

Rafiat Sanni

ARM BASED UART DATA

TRANSMISSION WITH ASYMMETRIC

KEY ENCRYPTION USING RSA

ALGORITHM

Technology and Communications

2011

VAASAN AMMATTIKORKEAKOULU

Degree Program of Information Technology

TIIVISTELMÄ

Tekijä Rafiat Sanni

Opinnäytetyön nimi ARM based UART Data Transmission with Asymmetric

Key Encryption Using RSA Algorithm.

Vuosi 2011

Kieli English

Sivumäärä 63 + 18 liitettä

Ohjaaja Yang Liu

Tietoturva on hyvin olennainen osa tämän päivän maailmaa, ja siksi eri alojen

ammattilaiset ovat tehneet valtavan määrän työtä ja tutkimusta tiedon turvassa

pysymisen varmistamiseksi. Tämän projekti pohjautuu yksinomaan siihen. Myös

sellaisen teknologian laajentuminen kattamaan muita laitteita, jotka saattavat olla

tekemisissä datan lähettämisen kanssa, oli toinen merkittävä tekijän tällaisen

päätöksen tekemisessä.

Tässä lopputyössä pyrittiin toteuttamaan tietoturvaratkaisu mikro-ohjainlaitteella

(ARM). Tämä toteutettiin käyttämällä RS-232-standadiin perustuvaa

sarjayhteyttä. UART:ta käytettiin datan siirtämiseen. UART, joka on

asynkroninen lähetystapa, pohjautuu säädettävään datasiirtonopeuteen ja

dataformaattiin. Myös pääte-emulaattoria käytettiin testaamiseen, ja se auttaa

mikrokontrollerin sarjamuotoisen datan seuraamista, ja myös sen lähettämistä

mikro-ohjaimelle testitarkoituksessa.

Tiedon salaamista käytettiin keinona sen suojaamiseen. Datakryptografia jakautuu

kahteen kategoriaan, jotka ovat symmetrisen ja asymmetrisen avaimen suojaus.

RSA-algoritmia, joka kuuluu asymmetristen avainten ryhmään, käytettiin tiedon

salaamiseen ja purkamiseen. Se käyttää kahta avainparia, yhtä julkista ja yhtä

yksityistä. 512 bitin avainpituutta käytettiin avainpareihin. Vaikkei se olekaan

paras tämänhetkisistä standardeista, se on edelleen toimiva siinä käytössä, johon

sitä tässä projektissa tarvittiin. Avainten pituudet tulisi pääsääntöisesti valita

salattavan tiedon tyypin perusteella.

Tiedon salaaminen ja sitä seuraava salauksen purkaminen osoittautuivat

toimiviksi UC:lla, jota käytettiin työn alustana. Onnistunut [implementaatio]

osoittaa, että tämän tietojensuojausmenetelmän siirtäminen muille alustoille on

mahdollista. Toivon voivani esitellä sellaisen algoritmin mobiililaitteille tärkeiksi

luokiteltujen viestien lähettämiseen ja vastaanottamiseen.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme of Information Technology

ABSTRACT

Author Rafiat Sanni

Title ARM based UART Data Transmission with Asymmetric

Key Encryption Using RSA Algorithm.

Year 2011

Language English

Pages 63 + 18 Appendices

Name of Supervisor Liu Yang

Data security is something essential in the world today and as such, there has been

a tremendous amount of research and work carried out by people from various

professional realms so as to ensure data is always secure. The basis of this project

work is solely based on this reason. Also, the expansion of such technology so as

to encompass other devices that may deal with data transmission played another

part for making such a decision.

For the purpose of this thesis, an attempt to implement data security on a

microcontroller device (ARM) was carried out. This was conducted using a serial

connection based on RS-232 standard with the use of UART for the transmission

of such data. UART, which is an asynchronous means of transmission, is based on

adjustable data transmission speed and data format. A terminal emulator was also

used for testing purposes and it helps to view serial data from the microcontroller

and also helps in transmitting to the microcontroller for testing purposes.

Data encryption was employed as a means of securing data. Data cryptography is

divided into two categories which includes symmetric and asymmetric key

cryptography. RSA algorithm was used for data encryption and decryption and it

falls under the asymmetric key group. It works by using two pairs of keys, one

pair public and the other pair private. 512–bits key length was used for the key

pairs, while not being the best standard currently; it still serves the purpose it was

intended for in this project. Key lengths should be chosen based on the type of

data being secured as a general rule.

The encryptions and subsequent decryption of data turned out to be successful on

the microcontroller which was the platform of implementation. The successful

implementation shows that it is possible to port this method of data security to

other platforms. In the future, I hope to be able to introduce such algorithm to

mobile devices in send and receiving messages deemed important.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

ACKNOWLEDGEMENT

To God, who makes going on easier to bear. To my mother from whom I learnt

hard work never hurt anyone and for her endless support for all my decisions. My

gratitude goes to my father for trusting me with the responsibility of making my

decisions early in life. To all my siblings, for encouraging me to forge ahead when

things were not so easy. To my good friends, though not many, but more than a

million friends anyone could have in life; thanks for the tremendous show of trust

and support.

