
 Vu Hoang Tuan & Tran Gia Hoang Long

"CUTE" CLIENT FOR HESSIAN

Thesis

CENTRAL OSTROBOTHNIA OF APPLIED SCIENCES

Degree Programme in Information Technology

April 2011

PREFACE

We would like to thank all the people who have guided and inspired us during our

Bachelor of Information Technology studies. The Department of Information Technology

and Business, the Central Ostrobothnia University of Applied Sciences has been our

special home where our knowledge and ideas were obtained and improved. There are many

people to acknowledge for their support in our four-year studies.

We would like to express our appreciation to Grzegory Sczewcyk, our thesis advisor for

his encouragement and guidance he had given to us throughout this thesis process. We

found his supervisions were especially invaluable and helpful for our constantly improving

implementation.

We would like to thank Marko Forsell. His advices were invaluable when we were

struggling with our thesis’s boundary. We would like to thank Esko Johnson for his kind

support for the completion of our thesis.

Finally, we would like to thank Steve Montel and Theresa Nguyen, the Chief-Executive-

Officer and Director of Sales and Marketing of Caucho Technology for their special

encouragement and support.

1

ABBREVIATIONS & ACRONYMS

RMI Remote Method Invocation

SUID Serial version Unique Identifier

RPC Remote Procedure Call

XML Extensible Markup Language

IoC Inversion of Control

AOP Aspect-Oriented Programming

MVC Model View Controller

HTTP Hyper-Text Transfer Protocol

SOAP Simple Object Access Protocol

WSDL Web Service Description Language

UDDI Universal Description, Discovery and Integration

API Application Program Interface

URL Uniform Resource Locator

UI User Interface

OS Operating System

OSI Open System Interconnection

JMS Java Message Service

REST Representational State Transfer

DCOM Distributed Component Object Model

2

Thesis Abstract

Department

Technology and Business,

Kokkola

Date

20 April 2011

Authors

Vu Hoang Tuan &

Tran Gia Hoang Long

Degree programme

Degree programme in Information Technology

Name of thesis

"Cute" Client for Hessian

Instructor

Grzegorz Szewczyk

Pages

53 + Appendices (25)

Supervisor

Grzegorz Szewczyk

The purpose of this thesis is to present the design and implementation of Hessian binary

web service protocol in Qt - a cross platform application and framework. The

implementation of Hessian protocol, which can be found in Java, C#, Python, Objective-C

and many other platforms, encourages the use of Hessian as a complementary data

exchange method of XML-based protocols.

The implementation is built on top of the Qt Network infrastructure that simplifies the

management of sending network requests and receiving replies. The module together with

other classes and libraries has made the development of the protocol on Qt framework an

easy and pleasant experience.

As a partial implementation of an open-source project, many additional features are

prepared to improve the performance. The later project is an implementation to be suitable

for production with encryption—decryption algorithm, compression together with caching

capabilities.

Keywords:

3

Hessian, web service, binary protocol, Qt, binary web service protocol.

Contents
1 INTRODUCTION ... 5

2 WEB SERVICE BACKGROUND .. 6

2.1 Web Services ... 6

2.2 Web service meta-protocols .. 7

2.2.1 XML-based web service .. 7

2.2.2 Binary based web service ... 9

2.3 The Hessian Binary Web Services Protocol .. 10

2.3.1 Overview .. 10

2.3.2 Operations .. 12

2.3.3 HBWSP performance ... 13

2.3.4 Related implementation ... 14

3 AIM OF THE WORK .. 15

4 TECHNICAL DOCUMENTATION OF THE IMPLEMENTATION 17

4.1 System requirement capture .. 17

4.1.1 System user need .. 17

4.1.2 Requirement specification .. 18

4.2 Requirement analysis and system design .. 22

4.2.1 Design overview... 22

4.2.2 Class selection process ... 24

4.2.3 Design class structure ... 25

4.2.4 Behavioral design ... 28

4.3 Implementation .. 30

4.3.1 Hessian message construction .. 30

4.3.2 Network manager ... 36

4.3.3 Serialization and deserialization .. 37

4.4 Project User Guide .. 39

4.4.1 System requirements .. 39

4.4.2 Project installation .. 39

4.4.3 Instruction for the user to get the latest release .. 40

4.4.4 Instruction for the user to create a simple Spring remote service with STS .. 40

4.4.5 Service access from Qt ... 41

4.5 Sample test cases of the project ... 42

4.5.1 Test1: remote method with no parameter .. 42

4

4.5.2 Test2: remote method with Integer .. 43

4.5.3 Test3: remote method with Double .. 43

4.5.4 Test4: remote method with Long ... 43

4.5.5 Test5: remote method with DateTime ... 44

4.5.6 Test6: remote method with String .. 44

4.5.7 Test7: remote method with Binary ... 45

4.5.8 Test8: remote method with no parameter in asynchronous 45

4.5.9 Test9: remote method with Integer in asynchronous mode 45

4.5.10 Test10: remote method with Double in asynchronous mode 46

4.5.11 Test11: remote method with Long in asynchronous mode 46

4.5.12 Test12: remote method with DateTime in asynchronous mode..................... 47

4.5.13 Test13: remote method with String in asynchronous mode 47

4.5.14 Test14: remote method with Binary in asynchronous mode 48

4.6 Performance of test cases .. 48

4.6.1 Test 15: Qt vs Java (J2SE) performance .. 48

4.6.2 Test 16: Qt vs Java (J2SE) integer serialization performance 49

5 SUMMARY OF RESULTS ... 49

5.1 Unit test ... 50

5.2 Performance test .. 50

5.2.1 Test 15: Qt vs Java (J2SE) performance .. 51

5.2.2 Test 16: Qt vs Java (J2SE) integer serialization performance 51

6 CONCLUSION .. 52

5

1 INTRODUCTION

It is true that XML (Extensible Markup Language) is the thing making Web service

possible. When a web service is built, it has to be on one way or another way in XML

format. Despite its popularity, XML is discouraged to be used as a data exchanging

protocol between systems because of its well-known weaknesses which are the following:

the syntax requires high bandwidth, consumes too many resources on the client side for

parsing when data in binary form must be converted into XML before it is parsed back into

its original form on the receiver's side.

Hessian binary web service protocol (HBWSP) was developed by Caucho (Caucho

Technology 2007b) and has been released under open source license. Hessian, as a binary

protocol, is compact, efficient and low resource consuming, making the web service usable

as simple as calling a local method.

The aim of this thesis is to describe the implementation of the HBWSP RPC in the Qt

framework, following the specification of Hessian 2.0 protocol. This implementation will

be a foundation for further implementation of the protocol. With the cross-platform power

of Qt, Hessian’s support range is significantly extended.

The implementation is built on top of the QtNetwork infrastructure. This module provides

the QNetworkAccessManager class which manages the sending network requests and

receiving replies. It follows the design of the module by the construction of an HCall class

which contains the request parameters (method name, parameters), as well as the reply

(result, errors and status of the call).

The thesis begins in Chapter 3 describing terminologies and technologies. The heart of the

thesis is Chapter 5 covering the design, the requirements, the implementation and the use

of the protocol in Qt. Chapter 5 also includes an overview of the design requirements

which was specified by the Hessian 2.0 protocol. These requirements will be further

investigated and solved. Next, Chapter 7 shows how the implementation can be used in

real application.

Finally, Chapter 6 presents the result of the work in addition to conclusion and further

expansion of the system in Chapter 7.

6

2 WEB SERVICE BACKGROUND

2.1 Web Services

There are many definitions given for Web Services. They vary from very long one that the

World Wide Web Consortium (W3C) defines Web Service: “a software system identified

by a URI whose public interfaces and bindings are defined and described using XML” to

as simple as “services offered via the Web” (Fisher 2002).

In general, web services are modular software components developed under a set of open

standards and are accessible through the Web. The key to success of Web service depends

on the intercommunication of the involved systems independently of their natures. In

Graph 1, the architecture of web service was described as a stack of multiple layers

(Heather 2001):

Service Flow

Service Discovery

Service Publication

Service Description

XML-Based Messaging

Network

Secu
rity

M
an

agem
en

t

Q
u

ality O
f Service

WSFL

UDDI

WSDL

SOAP

HTTP, FTP, Email, ...

UDDI

GRAPH 1. Web Services conceptual stack

The foundation stack is based on the bottom network layer which allows data to be

transferred between systems. The messaging layer lies on top of the network layer

describing the data formats being transferred. The upper layer, the service description

layer, defines the available operations, the valid messages and the access protocol. XML is

7

used in this stack to leverage the interoperability between systems. Based on the definitions

from Web Service Architecture (Heather 2001), here are some common terms:

 SOAP – an XML-centric messaging schema that helps sending input and

receiving output by exchanging XML documents.

 WSDL – an XML format to describe the service endpoints.

 UDDI – a framework independent of platform to describe public services and

interactions with other services.

 WSFL – an XML language for the description of Web Service compositions

2.2 Web service meta-protocols

As the web service evolves, there have been many meta-protocols developed to improve

the performance, reliability, maintainability and add to reduce development efforts. They

can be characterized by their encoding standards (XML or binary) or communication

patterns such as REST, RPC, Messaging, and Streaming (Heather 2001).

2.2.1 XML-based web service

Communications between web service components is usually based on messaging style. As

defined in the Web service conceptual stack, SOAP messages – a XML-based structured

data - are primarily used to exchange information between Client and Server because of its

platform-independence. An example of SOAP message is shown in Graph 2. In a simple

case, Client sends a SOAP request to the remote object located on the server, specifying

the method and its arguments, the result is returned in a SOAP response message (Heather

2001).

8

Client application

SOAP

Network Protocol

Web service

application

SOAP

Network Protocol

(2)

SOAP Request

 Message

(5)

SOAP Response

 Message

(1) (4) (3)(6)

GRAPH 2. SOAP Request Message

According to Web Service Architecture (Heather 2001), application integration with SOAP

can be achieved by six steps:

(1) The application creates a request message which contains the Web service

operation and optionally arguments as indicated in the service description.

(2) This message, together with the service location is presented to infrastructure where

the message is sent out over the network via the underlying network protocol.

(3) The request message is extracted from the SOAP request message and is delivered

to the Web service application.

