataBoundTransferable t =

(DataBoundTransferable)event.getTransferable();

 // Make sure the drag source is one of the two tables

 if (t.getSourceComponent() != editSongsDrag &&

 t.getSourceComponent() != editSongsDrop)

 return;

 AbstractSelectTargetDetails target =

(AbstractSelectTargetDetails) event.getTargetDetails();

 // Get ids of the dragged item and the target item

 Object sourceItemId = t.getData("itemId");

 Object targetItemId = target.getItemIdOver();

 // Do not allow drop on the item itself

 if (sourceItemId.equals(targetItemId))

 return;

 Song bean = null;

 if (sourceItemId instanceof BeanItem<?>) {

 bean = (Song)

 ((BeanItem<?>) sourceItemId).getBean();

 }

 else if (sourceItemId instanceof Song) {

 bean = (Song) sourceItemId;

 }

 // On which side of the target the item was dropped

 VerticalDropLocation location =

target.getDropLocation();

 // The table was empty or otherwise not on an item

 if (targetItemId == null) {

 songBeanSelected.addItem(bean); // Add to the end

 }

 // Drop at the top of a subtree -> make it previous

 else if (location == VerticalDropLocation.TOP) {

songBeanSelected.addItemAt(songBeanSelected.indexOfId(targetItemId),

bean);

 }

 // Drop below another item -> make it next

 else if (location == VerticalDropLocation.BOTTOM) {

 songBeanSelected.addItemAfter(targetItemId, bean);

77

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 }

 }

 });

 return editSongsDrop;

 }

 /***

 * delete event window

 */

 private HorizontalLayout DeleteEventWindow(final Object

deletable){

 //layout holder

 deleteLayout = new HorizontalLayout();

 deleteLayout.setSpacing(true);

 setWidth("100.0%");

 // delete button

 Button confirmDelete = new Button("Delete");

 confirmDelete.addListener(new Button.ClickListener() {

 private static final long serialVersionUID =

885512333309588727L;

 public void buttonClick(ClickEvent event) {

 try {

 eventDB = new HappeningService();

 int iidee = ((Happening)deletable).getEventId();

 eventDB.deleteEvent(iidee);

 eventBean.removeItem(deletable);

 eventTable.sort();

 eventTable.requestRepaint();

deleteEventSubwindow.getParent().removeWindow(deleteEventSubwindow);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 });

 // cancel button

 Button cancelDelete = new Button("Cancel");

 cancelDelete.addListener(new Button.ClickListener() {

 private static final long serialVersionUID = -

5876105296264453353L;

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

(deleteEventSubwindow.getParent()).removeWindow(deleteEventSubwindow);

 }

 });

 deleteLayout.addComponent(confirmDelete);

 deleteLayout.addComponent(cancelDelete);

78

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 return deleteLayout;

 }

 /***

 * listeners

 */

 public class SaveButtonListener implements Button.ClickListener {

 private static final long serialVersionUID =

2749307457283317485L;

 @SuppressWarnings("rawtypes")

 public void buttonClick(ClickEvent event) {

 // Check that the password and confirm password equal

 try {

 HappeningService db = new HappeningService();

 // list of people in event

 String selected_people = "";

 Object[] person_objects =

((Set)eventPeopleSelector.getValue()).toArray();

 for (int i=0; i<person_objects.length; i++) {

 selected_people +=

((Person)person_objects[i]).getPersonId() + ",";

 }

 selected_people = selected_people.substring(0,

(selected_people.length()-1));

 // list of songs in event

 String selected_songs = "";

 Object itemId = songBeanSelected.firstItemId();

 for (int i = 0; i<songBeanSelected.size(); i++){

 selected_songs += ((Song)itemId).getSongId();

 if (itemId != songBeanSelected.lastItemId()){

 itemId = songBeanSelected.nextItemId(itemId);

 selected_songs += ",";

 }

 }

 //getWindow().showNotification("Selected people: " +

selected_people);

 int newEventId = db.getEventCount() + 1;

 db.createEvent(eventTitle.getValue().toString(),

eventDate.getValue().toString(), selected_people, selected_songs);

 eventBean.addBean(new Happening(newEventId,

eventTitle.getValue().toString(), eventDate.getValue().toString(),

selected_people, selected_songs));

 eventTable.sort();

 eventTable.requestRepaint();

(addEventSubwindow.getParent()).removeWindow(addEventSubwindow);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

79

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 //clear the add song window

 public void clearModalWindow(){

 eventTitle.setValue("");

 eventDate.setValue(null);

 eventPeopleSelector.setValue(null);

 //eventSongSelected.removeAllItems();

 }

 // launch add event window

 public class AddEventListener implements Button.ClickListener {

 private static final long serialVersionUID =

5488766819787033905L;

 public void buttonClick(ClickEvent event) {

 addEventSubwindow = new Window("Add a new Event");

 addEventSubwindow.center();

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout layout = (VerticalLayout)

addEventSubwindow.getContent();

 layout.setMargin(true);

 layout.setSpacing(true);

 layout.setSizeUndefined();

 // Add some content

 addEventSubwindow.addComponent(buildAddEventLayout());

 if (addEventSubwindow.getParent() != null) {

 // window is already showing

 getWindow().showNotification(

 "Window is already open");

 } else {

 clearModalWindow(); // clear

contents of fields from previous entries

 getWindow().addWindow(addEventSubwindow); // Open

the sub-window by adding it to the parent

 }

 }

 }

 // launch the delete window

 public class DeleteButtonListener implements Button.ClickListener

{

 private static final long serialVersionUID = 1L;

 public void buttonClick(ClickEvent event) {

 Happening itemId = (Happening)event.getButton().getData();

 // Create the window

 deleteEventSubwindow = new Window("Do you want to delete

the Event: " + itemId.getTitle() + "?");

 deleteEventSubwindow.setModal(true);

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout deleteHolder = (VerticalLayout)

deleteEventSubwindow.getContent();

 deleteHolder.setMargin(true);

 deleteHolder.setSpacing(true);

80

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 deleteHolder.setSizeUndefined();

 //songTable.getValue();