To Liu Yang, my supervisor, instructor and to whom I personally refer to as my

greatest challenger; this thesis work would have been incomplete but for your

continuous support and challenge. To Johan Dams for making everything seems

cool. To Seppo Mäkinen for showing me physics really can be fun! To Chao Gao

for being an exceptional instructor. Thank you all for making my time at VAMK a

great one.

2

CONTENTS

TIIVISTELMÄ

ABSTRACT

1 INTRODUCTION .. 8

1.1 Thesis objective .. 10

1.2 Introduction of the Hardware .. 10

1.2.1 Overview of the MCU ... 11

1.3 Introduction of the Software ... 12

1.3.1 WinARM ... 12

1.3.2 Bray’s Terminal .. 13

2 CRYPTOGRAPHY .. 13

2.1 Components of cryptography .. 14

2.1.1 Plaintext and Ciphertext /1/ ... 14

2.1.2 Key .. 15

2.1.3 Alice, Bob and Eve ... 15

2.2 Categories of cryptography ... 15

2.2.1 Symmetric key (secret-key) cryptography 15

2.2.2 Asymmetric key (public-key) cryptography 17

2.3 Types of keys .. 17

3 CRC ALGORITHM AND IMPLEMENTATION ... 18

3.1 Redundancy... 19

3.2 Polynomials... 19

3.2.1 Addition and subtraction of polynomials 20

3.2.2 Multiplying polynomials ... 20

3.2.3 Dividing polynomials .. 20

3.3 Cyclic code.. 21

3.4 Algorithm and implementation ... 22

3.4.1 Implementation ... 24

4 RIVEST, SHAMIR, ADLEMAN (RSA) ALGORITHM 26

4.1 Key generation .. 27

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

4.2 Encryption ... 28

4.3 Decryption... 28

4.4 Example using RSA algorithm /1/ .. 30

4.5 Security of RSA .. 30

4.6 RSA encryption implementation notes ... 32

5 RSA ALGORITHM ON ARM .. 33

5.1 ARM microcontroller hardware setup .. 33

5.1.1 Software setup for microcontroller programming....................... 33

5.1.2 Start up function for the microcontroller 35

5.2 UART configuration function ... 37

5.2.1 UART0 Transmission and Receiving functions 38

5.3 RSA implementation ... 39

5.3.1 Multiple-precision integer arithmetic .. 41

5.3.2 Left-to-right binary exponentiation algorithm 45

5.4 Compilation and code download .. 47

6 TESTING FOR RSA AND PROBLEMS .. 50

6.1 Testing... 50

6.2 Problems ... 54

7 CONCLUSION AND SUGGESTIONS .. 56

7.1 Conclusion for RSA .. 56

7.2 Conclusion for CRC .. 57

7.3 Suggestions and future developments ... 58

REFERENCES .. 59

APPENDIX .. ERROR! BOOKMARK NOT DEFINED.

APPENDICES

4

LIST OF FIGURES AND TABLES

Figure 1. Image of OLIMEX MCU LPC–H2129 /3/ 14

Figure 2. An overview of cryptography /1/ 17

Figure 3. Symmetric key cryptography /1/ 19

Figure 4. Asymmetric key cryptography/1/ 20

Figure 5. Input data request before CRC calculation. 28

Figure 6. CRC value returned for input data 29

Figure 7. An image of programmer’s notepad 38

Figure 8. MCU setup code snippet 40

Figure 9. UART0 setup function 41

Figure 10. UART0 receiving functions 42

Figure 11. UART0 transmitting functions 43

Figure 12. Calling encryption and decryption sequence 52

Figure 13. Programming the MCU 52

Figure 14. BrayTerm with data transfer settings 55

Figure 15. BrayTerm connected to the MCU 56

Figure 16. Code running on the MCU 57

Figure 17. Ciphertext for ‘hello’ after encryption 57

Figure 18. Decrypted ciphertext for ‘hello’ 58

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

Table 1. Public-key encryption schemes and the related computational

problems upon which their security is based/5/. 30

Table 2. Function names and their functionalities. 50

6

LIST OF APPENDICES

APPENDIX 1. References

APPENDIX 2. Source codes

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

ABBREVIATIONS

MCU Microcontroller Unit

UART Universal Asynchronous Receiver/Transmitter

RS-232 Recommended Standard 232

PC Personal Computer

USB Universal Serial Bus

RAM Random Access Memory

RTC Real–Time Clock

ADC Analogue to Digital Converter

CAN Controller Area Network

I
2
C Inter-Integrated Circuit

SPI Serial Peripheral Interface

CCR Condition Code Register (Status Register)

PWM Pulse Width Modulation

WDT Watch Dog Timer

I/O Input/Output

RSA Rivest, Shamir, Adleman

LED Light Emitting Diode

PLL Phase Locked Loop

CRC Cyclic Redundancy Check

8

1 INTRODUCTION

The world today can be described as modernized, yet there are still elements

which remind us that modernization is based solely on the development of old

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

methods and materials which in essence has given way to the creation of products

which either work based on the improvement of old methods and devices or the

introduction, due to extensive research based on old products, of a new method or

device. This project shows how this has been manifested in the use of an

algorithm which was introduced decades ago to manage data that become ever

more important as time passes by.

