

Nguyen Bui

INTEGRIFY’S

ESR-APPLICANT

School of Technology

2020

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Nguyen Minh Bui

Title Integrify’s ESR-APPLICANT

Year 2020

Language English

Pages 30 + 3 Appendices

Name of Supervisor Timo Kankaanpää

This thesis was made to demonstrate the creation of a web application with Re-

actJS, based on creating a new web application for Integrify Oy. The idea of this

thesis is provided by Integrify Oy.

As a powerful and rising programming language for building web application, Re-

act with TypeScript was chosen for building the frontend. For building the

backend of the system, NodeJS was the chosen programming language with the

help of NestJS framework. For deploying and CI/CD, Github Actions and AWS

was chosen to be the tools and services used in this project.

The result of this thesis is a web application to allow applicants and students of

Integrify to take test and submit answers to Integrify’s system. The final software

product will be a subset of Integrify’s Student Management System (SMS). The

project demonstrated in this thesis does not reflect the final product implementa-

tion.

All information in the thesis is not personal research but created by summarizing

knowledge from official documentation of React, NestJS and its experts. The

knowledge can be changed and updated in new versions in the future.

The project has fulfilled basic requirements in its first phase of development.

Keywords React, NestJS, SMS, Github Actions

CONTENTS

ABSTRACT

1. INTRODUCTION .. 8

1.1 About Integrify Oy .. 8

1.2 Integrify’s Student Management System .. 9

1.3 Objectives ... 9

2 THEORETICAL BACKGROUND ... 11

2.1 React ... 11

2.2 Redux .. 11

2.3 Redux Saga ... 12

2.4 Node.js .. 13

2.5 NestJS ... 13

2.6 PostgreSQL Database ... 15

2.7 TypeScript ... 15

2.8 Authentication with Google Login ... 16

2.9 CI/CD .. 16

3 SOFTWARE SPECIFICATION AND ARCHITECTURE 18

3.1 Software Requirement Specification .. 18

3.2 Application Architecture ... 19

3.2.1 Database Architecture ... 19

3.2.2 ESR-Applicant Workflow ... 20

3.2.3 Styling, Color and Typography ... 21

4 IMPLEMENTATION .. 23

4.1 Google Login .. 23

4.2 Countdown Timer ... 26

4.3 Displaying Test ... 28

4.3.1 Test View .. 29

4.3.2 Question View Component ... 33

4.3.3 Custom hooks useAnswer ... 37

4.4 Feedback Page .. 40

4.5 Storybook .. 43

4.6 CI/CD with Github Actions .. 45

4.7 Version Controlling .. 47

4.8 Testing... 49

5 CONCLUSIONS .. 53

REFERENCES .. 54

APPENDICES

5

LIST OF FIGURES AND TABLES

Figure 1. User stories of ESR-Applicant .. 10

Figure 2. Redux cycle /5/ ... 12

Figure 3. Node.js core .. 13

Figure 4. NestJS application’s architecture – folder structure. 14

Figure 5. NestJS application’s architecture – diagram. .. 15

Figure 6. Authentication with Google login workflow /11/ 16

Figure 7. CI/CD pipeline process ... 17

Figure 8. SMS-Backend database architecture. ... 20

Figure 9. ESR-Applicant workflow. .. 21

Figure 10. ESR-Applicant typography and color palette. 22

Figure 11. Google console ... 23

Figure 12. Login with Google page ... 26

Figure 13. Countdown Timer ... 26

Figure 14. Home page of ESR-Applicant .. 29

Figure 15. Test page ... 29

Figure 16. Multiple-choice question type .. 36

Figure 17. Checkbox question type .. 36

Figure 18. Feedback page of ESR-Applicant ... 40

Figure 19. Storybook console... 45

Figure 20. Github Actions jobs finished .. 47

Figure 21. Pull Request created by the author of the thesis 48

Table 1. Functional requirements ... 18

Table 2. Smoke tests ... 49

6

LIST OF CODE SNIPPETS

Code Snippet 1. React-Google-Login component for authentication with

Google.24

Code Snippet 2. Handle log in and log out actions25

Code Snippet 3. Countdown Timer component28

Code Snippet 4. Test view component32

Code Snippet 5. Question view component34

Code Snippet 6. Question option component36

Code Snippet 7. Question script component37

Code Snippet 8. Custom Hooks useAnswer40

Code Snippet 9. Feedback page implementation43

Code Snippet 10. Storybook scripts44

Code Snippet 11. Custom button’s storybook44

Code Snippet 12. Github Actions configuration46

LIST OF ABBREVIATIONS

API Application Programming Interface

CSS Cascading Style Sheets

DOM Document Object Model

HTML Hypertext Markup Language

JSON JavaScript Object Notation

UI User Interface

UX User Experience

XML Extensible Markup Language

JSX JavaScript XML

7

I/O Input/Output

OS Operating System

CI/CD Continuous Integration and Continuous Delivery

8

1. INTRODUCTION

Nowadays, a web application has become a standard for software application, many

companies have started to switch their applications to web-based applications.

Thanks to the development of web technologies, web applications now can handle

complicated services, such as compiling documents and taking tests. Compared to

just a decade ago, a web application was only used to display simple static content.

Taking advantage of the development of web technology, Integrify decided to cre-

ate a web-based system called Student Management System (SMS) to manage In-

tegrify student and applicant data, such as test results, tests, personal information.

This thesis documents a new version of ESR-Applicant application, a part of SMS,

which is an online tool that is used to create and send the test to the applicants of

Integrify’s courses.

This thesis contains five chapters. The first chapter gives a clear view about Integ-

rify, the project documented in the thesis. All the theorical information about tech-

nologies used in the application are stated in chapter two. The next chapter describes

application’s requirements and its architecture. Chapter four documented the im-

plementation of the application of the author. Conclusion, drawbacks, and future

improvements are written in chapter 5.