 // Add content to subwindow

deleteEventSubwindow.addComponent(DeleteEventWindow(itemId));

 //open the window

 if (deleteEventSubwindow.getParent() != null) {

 getWindow().showNotification("Window is already

open");

 } else {

 //getWindow().showNotification("Selected: " +

clicked);

 getWindow().addWindow(deleteEventSubwindow);

// Open the subwindow by adding it to the parent

 }

 }

 }

 // launch the edit window

 public class EditButtonListener implements Button.ClickListener {

 private static final long serialVersionUID = 1L;

 public void buttonClick(ClickEvent event) {

 editEventSubwindow = new Window("Edit the song");

 editEventSubwindow.center();

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout holder = (VerticalLayout)

editEventSubwindow.getContent();

 holder.setMargin(true);

 holder.setSpacing(true);

 holder.setSizeUndefined();

 // Add content to subwindow

 Happening clicked =

(Happening)event.getButton().getData();

 editEventSubwindow.addComponent(EditEventWindow(clicked));

 //open the window

 if (editEventSubwindow.getParent() != null) {

 getWindow().showNotification("Window is already

open"); // window is already showing

 } else {

 getWindow().addWindow(editEventSubwindow);

// Open the subwindow by adding it to the parent

 }

 }

 }

 public void valueChange(ValueChangeEvent event) {

 // Get the new value and format it to the current locale

 DateFormat dateFormatter = DateFormat.getDateTimeInstance();

 Object value = event.getProperty().getValue();

 if (value == null || !(value instanceof Date)) {

 getWindow().showNotification("Invalid date entered");

 } else {

 String dateOut = dateFormatter.format(value);

 // Show notification

 getWindow().showNotification("Starting date: " + dateOut);

81

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 }

 }

}

//PersonView.java

package com.aaronpratt.teamplanner.views;

import java.util.ArrayList;

import com.aaronpratt.teamplanner.data.Person;

import com.aaronpratt.teamplanner.service.PersonService;

import com.vaadin.annotations.AutoGenerated;

import com.vaadin.data.util.BeanItemContainer;

import com.vaadin.ui.AbsoluteLayout;

import com.vaadin.ui.Alignment;

import com.vaadin.ui.Button;

import com.vaadin.ui.Component;

import com.vaadin.ui.CustomComponent;

import com.vaadin.ui.HorizontalLayout;

import com.vaadin.ui.Label;

import com.vaadin.ui.Table;

import com.vaadin.ui.Button.ClickEvent;

import com.vaadin.ui.TextField;

import com.vaadin.ui.VerticalLayout;

import com.vaadin.ui.Window;

import com.vaadin.ui.themes.Reindeer;

public class PeopleView extends CustomComponent {

 @AutoGenerated

 private AbsoluteLayout mainLayout;

 @AutoGenerated

 private HorizontalLayout buttonLayout_1;

 @AutoGenerated

 private Button addPeopleButton;

 @AutoGenerated

 private Button emailButton;

 @AutoGenerated

 private Label headerLable;

 @AutoGenerated

 private Table peopleTable;

 private static final long serialVersionUID = 4961689989814043201L;

 // windows

 Window subwindow;

 public Window editPersonSubwindow;

 public Window deletePersonSubwindow;

 // layouts

 private VerticalLayout verticalLayout;

 private HorizontalLayout nameLayout;

82

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 private HorizontalLayout buttonLayout;

 private HorizontalLayout horizontal1;

 private HorizontalLayout horizontal2;

 private VerticalLayout personEditLayout;

 private HorizontalLayout deleteLayout;

 // UI components

 private TextField firstName;

 private TextField lastName;

 private TextField phone;

 private TextField email;

 private TextField fNameEdit;

 private TextField lNameEdit;

 private TextField emailEdit;

 private TextField phoneEdit;

 private TextField hiddenId;

 private Button saveButton;

 private Button cancelButton;

 private Button saveEdit;

 private Button cancelEdit;

 private Button tableEditButton;

 private Button tableDeleteButton;

 // objects

 PersonService db;

 ArrayList<Person> list;

 BeanItemContainer<Person> personBean;

 /**

 * The constructor should first build the main layout, set the

 * composition root and then do any custom initialization.

 *

 * The constructor will not be automatically regenerated by the

 * visual editor.

 */

 public PeopleView() {

 buildMainLayout();

 setCompositionRoot(mainLayout);

 }

 @AutoGenerated

 private AbsoluteLayout buildMainLayout() {

 // common part: create layout

 mainLayout = new AbsoluteLayout();

 // top-level component properties

 setWidth("100.0%");

 setHeight("100.0%");

 // headerLable

 headerLable = new Label();

 headerLable.setWidth("-1px");

 headerLable.setHeight("-1px");

 headerLable.setValue("Calvary Chapel Turku People");

 headerLable.setStyleName("h2");

 headerLable.setContentMode(3);

83

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 mainLayout.addComponent(headerLable,

"top:5.0px;left:20.0px;");

 // buttonLayout_1

 buttonLayout_1 = buildButtonLayout_1();

 mainLayout.addComponent(buttonLayout_1,

"top:10.0px;right:30.0px;");

 // people table

 peopleTable = buildPeopleTable();

 mainLayout.addComponent(peopleTable,

"top:40.0px;left:20.0px;");

 // edit layout

 //personEditLayout = EditPersonLayout();

 //mainLayout.addComponent(personEditLayout,

"top:255.0px;left:20.0px;");

 return mainLayout;

 }

 @AutoGenerated

 private HorizontalLayout buildButtonLayout_1() {

 // common part: create layout

 buttonLayout_1 = new HorizontalLayout();

 buttonLayout_1.setWidth("110px");

 buttonLayout_1.setHeight("34px");

 buttonLayout_1.setImmediate(true);

 buttonLayout_1.setMargin(false);

 buttonLayout_1.setSpacing(true);

 // emailButton

 emailButton = new Button("email");

 emailButton.setWidth("-1px");

 emailButton.setHeight("-1px");

 emailButton.setStyleName("link");

 emailButton.setImmediate(true);

 buttonLayout_1.addComponent(emailButton);

 buttonLayout_1.setComponentAlignment(emailButton, new

Alignment(34));