Cryptography, a word with Greek origins, means “secret writing” /1/. It is a way

by which messages are hidden from third parties or unintended recipients in order

to guarantee its authenticity. There are several means by which this can be carried

out but this project focuses mainly on using asymmetric key cryptography to carry

this out. Cryptography is achieved through a set of mathematical calculations

which has been used to develop several algorithms leading to different methods of

encryption.

One of such methods is the RSA algorithm developed, and named after, the

inventors of public key cryptography: Ron Rivest, Adi Shamir and Leonard

Adleman /2/. Their innovation solved a daunting challenge in network security:

how to enable secure yet transparent exchange of encrypted communications

between users and enterprises that are strangers to each other /2/. RSA algorithm

was used as the method of achieving data encryption for the purpose of this

project.

Data error correction is also another important part of data transmission. This

takes into account the problems that could occur as a result of loss or the change

of data that occurs due to the presence of noise on the line being used to transmit

such data. This could also give false positives to encrypted data. This means that

the data could be considered false and thereby discarded as a result of problems of

noise present on the line being used for sending and receiving data. Cyclic

redundancy check (CRC) was introduced for data error checking for the purpose

of this project.

10

1.1 Thesis objective

The purpose of the project is to implement a method of data security known as

asymmetric key cryptography based on the RSA algorithm method of encryption.

The initial objective of the project was to implement the algorithm on two MCUs

but because of insufficient availability of resources, there was only one MCU

available. Therefore, in the absence of the second MCU, a terminal emulator,

running on a PC, was used for checking the results of both encryption and

decryption which ended up being implemented on only one MCU. The mode of

connection of the MCU was based on a serial mode of communication (RS-232)

between the MCU and the PC with the use of the UART port of the MCU. The

system works by connecting the MCU and PC using an RS-232 cable via a UART

port on the MCU. A serial-to-USB adapter was used in order to enable the

connection to the PC because most PCs hardly ever come manufactured with a

serial port any longer. The MCU takes in an input from the terminal emulator and

encrypts the data input based on the RSA algorithm and then transmits the

encrypted text to through the UART back to the terminal which in this case also

serves as the second MCU. The encrypted text then gets decrypted by the MCU

and then displays the encrypted text in plaintext format.

Data error detection was also considered at the start of the project. The method

considered falls under the category of block coding schemes. There are two

schemes and the other scheme is known as convolution coding scheme. Block

codes are further divided into two categories and this includes, linear block coding

and cyclic block coding. The method of cyclic coding used in this project was

CRC. This method of data error check, and its implementation will be further

detailed later in this report.

1.2 Introduction of the Hardware

The hardware used for the purpose of this project includes the MCU, the serial

cable (RS-232), a serial-to-USB adapter, a terminal emulator and a PC. The most

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

important of this is the MCU which will be shortly introduced. A serial adapter

was necessary because of the absence of a serial port on the PC used for this

project.

1.2.1 Overview of the MCU

For the purpose of this project, the MCU used was LPC–H2129 header board,

manufactured by OLIMEX /3/. This board houses the LPC2129 ARM7TDMI–S

microprocessor, manufactured by NXP Semiconductors, a subsidiary of Philips.

The figure below shows an image of the MCU.

Figure 1. Image of OLIMEX MCU LPC-H2129.

The image above shows the first module produced by OLIMEX but the module

used for the purpose of this project does not differ by a lot. The MCU has a lot of

features, some of which are listed below /3/:

- MCU: LPC2129 16/32 bit ARM7TDMI-S™ with 256K Bytes Program

Flash.

- 16K Bytes RAM, RTC.

- 4 10–bit ADC with 2.44 µS conversion time.

12

- In-System/In-Application Programming (ISP/IAP) through on–chip boot

loader software. A full erase of the chip or a complete flash of a sector in

100 millisecond and programming up to 256 bytes in one millisecond.

- Two CAN, two UART ports, I
2
C bus, SPI, two 32–bit TIMERS, seven

CCR, six PWM channels, and WDT.

- 5V tolerant I/O, up to 60MHz operation.

- BSL jumper for bootloader enable.

- JRST jumper for enable/disable external RESET control by RS-232.

- Vectored Interrupt Controller.

- Up to 46 General Purpose I/O.

1.3 Introduction of the Software

The software part of this project includes just two which are WinARM and Bray’s

Terminal (BrayTerm). WinARM was used for compiling the code for this project

and also for programming the MCU. BrayTerm is a terminal emulator used

because the current version of windows does not come with the traditional

terminal, Hyperterminal. BrayTerm serves the same purpose and because it has

other functionalities such as its data rate being customizable makes it even better

than using Hyperterminal.