(4) The Web service processes the request message and creates a response.

(5) The SOAP message response then is sent over the network back to the service

requestor.

(6) The message is received, processed and delivered to the client application.

In addition to SOAP, there are a number of commonly used XML-based meta-protocols

such as JSON, XML-RPC and Burlap. These protocols suffer from performance

degradation when the data need to be parsed and converted into binary form. This process

does consume processing power and bandwidth, and scientists have been searching for an

effective way to parse XML documents. In 2003, a group from Sun Microsystems

9

identified the performance problems in current Web Service standards and proposed using

binary instead of XML (Paul, Santiago, Kohuske, Marc and Eduardo 2003).

2.2.2 Binary based web service

The need for binary-based encoding protocols arose when there were needs for high

performance distributed systems. These systems obviously require high performance and

low cost data exchange protocols that XML-based approaches cannot fulfill (Paul et al.

2003). The support for building such complex system varies from complicated industrial

standards such as CORBA or Microsoft DCOM, to Java-based solution like RMI (see

Appendix 1) or JMS. Such middleware architectures consist of three elements (Sharp

2008):

 The communication element provides a service for message transferring between

systems. This layer may involve up to the OSI Transport Layer.

 The middleware element which offers support services to applications

 The application element which contain application logic and user interface.

Proxy

Client Server

«interface»

Service Interface

«interface»

Service Interface

Network

Client application

[Invokes remote method]

Network

Skeleton

Service implementation

[Transfer request]

Invoke method

10

GRAPH 3. ROI styles of middleware

For example, in Graph 3, the ROI systems, the Proxy containing the Service Interface

which is a copied from the Service Interface from the server is set up when binding takes

place. This proxy contains all the necessary code for marshalling, un-marshalling as well

as security and compression. The corresponding mechanism on the server side is called

Skeleton (Sharp 2008).

However, when firewalls are involved, the use of mentioned protocols becomes

complicated because they use raw TCP/IP connections in order to transmit data(Ingham,

Rees, and Norman 1999). Conventional firewalls block accesses based on host address and

port number that make binary communication impossible.

On the other hand, the implementation of those technologies is not widely available.

CORBA implementation can be found in C, C++, Java and a wide range of languages but

these languages are not intended for the web and sometimes, the implementation have been

found to be complex, slow, incompatible and incomplete (Baker 1994).

Caucho Technology’s approach- the HBWSP- uses binary encoding over HTTP or TCP,

Hessian makes the web possible by implementing on a wide range of platforms, including

Java, Flash, Python, C++, C#. NET, PHP, Ruby, Objective-C and other languages (Caucho

Technology 2007b).

2.3 The Hessian Binary Web Services Protocol

2.3.1 Overview

HBWSP is a cross-platform binary-based RPC intended for web services. HBWSP defines

the RPC mechanism, encoding standards and error handling that allow client to execute

remote services located on the server. The protocol is mainly based on the HTTP on top

11

the Application Layer of the OSI model, which is the closest layer to the end user (Caucho

Technology 2007b). The HBWSP messaging is shown in Graph 4.

GRAPH 4. HBWSP messaging

The protocol makes use of a two ways exchange between a Client and a Server. On each

exchange, the Client sends a request resource identifying the method to be performed and

optional parameters supporting the method. The Server replies the request with a response

containing the status of the execution with possible additional information regarding the

result (Caucho Technology 2007b).

By using HTTP, the Hessian service is available through the common port 80 that is not

blocked by conventional firewall operations. This has not only made Hessian, the only

binary protocol that is suitable for web service, but also made the use of Hessian as simple

as the XML-based approached. Originally, Hessian supports REST, Messaging and RPC

HBWSP HBWSP

Web-service
application

Client
application

Request (method
invocation)

Response

Application layer

Presentation

Session

Transport

Network

Data link

Physical

Presentation

Session

Transport

Network

Data link

Physical

Application layer

Network media

12

communication. However, depending on the nature of the application, HBWSP can be

implemented on TCP to support Streaming communication patterns (Caucho Technology

2007b). In that case, developers are responsible for the control of connection sessions.

2.3.2 Operations

HBWSP is based on a Client-Server model with the traditional asymmetric relationship:

the Client can send request to the Server, and Server sends result back, but not vice-versa.

In general, the operation of the model can be summarized as follows:

Network
Server

RPC Binding Set up binding

RPC Call
POST

Service allocation

Method execution

ReturnProcess

result

Result

Client

GRAPH 5. HBWSP Client-Server model with RPC

In the beginning, clients must find the servers that offer the service that they are interested

in by a process called binding. In that process, clients must be provided the name of the

server or the server address or at least an identification to find the appropriate server. Then

clients make call to the remote methods via POST requests with data containing method

name and supporting arguments (Caucho Technology 2007b).

In a general context, participants are in different address spaces and are inter-connected via

a logical network to allow data transferring. Hessian makes the calling of remote methods

as simple and executing local procedures (Caucho Technology 2007b).

13

GRAPH 6. Local call (above) and Remote call (below)

In this scenario in Graph 6, both the caller and callee see the remote method via an

interface similarly to the local method. The Hessian layer performs the operation known as

serialization and (sometimes referred as marshalling (Van de Velde 2007)) to convert

method name and parameters into Hessian binary format that suitable for transferring via

the communication system. Correspondingly, the other end performs the de-serialization

procedure to convert Hessian binary encoded data into the request message and pass to the

callee, i.e. un-marshalling (Van de Velde 2007).

2.3.3 HBWSP performance

Based on binary encoding, Hessian obviously outperforms the XML-based approach.

Gredler made a performance test between Hessian protocol, Java’s RMI, Oracle’s ORMI,

Spring’s HttpInvoker, and three derivations of Apache XML-RPC on the response time of

list of elements of different sizes (Gredler 2008). The tests showed that binary protocols

were much faster than XML-based protocols, while Hessian’s performance and Oracle’s

one were taking the lead. Moreover, on a research on Inter-process communication

technology of Distributed System, Guo showed the advantages of HBWSP over XML for

Net Resources sharing by a Java implementation of a Distributed Resource Sharing system

(Wei 2006).

14

GRAPH 7. Response time for large return lists (Gredler, 2008)

2.3.4 Related implementation

Since its release as an open source project, a variety of Hessian’s implementation have

been developed. Examples of these are available on the Hessian website (Caucho

Technology 2007c). Especially the hessiancpp – C++ implementation of Aldratech (Inc,

Caucho Technology 2005) on Sourceforge has been converted to a Qt compatible version

on Google Code by Caiiiycuk. However, the implementation is neither fully integrated

with the Qt framework (QHessian, 2010), nor follows the Qt’s design pattern. Caiiiycuk’s

implementation made use of the old C++ hessiancpp serialization mechanism while Qt

added support for the new Qt Network module. However, Qt provides an intuitive way to

perform the serialization task that does not require custom serialization process to be

developed (Nokia Qt).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

500 1000 2500 5000

R
e

sp
o

n
se

 t
im

e
(m

s)

RMI

RORMI

ORMI/HTTP

HTTP/Invoker

Hessian

Hessian 2

Burlap

XML-RPC

15

3 AIM OF THE WORK

HBWSP differs from other protocols for its light-weight, cross-platform interoperability

and un-matched performance. In comparison with CORBA and DCOM, Hessian is much

more web-oriented and lightweight (Walton 2005). Compared to XML-based, Hessian

Protocol is much more compact, low bandwidth consumption as well as processing power.

In an effort to extend its support, the protocol is implemented in Qt cross-platform

framework with the main goal to enable Hessian, which is a fast and efficient way to

cooperate with Web service on Qt platform in order to:

 Reduce the work needed to develop Web service integrated application in Qt.

 Make Hessian a more multiplatform standard.

 Provide the serialization and de-serialization of primitive data types and an open

framework that can be easily extended for further development (Caucho

Technology 2007a).

In comparison with the previous implementation of Caiiiycuk, better support is provided

to Qt. By applying the Object-Oriented approach, a network manager class is implemented

to represent the service and a call class to manage the remote method accessing.

Developers will find using remote methods is as easy as accessing local one. On the other

hand, asynchronous and synchronous accessing methods are also supported to fit the

controversy uses. A simple way is provided to extend the work and develop their custom

serialization for complex object types (Nokia Qt).

Although Hessian service provider was written in Java and supports Java-based platforms

such as RIFE, Apache Crayen and Danimica, the Spring framework is selected to develop

server side test script because Spring framework is emerging as the most popular and

powerful one. It contains many features including: the core package providing IoC and DI

features. The context package adds support for the internationalization, and the DAO

package provides a JDBC-abstraction layer. The ORM package supplies integration for

popular ORM APIs, the AOP package, the web package with basic web-oriented

integration and the MVC package (Springsource).

More important, Spring supports the development of remote-enable services with RMI,

Spring’s HTTP invoker, Hessian and Burlap, JAX-RPC and JMS. It is written that when

16

Spring is used for the context of RMI over HTTP, Hessian is the best option unless you are

dealing with complex object models (Harrop and Machacek 2005).

By implementing the protocol in Qt, a cross-platform and UI framework, developers are

able to code Web-service-enabled application and deploy across desktop, mobile and

embedded OS without rewriting source code. Qt supports a variable range of platforms

such as Embedded Linux, Mac OS X, Windows, Linux/X11, Windows CE/Mobile,

Symbian and MeeGo (Nokia Qt).

17

4 TECHNICAL DOCUMENTATION OF THE IMPLEMENTATION

4.1 System requirement capture

4.1.1 System user need

Goal

The project aims at an implementation of Hessian Binary Web Service Protocol that would

ease the development of Web-service integrated applications in Qt. The implementation

gives basic supports for primitive data types and provides the foundation for complex

object types. The implementation also must comply with the new Qt network module.

Environment

The implementation is not intended to be deployed into business application as it lacks of

security, encryption mechanism and the serialization of complex object types. The

implementation is intended for academic and testing purposes, and is opened for further

extensions to support industrial standard application.

The implementation will be able to complied and executed on most Qt-supported operating

systems including Windows, Linux, Mac OS, and mobile OS such as Symbian or Maemo.

The client system must also be equipped with a suitable network connection, preferably

LAN, not WLAN.