1.1 About Integrify Oy

Founded in 2016, Integrify was founded during the refugee crisis to untap the po-

tential of international talent in Finland, by training talents in programming as a fast

track to jobs. After the training period, Integrify expects international talents to land

jobs as developers /1/.

In 2019, Integrify launched two new programs – full-stack and machine learning,

marked a new milestone for Integrify to extends further. In 2020, Integrify have

enrolled for over 200 people to join programs

9

1.2 Integrify’s Student Management System

Integrify’s Student Management System (SMS) is an Integrify internal, online tool

which is used by Integrify to manage students, courses, and the online testing of

applicants. SMS is a combination of SMS-Admin – an online tool for teachers, su-

pervisors, and ESR-Applicant – an online tool for applicants and students of Integ-

rify.

SMS-Admin is part of SMS tools and allows teacher and supervisors to manage

students and courses; it acts as a central database for all information about appli-

cants, students, courses, and alumni. Moreover, SMS-Admin support course appli-

cation, applicant interviewing process as well as sales businesses.

ESR-Applicant is the tool built for students and applicants to take the test and send

it to the Integrify’s admins to evaluate for Integrify’s courses or application. Ad-

mins creates the test with different questions with SMS-Admin tool and the test is

sent to applicants to do it online. Applicants then can finish the test and submit

results, feedbacks to SMS.

1.3 Objectives

The main objective of this thesis is to create a new version of ESR-Applicant to

solve the existing problems of the current ESR application of Integrify’s SMS. With

the current version of ESR-applicant, the tool shows several drawbacks:

• It is not possible to create tests with different questions. All candidates re-

ceive the same set of questions in the same test.

• For a test, it is not possible to create different sections dynamically.

• The number of different question types is limited. On the current version, it

only supports multi-choice question.

• There is no difficulty level of questions.

• Buggy UI, some questions may be invisible to the users.

• Users cannot navigate between questions or sections in a test.

The main objective of the application is to solve these drawbacks and extend its

functionality:

10

• It should allow users to view questions with more details displayed on the

screen.

• It should enables navigating between questions and save answered results.

• Save and retrieve the saves answers from the server in case of the internet

crash.

• Prevent the user from cheating by disabling copy or open web inspector.

 The user stories of ESR-Applicant are demonstrated in Figure 1.

Figure 1. User stories of ESR-Applicant

11

2 THEORETICAL BACKGROUND

2.1 React

React is a JavaScript library, designed to simplify the progress of making interactive

UIs, created by Facebook, and is maintained by individual developer community.

The React application is considered a component-based application because it is

made of entities called component, which can manage their own state to be com-

posed to make a complex UI /2/.

React components can be divided into two types: functional component and class-

based component. The functional components are declared as a function to return

some JSX, while the class-based components are classes that extends React Com-

ponent – a class built in React library. Before patch 16.8, most of the React compo-

nents were class-based components since class-based components support life-cy-

cle methods for the state management of the component. However, since patch 16.8,

React introduced a new concept called Hooks, which offers a new way to use state

and other React features in a functional component. With Hooks, a stateful logic of

a component can be extracted to be tested independently and reused without chang-

ing component hierarchy. Furthermore, Hooks allows the developer to split a com-

ponent into smaller functions based on relation, rather than splitting based on lifecy-

cle methods /3/.

2.2 Redux

Redux is a JavaScript library for application state management, commonly used

with JavaScript libraries, frameworks like Angular or React /4/.

With Redux implemented in the application, it is easier to manage the data flow in

the application, because Redux provide a state store for every component in the

application to access data without having to pass data as props or using Context,

which might cause the component to re-render itself and affect badly the application

performance. Moreover, Redux can work with multiple middleware to handle side

effects or fetching data from an external server. A Redux workflow is illustrated in

Figure 2.

12

Figure 2. Redux cycle /5/

In the Redux cycle shown above, once a component makes changes to the applica-

tion state, it will dispatch an action to the Redux store. An action is a plain function

that returns a JavaScript object. As a convention, that returned object should contain

two properties: type and payload. Once an action has been dispatched, it goes

through all the middleware in the system to execute side effects. The reducer is a

function used for taking dispatched actions and based on the type and the payload

of the action, it changes the application state.

2.3 Redux Saga

Redux Saga is a library used to manage application side effects, execute more effi-

ciently and handle failures better. Redux-Saga was made to be a Redux middleware,

which make Saga a separate thread in the application which is responsible for side

13

effects. Redux-Saga can be started, paused, and cancelled by executing normal Re-

dux actions while it also has access to the Redux state /6/.

2.4 Node.js

Node.js is a JavaScript runtime based on Chrome’s V8 runtime engine, designed to

build scalable applications. Node.js contains an event-driven architecture and oper-

ates on a single-thread event loop, which makes it be able for asynchronous I/O to

optimize throughput and scalability in web applications. Node.js. Node.js core is

shown in Figure 3 /7/.

Figure 3. Node.js core

2.5 NestJS

Nest (NestJS) is a Node.js framework for building efficient, scalable server-side

applications. NestJS makes use of HTTP Server frameworks, such as Express by

providing a level of abstraction above these frameworks. Thanks to that, NestJS

provides developers with flexibility with the application; developers are free to use

other available third-party modules. NestJS provides an outstanding architecture,

which is heavily inspired by Angular. A sample NestJS application architecture is

illustrated in Figure 4 and in Figure 5 /8/.

14

Figure 4. NestJS application’s architecture – folder structure.

15

Figure 5. NestJS application’s architecture – diagram.

2.6 PostgreSQL Database

PostgreSQL is an open source, powerful object relational database system, which

runs on all major OS and has been ACID-compliant /9/.