1.3.1 WinARM

WinARM is a collection of GNU and other tools to develop software for the

ARM-family of controllers/processors on MS-Windows-hosts /4/. WinARM

contains all needed tools in its distribution package. It is an open source package

that still needs a lot of work for it to be very functional on windows. There are

some other platforms, such as Eclipse and Keil, which can also be used for such

work but because of the insufficient availability of resources, WinARM was

chosen for the project. WinARM was used to program the MCU throughout the

duration of the project.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

1.3.2 Bray’s Terminal

Bray’s Terminal (BrayTerm) is a terminal emulator which can be used with

various devices with the capability of communicating serially with other devices.

One of such devices is the MCU which has been used for this thesis project. The

MCU includes two UART ports which can be used for such a purpose. One

advantage it has over some other freeware terminal emulators is that its data rates

can be customized. Another advantage is that it can be configured to use macros

which can come in handy depending on the kind of device it is being used with.

The version of BrayTerm used was version v1.9.

2 CRYPTOGRAPHY

Cryptography generally refers to the method of making data invisible to any third

party who the availability of such data could be potentially harmful to the original

parties the data needs to be available to. It deals mostly with the aspect of

information security that includes data integrity, authentication and data

confidentiality /5/. This means that the parties exchanging information do not

necessarily know each other; they may not even know the location of one another,

14

but still need to exchange information or data, depending on the reason for

communication existing between both parties. One of the applications of

cryptography that best describes this scenario is the use of ATM cards. The

authenticity of the user may not necessarily be known but by furnishing such

cards with the use of a PIN number, the use of such PIN verifies that the user of

the card is currently the owner of the card. There are two different categories of

cryptography. This includes symmetric and asymmetric key cryptography.

2.1 Components of cryptography

To comprehensively explain the concept of cryptography and its categories there

are some components that need to be introduced.

Figure 2. The components of cryptography.

The figure above shows a pictorial representation of the components of

cryptography. Some short notes about some of the components are given below.

2.1.1 Plaintext and Ciphertext /1/

Plaintext refers to the original message or data, as the case may be, before being

encrypted or changed. The changed message or whatever the message becomes

after being encrypted is referred to as the ciphertext. An algorithm that transforms

a plaintext into a ciphertext is an encryption algorithm and vice-versa, a

decryption algorithm.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

2.1.2 Key

The numbers used by an encryption or decryption algorithm to perform the

process of transformation is referred to as a Key. Therefore for encryption, three

things are needed; a plaintext, an encryption key and the encryption algorithm

while for decryption, the ciphertext, the decryption key and the decryption

algorithm are needed before the ciphertext can be transformed back to its original

format.

2.1.3 Alice, Bob and Eve

In cryptography, there are usually three entities that need to be depicted in an

information exchange scenario. There is the entity that needs to send secure

messages or data, the other entity is the intended recipient of the message, and the

third is the entity always trying to intercept the message and always tries to act as

an impostor. Alice represents the sender, Bob the receiver and Eve the impostor.

2.2 Categories of cryptography

As mentioned earlier, there are two categories of cryptography which includes

symmetric key, also called secret–key cryptography, and asymmetric key, also

known as public–key, cryptography. Both categories are going to be introduced in

the following paragraphs; however, public-key cryptography will further be

detailed with emphasis on the algorithm of choice (RSA algorithm).

2.2.1 Symmetric key (secret-key) cryptography

In symmetric key cryptography, the most important thing to note is that both

communicating parties actually share the same key. The key is only ever known to

both the intended communicating parties, hence the name secret-key. Alice uses

the key with an encryption algorithm to transform plaintext to ciphertext; Bob

uses the same key with a corresponding decryption algorithm to transform

ciphertext back to plaintext. The figure below shows the idea behind secret-key

cryptography.

16

 Figure 3. Symmetric key cryptography.

Symmetric-key cryptography is the oldest form of cryptography and has been

used for thousands of years. There are the old methods and those have been

replaced by more efficient forms of secret-key cryptography. The old methods are

known as traditional ciphers. The old algorithms were usually character

dependent, while the modern ciphers are bit-oriented. Traditional ciphers include

the following, substitution ciphers and transposition ciphers.

Substitution ciphers are further divided into two categories known as

monoalphabetic and polyalphabetic. Substitution ciphers work on the principle of

substituting an alphabet with another. This is also the origin of its name. An

example of a monoalphabetic cipher is the shift cipher, which works based on the

assumption that plaintext and ciphertext consists only of uppercase letters. This

cipher is also known as the Caesar cipher, and this is because Julius Caesar used

this method to communicate with his officers.

Transposition ciphers, instead of substituting alphabets, changes the location of

each character based on predefined rules as to which character in the alphabet

goes to what location in the positioning of alphabets.

Other categories of symmetric-key cryptography include simple modern ciphers

and modern round ciphers. The XOR cipher, rotation cipher, substitution cipher

and transposition cipher are examples of simple modern ciphers and the examples

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

of widely used modern round ciphers includes the data encryption standard (DES)

and advanced encryption standard (AES) /5/.