18

4.1.2 Requirement specification

Performance needs

The implementation aims at equal or slightly surpasses Java’s implementation in the

performance test.

User stories: making synchronous request

Developers want to make a synchronous request. An instance of the system is created with

the operation mode SYNCHRONOUS, the URL specifying the service location, the

service method and supporting arguments. When a request is sent to the system, it will wait

until the result is returned.

User stories: making asynchronous request

Developers want to make an asynchronous request. An instance of the system is created

with the operation mode ASYNCHRONOUS, the URL specifying the service location, the

service method and supporting arguments. When a request is sent to the system, it

continues the routine. When the result is returned, a block of code is executed.

System use cases

19

Qt Hessian system

Client

Send request

Send request

asynchronously

Receive reply

Send request

synchronously

«inherits»

Web service provider

Receive error

«extends»

«inherits»

GRAPH 8. Use Case Diagram

The use cases diagram in Graph 8 describes the system use cases from the perspective of

Client application that is using the system to implement the Web service integration. The

following tables describe the system's operation. Table 1 shows synchronous request.

Table 2 demonstrate asynchronous request. Table 3 and Table 4 demonstrate the process of

receiving reply and receiving error correspondingly.

TABLE 1. Sending synchronous request

Use Case Name Send request synchronously

Code 1

Version 1.0

Summary Describe the sending request procedure

Frequency On every remote method access

Actors Client application and Web Service provider

Pre-condition The system is in synchronous mode. The call is in IDLE state

Description Firstly, user creates the necessary objects and constructs the call.

Then, system will send the request to the Service provider

20

[ServerException]. Next, system receives the reply from Service

provider [InvalidFormatException]. Finally, client application

receives the result [See Use case 3].

Exception Path ServerException: server has thrown exception. System saves the

message and change status of the call to ERROR.

InvalidFormatException: Received reply data is in bad format.

System set status of the call to error.

Post-condition The call is in FINISHED state with possible result stored.

TABLE 2. Sending asynchronous request

Use Case Name Send request asynchronously

Code 2

Version 1.0

Summary Describe the sending procedure in asynchronous mode

Frequency On every remote method access

Actors Client application and Web Service provider

Pre-condition The system is in synchronous mode. The call is in IDLE state

Description Initially, user needs to create necessary objects and construct the

call with appropriate call back. Then, the system will send the

request to the Service provider [Server Exception] and receive the

reply from Service provider [Invalid FormatException]. Next,

client application receives the result via the call-back. [See Use

case 3].

Exception Path ServerException: server has thrown exception. System saves the

message and change status of the call to ERROR.

InvalidFormatException: Received reply data is in bad format.

System set status of the call to error.

Post-condition The call is in FINISHED state with possible result stored.

21

TABLE 3. Receiving reply

Use Case Name Receive reply

Code 3

Version 1.0

Summary Describe the procedure to extract the result

Frequency According to needs

Actors Client application and Web Service provider

Pre-condition The call is in FINISHED state with result.

Description Client application access the call for the result, then the result is

returned in the wrapper.

Exception Path

Post-condition

TABLE 4. Receiving error

Use Case Name Receive error

Code 4

Version 1.0

Summary Describe the procedure to get the error

Frequency According to needs

Actors Client application and Web Service provider

Pre-condition The call is in ERROR state with error message.

Description Client application access the call for the error message, and the

result will be returned in the wrapper.

Exception Path

Post-condition

22

Non-functional requirements

Firstly, for usability, the implementation should make the use of remote service as simple

as calling local methods. Secondly, to have good performance, it must match or surpass

corresponding Java implementation. Lastly, for expendability, it must be open for further

extension.

Environmental requirements

For hardware, the system must be able to run QtCreator and Spring Source Tool Suite. In

particular, system speed must exceed 1Ghz and have at least 1GB RAM. Recommended

system should be 2GHz CPU and more than 2GB RAM. Next, the implementation requires

QtSDK version 4.7, Java SDK 1.6 and Apache Tomcat 6 in order to execute the test script

with Spring.

4.2 Requirement analysis and system design

4.2.1 Design overview

23

Client Application

Parser Serializer

Network manager

Qt Network

QtHessian

Hessian Service Provider

Server Application

GRAPH 9. System structure and communications

The implementation shown in Graph 9 is centralized around three components, the parser

unit, the serialization unit and the network unit.

The parser unit and the serialization unit follow the Hessian 2.0 Serialization and Web

Services Protocol. The serialization unit writes data to a buffer (QBuffer object) using

QDataStream mechanism, which then is included into the post request. The parser unit, on

the other hand, parses the QNetworkReply sequentially as a QIODevice.

The network unit uses the structural pattern of Qt Network API, sending network request

with QNetworkRequest and receiving response as an instance of QNetworkReply class.

From the user point of view, they will only see the system as a service provider and the

method to be called. The current implementation does not support streaming mechanism

and the data is parsed and returned only when signal finshed() is emitted.

The process of communication starts when the Qt application contacts with our API, the

API serializes the request with HOutputStream and sends it to the Hessian API on the

Server over HTTP through binary communication. Hessian Service Provider parses the

request and executes appropriate procedure before sending the result back. When the

response reaches the client, it will be parsed with HInputStream. The binary

communication has been proved to be better than XML because the serialization and de-

24

serialization process consume less time while processing power as well as bandwidth. On

the other hand, it supports common communication protocols such as Messaging, RPC,

and Streaming, allowing a flexible and extended use. Moreover, this binary translation can

be compressed and encrypted, thus saving resource used for transmission and enhancing

the application security.

4.2.2 Class selection process

The description for Send request synchronously use case in Table 1 is: the user creates the

necessary objects and constructs the call. Then, the system will send the request to the

Service provider. Next, it receives the reply from Service Provider. Finally, the client

application receives the result.

Second description is for Send request asynchronously use case in Table 2: Initially, the

user needs to create necessary objects and construct the call with appropriate call back.

Then, the system will send the request to the Service provider and receive the reply from

Service provider. Next, the client application receives the result via the call-back.

Next, the Receive reply use case in Table 3 is described as follows: At first, the client

application accesses the call for the result, then the result is returned in the wrapper.

Finally, we describe the Receive error in Table 4: the Client application accesses the call

for the error message, and the result will be returned in the wrapper.

Observed nouns:

user objects call system request Service provider

reply result callback wrapper error Client application

25

Preliminary analysis yields the following list of classes and attributes. For classes, there are

Call and Wrapper class. The attributes are made up of request, reply, result, error message

and call back.

4.2.3 Design class structure

System structure is described in the following class diagram in Graph 10:

+AbstractDeserializer(in stream, in tag, in parent)
+deserialize(in stream, in value)

-code

HAbstractDeserializer

+DeserializerManager()
+getInstance() : HDeserializerManager

-instance : HDeserializerManager
-deserializerList

HDeserializerManager

«call»
+operator<<(in value)

-stream

HInputStream

+operator>>(in value)

-stream

HOutStream

+operator<<(in parameter)()
+getResult()()
+refresh()
+receiveReply(in reply)

-request
-reply
-result
-status

HCall

+post(in call)

-networkManager: QNetworkAccessManager
-operationMode

HNetworkManager

+getCode() : string
+deserialize(in stream, in tag)

«interface»

HDeserializer

0..*
1

IDeserializer

«call»

«call» «call»

+AbstractSerializer(in stream, in tag, in parent)
+serialize(in stream, in tag)

-code

HAbstractSerializer

+SerializerManager()
+getInstance() : HSerializerManager

-instance : HSerializerManager
-serializerList

HSerializerManager

+getCode() : string
+serialize(in stream, in tag)

«interface»

HSerializer

ISerializer

«call»

«call»

GRAPH 10. Class diagram

Class description

26

The classes are made up of HAbstractDeserializer, HAbstractSerializer, HCall,

HDeserializer, HDeserializerManager, HInputStream, HOutputStream,

HNetworkManager, HSerializer and HSerializerManager. We will describe them one by

one.

First, the HAbstractDeserializer is a custom abstract deserializer class required to derive

from this class. Its constructor will register the parser object with DeserializerManager.

Second, the HAbstractSerializer is a custom serializer class required to derive from this

class. Its constructor will register the serializer object with SerializerManager.

Third, HCall class acts as an interface to the system and interacts directly with the user.

Through this class, the user will construct parameters of a call, make the requests and

receive the replies as well as errors. Some of the synonyms can be Call, Remote method. In

addition, Call object can be reused by modifying the parameters and call method refresh().

Fourth, the HDeserializer class manages custom deserializer objects created by users. It

can be called deserializer interface. Moreover, it implements Singleton for global access

and initialization on request.

Next, the HDeserializerManager class manages custom deserializer objects created by

users. It is also known as custom parser manager. It implements Singleton for global access

and initialization on request.

Next, when the data in Hessian binary form is sent back from the server, it was de-

serialized into Qt binary form by HInput class, which is also known as Parser or

Deserializer. It also calls the DeserializerManager when the users implement their own

parsers.

Next, HNetworkManager class, or network manager or service endpoint is described. It

represents the service endpoint, each web service is identified by an URL. It is dependent

on QNetworkAccessManger class from Qt network package for networking operations.

The eighth class is HOutputStream or Serializer. When the user invokes a call, its data is

converted from Qt binary form to Hessian binary format before sending. It also calls the

SerializerManager when users implement their own serializer.

27

The next class is the HSerializer or Serializer interface. This class manages custom

serializer objects created by users. It also implements Singleton for global access and

initialization on request.

The last class is HSerializerManager or Serializer. This class manages custom serializer

objects created by users. It also implements Singleton for global access and initialization

on request.

Class attributes

The following table describes the attributes of above classes. It also shows the forms which

we are using in the implementation.

TABLE 5. Class attributes and description

Class/Attribute Description Form

HAbstractDeserializer

 code The signature of the deserializer, identifies

which deserializer to be used by the

HDeserializerManager

QString

HAbstractSerializer

 code The signature of the serializer, identifies which

serializer to be used by the

HSerializerManager.

QString

HCall

 request The request object containing information of

the call to send to the Service Provider by the

QNetworkAccessManager.

QNetworkRequest

 reply The reply object containing the information

returned from the call.