PostgreSQL contains features, such as table inheritance, function overloading and

protecting data integrity at transaction level. Owing to this, it makes PostgreSQL

less vulnerable to data corruption.

2.7 TypeScript

TypeScript is an open-source programming language developed and maintained by

Microsoft, built on JavaScript by adding static type definitions. Thanks to this im-

provement, TypeScript makes it much easier to debug, develop and better security.

However, there is a drawback with a compile time from TypeScript to JavaScript

because the web browser can only understand JavaScript /10/.

16

TypeScript can be used to replace JavaScript in web applications for both client-

side and server-side.

2.8 Authentication with Google Login

Nowadays, Google provides the application with an authentication solution without

having to implement an own version while still ensuring the security of the appli-

cation.

The workflow of authentication with Google Login is begun with client-side appli-

cation redirecting users to the Google site and authenticating by logging in with

their Google account, then Google sends back an ID token. If authentication is

successful the client-side application will handle the ID token sent back from

Google by sending it to the server-side application to authenticate and generate an

JWT and send it back to the client for any further requests. This workflow is illus-

trated in Figure 6.

Figure 6. Authentication with Google login workflow /11/

2.9 CI/CD

CI/CD Continuous integration and continuous delivery(CI/CD) is a method to de-

liver the application to the customer by applying automation into the stages of ap-

plication development. CI/CD also introduces continuous monitoring the lifecycle

of the application, from integration and testing to delivery and deployment /12/.

The CI/CD pipeline process is shown in Figure 7.

17

Figure 7. CI/CD pipeline process

18

3 SOFTWARE SPECIFICATION AND ARCHITECTURE

3.1 Software Requirement Specification

In this chapter, the requirements of the application, which were requested by the

customer (Integrify Oy), is documented. The functional requirements are listed in

Table 1 and sorted by priority.

Priority levels:

1. Must have

2. Should have

3. Nice to have

Table 1. Functional requirements

Reference Description Priority

F1 Authentication with Google account 1

F2 Letting user do the test if user is as-

signed to do the test

1

F3 Displaying test by topics 1

F4 Displaying question detail 1

F5 Submitting answer 1

F6 Enabling navigating between ques-

tions

1

F7 User’s process is saved in app state in

case of bad internet

1

F8 Disabling toggle web inspector and

copy text from tests

1

19

F9 Time countdown when user started /

resumed the test

1

F7 Show process of test per topic 2

F11 Display test process of user 2

F12 User can submit feedback when the

test is finish

2

F14 Bookmarking questions 2

F13 Display application tour to explain UI

of the application

3

The nonfunctional requirements of the application are:

• Responsive with tablet and large screen monitor.

• Only authorized users can access a specific test case.

• The UI must be clean and user friendly.

3.2 Application Architecture

ESR-Applicant as a part of Integrify’s SMS, so there is no need for a separated

server implemented to handle requests and separated database storage for only the

ESR-applicant application. All services and data of ESR-Applicant will be handled

by SMS-Backend.

3.2.1 Database Architecture

In the SMS-Backend application, PostgreSQL is chosen to be the database storage.

Since the thesis focuses on documenting the implementation of ESR-Applicant, this

chapter focuses on the architecture of related tables used in ESR-applicant.

The main point in the database is the relation of Template, Test and Submission

tables. Template is an entity for blueprint for a set of tests with properties, such as

number of questions, difficulties of questions, so that different users can receive

20

different questions with the difficulty of the test unchanged. The test entity is for a

specific test set created for set of students, it can only be assigned for a specific set

of students for a specific time, it contains properties, such as number of questions,

answered questions, time left, topics of the test. Submission entity is for storing the

student process of taking the test for individual question, such as the chosen answer

or answer text. The architecture of the database is shown in Figure 8.

Figure 8. SMS-Backend database architecture.

3.2.2 ESR-Applicant Workflow

When visiting the ESR-applicant test link with test ID, if user is not authenticated,

but the user must log in using Google accounts. If the user is unauthorized to do the

test, the user will have to log in again with the right Google account. If the user is

authorized, the user will be redirected to the main page with all information about

the test displayed and the test will be divided further into topics. Once the user starts

the test in a topic, the timer will trigger and start counting down, for every question

in a test. If the user completes a question, the answer to that question will be saved

immediately to the SMS-Backend. Once the user has finished all tests, a feedback

page will be displayed for the user for experience feedback. If the user has finished

the test or time has run out, the user will not be able to do the test anymore. The

workflow of ESR-applicant is illustrated in Figure 9.

21

Figure 9. ESR-Applicant workflow.

3.2.3 Styling, Color and Typography

Since ESR-Applicant is a part of Integrify’s SMS, its styling must follow the same

color palette to match Integrify’s branding color palette. The typography, color pal-

ette of ESR-Applicant application is shown in Figure 10.

22

Figure 10. ESR-Applicant typography and color palette.

23

4 IMPLEMENTATION

The implementation of the ESR-Applicant is documented in this chapter.

4.1 Google Login

As one of the most popular account in the world, log in using Google account is

very suitable for students or applicants of Integrify. First, to enable authentication

with Google, the application must have been authorized with credential to Google’s

OAuth 2.0 server /13/. Figure 11 displays the Google console to create and manage

the credentials of the application.