2.2.2 Asymmetric key (public-key) cryptography

In asymmetric key cryptography, there are two keys involved in the

communication process. There is a private key, used by the receiver only and

therefore kept private. The other is the public key which is announced or publicly

available and used by the sender of the message. The figure below shows a

scenario using public-key cryptography.

 Figure 4. Asymmetric key cryptography.

According to the figure above, Alice intends to send a message to Bob so what

she does is that she encrypts the message using Bob’s public key with an agreed

upon encryption algorithm. As can be seen from the figure, Bob’s public key is

known to everyone, that is, it is public. Bob, being the owner of the public key, is

the only one able to decrypt the message, using a corresponding decryption

algorithm, with his private key. This ensures that Bob is the only recipient of such

a message.

2.3 Types of keys

There are three types of keys being used in cryptography. These include the secret

key, the private key and the public key. The first key (secret key), is only ever

18

used in symmetric-key cryptography. The other two keys (private and public

keys) are used only for asymmetric-key cryptography.

Examples of asymmetric-key cryptography include RSA algorithm and Diffie-

Hellman. This report will focus mainly on the RSA algorithm as it is the

algorithm used to complete this project.

3 CRC ALGORITHM AND IMPLEMENTATION

Cyclic redundancy check is an important cyclic method of checking data widely

known in telecommunications. It is especially useful in the detection of burst

errors. Burst errors can best be described as errors that occur contiguously in any

data stream. The rate at which data error is measured varies depending on the type

of data transmission method being used. The method of transmission could be

synchronous or asynchronous. Asynchronous means of transmission usually

involves errors of burst type. One could say that this perhaps is one reason for the

continuous use of the method of data check. Cyclic redundancy check can also be

used to detect single bit errors, double bits errors as well as an odd number of

errors.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

Cyclic methods should be better explained before one embarks on describing the

method of cyclic redundancy check. A better way of understanding cyclic codes

can be described as; the change of one stream of data bit cyclically into another

stream with the new one forming another code in its form. As an example, one

can consider a stream of data 110011 in its original format being modified

cyclically to become 100111. The modified code can be considered as another

code itself because it can be translated to mean something under the data

translation method being used. Cyclic codes have been developed based on this

kind of system of data modification.

3.1 Redundancy

This concept is central to error detection and correction. This is so because, before

any data stream can be checked or corrected, some extra bits have to be added to

the original data stream. These added bits are added by the sender before

transmission and removed by the receiver before using the data. The use of these

bits makes it possible for the receiver to detect and correct the corrupted part of

data.

3.2 Polynomials

The theory behind the use of cyclic redundancy check can best be explained with

the use of polynomials. This is important because of the concept of burst error.

Burst errors have the nature of involving a long length of data stream. Since all

data transmission deals with numbers of modulo-2 base, that is 1s and 0s, burst

errors are usually represented when using cyclic redundancy check as polynomials

whose highest degree is of the form n – 1, where n is the number of data bits

being transmitted. The data stream can be represented by polynomials when the

power of the polynomial reflects the position of the bit and the coefficient used to

represent the value of the bit, either 1 or 0. As an example, considering the data

stream used earlier, 110011, a polynomial representation would be written as 1x
5
+

1x
4
 + 0x

3
 + 0x

2
 + 1x

1
 + 1x

0
. An advantage of polynomial representation is that it

can be easily reduced to a simple single term, just as is the case with normal

polynomial representation. The above polynomial representation can be reduced

20

to x
5
 + x

4
 + x + 1. The last bit is represented as a 1 because the power to zero of

any term of a polynomial is 1. The last bit becomes unrepresented only if the

value of the bit itself is 0. The following paragraphs discusses shortly about

different polynomial arithmetic.

3.2.1 Addition and subtraction of polynomials

Addition and subtraction of polynomials normally is performed by the addition or

subtraction as the case may be, of the coefficients of terms with the same power.

The coefficients in modular arithmetic only have the value 0 or 1. This implies

two things as a result, addition and subtraction of modulo-2 arithmetic yields the

same results. The other is that the two polynomials being added or subtracted are

only merged and terms with the same power become removed. For the second

condition, this only applies to even number of times of occurrence of terms with

the same power, if such a term were to exist for an odd number of times; there is

only one representative of such a term in the resulting polynomial. One thing to be

noted in polynomial addition or subtraction is that all terms that are non-zero are

only represented once in any modulo-2 polynomial.

3.2.2 Multiplying polynomials

Polynomial multiplication is carried out per term. This means that each term in

each polynomial expression is used by turn to multiply the terms of the other

polynomial. Multiplication of terms occurs by adding the powers of both terms

being multiplied. The resulting expression is added after all terms have been

multiplied and based on the condition of addition, the terms occurring an even

number of times becomes deleted.