QNetworkReply

 result The result returned from the call wrapped with

QVariant

QVariant*

 status Status of the call enum

HDeserializerManager

 instance The static instance of HDeserializerManager HDeserializerManag

er

 deserializerList The map of deserializer objects QMap

HInputStream

 stream The data stream contains the returning binary QDataStream

28

HNetworkManager

 networkManager The network manager which based on Qt

Network package

QNetworkAccessMa

-nager

 operationMode The operation mode of the network manager,

which is either synchronous or asynchronous

enum

HOutputStream

 stream The datastream which is going to be sent QDataStream

HSerializerManager

 instance The static instance of the HSerializerManager HSerializerManager

 serializerList The map of serializer objects QMap

4.2.4 Behavioral design

Sequence diagrams

GRAPH 11. Operation mode SYNCHRONOUS for calling

29

This sequence diagram in Graph 11 shows how the system calls in operation mode

synchronous. As we can see, the Client Application made a request to the Server. The

request is processed by HCall then sent over HNetworkManager to the Server Application.

In this mode, the HNetoworkManger will wait until result before sending to the Server

Application. After processing, the Server will send out the result back to the Client.

 GRAPH 12. Operation mode ASYNCHRONOUS for calling

This sequence diagram in Graph 12 shows how the system calls in operation mode

asynchronous. As we can see, the Client Application made a request to the Server. The

request is processed by HCall then sent over HNetworkManager to the Server Application.

After processing, the Server will send out the result back to the Client.

30

Statecharts

GRAPH 13. Statechart for the class HCall

The Statechart in Graph 13 shows how HCall works in our system. First, it's in Iddle state,

when a request is made, it begins to process in Running state. If there is any error, it comes

to Error state. When server return result, it will be in Finished state.

4.3 Implementation

4.3.1 Hessian message construction

In this part, the message frame is shown. Following it, a table is constructed to describe

more about the frame.

31

General message frame structure:

0

7

1
0

 2
0

 2
7

 3
0

ProtocolType Header (variable)

…

MessageContent(variable)

…

TerminationCode

GRAPH 9. General message frame

The frame in Graph 14 contains the ProtocolType, the Header, the MessageContent and the

TerminationCode. The ProtocolType has the size of 1 byte containing a character that

identifies the protocol type. The size of Header is variable and contains support

information of the ProtocolType regarding MessageContent which contains stream of bytes

that represent content. The size of MessageContent is also variable. The last one,

TerminationCode, has 1 byte in size signatures the end of message. It has the value of 'z' or

'Z'. Table 6 shows a summary of those.

TABLE 6. Message frame description

Name Size Description Value

ProtocolType 1 byte This field contains a character that identifies the

protocol type

Header variable This field follows the ProtocolType contains

support information of the ProtocolType

regarding the MessageContent

MessageContent variable This field contains stream of bytes that represent

the content. The structure of the bytes must be

defined in the Header

TerminationCode 1 byte This 1 byte field signatures the end of the

message.

‘z’ or

‘Z’

Hessian RPC 2.0 Call(compliant to Hessian 1.0)

32

This type of message is sent by default from any Hessian client. It is intended to make the

Hessian 2.0 client to be compatible with the Hessian 1.0 Server.

0

7

1

0

 2

0

 3

0

ProtocolType CallVersion MethodCode

MethodName(variable)

…

CallParameter(variable)

…

TerminationCode

GRAPH 10. Hessian message call

The frame in Graph 15 contains the ProtocolType (1 byte size), the CallVersion (2 bytes

size), the MethodCode (1 byte size), the MethodName (variable size), the CallParameter

(variable size) and the TerminationCode (1 byte size). The ProtocolType which has the

value 'c' containing the character identifying the Call type while the CallVersion (value

x0200) identifies the call version. The MethodCode (value 'm') indicates the next field is

MethodName representing the remote method name as serialized string following the

Hessian format. The CallParameter contains the parameters that support the call. The

TerminationCode signatures the end of the message. Table 7 shows a summary of those.

TABLE 7. Message call description

Name Size Description Value

ProtocolType 1 byte This field contains the character identifying the

Call type.

‘c’

CallVersion 2 bytes This field identifies the version of the call. x0200

MethodCode 1 byte It indicates that the following field is the method

name.

‘m’

MethodName variable This field represents the remote method name as

a serialized string following the format defined

by Hessian 1.0 Protocol.

CallParameter variable This field contains the parameters that support

the call. The variable must be serialized using in

the exact order that is defined in the remote

interface: from left most variable must be

serialized first. This filed may be empty if the

remote method does not require any arguments.

The variable must be serialized using the

Hessian 1.0 Protocol in order to be compatible

33

with Hessian 1.0 Service Provider.

TerminationCode 1 byte This 1 byte field signatures the end of the

message.

‘z’

Hessian RPC 2.0 Call

0

7

1

0

 2

0

 3

0

ProtocolType CallVersion OperationType

MethodName(variable)

…

ArgumentAcount(count)

…

CallParameter(variable)

…

GRAPH 11. Hessian message

The frame in Graph 16 contains the ProtocolType (1 byte size), the CallVersion (2 bytes

size), the OperationType (1 byte size), the MethodName (variable size), the

ArgumentCount (variable size), the CallParameter (variable size) and the TerminationCode

(1 byte size). The ProtocolType contains the character identifying the call type while the

CallVersion identifies the call version. The OperationType indicates this message is a

RPC. The MethodName represents the method name as serialized string while the

ArgumentCount represents an 32-bit integer encoded with Hessian 2.0 protocol. The

CallParameter contains the parameters supporting the call, and the TerminationCode

signatures the end of the message. Table 8 shows a summary of those.

TABLE 8. Message description

Name Size Description Value

ProtocolType 1 byte This field contains the character identifying the

Call type.

‘H’

CallVersion 2 byte This field identifies the version of the call. x0200

OperationType 1 byte . It indicates that this message is a RPC. ‘C’

34

MethodName variable This field represents the remote method name as

a serialized string following the format defined

byte Hessian 2.0 Protocol (see Appendix 2/4).

ArgumentCount variable This field represents an 32bit integer that was

encoded with Hessian 2.0 Protocol. It tells how

many arguments the message carries.

CallParameter variable This field contain the parameters that support

the call. The variable must be serialized using

Hessian 2.0 Protocol in the exact order that is

defined in the remote interface: from left most

variable must be serialized first. This filed may

be empty if the remote method does not require

any arguments.

TerminationCode 1 byte This 1 byte field signatures the end of the

message.

‘z’

Hessian RPC 2.0 Reply

0

7

1

0

 2

0

 3

0

ProtocolType ReplyVersion ResultCode

Result(variable)

…

GRAPH 12. Hessian message reply

The frame in Graph 17 contains the ProtocolType (1 byte size), the ReplyVersion (2 bytes

size), the ResultCode (1 byte size) and the Result (variable size). The ProtocolType

contains the character identifying the Call type while the ReplyVersion identifies the call

version. The ResultCode indicates this message is RPC while the Result contains the result

of the call. Table 9 shows a summary of those.

TABLE 9. Message reply description

Name Size Description Value

ProtocolType 1 byte This field contains the character identifying the

Call type.

‘H’

ReplyVersion 2 byte This field identifies the version of the call. x0200

35

ResultCode 1 byte It indicates that this message is a RPC. ‘R’

Result variable This field contains the result of the call. The

return value is serialized using Hessian 2.0

Protocol and need to be de-serialized before use.

Hessian RPC 2.0 Fault Reply

0

7

1

0

 2

0

 3

0

FailureByteCode PrototypeType MessageMap(variable)

...

TerminationCode

GRAPH 13. Hessian message fault reply

The frame in Graph 18 contains the FailureByteCode (1 byte size), the ProtocolType (1

byte size), the MessageMap (variable size) and the TerminationCode (1 byte size). The

FailureByteCode contains the character indicating the method call was not successful. The

ProtocolType identifies the Hessian message while the MessageMap shows the fault in a

map of supportive information such as code, message and detail. The TerminationCode

contains the result of the call. Table 10 shows a summary of those.

TABLE 10. Message fault reply description

Name Size Description Value

FailureByteCode 1 byte This field contains the character indicating that

the method call was not successful because of

exceptions on the server

‘F’

ProtocolType 1 byte This field identified the Hessian message ‘H’

MessageMap variable This field represents the fault in a map of

supportive information such as code, message

and detail. The map is encoded with Hessian 2.0

Protocol.

‘R’

TerminationCode 1 byte This field contains the result of the call. The

return value is serialized using Hessian 2.0

Protocol and need to be de-serialized before use.

36

4.3.2 Network manager

HNetworkManager – the service endpoint

The network manager was built in order to make use of the well-designed QtNetwork

package. The network manager represents for the service endpoint and is identified by an

URL given in either QString or characters array. The network manager, therefore, requires

the service address in its constructors.

The network manager allows making requests in both synchronous mode and

asynchronous mode. In synchronous mode, each request is blocked until the result is fully

fetched. In asynchronous mode, signal callFinished(HCall*) is emitted on each completion

and any slots connected that signal will be triggered. The user is responsible for connecting

the required slot for processing the received result. The user is freely to access to the

QNetworkReply slots to gather information about the request such as download progress,

error handling. (Refer Appendix 6 for more information)

HCall – the remote method

If the network manager is the representative of the service endpoint, an object of HCall

class represents the remote method that can be accessed from that service. The method

must be specified in the Remote Interface in order to be accessed remotely (Refer to

Appendix 1 for more information). For example, if the Remote Interface define two remote

methods hello and feedback(int) of the RemoteService:

37

+hello() : int

+feedback(in a : int) : int

«interface»

RemoteService

GRAPH 14. Remote Service

A method with variable number of arguments is discouraged to be used remotely. If a call

is finished when the network manager is working in asynchronous mode, it will emit

callFinished() signal.

4.3.3 Serialization and deserialization

HOutputStream is responsible for serializing data from Qt types to Hessian types following

the Hessian 2.0 Protocol (Appendix 2). HInputStream, on the other hand, parses the result

from the returned bytes into Qt types. The result is enclosed in a QVariant object and later

processed by the user.