 // addPeopleButton

 addPeopleButton = new Button("add people");

 addPeopleButton.setWidth("-1px");

 addPeopleButton.setHeight("-1px");

 addPeopleButton.setStyleName("link");

 addPeopleButton.setImmediate(true);

 addPeopleButton.addListener(new AddPeopleListener());

 buttonLayout_1.addComponent(addPeopleButton);

 buttonLayout_1.setComponentAlignment(addPeopleButton, new

Alignment(34));

 return buttonLayout_1;

 }

 private Table buildPeopleTable(){

 db = new PersonService();

 list = new ArrayList<Person>();

 list=db.getAllPeople();

84

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 // Create a container for beans

 personBean = new BeanItemContainer<Person>(Person.class);

 // Add some beans to it

 for(Person person:list){

 personBean.addBean(new Person(person.getPersonId(),

person.getfName(), person.getlName(), person.getEmail(),

person.getPhoneNumber()));

 }

 // peopleTable

 peopleTable = new Table("", personBean);

 peopleTable.setWidth("97.0%");

 peopleTable.setPageLength(10);

 peopleTable.setStyleName(Reindeer.TABLE_BORDERLESS);

 peopleTable.setSelectable(true);

 peopleTable.setMultiSelect(true);

 peopleTable.setImmediate(true); // react at

once when something is selected

 peopleTable.setColumnReorderingAllowed(true);

 peopleTable.setSortAscending(true);

 peopleTable.setSortContainerPropertyId("fName");

 //edit button column

 peopleTable.addGeneratedColumn("edit", new

Table.ColumnGenerator() {

 private static final long serialVersionUID =

7190293891473776387L;

 public Component generateCell(Table source, Object itemId,

Object columnId) {

 //Item item = songTable.getItem(itemId);

 tableEditButton = new Button("edit");

 tableEditButton.setData(itemId);

 tableEditButton.setStyleName("link");

 tableEditButton.setImmediate(true);

 tableEditButton.addListener(new EditButtonListener());

 return tableEditButton;

 }

 });

 //delete button column

 peopleTable.addGeneratedColumn("delete", new

Table.ColumnGenerator() {

 private static final long serialVersionUID =

6709348760708076615L;

 public Component generateCell(Table source, Object itemId,

Object columnId) {

 tableDeleteButton = new Button("delete");

 tableDeleteButton.setData(itemId);

 tableDeleteButton.setStyleName("link");

 tableDeleteButton.setImmediate(true);

 tableDeleteButton.addListener(new

DeleteButtonListener());

 return tableDeleteButton;

 }

 });

85

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 //column headers

 peopleTable.setVisibleColumns(new Object[]{"fName", "lName",

"email", "phoneNumber", "edit", "delete"});

 peopleTable.setColumnHeader("fName", "First Name");

 peopleTable.setColumnHeader("lName", "Last Name");

 peopleTable.setColumnHeader("phoneNumber", "Phone Number");

 peopleTable.setColumnHeader("edit", "");

 peopleTable.setColumnHeader("delete", "");

 peopleTable.setColumnWidth("phoneNumber", 100);

 peopleTable.setColumnWidth("edit", 50);

 peopleTable.setColumnWidth("delete", 50);

 peopleTable.setColumnAlignment("edit", Table.ALIGN_CENTER);

 peopleTable.setColumnAlignment("delete", Table.ALIGN_CENTER);

 return peopleTable;

 }

 /***

 * Person edit window

 * @return

 */

 @AutoGenerated

 private VerticalLayout EditPersonWindow(Person editable) {

 int personId = editable.getPersonId();

 //getWindow().showNotification("" + songId);

 PersonService db = new PersonService();

 editable = db.getPersonById(personId);

 //getWindow().showNotification("" + editable.getSongId());

 // create layout

 personEditLayout = new VerticalLayout();

 personEditLayout.setImmediate(true);

 personEditLayout.setSpacing(true);

 // top-level component properties

 setWidth("100.0%");

 setHeight("100.0%");

 // first and last name

 horizontal1 = new HorizontalLayout();

 horizontal1.setSpacing(true);

 fNameEdit = new TextField("First Name", editable.getfName());

 lNameEdit = new TextField("Last Name", editable.getlName());

 horizontal1.addComponent(fNameEdit);

 horizontal1.addComponent(lNameEdit);

 personEditLayout.addComponent(horizontal1);

 // email

 emailEdit = new TextField("email", editable.getEmail());

 emailEdit.setWidth("100.0%");

 personEditLayout.addComponent(emailEdit);

 // phone

 phoneEdit = new TextField("Phone Number",

editable.getPhoneNumber());

 personEditLayout.addComponent(phoneEdit);

86

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 // buttons

 horizontal2 = new HorizontalLayout();

 horizontal2.setSpacing(true);

 saveEdit = new Button("Save");

 saveEdit.addListener(new SaveEditListener());

 horizontal2.addComponent(saveEdit);

 cancelEdit = new Button("Cancel");

 cancelEdit.addListener(new Button.ClickListener() {

 private static final long serialVersionUID =

8595209353865391442L;

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

 personEditLayout.setVisible(false);

 }

 });

 horizontal2.addComponent(cancelEdit);

 //hidden field for person id

 hiddenId = new TextField("", "" + editable.getPersonId());

 hiddenId.setVisible(false);

 hiddenId.setEnabled(false);

 horizontal2.addComponent(hiddenId);

 personEditLayout.addComponent(horizontal2);

 return personEditLayout;

 }

 /**

 * Modal Subwindow for adding a person

 *

 */

 private VerticalLayout buildModalWindow() {

 // common part: create layout

 verticalLayout = new VerticalLayout();

 verticalLayout.setWidth("387px");

 verticalLayout.setHeight("250px");

 verticalLayout.setImmediate(false);

 verticalLayout.setMargin(true);

 verticalLayout.setSpacing(true);

 // nameLayout

 nameLayout = buildNameLayout();

 verticalLayout.addComponent(nameLayout);