3.2.3 Dividing polynomials

Polynomial division is very similar to the regular long division. The only

difference is that for any polynomial division, the divisor is not subtracted but a

xor operation is performed upon it and the dividend. This is done over and over

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

again until all the terms of the quotient are completely exhausted and the highest

power of the remainder is less than the power of the dividend. The remainder can

then be used as appropriate for CRC implementation.

3.3 Cyclic code

Cyclic codes are analysed with the help of polynomials. Cyclic code can best be

analysed by first defining some terms. These terms are introduced below:

- Data-word: the original data to be transmitted, d(x).

- Code-word: the data-word with redundant bits added, c(x).

- Polynomial generator: this is the divisor of the polynomial, g(x).

- Syndrome: the results from the division of the dividend, which contains

the code-word, s(x).

- Error: the error discovered from the code-word, e(x).

There are a few things that can be used to ascertain that any form of data does not

contain any error. Some of those are described below.

1. For a case where s(x) ≠ 0, a certain fact is that 1 or more bits are

corrupted.

2. For a case where s(x) = 0, two facts are established.

a. Either no bits are corrupted; or

b. Some bits are corrupted but were not discovered by the receiver.

As a result of these two cases, one discovers that it is also important to choose a

very good generator to divide the code that will not allow any error, 1 or more, to

occur at any point in time on a line. The received code-word contains c(x) and

e(x). The receiver divides the received code-word received by the same generator

and this can either mean a 0 error transmission or that the errors could not be

detected. As can be seen in the equation below, if the error bits, e(x) are

completely divisible by the generator, g(x), then, there will always be a false

positive result of the polynomial calculation, which means errors will become

undetected.

22

Based on the type of generator polynomial chosen, the errors that can be detected

include, single bit errors, two-isolated single bit errors, and burst errors. The

following list includes the conditions that a good generator has to meet for it to

catch the errors mentioned earlier.

1. The generator should have a minimum of two terms.

2. The coefficient of the last term needs to be 1.

3. The generator should not be able to divide x
t
 + 1, for values of t ranging

from 2 to n – 1, where n is the number terms of the code-word polynomial.

4. The generator should have the factor x + 1 common to its polynomial.

Over the years, the choice of generators has been standardized based on different

researches carried out and different polynomial values used. The most popular

protocols for CRC generators include the following:

1. CRC-8: x
8
 + x

2
 + x + 1. This generator is used in ATM headers.

2. CRC-10: x
10

 + x
9
 + x

5
 + x

4
 + x

2
 + 1. Used for ATM AAL.

3. CRC-16: x
16

 + x
12

 + x
5
 + 1. This is used for HDLC.

4. CRC-32: x
32

 + x
26

 + x
23

 + x
22

 + x
16

 + x
12

 + x
11

 + x
10

 + x
8
 + x

7
 + x

5
 + x

4
 +

x
2
 + x + 1. This polynomial has its use in LANs.

For the purpose of this project, CRC-32 was implemented. One of the advantages

of using CRC is that it can detect errors of various positions and of different types.

It is also data transfer rate independent.

3.4 Algorithm and implementation

CRC-32 has about four different types of generator polynomial standardized for

it; however, the most used out of all four is listed above. There are three different

of ways whereby it is represented in binary or hexadecimal format. Depending on

this method of expression, the generator polynomial can appear to be different.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

However, all representations are equal to one another. The main reason for such

representations takes into consideration, which of the bit is being transmitted first

on the line. There is the LSB first style and the MSB first style. For this project

the LSB first style was used. The polynomial for this representation is

0xEBD8888320. This only means that there is the assumption that the LSB digits

get transmitted first before the MSB digits. The generator polynomial is normally

1 bit more than the actual name indicates. So in this case, there are 33 generator

bits in total. CRC algorithm uses two readily defined facts to its advantage; the

first is that the MSB of generator polynomials is always 1. The other reason is that

the MSB of the xor operation for modulo-2 arithmetic is always zero and

therefore, eventually becomes shifted out of the remainder at any point in time.

This means that one need not worry about any carry values since the first bit is

always know to be 1. The generator polynomial which is 33 bits in length can then

be stored using a 32-bit register. The algorithm uses two functions which will be

described here. The first function init_crc32_tab() works as to fill an array for

computing CRC, with values. The algorithm is outline below:

INPUT: nothing.

OUTPUT: nothing.

1. Initialize crc_tab32_init to false.

2. For i count (from 0 to max), max is the size of the array; create max

number of instances in memory for crc.

3. For j count (from 0 to b), b represents a byte;

a. If crc = 0; perform (crc >> 1) xor g(x); else do (crc >> 1).

4. Do crc_table[i] = crc;

5. Set crc_tab32_init to true.

The second function is update_crc_32() and it serves the purpose of updating the

CRC table with the computation of CRC-32 for the previous byte and the next

byte of data being computed. The algorithm is outlined below:

INPUT: data byte to be transformed, current table values.

24

OUTPUT: current crc value.