The serialization and de-serialization processes are fairly similar. The two classes serializer

and deserializer are shown in GRAPH 20. In the beginning, for the serialization procedure,

a memory slot is allocated in adequate to the number of blocks required. Then the slot is

filled with the serialized data following the Hessian Protocol and then written to the stream

at once (Refer to Appendix 2). In order to the implement custom serialization unit, the

developer need to create a derived class of the HAbstractSerializer and call the parent

constructor to register the class with the built-in singleton serialization unit (see Graph 22).

For the de-serialization routine, the class reads the very first byte and then maps that byte

to a bytemap to get the proper parsing procedure (see Appendix 2/5-2/8 for bytemap list).

The parsed result, finally, is wrapped by a QVariant union object and returned. In order to

implement custom serialization units, the developer need to create a derived class of the

HAbstractDeserializer and call the parent constructor to register the class with the built-in

singleton deserialization unit (see Graph 21).

38

HAbstractSerializer HAbstractDeserializer

+deserialize()

CustomDeserializer

+serialize()

CustomSerializer

GRAPH 15. Custom serializer and deserializer class

GRAPH 21. Deserializer Sequence diagram

GRAPH 22. Serializer Sequence diagram

39

4.4 Project User Guide

4.4.1 System requirements

The implementation is built on Qt 4.7 and Spring framework 3.0.5 with reference to

Hessian java client 4.0.7. However, to build a test system, additional software is required

such as an IDE (Springsource Tool Suite - STS), Apache Tomcat.

TABLE 11. Software requirements

Software Version

Qt 4.7+

Spring 3.0+

Hessian client 4.0+

STS 2.6+

Apache Tomcat 6.0+

4.4.2 Project installation

Qt is available for download from http://qt.nokia.com/downloads. Qt is released for free

under LGPL license for non-commercial purposes.

The Spring framework is available to download from

http://www.springsource.org/download. However, the user is recommended to apply

maven to manage Spring’s dependencies.

http://qt.nokia.com/downloads
http://www.springsource.org/download

40

Hessian is also available to download from http://hessian.caucho.com/. User also can use

maven to download Hessian jar file.

TABLE 12. Some installation specifications

Compatibility JDK 1.6

IDE (STS) SpringSource Tool Suite (

http://www.springsource.com/landing/best-development-tool-

enterprise-java)

Subversion control Subversion Tigris (http://subversion.tigris.org/),

SmartSVN (http://www.syntevo.com/smartsvn/index.html)

Web server SpringSource tc server

Apache Tomcat

4.4.3 Instruction for the user to get the latest release

The Qt project is available for svn checkout from http://svn3.xp-dev.com/svn/qthessian/.

The Spring test project is available for svn checkout from http://svn3.xp-

dev.com/svn/SpringHessianTest/

More details about project can always be found from

http://hoangtuanonline.com/qthessian/

4.4.4 Instruction for the user to create a simple Spring remote service with STS

http://hessian.caucho.com/
http://www.springsource.com/landing/best-development-tool-enterprise-java
http://www.springsource.com/landing/best-development-tool-enterprise-java
http://subversion.tigris.org/
http://www.syntevo.com/smartsvn/index.html
http://svn3.xp-dev.com/svn/qthessian/
http://svn3.xp-dev.com/svn/SpringHessianTest/
http://svn3.xp-dev.com/svn/SpringHessianTest/
http://hoangtuanonline.com/qthessian/

41

From STS, the user needs to create a new Spring MVC template project by New → Spring

Template Project → Spring MVC Project. If this is the first time creating the project, it will

take some minutes for STS to download the project template from the Internet. Then the

user will be asked to enter project name and the default package.

When the project template is downloaded, user should navigate to the created projects and

allocate the pom.xml file. This file contains the dependencies managed by maven. The

org.springframework-version should be 3.0.5.BUILD-RELEASE, because this will be used

as default version for all Spring dependencies. By adding the Hessian’s dependency to the

dependencies list, maven will automatically manage and download the Hessian library (See

Appendix 5).

The next step involves creating a remote service interface and implements that service:

+feedback(in value : int) : int

«interface»

RemoteService

RemoteServiceImpl

«interface»
Remote

GRAPH 23. Remote Service

The final step comprises of registering the service implementation and remote interface

with the Spring framework. By registering the beans and the service interface with

HessianServiceExport, the service is now accessible by any Hessian clients with the

mapping path /Test. In localhost, for example, it is “http://localhost:8080/TestService/Test"

4.4.5 Service access from Qt

In order to use our implementation, it is necessary to add network nature to the Qt project

configuration file and include the QtHessian header ("QtHessian.h")

42

After that, a network manager must be created to represent the service exported in the

Chapter 5.4 with a url. The url shows where the service is located, in this example, the url

must end with with “/Test”. If the user runs the service from Chapter 5.4 on local host, the

url will be: http://localhost:8080/<project name>/Test

4.5 Sample test cases of the project

Test cases were created using remote method with no parameter which is described in

Table 13 and Table 20). The test with integer is shown in Table 14 and Table 21, while the

test with double is demonstrated in Table 15 and Table 22. Next, Table 16 and Table 23

show the test with long value. The string test will be provided in Table 17 and Table 24.

The DateTime format test is shown in Table 18 and Table 25, and the test of binary values

is demonstrated in Table 19 and Table 26. The cases were tested in both synchronous and

asynchronous mode.

4.5.1 Test1: remote method with no parameter

TABLE 13. Test with no parameter

Purpose Test that developer can make simple RPC call without any input parameters

Prereq

Test data Method name hello

Steps 1. Developer initialize necessary objects

2. Developer make call

3. Developer verify the return pattern

Note Return pattern is defined inside the interface and implementation. It is not a

null

http://localhost:8080/%3cproject

43

4.5.2 Test2: remote method with Integer

TABLE 14. Test with integer value

Purpose Test that developer can make simple RPC call with integer

Prereq

Test data Method name feedback

value boundary values as specified in the protocol

random values generated from random generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note

4.5.3 Test3: remote method with Double

TABLE 15. Test with double value

Purpose Test that developer can make simple RPC call with double

Prereq

Test data Method name feedbackDouble

value boundary values as specified in the protocol

random values generated from random generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note Double can’t be compared using “==” operator

4.5.4 Test4: remote method with Long

TABLE 16. Test with long value

Purpose Test that developer can make simple RPC call with integer 64 bit

Prereq

Test data Method name feedbackLong

44

value boundary values as specified in the protocol

random values generated from random generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note

4.5.5 Test5: remote method with DateTime

TABLE 17. Test with DateTime value

Purpose Test that developer can make simple RPC call with DateTime type

Prereq

Test data Method name feedbackDateTime

value today

random days generated by random generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note DateTime is encoded as a long (integer64)

4.5.6 Test6: remote method with String

TABLE 18. Test with String value

Purpose Test that developer can make simple RPC call with String

Prereq

Test data Method name feedbackString

value random string with length as specified in the protocol

random string length generated by generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note String can’t be compared using == operator

UTF-8 String length is limited to 2^16.

45

4.5.7 Test7: remote method with Binary

TABLE 19. Test with binary value

Purpose Test that developer can make simple RPC call with binary data

Prereq

Test data Method name feedbackBinary

value random data with boundary length specified in the protocol

random generated length data with random data

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note

4.5.8 Test8: remote method with no parameter in asynchronous

TABLE 20. Test with no parameter

Purpose Test that developer can make simple RPC call without any input parameters in

asynchronous mode

Prereq

Test data Method name hello

Steps 1. Developer initialize necessary objects

2. Developer make call

3. Developer verify the return pattern

Note Return pattern is defined inside the interface and its implementation. It is not a

null

4.5.9 Test9: remote method with Integer in asynchronous mode

TABLE 21. Test with integer

46

Purpose Test that developer can make simple RPC call with integer in asynchronous

mode

Prereq

Test data Method name feedback

value boundary values as specified in the protocol

random values generated from random generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note

4.5.10 Test10: remote method with Double in asynchronous mode

TABLE 22. Test with double

Purpose Test that developer can make simple RPC call with double in asynchronous

mode

Prereq

Test data Method name feedbackDouble

value boundary values as specified in the protocol

random values generated from random generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note Double can’t be compared using “==” operator

4.5.11 Test11: remote method with Long in asynchronous mode

TABLE 23. Test with long

Purpose Test that developer can make simple RPC call with integer 64 bit in

asynchronous mode

Prereq

Test data Method name feedbackLong

value boundary values as specified in the protocol

random values generated from random generator

47

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note

4.5.12 Test12: remote method with DateTime in asynchronous mode

TABLE 24. Test with DateTime

Purpose Test that developer can make simple RPC call with DateTime type in

asynchronous mode

Prereq

Test data Method name feedbackDateTime

number today

random days generated by random generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note DateTime is encoded as a long (integer64)

4.5.13 Test13: remote method with String in asynchronous mode

TABLE 25. Test with String

Purpose Test that developer can make simple RPC call with String in asynchronous

mode

Prereq

Test data Method name feedbackString

value random string with length as specified in the protocol

random string length generated by generator

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

48

Note String can’t be compared using == operator

UTF-8 String length is limited to 2^16

4.5.14 Test14: remote method with Binary in asynchronous mode

TABLE 26. Test with binary

Purpose Test that developer can make simple RPC call with binary data in asynchronous

mode

Prereq

Test data Method name feedbackBinary

value random data with boundary length specified in the protocol

random generated length data with random data

Steps 1. Developer initialize necessary objects

2. Developer create the call and serialize the data

3. Developer make call

4. Developer verify the return pattern with the sent pattern

Note

4.6 Performance of test cases

In this part, the tables are made to compare the performance of system between Qt

platform and J2SE.

4.6.1 Test 15: Qt vs Java (J2SE) performance

The test of arithmetic performance is shown in Table 27. It also describes the test data as

well as the steps for execution.

49

TABLE 27. Arithmetic performance

Purpose Test arithmetic performance of C++(Qt) vs Java (J2SE)

Prereq Quad-core AMD 9850 2.50GHz 4GB RAM

Test data The core algorithm is showed as below:

 for (i = 0; i < 4000; i ++)

 for (j=0; j < 1000; j++)

 res = j*i;

Steps The algorithm is repeated 100 times, 500 times and 1000 times. The test is

executed 5 times and the result is the average of the 5 runs.