 // email

 email = new TextField();

 email.setWidth("90.0%");

 email.setHeight("-1px");

 email.setCaption("E-Mail Address");

 verticalLayout.addComponent(email);

 // phone

 phone = new TextField();

 phone.setWidth("-1px");

87

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 phone.setHeight("-1px");

 phone.setCaption("Phone Number");

 verticalLayout.addComponent(phone);

 // buttonLayout

 buttonLayout = buildButtonLayout();

 verticalLayout.addComponent(buttonLayout);

 return verticalLayout;

 }

 private HorizontalLayout buildNameLayout() {

 // common part: create layout

 nameLayout = new HorizontalLayout();

 nameLayout.setWidth("100.0%");

 nameLayout.setHeight("-1px");

 nameLayout.setImmediate(true);

 nameLayout.setMargin(false);

 // firstName

 firstName = new TextField();

 firstName.setWidth("-1px");

 firstName.setHeight("-1px");

 firstName.setCaption("First Name");

 nameLayout.addComponent(firstName);

 // lastName

 lastName = new TextField();

 lastName.setWidth("-1px");

 lastName.setHeight("-1px");

 lastName.setCaption("Last Name");

 nameLayout.addComponent(lastName);

 return nameLayout;

 }

 private HorizontalLayout buildButtonLayout() {

 // common part: create layout

 buttonLayout = new HorizontalLayout();

 buttonLayout.setWidth("-1px");

 buttonLayout.setHeight("-1px");

 buttonLayout.setImmediate(true);

 buttonLayout.setMargin(false);

 buttonLayout.setSpacing(true);

 // saveButton

 saveButton = new Button();

 saveButton.setWidth("66px");

 saveButton.setHeight("26px");

 saveButton.setCaption("Save");

 saveButton.setImmediate(true);

 saveButton.addListener(new SaveButtonListener());

 buttonLayout.addComponent(saveButton);

 // cancelButton

 cancelButton = new Button();

 cancelButton.setWidth("-1px");

 cancelButton.setHeight("26px");

 cancelButton.setCaption("Cancel");

88

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 cancelButton.setImmediate(true);

 cancelButton.addListener(new Button.ClickListener() {

 private static final long serialVersionUID =

8595209353865391442L;

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

 subwindow.getParent().removeWindow(subwindow);

 }

 });

 buttonLayout.addComponent(cancelButton);

 return buttonLayout;

 }

 /***

 * Delete Person window

 */

 private HorizontalLayout DeletePersonWindow(final Object

deletable){

 //layout holder

 deleteLayout = new HorizontalLayout();

 deleteLayout.setSpacing(true);

 setWidth("100.0%");

 // delete button

 Button confirmDelete = new Button("Delete");

 confirmDelete.addListener(new Button.ClickListener() {

 private static final long serialVersionUID =

885512333309588727L;

 public void buttonClick(ClickEvent event) {

 try {

 db = new PersonService();

 int iidee = ((Person)deletable).getPersonId();

 db.deletePerson(iidee);

 personBean.removeItem(deletable);

 peopleTable.sort();

 peopleTable.requestRepaint();

deletePersonSubwindow.getParent().removeWindow(deletePersonSubwindow);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 });

 // cancel button

 Button cancelDelete = new Button("Cancel");

 cancelDelete.addListener(new Button.ClickListener() {

 private static final long serialVersionUID = -

5876105296264453353L;

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

89

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

(deletePersonSubwindow.getParent()).removeWindow(deletePersonSubwindow

);

 }

 });

 deleteLayout.addComponent(confirmDelete);

 deleteLayout.addComponent(cancelDelete);

 return deleteLayout;

 }

 /***

 * Listeners

 */

 public class SaveButtonListener implements

Button.ClickListener {

 private static final long serialVersionUID =

2749307457283317485L;

 public void buttonClick(ClickEvent event) {

 // Check that the password and confirm password equal

 try {

 db = new PersonService();

 int newPersonId = db.getPersonCount() + 1;

 db.createPerson(firstName.getValue().toString(),

lastName.getValue().toString(), email.getValue().toString(),

phone.getValue().toString());

 personBean.addBean(new Person(newPersonId,

firstName.getValue().toString(), lastName.getValue().toString(),

email.getValue().toString(), phone.getValue().toString()));

 peopleTable.sort();

 peopleTable.requestRepaint();

 subwindow.getParent().removeWindow(subwindow);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 // save edit listener

 public class SaveEditListener implements Button.ClickListener

{

 private static final long serialVersionUID =

2749307457283317485L;

 public void buttonClick(ClickEvent event) {

 try {

 db = new PersonService();

 int personId =

Integer.parseInt(hiddenId.getValue().toString());

db.editPerson(hiddenId.getValue().toString(),fNameEdit.getValue().toSt

ring(), lNameEdit.getValue().toString(),

emailEdit.getValue().toString(), phoneEdit.getValue().toString());

 Object itemId = personBean.firstItemId();

 Person s = (Person)itemId;

 for (int i = 0; i<personBean.size(); i++){

90

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 s = (Person)itemId;

 if (s.getPersonId() == personId){

 personBean.removeItem(itemId);

 personBean.addBean(new Person(personId,

fNameEdit.getValue().toString(), lNameEdit.getValue().toString(),

emailEdit.getValue().toString(), phoneEdit.getValue().toString()));

 peopleTable.sort();

 peopleTable.requestRepaint();

 break;

 }

 if (itemId != personBean.lastItemId())

 itemId = personBean.nextItemId(itemId);

 } //while (itemId != personBean.lastItemId());

editPersonSubwindow.getParent().removeWindow(editPersonSubwindow);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 //clear the add song window

 public void clearModalWindow(){

 firstName.setValue("");

 lastName.setValue("");

 email.setValue("");

 phone.setValue("");

 }

 // launch add person window

 public class AddPeopleListener implements Button.ClickListener

{

 private static final long serialVersionUID =

3524941338036158477L;

 public void buttonClick(ClickEvent event) {

 subwindow = new Window("Add a new Person");

 subwindow.setModal(true);

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout layout = (VerticalLayout)

subwindow.getContent();

 layout.setMargin(true);

 layout.setSpacing(true);

 layout.setSizeUndefined();