Figure 11. Google console

After the application has its authorization credentials, the implementation of au-

thentication with a Google account is very convenient since there are multiple third-

party libraries in the market to help implementing it, and React-Google-Login is

used in this project for its convenience. This library can be found at

https://github.com/anthonyjgrove/react-google-login. Code snippet 1 shows the im-

plementation of React-Google-Login in the application.

https://github.com/anthonyjgrove/react-google-login

24

import GoogleLogin from 'react-google-login'

import { login } from '../../redux/actions'

const GoogleSignIn = () => {

 const dispatch = useDispatch()

 const history = useHistory()

 const responseGoogle = (response: any) => {

 dispatch(login(response.tokenObj.id_token, history))

 }

 return (

 <>

 <GoogleLogin

 clientId={process.env.REACT_APP_GOOGLE_CLIENT_ID!}

 buttonText="Login with Google"

 onSuccess={responseGoogle}

 onFailure={responseGoogle}

 onAutoLoadFinished={responseGoogle}

 cookiePolicy={'single_host_origin'}

 />

 </>

)

}

Code Snippet 1. React-Google-Login component for authentication with Google.

In this component, the clientId property of GoogleLogin component is the client id

that have been authorized with the application. If the authenticating with Google is

successful, an action will be dispatched to send the token ID to the SMS-Backend

for validating if the signed-in Google account is authorized for the test. After the

action is dispatched into the Redux store, Redux-Saga will receive the token ID and

handle it by calling a request to the SMS-Backend server. If the login is successful,

the server will send back a user object with an access token to be attached to request

the header of any further requests. While logging out the user will remove the access

token from the header. The Redux-saga code is documented in Code snippet 2.

25

function* login() {

 yield takeEvery(LOG_IN, function*(action: LogInAction) {

 const { idToken, history } = action.payload

 try {

 const response = yield call(API.login, idToken)

 const user = response as AuthenticatedUser

 yield put(loginSuccess(user))

 axios.defaults.headers.common[

 'Authorization'

] = `Bearer ${user.accessToken}`

 history.push('/')

 } catch (error) {

 yield put(showNotification(error.data.message, 'er-

ror'))

 }

 })

}

function* logout() {

 yield takeEvery(LOG_OUT, function*() {

 yield localStorage.clear()

 delete axios.defaults.headers.common['Authorization']

 })

Code Snippet 2. Handle log in and log out actions

Figure 12 illustrates the login page with React-Google-Login button implemented.

26

Figure 12. Login with Google page

4.2 Countdown Timer

A test set of Integrify always has a time limit to finish, so there must be a countdown

timer implemented in ESR-Applicant application. Figure 13 illustrates the timer of

ESR-Application.

Figure 13. Countdown Timer

If the user accesses to a test set, the remaining time of the section will be fetched

from the SMS-Backend. And if the user starts the test, the timer of application will

start counting down and the remaining time will be saved to the local storage of the

web browser in case of refreshing the page or interrupted internet connection. The

testing time is updated by adding a starting time stamp in the server when the user

starts the test and based on that time to calculate the remaining time of user. If the

27

time runs out when the user is doing the test, the current answer to the current ques-

tion that the user is completing, will be submitted automatically to the SMS-

Backend for validation. The implementation of the timer is described in Code snip-

pet 3.

 const { initialTime, startAt, isFinished } = useSelector(

 (state: RootState) => {

 return {

 initialTime: state.test.test?.timeLeft! * 1000 || 0,

 startAt: state.test.test?.startAt,

 isFinished: state.test.test?.isFinished,

 }

 }

)

 const [duration, setDuration] = useState(initialTime)

 const displayTime = () => {

 return moment.duration(duration).for-

mat('hh:mm:ss', { trim: false })

 }

 const delay = 1000

 useEffect(() => {

 if (isFinished) {

 dispatch(showNotification(timeUpMessage, 'error'))

 history.push('/feedback')

 }

 const interval = setInterval(() => {

 if (startAt && duration > 0) {

 setDuration((value) => {

 localStorage.setItem('duration', (value - de-

lay).toString())

 return value - delay

 })

 } else if (duration <= 0 && startAt && !isFinished) {

 dispatch(sendAnswer(false))

 dispatch(finishTest())

 }

 }, delay)

 return () => clearInterval(interval)

28

 }, [dispatch, duration, history, initialTime, isFin-

ished, startAt])

 useEffect(() => {

 const savedDuration = +localStorage.getItem('duration')!

 if (initialTime <= savedDuration || savedDura-

tion === 0) {

 localStorage.setItem('duration', initial-

Time.toString())

 setDuration(initialTime)

 } else {

 setDuration(+savedDuration)

 }

 }, [initialTime])

Code Snippet 3. Countdown Timer component

4.3 Displaying Test

After the user has logged in with Google successfully, the user will be navigated to

the home page to view all the sections of the test set and choose a section to start

the test. The home page of application is shown in Figure 14.

29

Figure 14. Home page of ESR-Applicant

Once the user starts a test, they will be navigated to the test page. Since ESR-Ap-

plicant is an application for the user to do online test, the most important feature of

ESR-Applicant must be to display questions to users and record answers for vali-

dating answers. The final test page is displayed in Figure 15, with navigation but-

tons on a panel, question details, question options, timer, and bookmark button.

Figure 15. Test page

4.3.1 Test View

The test view component is the top component in displaying the question hierarchy.

Its function is to get the current question ID from URL parameters, then to dispatch

an action to fetch question details from the SMS-Backend. The reason for imple-

menting the logic of fetching individual question is to prevent the user getting all

the questions detail with a single request.

Another function of the test view is once question details have been fetched suc-

cessfully, it will base on answered questions to handle navigating among questions.

30

If all questions are answered, the user will be redirected to the home page to con-

tinue other sections or finish the test set, or else it will navigate the user to remaining

unanswered questions in the test.