Note Time of execution must be recorded and averaged

4.6.2 Test 16: Qt vs Java (J2SE) integer serialization performance

The test of interger serialization performance is shown in Table 28. It also provides the test

data as well as the steps for execution.

TABLE 28. Integer serialization performance

Purpose Test integer serialization performance of C++(Qt) vs Java (J2SE)

Prereq Quad-core AMD 9850 2.50GHz 4GB RAM

Test data value random integers generated by random generator

Steps We create a test of sending and receiving 1000, 10.000 and 40,000 integer

numbers. The test, again, is executed 5 times for both Qt and Java, and then

the average will be taken to get the final result.

Note Time of execution must be recorded and averaged

5 SUMMARY OF RESULTS

50

The test results indicated that our test cases either met or exceeded the requirements

specified in each case. On the performance test, executing times of each run was recorded,

statically analyzed and compared with the corresponding Java execution. Details result can

be found as follows:

5.1 Unit test

The parser unit and the serialization unit were tested intensively with a set of boundary

values and random sample values collected by analyzing Hessian Java network frames and

from Hessian documentation. All possible values that would generate errors were tested to

ensure their reliability.

Then the parser and the serialization unit were tested with a memory stream and a text

stream with boundary values, random values and sequential random values. Data was first

serialized by the serialization unit and written to the stream, and then the parser unit read

the stream and reconstructed the data. The income and outcome data was checked if they

matched in the binary level.

Upon satisfactory completion of the above test, the two units were used in the integration

tests with the network unit. A test case consisted of boundary numbers, random generated

numbers and sequential numbers are serialized and send to the network unit, the network

unit connects and received the numbers from feedback service. The received packets were

parsed by the parser unit before they were compared with the input values.

5.2 Performance test

We built performance tests between Qt and Java program on a Quad-core AMD 9850

2.50GHz computer.

51

5.2.1 Test 15: Qt vs Java (J2SE) performance

Result

GRAPH 24. Test for iterating and multiplication

Comment

It is surprising that Java outperforms Qt in the iterating and multiplication test. In most of

the test, the Qt consumes twice of the time Java needed to complete the test. By doing

further analysis, the JVM is acknowledged to make use of two processor cores while the

Qt’s program runs on a single core.

5.2.2 Test 16: Qt vs Java (J2SE) integer serialization performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

100 500 1,000

m
ili

se
co

n
d

s

repetitions

Qt

Java

52

Result

GRAPH 25. Feedback integer test.

Comment

Our Qt implementation does not fare quite well in this test; even if it performs quite close

to the Java client on small numbers. However, compared to the result achieved from the

test 1, this result means that Qt implementation has similar performance with Java

implementation.

6 CONCLUSION

This thesis presented the design and partial implementation of Hessian 2.0 Protocol on Qt

platform. The implementation was designed to be used in cross-platform Qt applications

0

5000

10000

15000

20000

25000

30000

35000

40000

1,000 10,000 40,000

m
ili

se
co

n
d

s

Number of elements

Qt

Java

53

that require interactions with web services. By implementing the protocol in Qt, a cross-

platform UI framework, the developer will be able to implement Web-service-enabled

application and deploy across desktop, mobile and embedded OS without rewriting the

source code.

In the implementation, we introduced HCall as the local representation of remote methods.

HCall simplifies remote method access, making it as easy as accessing local one.

Furthermore, we implemented our custom HNetworkManager class that extends the Qt

Network module to support both synchronous and asynchronous mode. In the academic

context, we limit our implementation to eight primitive data types and do intensive testing

on these cases. This makes the implementation reliable yet flexible so that it can be

expanded in many ways. In addition, we also provided a simple way to implement custom

serialization for complex object types. Therefore, developers will find our work fitting a

variety of uses. The implementation was also carefully tested with Qt built-in unit testing,

integration and performance testing.

The current implementation is only applied to conventional messing and RPC

communication pattern because these two patterns are commonly used as web service

protocol. Certainly, the implementation could be expanded to support streaming

mechanism. Other improvements may include a custom encryption-decryption algorithm to

improve security, a compression mechanism to save the bandwidth and improve

application throughput, a caching algorithm combined with mapping of types, values,

classes to improve general efficiency.

54

REFERENCES

Arnold, K, Gosling, J. and Homes, D. 2000. The Java Programming Language (3
rd

Edition). Addison Wesley.

Baker, S. 1994. COBRA Implementation Issues. IEE Colloquium on Distributed Object

Management.

Campione, M. and Walrath, K. 1998. The Java Tutorial (2
nd

 Edition).

CauchoTechnology. 2007a. Hessian 2.0 Serialization Protocol. Available at:

http://hessian.caucho.com/doc/hessian-serialization.html Accessed 25 November, 2010.

CauchoTechnology. 2007b. Hessian 2.0 Web Services Protocol. Available at:

http://hessian.caucho.com/doc/hessian-ws.html Accessed 1 December, 2010

CauchoTechnology. 2007c. Hessian Binary Web Service Protocol. Available at:

http://hessian.caucho.com/#Tests Accessed 25 November, 2010.

CauchoTechnology. 2007d. Burlap. Available at: http://hessian.caucho.com/doc/burlap.xtp

Accessed 1 December, 2010.

Gredler, D. 2008. Java Remoting Benchmarks. Available at:

http://daniel.gredler.net/2008/01/07/java-remoting-protocol-benchmarks/. Accessed 10

December, 2010

Harrop, R. and Machacek, J. 2005. Pro Spring. Apress.

Heather, K. 2001. Web Service Conceptual Architecture. IBM.

Inc., Caucho Technology 2005. Caucho Technology and AldraTech announce C++

Hessian functionality. Caucho Press

Ingham, D., Rees, O. and Norman, A. 1999. CORBA transactions through firewalls.

International Symposium Distributed Objects and Applications.

http://hessian.caucho.com/doc/hessian-serialization.html
http://hessian.caucho.com/doc/hessian-ws.html
http://hessian.caucho.com/#Tests
http://hessian.caucho.com/doc/burlap.xtp
http://daniel.gredler.net/2008/01/07/java-remoting-protocol-benchmarks/

55

NokiaQt. QNetworkAccessManager Class Reference v4.7. Available at:

http://doc.trolltech.com/4.7/qnetworkaccessmanager.html Accessed at 1 December, 2010.

NokiaQt. QNetworkReply Class Reference v4.7. Available at:

http://doc.trolltech.com/4.7/qnetworkreply.html Accessed 1 December, 2010.

NokiaQt. QNetworkRequest Class Reference v4.7. Available at:

http://doc.trolltech.com/4.7/qnetworkrequest.html Accessed 1 December, 2010.

NokiaQt. QVariant Class Reference. Available at:

http://doc.qt.nokia.com/latest/qvariant.html Accessed 1 December, 2010.

Paul, S., Santiago, P., Kohuske, K., Marc, H. and Eduardo, P. 2003. Fast Web Service. Sun

Developer Network. Oracle.

Pitt, E. and McNiff, K. 2001. java.rmi: The Remote Method Invocation. Addison Wesley

Professional.

Sharp, R. 2008. Principle of protocol design. Lyngby: Springer.

Springsource. Remoting and webservices using Spring. Available at:

http://static.springsource.org/spring/docs/2.0.x/reference/remoting.html Accessed 1

December, 2010.

Van de Velde, T., Snyder, B., Dupuis, C., Li, S., Horton, A. and Balani, N. 2007.

Beginning Spring Framework 2.0. Indianapolis, Indiana: Wiley Publishing Inc.

Walton, C. 2005. Protocols for Web Service Invocation. School of Informatics, University

of Edinburg, UK.

Wei, G. 2006. Research and Development of Interprocess Communication Technology of

Distributed System. Beijing: Beijing University of Technology

http://doc.trolltech.com/4.7/qnetworkaccessmanager.html
http://doc.trolltech.com/4.7/qnetworkreply.html
http://doc.trolltech.com/4.7/qnetworkrequest.html
http://doc.qt.nokia.com/latest/qvariant.html
http://static.springsource.org/spring/docs/2.0.x/reference/remoting.html

APPENDIX 1/1

REMOTE METHOD INVOCATION (RMI)

Definition

Remote method invocation is the invocation of a method in a remote object via a remote

interface. The remote interface must extend java.rmi.Remote to define the methods that

will be available remotely.

Characteristics

Table below show a comparison between local method and remote method:

TABLE 29. Argument passing

Type Local method Remote method

Primitive types By value By value

Object Be reference By value(deep copy)

Exported remote object By reference By remote reference

In addition, the remote method also has the following semantics:

 It can only be invoked via a remote interface which declares it.

 It must throw remote exception.

APPENDIX 1/2

 Clients must catch and deal with remote exception.

 The semantics of java.lang.Object are specialized for remote objects.

RMI generally implements either “at least once” or “at most once” semantics. “At least

once” system makes sure that the remote procedure has executed at least once, possibly

more than once, while the “at most once” guarantees that the procedure has executed

exactly once. Therefore, a remote method which throws a remote exception may or may

not have executed it at all.

Since the remote method involves two or more computers, there is a possibility that one

may fail while others do not. This is considered as partial failure. Moreover, the computers

have their own memory space and cannot access the memory of others. This is the reason

why RMI arguments and results are passed by “deep copy” rather than by reference.

Communication over networks can have failure and data may never arrive. For this reason,

a “wait timeout” should be performed after dispatching RMI, rather than an indefinite wait.

Due to these characteristics, a RMI system must be carefully designed and built.

Remote interfaces

A remote interface must satisfy the following conditions:

 It must extend java.rmi.Remote (this interface extends no interface and exports no

method. It is an interface which distinguishes remote interfaces from non-remote

interfaces).

 Every method which it exports, either explicitly or by inheritance, must declare that

it throws RemoteException.

APPENDIX 1/3

 When a remote object can be marshaled as a parameter or result of a remote

method, it must be declared as its remote interface, not its actual implementation

class.

RMI proxies are the mechanism on client side, while the corresponding mechanism on the

server side is called the dispatcher. A dispatcher mediates between the RMI run-time and

the corresponding remote object: it receives the call packet and dispatches the call to the

remote object.

RMI clients

RMI clients acquire objects, invoke method on objects, use the results and catch the

exceptions thrown by the methods. The method invocation may fail completely or

partially. For instance, the remote server may have completely succeeded in committing a

database transaction, but then have experienced a failure when transmitting a result

parameter.