 // Add some content; a label and a close-button

 subwindow.addComponent(buildModalWindow());

 if (subwindow.getParent() != null) {

 // window is already showing

 getWindow().showNotification("Window is already

open");

 } else {

 clearModalWindow();

 getWindow().addWindow(subwindow);

 }

 }

91

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 }

 // launch the delete window

 public class DeleteButtonListener implements

Button.ClickListener {

 private static final long serialVersionUID = 1L;

 public void buttonClick(ClickEvent event) {

 Person itemId = (Person)event.getButton().getData();

 // Create the window

 deletePersonSubwindow = new Window("Do you want to

delete the person: " + itemId.getfName() + " " + itemId.getlName() +

"?");

 deletePersonSubwindow.setModal(true);

 deletePersonSubwindow.center();

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout deleteHolder = (VerticalLayout)

deletePersonSubwindow.getContent();

 deleteHolder.setMargin(true);

 deleteHolder.setSpacing(true);

 deleteHolder.setSizeUndefined();

 // Add content to subwindow

deletePersonSubwindow.addComponent(DeletePersonWindow(itemId));

 //open the window

 if (deletePersonSubwindow.getParent() != null) {

 getWindow().showNotification("Window is already

open"); // window is already showing

 } else {

 getWindow().addWindow(deletePersonSubwindow);

// Open the subwindow by adding it to the parent

 }

 }

 }

 // launch the edit window

 public class EditButtonListener implements

Button.ClickListener {

 private static final long serialVersionUID = 1L;

 public void buttonClick(ClickEvent event) {

 editPersonSubwindow = new Window("Edit the person");

 editPersonSubwindow.center();

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout holder = (VerticalLayout)

editPersonSubwindow.getContent();

 holder.setMargin(true);

 holder.setSpacing(true);

 holder.setSizeUndefined();

 // Add content to subwindow

 Person clicked = (Person)event.getButton().getData();

editPersonSubwindow.addComponent(EditPersonWindow(clicked));

 //open the window

92

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 if (editPersonSubwindow.getParent() != null) {

 getWindow().showNotification("Window is already

open"); // window is already showing

 } else {

 getWindow().addWindow(editPersonSubwindow);

// Open the subwindow by adding it to the parent

 }

 }

 }

}

//SongView.java

package com.aaronpratt.teamplanner.views;

import java.util.ArrayList;

import com.aaronpratt.teamplanner.data.Song;

import com.aaronpratt.teamplanner.service.SongService;

import com.vaadin.annotations.AutoGenerated;

import com.vaadin.data.Property;

import com.vaadin.data.Property.ValueChangeEvent;

import com.vaadin.data.util.BeanItemContainer;

import com.vaadin.ui.AbsoluteLayout;

import com.vaadin.ui.Alignment;

import com.vaadin.ui.Button;

import com.vaadin.ui.Button.ClickEvent;

import com.vaadin.ui.Component;

import com.vaadin.ui.CustomComponent;

import com.vaadin.ui.HorizontalLayout;

import com.vaadin.ui.Label;

import com.vaadin.ui.NativeSelect;

import com.vaadin.ui.RichTextArea;

import com.vaadin.ui.Table;

import com.vaadin.ui.TextField;

import com.vaadin.ui.VerticalLayout;

import com.vaadin.ui.Window;

import com.vaadin.ui.themes.Reindeer;

public class SongView extends CustomComponent implements

Property.ValueChangeListener {

 @AutoGenerated

 private AbsoluteLayout mainLayout;

 @AutoGenerated

 private Button saveEdit;

 @AutoGenerated

 private RichTextArea songEditArea;

 @AutoGenerated

 private Button cancelEdit;

93

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 @AutoGenerated

 private NativeSelect changeKey;

 @AutoGenerated

 private TextField authorEdit;

 @AutoGenerated

 private TextField titleEdit;

 @AutoGenerated

 private Table songTable;

 @AutoGenerated

 private HorizontalLayout buttonLayout;

 @AutoGenerated

 private Button addSongButton;

 @AutoGenerated

 private Label headerLabel;

 private static final long serialVersionUID = 4821432957877802753L;

 //windows

 private Window addSongSubwindow;

 private Window editSongSubwindow;

 private Window deleteSongSubwindow;

 //layouts

 private VerticalLayout modalLayout;

 private VerticalLayout editLayout;

 private HorizontalLayout horizontalLayout;

 private HorizontalLayout deleteLayout;

 private HorizontalLayout hL1;

 private HorizontalLayout hL2;

 //components

 private RichTextArea songTextArea;

 private TextField title;

 private TextField hiddenId;

 private TextField author;

 private NativeSelect keyBox;

 private Button saveButton;

 private Button cancelButton;

 private Button tableEditButton;

 private Button tableDeleteButton;

 //objects

 SongService db;

 ArrayList<Song> list;

 BeanItemContainer<Song> songBean;

 /**

 * The constructor should first build the main layout, set the

 * composition root and then do any custom initialization.

 *

 * The constructor will not be automatically regenerated by the

 * visual editor.

 */

 public SongView() {

 buildMainLayout();

 setCompositionRoot(mainLayout);

 }

94

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 @AutoGenerated

 private AbsoluteLayout buildMainLayout() {

 setWidth("100.0%");

 setHeight("100.0%");

 // common part: create layout

 mainLayout = new AbsoluteLayout();

 // headerLabel

 headerLabel = new Label();

 headerLabel.setWidth("-1px");

 headerLabel.setHeight("-1px");

 headerLabel.setStyleName("h2");

 headerLabel.setValue("Calvary Chapel Turku Songs");

 headerLabel.setContentMode(3);

 headerLabel.setImmediate(true);

 mainLayout.addComponent(headerLabel,

"top:5.0px;left:20.0px;");

 // buttonLayout

 buttonLayout = buildButtonLayout();

 mainLayout.addComponent(buttonLayout,

"top:10.0px;right:30.0px;");

 songTable = buildSongTable();

 mainLayout.addComponent(songTable, "top:40.0px;left:20.0px;");

 return mainLayout;