The implementation of test view component is shown in Code snippet 4.

export default function TestPage() {

 const { questionId, topicName } = useParams()

 const dispatch = useDispatch()

 const history = useHistory()

 const { bookmarked, onClickHandler } = useBookmark(top-

icName, questionId)

 const { onSubmit, answeredQuestions, navigation-

Ready } = useAnswer(questionId)

 const messageFinish = 'Congratulation !!!'

 const { questionNumber, questions, question, fetchFin-

ished } = useQuestion(

 topicName,

 questionId

)

 const isTourOpen = useProductTour()

 const [isSideBarOpen, setSideBarOpen] = useState(false)

 useEffect(() => {

 if (navigationReady) {

 if (answeredQuestions.length >= questions.length) {

 dispatch(showNotification(messageFinish, 'success'))

 } else if (fetchFinished) {

 const unAnsweredQuestions = questions.fil-

ter((q) => {

 return answeredQuestions.find((ans) => ans.ques-

tionId === q)

 ? false

 : true

 })

 const messageWarning = `You still have ${unAn-

sweredQuestions.length} ques-

tions left. Make sure you have checked these questions out`

31

 dispatch(showNotification(messageWarning, 'warn-

ing'))

 history.push(`/topics/${topicName}/${unAnsweredQues-

tions[0]}`)

 } else history.push(`/topics/${topicName}/${ques-

tions[questionNumber]}`)

 dispatch(toggleNavigation())

 }

 }, [

 answeredQuestions,

 dispatch,

 fetchFinished,

 history,

 navigationReady,

 questionNumber,

 questions,

 topicName,

])

 return (

 <div className="test--container">

 <ProductTour steps={testSteps} isOpen={isTourOpen} />

 <div

 className={`test-button test-button--${isSideBarO-

pen ? 'hide' : ''}`}

 >

 <Icon icon={th} size={24} onClick={() => setSide-

BarOpen(true)} />

 </div>

 <div className={`side-bar side-bar--${isSideBarO-

pen ? 'show' : ''}`}>

 <SideBar

 setSideBarOpen={setSideBarOpen}

 questionId={questionId!}

 topicName={topicName!}

 questions={questions}

 />

 </div>

 <div className="test">

 <div className="test__header">

32

 <Heading mainHeading={topicName} variant="second-

ary" />

 </div>

 {question && (

 <div className="test__body">

 <Question question={question} question-

Number={questionNumber} />

 </div>

)}

 </div>

 <div className="test__footer">

 <Button variant="dark" text="Home" on-

Click={() => history.push('/')} />

 <button className="btn-bookmark" onClick={onClick-

Handler}>

 <Bookmark className={`${bookmarked ? 'book-

marked' : 'bookmark'}`} />

 </button>

 <Button

 variant="yellow"

 text={

 answeredQuestions.length === ques-

tions.length ? 'Submit' : 'Next'

 }

 onClick={() => onSubmit(bookmarked)}

 />

 </div>

 </div>

)

}

Code Snippet 4. Test view component

33

4.3.2 Question View Component

The question details will be passed from the test view component to the question

component to display its content. Besides the static state data such as question de-

scription, the question component will display different methods of answering ques-

tion based on the question type. The content of question component is displayed in

Code snippet 5.

const QuestionComponent = ({ question, question-

Number }: QuestionProps) => {

 const mess = `You should spend no more than ${

 question.difficulty === 'easy'

 ? 2

 : question.difficulty === 'medium'

 ? 4

 : 7

 } minutes on this`

 return (

 <>

 <div className="test-question__title">

 <Heading

 mainHeading={`Question ${questionNumber}`}

 variant="tertiary"

 />

 </div>

 <div className="test-question__body">

 <div className="test-question__content">

 <p className="question-content">{question.con-

tent}</p>

 <p className="question-difficulty">

 (Difficulty: {question.difficulty} - {mess})

 </p>

 {question.image ? <QuestionImage image={ques-

tion.image} /> : ''}

 </div>

 <div className="test-question__answer">

 {question.type === 'freetext' ? (

 <QuestionScript questionId={question.id} />

34

) : (

 <QuestionOptions

 questionId={question.id}

 type={question.type}

 options={question.options}

 />

)}

 </div>

 </div>

 </>

)

}

Code Snippet 5. Question view component

If the question type is multiple-choice, the component will render the question op-

tions component, to display all options as a list with clickable boxes, or else the

component will render the question script component. If an option is chosen or a

text is typed in the text box, the component will call an action to save the current

process to the local state of the application. The implementation of the question

option component is shown in Code snippet 6 and the question script is shown in

Code snippet 7. The interfaces of multiple-choice question options are shown in

Figure 16 and the checkbox question options is illustrated in Figure 17.

 const QuestionOptions = ({

 options,

 type,

 questionId,

}: QuestionOptionProps) => {

 const questionType = type === 'checkbox' ? 'check-

box' : 'radio'

 const { currentAnswer, setCur-

rentAnswer } = useAnswer(questionId)

 let answer: any = currentAnswer?.optionId

 const onChangeHandler = (event: React.Chang-

eEvent<HTMLInputElement>) => {

 const { id } = event.target

 if (questionType === 'checkbox') {

35

 if (answer === null || !answer) answer = []

 if (answer.includes(id)) {

 answer = answer.fil-

ter((choice: any) => choice !== id)

 } else answer.push(id)

 setCurrentAnswer((value) => {

 return {

 ...value!,

 optionId: answer,

 }

 })

 } else {

 answer = id

 setCurrentAnswer((value) => {

 return {

 ...value!,

 optionId: answer,

 }

 })

 }

 }

 const checked = (id: string): boolean => {

 if (questionType === 'checkbox') {

 if (answer === null || !answer) answer = []

 return answer.includes(id)

 } else return answer === id

 }

 const listItems = options.map((option) => (

 <QuestionOption

 key={option.id}

 questionType={questionType}

 option={option}

 checked={checked}

 onChangeHandler={onChangeHandler}

 />

))