1. Find all 1 bits in each byte of data.

2. If crc_tab32_init = true; do init_crc32_tab();

3. Flip all high bits of data byte and store in tmp;

4. Do crc = (crc right-shift 8 bits) xor crc_tab32[high bits in tmp];

5. Return remainder value (crc).

3.4.1 Implementation

Implementing this on hardware requires some initialisations. This will be detailed

in the next chapter as this is not the main project work. The main() function for

implementing CRC-32 takes in data stream from the user and stores it in an array

of 256 characters each 8-bytes in size. For doing this, all CRC-32

implementations are initialized as 1s. There is a check for carriage return and

newline command the table is updated with the input data and the high initialized

bits. Then it counts for each byte of data. The return remainder value is the flipped

again as this uses the reversed generator polynomial, that is LSB first.

After running the code and connecting the MCU to BrayTerm, the following

figures show the different inputs and the subsequent CRC-32 values it returns.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

 Figure 5. Input data request before CRC calculation.

Figure 6 below shows the CRC-32 value that was returned after the algorithm was

performed on the input data.

 Figure 6. CRC value returned for input data.

26

4 RIVEST, SHAMIR, ADLEMAN (RSA) ALGORITHM

Asymmetric-key (public-key) cryptography was developed much later compared

to symmetric-key cryptography. It works based on the computational complexity

of difficult problems, usually from number theories. One of the earliest public-key

algorithms is the Diffie-Hellman algorithm, which was proposed by, and named

after, Whitfield Diffie and Martin Hellman in 1976. In 1978, another algorithm,

which has become the basis for most public-key cryptography, was invented by

three men. They are Ronald Rivest, Adi Shamir, and Len Adleman. Their

invention was named after them and is now known as the RSA algorithm. The

different variations of the public-key cryptographies that are based on the number-

theoretic computational problems as the basis of security are shown in the table

below.

Table 1. Public-key encryption schemes and corresponding computational

problems which their security is based upon /5/.

Public-key Encryption Scheme Computational Problem

RSA Integer factorization problem

Rabin Integer factorization problem; square roots

modulo composite n

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

ElGamal Discrete logarithm problem; Diffie-Hellman

problem

Generalized ElGamal Generalized discrete logarithm problem;

generalized Diffie-Hellman problem

McEliece Linear code decoding problem

Merkle-Hellman knapsack Subset sum problem

Chor-Rivest knapsack Subset sum problem

Goldwasser-Micali

probabilistic

Quadratic residuosity problem.

Blum-Goldwasser probabilistic Integer factorization problem; Rabin problem

As can be seen from the table, RSA has its origins from integer factorization

problem. RSA mode of encryption has three main steps to complete a full

message cycle. These steps are listed below:

- Key generation.

- Plaintext encryption.

- Ciphertext decryption.

These three parts are elaborated upon in the following sub-chapters.

4.1 Key generation

The most important part of RSA algorithm is the generation of the right keys. This

is so because when keys are not generated correctly, such keys are not strong

enough to completely encrypt any message as it becomes relatively easier to

decipher the message by the third party. Illustrated below are a set of rules to take

into account when attempting to generate public and private keys for RSA

encryption. Each entity, in this case Bob, generates a public key and a

28

corresponding private key. To generate a strong pair of keys, Bob should take the

following steps /1/ /5/:

1. Chooses a pair of large random primes x and y, about the same size each.

2. Calculates n = xy and ϕ = (x - 1)(y - 1).

3. Selects a random integer i, where 1 < i < ϕ, where the gcd(i, ϕ) = 1. This

means that i and ϕ only have the number 1 as their greatest common

divisor (gcd).

4. Then calculates a unique integer d, 1 < d < ϕ, such that id ≡ 1 (mod ϕ).

5. Bob’s public key is (n, i) which he announces to the public; Bob’s private

key is d. Bob keeps d and ϕ secret.

Both integers i and d, are referred to as the encryption exponent and

decryption exponent respectively and the value n is the modulus.

4.2 Encryption

Anyone that wishes to send a message to Bob can use n and e /1/. If Alice wishes

to send a message to Bob, the following steps should be followed to achieve this.

1. Alice changes the plaintext to integer m, m must satisfy the condition 0 <

m < (n – 1)/1/ /5/.

2. Alice then calculates c = m
e
 mod n, where c is the ciphertext/1/ /5/.

3. Alice then sends the ciphertext c, to Bob.

By going through these outlines steps, Alice can encrypt the message she wishes

to send to Bob without having to worry about it getting into the wrong hands.

4.3 Decryption

To decrypt Alice’s message, Bob uses his private key d. To get this done, Bob

only needs to do the following.

1. Bob uses his private key d to decrypt the message by: m = c
d
 mod n.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

m is the plaintext in integer; all Bob needs to do now is to convert it back to its

original format.

The following steps will prove that decryption works using the private key d.