 }

 @AutoGenerated

 private HorizontalLayout buildButtonLayout() {

 // common part: create layout

 buttonLayout = new HorizontalLayout();

 buttonLayout.setWidth("-1px");

 buttonLayout.setHeight("-1px");

 buttonLayout.setImmediate(true);

 buttonLayout.setMargin(false);

 buttonLayout.setSpacing(true);

 // addSongButton

 addSongButton = new Button("add song");

 addSongButton.setWidth("-1px");

 addSongButton.setHeight("-1px");

 addSongButton.setStyleName("link");

 addSongButton.setImmediate(true);

 addSongButton.addListener(new AddSongListener());

 buttonLayout.addComponent(addSongButton);

 buttonLayout.setComponentAlignment(addSongButton, new

Alignment(34));

 return buttonLayout;

 }

 public Table buildSongTable(){

 db = new SongService();

 list = new ArrayList<Song>();

 list=db.getAllSongs();

95

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 // Create a container for beans

 songBean = new BeanItemContainer<Song>(Song.class);

 for(Song song:list){

 songBean.addBean(new Song(song.getSongId(),

song.getTitle(), song.getAuthor(), song.getKey()));

 }

 // Use the title property as the item ID of the bean

 //songBean.setBeanIdProperty("title");

 // Bind a table to it

 songTable = new Table("", songBean);

 songTable.setWidth("97.0%");

 songTable.setPageLength(15);

 songTable.setStyleName(Reindeer.TABLE_BORDERLESS);

 songTable.setImmediate(true);

 songTable.setSelectable(true);

 songTable.setSortAscending(true);

 songTable.setSortContainerPropertyId("title");

 //edit button column

 songTable.addGeneratedColumn("edit", new

Table.ColumnGenerator() {

 private static final long serialVersionUID =

6709348760708076615L;

 public Component generateCell(Table source, Object itemId,

Object columnId) {

 //Item item = songTable.getItem(itemId);

 tableEditButton = new Button("edit");

 tableEditButton.setData(itemId);

 tableEditButton.setStyleName("link");

 tableEditButton.setImmediate(true);

 tableEditButton.addListener(new EditButtonListener());

 return tableEditButton;

 }

 });

 //delete button column

 songTable.addGeneratedColumn("delete", new

Table.ColumnGenerator() {

 private static final long serialVersionUID =

6709348760708076615L;

 public Component generateCell(Table source, Object itemId,

Object columnId) {

 //Item item = songTable.getItem(itemId);

 tableDeleteButton = new Button("delete");

 tableDeleteButton.setData(itemId);

 tableDeleteButton.setStyleName("link");

 tableDeleteButton.setImmediate(true);

 tableDeleteButton.addListener(new

DeleteButtonListener());

 return tableDeleteButton;

 }

 });

 //column headers

 songTable.setVisibleColumns(new Object[]{"title", "author",

"key", "edit", "delete"});

96

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 songTable.setColumnHeader("edit", "");

 songTable.setColumnHeader("delete", "");

 songTable.setColumnWidth("key", 35);

 songTable.setColumnWidth("edit", 50);

 songTable.setColumnWidth("delete", 50);

 songTable.setColumnAlignment("key", Table.ALIGN_CENTER);

 songTable.setColumnAlignment("edit", Table.ALIGN_CENTER);

 songTable.setColumnAlignment("delete", Table.ALIGN_CENTER);

 //songTable.setColumnExpandRatio("title", 1);

 return songTable;

 }

 /***

 * song edit window layout

 */

 @AutoGenerated

 private VerticalLayout EditSongWindow(Song editable) {

 int songId = editable.getSongId();

 //getWindow().showNotification("" + songId);

 SongService db = new SongService();

 editable = db.getSongById(songId);

 //getWindow().showNotification("" + editable.getSongId());

 // common part: create layout

 editLayout = new VerticalLayout();

 editLayout.setImmediate(true);

 editLayout.setSpacing(true);

 // top-level component properties

 setWidth("100.0%");

 setHeight("100.0%");

 // horizontalLayout

 hL1 = new HorizontalLayout();

 hL1.setWidth("100.0%");

 hL1.setHeight("-1px");

 hL1.setImmediate(true);

 hL1.setMargin(false);

 hL1.setSpacing(true);

 // titleField

 titleEdit = new TextField("Title:", editable.getTitle());

 titleEdit.setWidth("225px");

 titleEdit.setHeight("-1px");

 hL1.addComponent(titleEdit);

 // author

 authorEdit = new TextField("Author:", editable.getAuthor());

 authorEdit.setWidth("225px");

 authorEdit.setHeight("-1px");

 hL1.addComponent(authorEdit);

 // change key box

 String[] available_keys = new String[] { "C", "Db", "D", "Eb",

"E", "F", "F#", "G", "Ab", "A", "Bb", "B"};

 changeKey = new NativeSelect();

97

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 for (int i = 0; i < available_keys.length; i++) {

 changeKey.addItem(available_keys[i]);

 }

 changeKey.setNullSelectionAllowed(false);

 changeKey.setValue(editable.getKey());

 changeKey.setImmediate(true);

 changeKey.addListener(this);

 changeKey.setWidth("60px");

 changeKey.setHeight("-1px");

 changeKey.setCaption("Key:");

 hL1.addComponent(changeKey);

 //add horizontal layout

 editLayout.addComponent(hL1);

 // SongTextArea

 songEditArea = new RichTextArea("", editable.getSongText());

 songEditArea.setWidth("600px");

 songEditArea.setHeight("400px");

 songEditArea.setImmediate(true);

 editLayout.addComponent(songEditArea);

 // buttonLayout

 hL2 = new HorizontalLayout();

 hL2.setWidth("-1px");

 hL2.setHeight("-1px");

 hL2.setImmediate(true);

 hL2.setMargin(false);

 hL2.setSpacing(true);

 // saveButton

 saveEdit = new Button();

 saveEdit.setWidth("-1px");

 saveEdit.setHeight("-1px");

 saveEdit.setCaption("Save");

 saveEdit.setImmediate(true);

 saveEdit.addListener(new SaveEditListener());

 hL2.addComponent(saveEdit);