36

 return <div className="test-question__options">{lis-

tItems}</div>

}

Code Snippet 6. Question option component

Figure 16. Multiple-choice question type

Figure 17. Checkbox question type

const QuestionScript = ({ questionId }: Ques-

tionScriptProps) => {

 const { currentAnswer, setCur-

rentAnswer } = useAnswer(questionId)

37

 const initialValue = currentAnswer?.answerText ?? ''

 const onChangeHandler = (event: React.ChangeEvent<HTMLTex-

tAreaElement>) => {

 const { value } = event.target

 setCurrentAnswer((answer) => {

 return {

 ...answer!,

 answerText: value,

 }

 })

 }

 return (

 <>

 <textarea

 className="test-question__script"

 name="textarea"

 placeholder="Type your answer here!"

 value={initialValue}

 onChange={(event) => onChangeHandler(event)}

 />

 </>

)

}

Code Snippet 7. Question script component

4.3.3 Custom hooks useAnswer

Custom Hooks is a method to extract reusable component logic. A custom Hook is

a JavaScript function that should be named so that it starts with “use” that may call

other Hook functions, such as useState, useSelector. In this application, custom

Hook is used to manage the state of the logic and component , includes both the

local state and the state from the Redux store /14/.

Custom Hook useAnswer is a function created to manage the answer to a question

. This function has a question ID as a parameter; based on the question ID it will

access the Redux store and the local storage to check for any record of the answer

saved and make it become the initial value of the answer. Furthermore, there is a

38

validation to prevent the user to submit a blank answer to the system. The imple-

mentation of useAnswer Hooks is shown in Code snippet 8.

export default function useAnswer(questionId: string) {

 const dispatch = useDispatch()

 const [currentAnswer, setCurrentAnswer] = useState<An-

swer | null>(null)

 const messageError = 'Error !!! You can not leave an-

swer blank'

 const {

 initialAnswer,

 answeredQuestions,

 savedAnswer,

 navigationReady,

 } = useSelector((state: RootState) => {

 let initialAnswer: Answer = {

 student: state.auth.user!.id!,

 test: state.test.testId!,

 questionId: questionId,

 optionId: null,

 answerText: null,

 }

 const { answeredQuestions, toggleNaviga-

tion } = state.topic

 const answeredQuestion = answeredQuestions.find(

 (e) => e.questionId === questionId

)

 if (answeredQuestion) {

 const { optionId, answerText } = answeredQuestion

 initialAnswer.optionId = optionId

 initialAnswer.answerText = answerText

 }

 const savedAnswer = state.test.currentAnswer

 if (

 savedAnswer?.questionId === questionId &&

 initialAnswer !== savedAnswer

) {

 initialAnswer = savedAnswer!

 }

39

 return {

 navigationReady: toggleNavigation,

 initialAnswer,

 answeredQuestions,

 savedAnswer,

 }

 })

 const onSubmit = (bookmarked: boolean) => {

 if (

 savedAnswer?.answerText !== null ||

 savedAnswer.optionId !== null ||

 bookmarked

) {

 if (savedAnswer?.answer-

Text !== null || savedAnswer.optionId !== null)

 dispatch(sendAnswer(false))

 else dispatch(sendAnswer(true))

 } else dispatch(showNotification(messageError, 'error'))

 }

 useEffect(() => {

 if (currentAnswer !== null) {

 dispatch(setTestAnswers(currentAnswer))

 }

 }, [currentAnswer, dispatch])

 useEffect(() => {

 if (currentAnswer === null || currentAnswer.ques-

tionId !== questionId) {

 setCurrentAnswer(initialAnswer)

 }

 }, [currentAnswer, dispatch, initialAnswer, questionId])

 return {

 currentAnswer,

 setCurrentAnswer,

 onSubmit,

 answeredQuestions,

40

 navigationReady,

 }

}

Code Snippet 8. Custom Hooks useAnswer

4.4 Feedback Page

After the user has finished the test set, the user will be redirected to the feedback

page to give feedback about the user’s experience with the application, so that

Integrify can improve the application for a perfect application. Figure 18 illustrates

the feedback page of the ESR-Applicant application.

Figure 18. Feedback page of ESR-Applicant

On the feedback page, the user is asked about the individual experience of every

sections of that test set. If the user clicks a reaction button, a sample text of that

reaction represented for will be generated and merged into the feedback text of the

user.

The implementation of feedback page is shown in Code snippet 9.

const FeedbackPage = () => {

 const dispatch = useDispatch()

41

 const [feedback, setFeedback] = useState<Feedback>({ feed-

back: [] })

 const emotionTexts = ['Disappointed', 'Sad', 'Un-

clear', 'Happy', 'Simple']

 const topics = useSelector((state: RootState) => {

 return state.test.test?.topics

 })

 const onSubmit = (event: React.FormEvent<HTMLFormEle-

ment>) => {

 dispatch(sendFeedback(feedback))

 event.preventDefault()

 }

 const handlerEmotionTextx = (index: number, top-

icName: string) => {

 let feedbacks = feedback.feedback

 let topic = feedbacks.find((tp) => tp.topicName === top-

icName)

 if (!topic) {

 setFeedback({

 feedback: [

 ...feedbacks,

 {

 topicName: topicName,

 feedback: emotionTexts[index] + '! ',

 },

],

 })

 } else {

 setFeedback({

 feedback: [

 {

 topicName: topicName,

 feedback: topic.feedback + (emotionTexts[in-

dex] + '! '),

 },

],

 })

42

 }

 }

 const onTextChange = (top-

icName: string, value: string) => {

 let feedbacks = feedback.feedback

 let topic = feedbacks.find((tp) => tp.topicName === top-

icName)

 if (topic) {

 topic.feedback = value

 feedbacks = feedbacks.map((fb) =>

 fb.topicName === topicName ? topic! : fb

)

 setFeedback((value) => {

 return {

 ...value,

 feedback: feedbacks,

 }

 })