On the other hand, clients of remote objects must deal with latency. The latency is

dependent on: network bandwidth, network delay, server capacity, server load, method

execution and etc…

(Pitt and McNiff. 2001, 46-48.)

APPENDIX 2/1

HESSIAN GRAMMAR

starting production

top ::= value

8-bit binary data split into 64k chunks

binary ::= x41 b1 b0 <binary-data> binary # non-final chunk

 ::= 'B' b1 b0 <binary-data> # final chunk

 ::= [x20-x2f] <binary-data> # binary data of

 # length 0-15

 ::= [x34-x37] <binary-data> # binary data of

 # length 0-1023

boolean true/false

boolean ::= 'T'

 ::= 'F'

definition for an object (compact map)

class-def ::= 'C' string int string*

time in UTC encoded as 64-bit long milliseconds since epoch

date ::= x4a b7 b6 b5 b4 b3 b2 b1 b0

 ::= x4b b3 b2 b1 b0 # minutes since epoch

64-bit IEEE double

double ::= 'D' b7 b6 b5 b4 b3 b2 b1 b0

 ::= x5b # 0.0

 ::= x5c # 1.0

 ::= x5d b0 # byte cast to double

 # (-128.0 to 127.0)

 ::= x5e b1 b0 # short cast to double

 ::= x5f b3 b2 b1 b0 # 32-bit float cast to double

32-bit signed integer

int ::= 'I' b3 b2 b1 b0

 ::= [x80-xbf] # -x10 to x3f

 ::= [xc0-xcf] b0 # -x800 to x7ff

 ::= [xd0-xd7] b1 b0 # -x40000 to x3ffff

list/vector

list ::= x55 type value* 'Z' # variable-length list

APPENDIX 2/2

 ::= 'V' type int value* # fixed-length list

 ::= x57 value* 'Z' # variable-length untyped list

 ::= x58 int value* # fixed-length untyped list

 ::= [x70-77] type value* # fixed-length typed list

 ::= [x78-7f] value* # fixed-length untyped list

64-bit signed long integer

long ::= 'L' b7 b6 b5 b4 b3 b2 b1 b0

 ::= [xd8-xef] # -x08 to x0f

 ::= [xf0-xff] b0 # -x800 to x7ff

 ::= [x38-x3f] b1 b0 # -x40000 to x3ffff

 ::= x59 b3 b2 b1 b0 # 32-bit integer cast to long

map/object

map ::= 'M' type (value value)* 'Z' # key, value map pairs

 ::= 'H' (value value)* 'Z' # untyped key, value

null value

null ::= 'N'

Object instance

object ::= 'O' int value*

 ::= [x60-x6f] value*

value reference (e.g. circular trees and graphs)

ref ::= x51 int # reference to nth map/list/object

UTF-8 encoded character string split into 64k chunks

string ::= x52 b1 b0 <utf8-data> string # non-final chunk

 ::= 'S' b1 b0 <utf8-data> # string of length

 # 0-65535

 ::= [x00-x1f] <utf8-data> # string of length

 # 0-31

 ::= [x30-x34] <utf8-data> # string of length

 # 0-1023

map/list types for OO languages

type ::= string # type name

 ::= int # type reference

main production

APPENDIX 2/3

value ::= null

 ::= binary

 ::= boolean

 ::= class-def value

 ::= date

 ::= double

 ::= int

 ::= list

 ::= long

 ::= map

 ::= object

 ::= ref

 ::= string

Hessian is organized by a bytecode protocol. Here is the bytecode encoding:

x00 - x1f # utf-8 string length 0-32

x20 - x2f # binary data length 0-16

x30 - x33 # utf-8 string length 0-1023

x34 - x37 # binary data length 0-1023

x38 - x3f # three-octet compact long (-x40000 to x3ffff)

x40 # reserved (expansion/escape)

x41 # 8-bit binary data non-final chunk ('A')

x42 # 8-bit binary data final chunk ('B')

x43 # object type definition ('C')

x44 # 64-bit IEEE encoded double ('D')

x45 # reserved

x46 # boolean false ('F')

x47 # reserved

x48 # untyped map ('H')

x49 # 32-bit signed integer ('I')

x4a # 64-bit UTC millisecond date

x4b # 32-bit UTC minute date

x4c # 64-bit signed long integer ('L')

x4d # map with type ('M')

x4e # null ('N')

x4f # object instance ('O')

x50 # reserved

x51 # reference to map/list/object - integer ('Q')

APPENDIX 2/4

x52 # utf-8 string non-final chunk ('R')

x53 # utf-8 string final chunk ('S')

x54 # boolean true ('T')

x55 # variable-length list/vector ('U')

x56 # fixed-length list/vector ('V')

x57 # variable-length untyped list/vector ('W')

x58 # fixed-length untyped list/vector ('X')

x59 # long encoded as 32-bit int ('Y')

x5a # list/map terminator ('Z')

x5b # double 0.0

x5c # double 1.0

x5d # double represented as byte (-128.0 to 127.0)

x5e # double represented as short (-32768.0 to 327676.0)

x5f # double represented as float

x60 - x6f # object with direct type

x70 - x77 # fixed list with direct length

x78 - x7f # fixed untyped list with direct length

x80 - xbf # one-octet compact int (-x10 to x3f, x90 is 0)

xc0 - xcf # two-octet compact int (-x800 to x7ff)

xd0 - xd7 # three-octet compact int (-x40000 to x3ffff)

xd8 - xef # one-octet compact long (-x8 to xf, xe0 is 0)

xf0 - xff # two-octet compact long (-x800 to x7ff, xf8 is 0)

Here is the Hessian message bytecode map:

x00 - x42 # reserved

x43 # rpc call ('C')

x44 # reserved

x45 # envelope ('E')

x46 # fault ('F')

x47 # reserved

x48 # hessian version ('H')

x49 - x4f # reserved

x4f # packet chunk ('O')

x50 # packet end ('P')

x51 # reserved

x52 # rpc result ('R')

APPENDIX 2/5

x53 - x59 # reserved

x5a # terminator ('Z')

x5b - x5f # reserved

x70 - x7f # final packet (0 - 4096)

x80 - xff # final packet for envelope (0 - 127)

The Hessian classes can be used for serialization and de-serialization. Hessian’s object

serialization has 8 primitive types:

Raw binary data

binary ::= b b1 b0 <binary-data> binary

 ::= B b1 b0 <binary-data>

 ::= [x20-x2f] <binary-data>

Binary data is encoded in chunks. The octet x42(‘B’) encodes the final chunk and x62(‘b’)

represents any non-final chunk. Each chunk has 16-bit length value (length = 256 * b1 +

b0). However, binary data with length less than 15 can be encoded by a single octet length

[x20-x2f] (length = code – 0x20)

Example:

x20 # zero-length binary data

x23 x01 x02 x03 # 3 octet data

B x10 x00 # 4k final chunk of data

b x04 x00 # 1k non-final chunk of data

Boolean

boolean ::= T

 ::= F

APPENDIX 2/6

The octet ‘F’ is for false and octet ‘T’ for true.

64-bit millisecond date

date ::= x4a b7 b6 b5 b4 b3 b2 b1 b0

 ::= x4b b4 b3 b2 b1 b0

 It is represented by a 64-bit long of millisecond since Jan 1, 1970 00:00h, UTC.

 The second form contains a 32-bit int of minutes since Jan 1, 1970 00:00h, UTC

Example:

x4a x00 x00 x00 xd0 x4b x92 x84 xb8 # 09:51:31 May 8, 1998 UTC

x4b x4b x92 x0b xa0 # 09:51:00 May 8, 1998 UTC

64-bit double

double ::= D b7 b6 b5 b4 b3 b2 b1 b0

 ::= x5b

 ::= x5c

 ::= x5d b0

 ::= x5e b1 b0

 ::= x5f b3 b2 b1 b0

 This is a 64-bit IEEE floating point number.

 The double 0.0 can be represented by the octet x5b, while double 1.0 is represented

by x5c.

 Double between -128.0 and 127.0 (no fraction component) can be represented in

two octets by casting the byte value to a double, i.e.

Value = (double) b0

APPENDIX 2/7

 Double between -32768.0 and 32767.0 (no fraction component) can be represented

in three octets by casting the short value to a double, i.e.

Value = (double) (256*b1 + b0)

 Doubles which are equivalent to their 32-bit float representation can be represented

as the 4-octet float and then cast to double.

Example:

D x40 x28 x80 x00 x00 x00 x00 x00 # 12.25

32-bit int

int ::= 'I' b3 b2 b1 b0

 ::= [x80-xbf]

 ::= [xc0-xcf] b0

 ::= [xd0-xd7] b1 b0

 An integer is represented by the octet x49 (‘I’) followed by the 4 octets of the

integer in big-endian order, i.e.

Value = (b3 << 24) + (b2 << 16) + (b1 << 8) + b0

 Integers between -16 and 47 can be encoded by a single octet in the range x80 to

xbf, i.e.

Value = code – 0x90

 Integers between -2048 and 2047 can be encoded in two octets with the leading

byte in the range xc0 to xcf, i.e.

Value = ((code – 0xc8) << 8) + b0

APPENDIX 2/8

 Integers between -262144 and 262143 can be encoded in three bytes with the

leading byte in the range xd0 to xd7, i.e.

Value = ((code – 0xd4) << 16) + (b1 << 8) + b0

Example:

I x00 x00 x00 x00 # 0

I x00 x00 x01 x2c # 300

64-bit long

long ::= L b7 b6 b5 b4 b3 b2 b1 b0

 ::= [xd8-xef]

 ::= [xf0-xff] b0

 ::= [x38-x3f] b1 b0

 ::= x59 b3 b2 b1 b0

 A long is represented by the octet x59 (‘L’) followed by the 8-bytes of the integer

in big-endian order.

 Long between -8 and 15 are represented by a single octet in the range xd8 to xef,

i.e.

Value = code – 0xe0

 Long between -2048 and 2047 are encoded in two octets with leading byte in the

range xf0 to xff, i.e.

Value = ((code – 0xf8) << 8) + b0

 Long between -262144 and 262143 are encoded in three octets with leading byte in

the range x38 to x3f, i.e.