 // cancelButton

 cancelEdit = new Button();

 cancelEdit.setWidth("-1px");

 cancelEdit.setHeight("-1px");

 cancelEdit.setCaption("Cancel");

 cancelEdit.setImmediate(true);

 cancelEdit.addListener(new Button.ClickListener() {

 private static final long serialVersionUID =

7215324540929658891L;

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

(editSongSubwindow.getParent()).removeWindow(editSongSubwindow);

 }

 });

 hL2.addComponent(cancelEdit);

98

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 //hidden field for song id

 hiddenId = new TextField("", "" + editable.getSongId());

 hiddenId.setVisible(false);

 hiddenId.setEnabled(false);

 hL2.addComponent(hiddenId);

 editLayout.addComponent(hL2);

 return editLayout;

 }

 /***

 * Delete song window

 */

 private HorizontalLayout DeleteSongWindow(final Object deletable){

 //layout holder

 deleteLayout = new HorizontalLayout();

 deleteLayout.setSpacing(true);

 setWidth("100.0%");

 // delete button

 Button confirmDelete = new Button("Delete");

 confirmDelete.addListener(new Button.ClickListener() {

 private static final long serialVersionUID =

885512333309588727L;

 public void buttonClick(ClickEvent event) {

 try {

 db = new SongService();

 int iidee = ((Song)deletable).getSongId();

 db.deleteSong(iidee);

 songBean.removeItem(deletable);

 songTable.sort();

 songTable.requestRepaint();

deleteSongSubwindow.getParent().removeWindow(deleteSongSubwindow);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 });

 // cancel button

 Button cancelDelete = new Button("Cancel");

 cancelDelete.addListener(new Button.ClickListener() {

 private static final long serialVersionUID = -

5876105296264453353L;

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

(deleteSongSubwindow.getParent()).removeWindow(deleteSongSubwindow);

 }

 });

 deleteLayout.addComponent(confirmDelete);

99

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 deleteLayout.addComponent(cancelDelete);

 return deleteLayout;

 }

 /***

 * build modal window for adding a song

 */

 @AutoGenerated

 private VerticalLayout buildModalWindow() {

 // common part: create layout

 modalLayout = new VerticalLayout();

 modalLayout.setImmediate(true);

 modalLayout.setMargin(true);

 modalLayout.setSpacing(true);

 // top-level component properties

 setWidth("100.0%");

 setHeight("100.0%");

 // horizontalLayout

 horizontalLayout = buildHorizontalLayout();

 modalLayout.addComponent(horizontalLayout);

 // SongTextArea

 songTextArea = new RichTextArea();

 songTextArea.setWidth("600px");

 songTextArea.setHeight("400px");

 songTextArea.setImmediate(true);

 modalLayout.addComponent(songTextArea);

 // buttonLayout

 buttonLayout = buildButtonHolder();

 modalLayout.addComponent(buttonLayout);

 return modalLayout;

 }

 @AutoGenerated

 private HorizontalLayout buildHorizontalLayout() {

 // common part: create layout

 horizontalLayout = new HorizontalLayout();

 horizontalLayout.setWidth("100.0%");

 horizontalLayout.setHeight("-1px");

 horizontalLayout.setImmediate(true);

 horizontalLayout.setMargin(false);

 horizontalLayout.setSpacing(true);

 // titleField

 title = new TextField("Title:");

 title.setWidth("225px");

 title.setHeight("-1px");

 horizontalLayout.addComponent(title);

 // author

 author = new TextField("Author:");

 author.setWidth("225px");

 author.setHeight("-1px");

100

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 //author.setNewItemsAllowed(true);

 //author.setNewItemHandler(this);

 //author.setFilteringMode(Filtering.FILTERINGMODE_STARTSWITH);

 //author.addListener(this);

 horizontalLayout.addComponent(author);

 // key

 String[] available_keys = new String[] { "C", "Db", "D", "Eb",

"E", "F", "F#", "G", "Ab", "A", "Bb", "B"};

 keyBox = new NativeSelect();

 for (int i = 0; i < available_keys.length; i++) {

 keyBox.addItem(available_keys[i]);

 }

 //keyBox.setNullSelectionAllowed(false);

 keyBox.setImmediate(true);

 keyBox.addListener(this);

 keyBox.setWidth("60px");

 keyBox.setHeight("-1px");

 keyBox.setCaption("Key:");

 horizontalLayout.addComponent(keyBox);

 return horizontalLayout;

 }

 @SuppressWarnings("serial")

 @AutoGenerated

 private HorizontalLayout buildButtonHolder() {

 // common part: create layout

 buttonLayout = new HorizontalLayout();

 buttonLayout.setWidth("-1px");

 buttonLayout.setHeight("-1px");

 buttonLayout.setImmediate(true);

 buttonLayout.setMargin(false);

 buttonLayout.setSpacing(true);

 // saveButton

 saveButton = new Button("Save");

 saveButton.setWidth("-1px");

 saveButton.setHeight("-1px");

 saveButton.setImmediate(true);

 saveButton.addListener(new SaveButtonListener());

 buttonLayout.addComponent(saveButton);

 // cancelButton

 cancelButton = new Button("Cancel");

 cancelButton.setWidth("-1px");

 cancelButton.setHeight("-1px");

 cancelButton.setImmediate(true);

 cancelButton.addListener(new Button.ClickListener() {

 public void buttonClick(ClickEvent event) {

 // close the window by removing it from the parent

window

(addSongSubwindow.getParent()).removeWindow(addSongSubwindow);

 }

 });

 buttonLayout.addComponent(cancelButton);

101

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 return buttonLayout;