 } else {

 topic = {

 topicName: topicName,

 feedback: value,

 }

 feedbacks = [...feedbacks, topic]

 setFeedback((value) => {

 return {

 ...value,

 feedback: feedbacks,

 }

 })

 }

 }

 return (

 <div className="feedback">

 <Heading

 mainHeading="CONGRATUlATION!"

 subHeading="You have reached the finish line"

 variant="primary"

43

 />

 <div className="feedback__description">

 <Description

 content="Thank you for participating in Integ-

rify test. We would like to ask some feed-

back about the test today. This would help us im-

prove our testing system."

 type="fullCenter"

 variant="light"

 />

 </div>

 <form onSubmit={onSubmit} className="feedback__form">

 {topics?.map((topic) => {

 return (

 <FeedbackInputField

 key={topic.name}

 topicName={topic.name}

 onTextChange={onTextChange}

 emotionTexts={emotionTexts}

 onClick={handlerEmotionTextx}

 />

)

 })}

 <Button text="Send Feedback" variant="yel-

low" size="large" />

 </form>

 </div>

)

}

Code Snippet 9. Feedback page implementation

4.5 Storybook

Storybook is an open source tool used to help developers build and manage the edge

cases of UI components in isolation for multiple frameworks, such as React, Vue,

Angular and more. In this application, storybook was installed and used as a UI

management tool for developers and product owner /15/.

44

Storybook has its own scripts to build and run a storybook at a separate port of the

machine - port 6006. The scripts of storybook in “package.json” file is shown in

Code snippet 10.

"storybook": "start-storybook -p 6006",

"build-storybook": "build-storybook -o build-storybook"

Code Snippet 10. Storybook scripts

An example of documenting all custom button style in a storybook file is docu-

mented in code snippet 11.

storiesOf('Common/Button', module).add('All But-

tons', () => (

 <div>

 <Button variant="light" text="Button" />

 <Button variant="blue" text="Button" />

 <Button variant="yellow" text="Button" />

 <Button variant="blue" size="small" text="SM" />

 <Button variant="dark" text="Button" />

 </div>

))

storiesOf('Common/Button', module).add('Blue', () => (

 <Button variant="blue" text="Back to home" />

))

storiesOf('Common/Button', module).add('Light', () => (

 <Button variant="light" text="Topic" />

))

storiesOf('Common/Button', module).add('Yellow', () => (

 <Button variant="yellow" text="Home" size="small" />

))

storiesOf('Common/Button', module).add('Dark', () => (

 <Button variant="dark" text="Next" />

))

Code Snippet 11. Custom button’s storybook

Figure 19 shows the custom button in the storybook console.

45

Figure 19. Storybook console

4.6 CI/CD with Github Actions

The CI/CD tool of ESR-Applicant is Github Actions because Github Actions is a

built-in tool of Github, which is also the version control tool for this project. With

Github Actions as a CI/CD tool, every pull request created to the develop branch

gets a set of tests for code convention and the deploy status to the target machine.

For Github Actions to run, the developer must put a “.yml” file at the path

“~root_folder/.github/workflows” of the application. The content of “.yml” file of

ESR-Applicant is documented in Code snippet 12.

name: ESR Application workflow

on:

 push:

 branches:

 - develop

 pull_request:

 branches:

 - develop

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - name: Setup node

46

 uses: actions/setup-node@v1

 with:

 node-version: '12.x'

 - name: Checkout

 uses: actions/checkout@v2

 - name: Setup cache

 uses: actions/cache@v1

 with:

 path: ~/.npm

 key: ${{ runner.os }}-modules-${{ hash-

Files('**/package-lock.json')}}

 restore-keys: |

 ${{ runner.os }}-modules-

 ${{ runner.os }}-

 - name: Install

 run: npm ci

 - name: Lint

 run: npm run lint

 - name: Test

 run: echo "Test is under construction"

 - name: Build

 run: npm run build

 - name: Deploy

 if: github.event_name == 'push'

 uses: netlify/actions/cli@master

 env:

 NETLIFY_AUTH_TOKEN: ${{ secrets.NETLIFY_AUTH_TO-

KEN}}

 NETLIFY_SITE_ID: ${{ secrets.NETLIFY_SITE_ID}}

 with:

 args: deploy --dir=build --prod

 secrets: '["NETLIFY_AUTH_TOKEN", "NET-

LIFY_SITE_ID"]'

Code Snippet 12. Github Actions configuration

An example of Github Actions on Github desktop is illustrated in Figure 20.

47

Figure 20. Github Actions jobs finished

4.7 Version Controlling

Github was chosen to be the version control host of ESR-Applicant application. In

this project, the author of the thesis works in a team of four developers so in this

chapter, the working process using Github is documented.

First the working environment is initialized. After initializing the project with the

folder structure, it is pushed on a Github repository by using “git init” and “git

push”, a remote path is created to the upstream repository of the project by using

“Git remote add upstream <path to repository>”.

For daily tasks, the latest update is fetched from the upstream repository with com-

mand “git fetch upstream”. After that, “git rebase upstream/develop” command is

used to merge the updates to the local machine. When working with new features,

another branch is created with command “git checkout -b <new feature name>”.

When finishing the work, changes are made to the application by using “git commit

-am “<message of commit>”. Then it was pushed t to the upstream with command

“git push upstream head”, .With this command, Github will automatically create

another branch on the pushed repository and that branch will be deleted after the

Pull Request has been approved and merge into the destination branch (develop

48

branch). An example of Pull Request created by the author is displayed in Figure

21.

Figure 21. Pull Request created by the author of the thesis

49

4.8 Testing

Tests were done to ensure the quality of application. This project has ESlint and

Husky installed to make sure the written codes follow the convention of Integrify.