Value = ((code – 0x3c) << 16) + (b1 << 8) + b0

APPENDIX 2/9

 Longs which fit into 32-bits are encoded in five octets with the leading byte x4c,

i.e.

Value = (b3 << 24) + (b2 << 16) + (b1 << 8) + b0

Example:

L x00 x00 x00 x00 x00 x00 x01 x2c # 300

Null

null ::= N

Null represents a null pointer. The octet ‘N’ represents a null value.

UTF8-encoded string

string ::= x52 b1 b0 <utf8-data> string

 ::= S b1 b0 <utf8-data>

 ::= [x00-x1f] <utf8-data>

 ::= [x30-x33] b0 <utf8-data>

 It is a 16-bit Unicode character string encoded in UTF-8. x53 (‘S’) represents a

final chunk while x52(‘R’) represents any non-final chunk. Each chunk has a 16-bit

unsigned integer length value. String chunk may not split surrogate pairs.

 String with length less than 32 maybe encoded with a single octet length [x00-x1f],

i.e.

Value = code

Example:

x00 # "", empty string

x05 hello # "hello"

x01 xc3 x83 # "\u00c3"

S x00 x05 hello # "hello" in long form

APPENDIX 2/10

Three recursive types:

List for lists and arrays

list ::= x55 type value* 'Z' # variable-length list

 ::= 'V' type int value* # fixed-length list

 ::= x57 value* 'Z' # variable-length untyped list

 ::= x58 int value* # fixed-length untyped list

 ::= [x70-77] type value* # fixed-length typed list

 ::= [x78-7f] value* # fixed-length untyped list

 An ordered list is like an array. Two list productions are fixed-length lists. Both

lists have a type; and the type string may have an arbitrary UTF-8 string understood

by a service.

 Any parser expecting a list must also accept a null or a shared ref. The valid value

of type depends on specific application.

 Hessian 2.0 allows a compact form of a list for successive list of the same type

where the length is known.

Example:

Fixed length type

 x72 # typed list length=2

 x04 [int # type for int[] (save as type #0)

 x90 # integer 0

 x91 # integer 1

Map for maps and dictionaries.

map ::= M type (value value)* Z

APPENDIX 2/11

It represents serialized maps and objects. The type element describes the type of map. The

type can be empty, i.e. a zero length. If the type is not specified, the parser is responsible

for choosing it. For objects, unrecognized keys will be ignored. Any time the parser

expects a map, it must be able to support a null or ref.

Example: Map representation of a Java Object

public class Car implements Serializable {

 String color = "aquamarine";

 String model = "Beetle";

 int mileage = 65536;

}

M

 x13 com.caucho.test.Car # type

 x05 color # color field

 x0a aquamarine

 x05 model # model field

 x06 Beetle

 x07 mileage # mileage field

 I x00 x01 x00 x00

 Z

Object for objects.

class-def ::= 'C' string int string*

object ::= 'O' int value*

 ::= [x60-x6f] value*

 Hessian 2.0 has a compact object form where the field names are serialized once.

Following objects only need to serialize their values.

 The object definition (type string, number of fields, field names) is stored in the

object definition map.

 The object instantiation creates new object based on previous definition.

Example: Object serialization

APPENDIX 2/12

class Car {

 String color;

 String model;

}

out.writeObject(new Car("red", "corvette"));

out.writeObject(new Car("green", "civic"));

C # object definition (#0)

 x0b example.Car # type is example.Car

 x92 # two fields

 x05 color # color field name

 x05 model # model field name

O # object def (long form)

 x90 # object definition #0

 x03 red # color field value

 x08 corvette # model field value

One special construct in Hessian is:

ref for shared and circular object references.

ref ::= x51 int

 It is an integer referring to a previous list, map or object instance. In each list, map

or object is read from input stream. Ref can refer to incompletely-read items.

 Each map or array is stored into an array as it is parsed. Ref selects one of the

stored object. The first object is numbered ‘0’

 Ref only refers to list, map and object elements.

Example of circular list:

list = new LinkedList();

list.data = 1;

list.tail = list;

C

 x0a LinkedList

 x92

APPENDIX 2/13

 x04 head

 x04 tail

 x90 # object stores ref #0

 x91 # data = 1

 x51 x90 # next field refers to itself, i.e. ref #0

In addition, Hessian also has three internal reference maps:

1. An object/list reference map

2. A class definition reference map

3. A type (classname) reference map

 The value reference map let Hessian support arbitrary map by adding list, object

and map as it encounter them in bytecode stream. Hessian also supports recursive

and circular data structure.

 Hessian efficiency is improved by avoiding repetition of common string data.

 For class reference, each object definition is automatically added to class-map.

 For type reference, the type strings for map and list values are stored in the type

map for reference.

APPENDIX 3

TABLE 30. Mapping of Qt-Java types

Qt Hessian Java

QVariant() null null

bool boolean boolean, Boolean

qint32 32-bit int Integer, int

qint64 64-bit int Long, long

double double Double, double

QString string String, string

QDateTime 64-bit int Date

QByteArray raw binary data byte[]

QList list ArrayList

QMap map HashMap

APPENDIX 4

TABLE 31. Mapping of Java-Qt types

Java Hessian Qt

null null QVariant()

Boolean/Boolean bool QVariant(bool)

byte/Byte 32-bit int QVariant(qint32)

short/Short 32-bit int QVariant(qint32)

int/Int 32-bit int QVariant(qint32)

long/Long 64-bit int QVariant(qint64)

float double QVarian(double)

double double QVarian(double)

char/char[]/string/String string QVariant(QString)

Date 64-bit long QVariant(QDateTime)

byte[] raw binary data QVariant(QByteArray)

List list QVariant(QList)

Vector list QVariant(QList)

Map map QVariant(QMap)

HashMap map QVariant(QMap)

Hashtable map QVariant(QMap)

APPENDIX 5/1

SPRING FRAMEWORK

Introduction

Spring began its life as an alternative to the heavyweight J2EE 1.4 containers. Its first

appearance was in the sample code that Rod Johnson wrote in his 2002 Wrox Press book

“Expert One on One Java J2EE Design and Development”. Rod’s description was a breath

of fresh air to the J2EE development community. The introduced lightweight container can

minimize the complexity of a server-side application construction. Rod and his group

continued to develop the framework, so the adoption of the framework continues to spread

worldwide. By 2007, version 2 of Spring Framework was released and version 3 was

released by the late 2009.

Spring enables a construction of completely component-based applications. The core of

Spring provides flexible runtime wiring of Java Beans via an XML-based descriptor.

Applications can be created by wiring together JavaBeans with Spring supplied container

service components.

In Spring, containers and beans form the backbone of your application. A bean is an object

instantiated, assembled and managed by Spring IoC (Inversion of Control) Container. IoC

is used throughout Spring application to decouple dependencies that typically increase

complexity in J2EE environment. Aspect-Oriented Programming (AOP) is a core enabler

in Spring. It enables you to factor cross-cutting concerns out of your application and

maintain them separately from the body of code.

APPENDIX 5/2

Spring Remoting

Remoting is defined as the exposing of code for remote access without having to write

another layer of software around the code to be exposed. Spring uses various technologies

for remoting support to ease the development of remote-enabled service. Currently, Spring

supports the following technologies (Remoting and Web Services using Spring, 2010):

 Remote Method Invocation (RMI): by the use of RmiProxyFactoryBean and the

RmiServiceExporter Spring support both traditional RMI (with java.rmi.Remote

interfaces and java.rmi.RemoteException) and transparent remoting via RMI

invokers.

 Spring’s HTTP invoker: Spring provides a special remoting strategy with allow for

Java serialization via HTTP, supporting any Java interface. The support classes are

HttpInvokerProxyFactoryBean and HttpInvokerServiceExporter.

 Hessian: by using the HessianProxyFactoryBean and the HessianServiceExporter

to transparently expose your services using binary protocol provided by Caucho.

 Burlap: Spring support Caucho XML-based exposing of service by using

BurlapProxyFactoryBean and BurlapServiceExporter.

 JAXRPC: Spring provides remoting support for web services via JAX-RPC.

APPENDIX 6/1

QT PLATFORM

Qt Classes

The Qt C++ class library provides a rich set of functionality needed to build advanced,

cross-platform applications. The library is intuitive, easy to use and learn, and producing

highly readable and easily maintainable code. The thesis makes use of the QtNetwork

package which was designed especially for handing multiple network connection

simultaneously.

QtNetwork package

QNetworkAccessManager class

This class is the core of the package, allowing the application to send requests and receive

replies. The QNetworkAccessManager object, which holds the common configurations and

settings for the requests it sends, is created. Qt Reference Document suggests that one

object should be enough for the whole Qt application (QNetworkAccessManager Class

Reference , 2010). Once the object was created, the application can use it to send requests

over network. The returned object, the QNetworkReply object, is used to obtain any data

returned in response to the corresponding request.

With the help of the Bearer Management API to Qt 4.7, QNetworkAccessManager gained

the ability to manage network connections. It can start the network interface if the device is

offline and terminates the interface if the current process is the last one to use the uplink.

APPENDIX 6/2

QNetworkRequest class

This class holds a request to be sent QNetworkAccessManager. It is part of the Network

Access API and is the class holding the information to send a request over the network. It

contains a URL and some ancillary information that can be used to modify the request.

QNetworkReply class

This class contains the data and headers for a request sent with QNetworkAccessManager.

It also contains the data and meta-data related to a request posted with

QNetworkAccessManager. Like QNetworkRequest, it contains a URL and header (both in

parsed and raw form). QNetworkRequest is also a sequential-access QIODevice, which

means that once data is read from the object, it is no longer kept by the device. When more

data are received from the network and processed, the readyRead() signal is emitted.

QVariant class

This class acts like a union for most common Qt data types. Since C++ forbids unions from

including types that have non-default constructors or destructors, most interesting Qt class

cannot be used in unions. A QVariant object holds a single value of a single type at a time.

QVariant also supports the notion of null values. However, QVariant types can only be

cast when they have had a value set. Since QVariant is part of QtCore library, it cannot

APPENDIX 6/3

provide conversion function to data types defined in QtGui such as QColor, QImage and

QPixmap.