 }

 /***

 * Save Button Listeners

 */

 public class SaveButtonListener implements Button.ClickListener {

 private static final long serialVersionUID =

2749307457283317485L;

 public void buttonClick(ClickEvent event) {

 try {

 db = new SongService();

 int newSongId = db.getSongCount() + 1;

 db.createSong(title.getValue().toString(),

author.getValue().toString(), keyBox.getValue().toString(),

songTextArea.getValue().toString());

 songBean.addBean(new Song(newSongId,

title.getValue().toString(), author.getValue().toString(),

keyBox.getValue().toString()));

 songTable.sort();

 songTable.requestRepaint();

addSongSubwindow.getParent().removeWindow(addSongSubwindow);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 public class SaveEditListener implements Button.ClickListener {

 private static final long serialVersionUID =

2749307457283317485L;

 public void buttonClick(ClickEvent event) {

 try {

 db = new SongService();

 int songId =

Integer.parseInt(hiddenId.getValue().toString());

db.editSong(hiddenId.getValue().toString(),titleEdit.getValue().toStri

ng(), authorEdit.getValue().toString(),

changeKey.getValue().toString(), songEditArea.getValue().toString());

 Object itemId = songBean.firstItemId();

 Song s = (Song)itemId;

 for (int i = 0; i<songBean.size(); i++){

 s = (Song)itemId;

 if (s.getSongId() == songId){

 songBean.removeItem(itemId);

 songBean.addBean(new

Song(songId,titleEdit.getValue().toString(),

authorEdit.getValue().toString(), changeKey.getValue().toString(),

songEditArea.getValue().toString()));

 songTable.sort();

 songTable.requestRepaint();

 break;

 }

 if (itemId != songBean.lastItemId())

102

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 itemId = songBean.nextItemId(itemId);

 } //while (itemId != songBean.lastItemId());

editSongSubwindow.getParent().removeWindow(editSongSubwindow);

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 // change of selection in a combo-box

 public void valueChange(ValueChangeEvent event) {

 /* if (event.getProperty() == keyBox){

 getWindow().showNotification("Selected key: " +

event.getProperty());

 }else if (event.getProperty() == author){

 getWindow().showNotification("Selected author: " +

event.getProperty());

 }

 */

 }

 // clear the add song window

 public void clearModalWindow(){

 title.setValue("");

 author.setValue("");

 keyBox.setValue(null);

 songTextArea.setValue("");

 }

 // launch the add song Window

 public class AddSongListener implements Button.ClickListener {

 private static final long serialVersionUID =

3645087944675292900L;

 public void buttonClick(ClickEvent event) {

 addSongSubwindow = new Window("Add a new song");

 addSongSubwindow.setModal(true);

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout layout = (VerticalLayout)

addSongSubwindow.getContent();

 layout.setMargin(true);

 layout.setSpacing(true);

 layout.setSizeUndefined();

 // Add content to sub-window

 addSongSubwindow.addComponent(buildModalWindow());

 // button for opening the sub-window

 if (addSongSubwindow.getParent() != null) {

 // window is already showing

 getWindow().showNotification("Window is already

open");

 } else {

 clearModalWindow(); // clear

contents of fields from previous entries

103

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 getWindow().addWindow(addSongSubwindow); // Open

the subwindow by adding it to the parent

 }

 }

 }

 // launch the delete window

 public class DeleteButtonListener implements Button.ClickListener

{

 private static final long serialVersionUID = 1L;

 public void buttonClick(ClickEvent event) {

 Song itemId = (Song)event.getButton().getData();

 // Create the window

 deleteSongSubwindow = new Window("Do you want to delete

the song: " + itemId.getTitle() + "?");

 deleteSongSubwindow.setModal(true);

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout deleteHolder = (VerticalLayout)

deleteSongSubwindow.getContent();

 deleteHolder.setMargin(true);

 deleteHolder.setSpacing(true);

 deleteHolder.setSizeUndefined();

 //songTable.getValue();

 // Add content to subwindow

deleteSongSubwindow.addComponent(DeleteSongWindow(itemId));

 //open the window

 if (deleteSongSubwindow.getParent() != null) {

 getWindow().showNotification("Window is already

open");

 } else {

 //getWindow().showNotification("Selected: " +

clicked);

 getWindow().addWindow(deleteSongSubwindow);

// Open the subwindow by adding it to the parent

 }

 }

 }

 // launch the edit window

 public class EditButtonListener implements Button.ClickListener {

 private static final long serialVersionUID = 1L;

 public void buttonClick(ClickEvent event) {

 editSongSubwindow = new Window("Edit the song");

 editSongSubwindow.center();

 // Configure the windows layout; by default a

VerticalLayout

 VerticalLayout holder = (VerticalLayout)

editSongSubwindow.getContent();

 holder.setMargin(true);

 holder.setSpacing(true);

 holder.setSizeUndefined();

 // Add content to subwindow

104

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

 Song clicked = (Song)event.getButton().getData();

 editSongSubwindow.addComponent(EditSongWindow(clicked));

 //open the window

 if (editSongSubwindow.getParent() != null) {

 getWindow().showNotification("Window is already

open"); // window is already showing

 } else {

 getWindow().addWindow(editSongSubwindow);

// Open the subwindow by adding it to the parent

 }

 }

 }

}

105

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR‟S THESIS | Aaron Pratt

2 Database Configurations

Creating the database:

CREATE DATABASE `team_planner` ;

Creating the ‟events‟ table:

CREATE TABLE `team_planner`.`events` (

 `E_id` INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY ,

 `title` VARCHAR(200) NOT NULL ,

 `date` DATETIME NULL DEFAULT NULL ,

 `person_id_list` VARCHAR(100) NULL ,

 `song_id_list` VARCHAR(100) NULL

) ENGINE = InnoDB;

Creating the ‟people‟ table:

CREATE TABLE `team_planner`.`people` (

 `P_id` INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY ,

 `fName` VARCHAR(30) NOT NULL ,

 `lName` VARCHAR(30) NOT NULL ,

 `email` VARCHAR(50) NULL DEFAULT NULL ,

 `phone` VARCHAR(20) NULL DEFAULT NULL

) ENGINE = InnoDB;

Creating the ‟songs‟ table:

CREATE TABLE `team_planner`.`songs` (

 `S_id` INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY ,

 `title` VARCHAR(150) NOT NULL ,

 `author` VARCHAR(100) NULL DEFAULT NULL ,

 `songKey` VARCHAR(5) NULL DEFAULT NULL ,

 `songText` LONGTEXT NULL DEFAULT NULL

) ENGINE = InnoDB;