No automated tests were implemented for this project, only smoke tests were per-

formed as the main testing method. The smoke tests were made to ensure the func-

tions of the application are executed correctly. The smoke tests performed is shown

in Table 2.

Table 2. Smoke tests

Test ID Scenarios Description Test step Expected result

1 Validating

login cre-

dentials

Test the login

functionality of

ESR-Applicant

to make sure that

only assigned

users can login

with their

Google account

1. Open the web

application

without any test

id in the URL

Application should

throw an error to in-

form no valid test id

found

 2. Open the ap-

plication with

test id in the

URL

Application should

forward users to the

login page

 3. Click on the

“Login with

Google” button

Google dialog

should be displayed

and ask users to se-

lect or type in their

Google account

50

 4. Allow the ap-

plication to ac-

cess Google

data of assigned

Google account

Login successfully.

The application

should redirect us-

ers to home page of

the application

2 Taking a

test in the

test set

Test the taking

test function to

make sure that

user can view

question’s de-

tail, bookmark

question, and

submit answer.

1. Click on a

test’s topic

Application should

navigate user to the

test page and dis-

play the first ques-

tion of the test or

the current question

that user is doing.

 2. Select an an-

swer or type in

answer in the

text field

Application should

save the current an-

swer in the state

and restore it if user

refresh the page

 3. Click button

“Next” to view

next question

Application should

submit the answer

to the backend and

fetch the next ques-

tion

 4. Click button

“Next” without

giving any an-

swer or click

The application

should stop user

from navigating to

next question un-

51

“Bookmark”

button

less user give an an-

swer or bookmark a

question

 5. Click “Book-

mark” button

The application

should append the

question to book-

marked questions

list of the current

topic.

 6. Answer all

questions and

finish the test

User will be navi-

gated back to home

page of the applica-

tion to finish re-

maining topics

 7. Click “Fin-

ish” button to

finish the test

set

The application

should navigate

user to feedback

page and prevent

user to continue or

re-do the test

3 Feedback

function

Check feedback

functionality of

the application

1. Click reac-

tion buttons

The application

should generate

text in the feedback

area

 2. Type texts in

the feedback

text area

The application

should append

typed text to the

feedback texts

52

 3. Click submit

button to submit

feedback

Application should

submit feedbacks

and log out user

while delete all

state data stored in

the local storage

53

5 CONCLUSIONS

The implementation of the application documented in this thesis can be considered

successful. All the functional requirements have been passed by the contribution of

all developers in the team. Users can access the assigned tests with authorized

Google accounts. If the login is successful , users can start the test and can resume

the process anytime if the time does not run out. After users finish the test, users

can give feedback to Integrify, but the test cannot be redone again.

The application was developed with React with TypeScript. The amount of external

JavaScript libraries used in this project caused many challenges in the development

process. Another challenge is that this project was developed during pandemic time

with a team of four developers, so it created a problem with communicating be-

tween teammates which caused the delay of designing and developing the applica-

tion. However, the problems caused by the crisis helped the author of the thesis gain

more working experience with a team.

As for improvement, automation tests are needed to be implemented with JavaS-

cript testing frameworks like Jest. The version of the application documented in this

thesis is the first version of application in the development stage, so the application

needs to be improved to fully responsive and support tablet users.

The thesis documented here is just an evidence of concept, so for the application to

be ready for production stage, the application needs to be refactored for better user

experience.

54

REFERENCES

/1/ Integrify - About us. Accessed 4 November 2020. https://www.integ-

rify.io/en/about-us

/2/ React (web framework). Accessed 5 November 2020. https://en.wikipe-

dia.org/wiki/React_(web_framework)

/3/ React - Introducing Hooks. Accessed 5 November 2020.https://re-

actjs.org/docs/hooks-intro.html

/4/ Redux (JavaScript library). Accessed 5 November 2020.https://en.wikipe-

dia.org/wiki/Redux_(JavaScript_library)

/5/ Ngoc, Phi. 2020. Redux. Internal PowerPoint. Integrify Oy. Accessed 5

November 2020.

/6/ Redux-saga document. Accessed 5 November 2020.https://redux-

saga.js.org/

/7/ Node.js. Accessed 5 November 2020.https://en.wikipedia.org/wiki/Node.js

/8/ NestJS Introduction. Accessed 7 November 2020.https://docs.nestjs.com/

/9/ PostgreSQL - about. Accessed 7 November 2020.https://www.post-

gresql.org/about/

/10/ TypeScript - What is TypeScript. Accessed 8 November 2020.

https://www.typescriptlang.org/

/11/ Ngoc, Phi. 2020. Security. Internal PowerPoint. Integrify Oy. Accessed 5

November 2020.

/12/ Redhat - What is CI/CD ?. Accessed 9 November 2020.

https://www.redhat.com/en/topics/devops/what-is-ci-cd

/13/ integrating google sign-in into your web app. Accessed 10 November

2020. https://developers.google.com/identity/sign-in/web/sign-in

/14/ React. Building Your Own Hooks. Accessed 10 November 2020. https://re-

actjs.org/docs/hooks-custom.html

/15/ Storybook. Accessed 10 November 2020. https://storybook.js.org/

https://www.integrify.io/en/about-us
https://www.integrify.io/en/about-us
https://en.wikipedia.org/wiki/React_(web_framework)
https://en.wikipedia.org/wiki/React_(web_framework)
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://en.wikipedia.org/wiki/Redux_(JavaScript_library)
https://en.wikipedia.org/wiki/Redux_(JavaScript_library)
https://redux-saga.js.org/
https://redux-saga.js.org/
https://en.wikipedia.org/wiki/Node.js
https://docs.nestjs.com/
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www.typescriptlang.org/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://developers.google.com/identity/sign-in/web/sign-in
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://storybook.js.org/