Proof:

Since ed ≡ 1 (mod ϕ), (3.1)

Then there exists an integer k such that

ed = 1 + kϕ. (3.2)

Now, if

gcd (m, p) = 1 (3.3)

Then; by Fermat’s theorem /5/

 m
 p -1

 ≡ 1 (mod p). (3.4)

Raising both sides in equation (4) to the power k (q - 1) and then multiplying both

sides by m yields:

 m
 1 + k (p – 1) (q – 1)

≡ m (mod p). (3.5)

On the other hand, if gcd (m, p) = p, then this last congruence is valid since each

side is congruent to 0 modulo p. Hence, in all cases

 m
ed

 ≡ m (mod p). (3.6)

By the same argument,

 m
ed

 ≡ m (mod q). (3.7)

Finally, since p and q are distinct primes, it follows that

 m
ed

 ≡ m (mod n); (3.8)

30

and, hence,

 c
d
 ≡ (m

e
)
d
 ≡ m (mod n). (3.9).

4.4 Example using RSA algorithm /1/

Bob chooses 7 and 11 as p and q and calculates n = 7 * 11 = 77. The values of ϕ =

(7 – 1) (11 – 1) or 60. Now he chooses two keys, e and d. If he chooses e to be 13,

then d is 37. Now imagine Alice sends plaintext 5 to Bob. She uses the public key

13 to encrypt 5. This is shown in the following steps:

Plaintext: 5

C = 5
13

 = 26 mod 77

Ciphertext: 26

From these calculations, Bob receives the ciphertext 26 and uses the private key

37 to decipher the ciphertext according to the steps below:

Ciphertext: 26

m = 26
37

 = 5 mod 77

Plaintext: 5

The plaintext 5 sent by Alice is received by Bob as plaintext 5.

4.5 Security of RSA

There exists several security issues related to RSA encryption. The following

sections will talk about some of the known issues and subsequent solutions to deal

with these problems.

1. Factoring: In the generation of RSA public and private keys, it is very

important that both prime x and y chosen be in such a way that the

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

factoring of the product of both primes n is computationally very tasking.

This means in essence that if the probability of factoring both primes is

high, then it automatically becomes easy for a third party, in this case Eve,

to successfully intercept and decrypt a message intended for Bob.

Therefore, great attention must be paid to ensure that the primes are very

distinct and are not close to each other numerically.

2. Encryption component e, size: it is usually the case that the size of the

encryption component e be considerably smaller than the decryption

component d, and modulo, n for efficient encryption. A problem arises

when the size of e is too small. This is because it becomes easier for Eve

to decrypt the message send to several people using a small sized e as the

encryption pattern is very similar and therefore it infers that their moduli

are relatively prime to one another. The easiest way to solve this is by

salting the plaintext before encryption /5/. Salting is addition of bit-string

of zeros to the original plaintext before encryption.

3. Forward search attack: this refers to a small or predictable message size.

This means Eve can decrypt the encrypted plaintext by just encrypting all

possible plaintext message of the same size until she gets a similar

ciphertext. Salting the plaintext can also help prevent this from occurring.

4. Adaptive chosen ciphertext attack: this is a problem because of the

multiplicative properties, otherwise known as the homomo rphic property

of RSA algorithm. This property is shown below:

For two plaintexts p1 and p2, and a respective cipher text t1 and t2; then it

can be shown that:

 (p1p2)
e
 ≡ p1

e
p2

e
 ≡ t1t2 (mod n). (3.10)

This means that the ciphertext whose plaintext is:

 p = p1p2 mod n, is

 t = t1t2 mod n.

Due to this property, Eve only needs to send an encrypted ciphertext t’, to

Bob using Bob’s public key. This is because Bob will not decrypt a

message sent from Eve. Once Bob has decrypted this ciphertext to its

corresponding plaintext p’, Eve only needs to calculate p such that:

32

 p = p’x
-1

 mod n.

Since

 p’ ≡ (t’)
d
 ≡ t

d
 (x

e
)

d
 ≡ px (mod n).

The way to solve this problem is by padding such a message before it is

being encrypted. This gives the plaintext a certain structure that has been

agreed between both Alice and Bob. Eve’s encrypted text will always be

discarded as it will not fit into this structure.

5. Message concealing: this problem occurs when a plaintext message is said

to be unconcealed. This happens when the plaintext encrypts to itself. This

generally does not pose a threat as the number of unconcealed messages

remains always negligibly small.

4.6 RSA encryption implementation notes

Over the years there have been great improvements in speeding up the

implementations of RSA algorithm, both encryption and decryption, in software

and hardware. A few of the methods being used include, fast modular

multiplication, fast modular exponentiation, and by using Chinese remainder

theorem for faster decryption. Despite all these improvements, RSA algorithm is

still relatively very slow when compared with symmetric key cryptography. This

limits the use of RSA algorithm in applications that require speed. Another reason

RSA encryption and decryption cannot totally be improved is because of the fact

that, longer key sizes increase the overall decryption time of RSA algorithm. The

use of this algorithm is therefore limited to applications that require a short

message length. An example of this is digital signatures.

Digital signature is very similar to physically signing a document as it is a

definitive proof of identity of the signer of such a document. However, it is more

secure as such a signature cannot be forged.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

5 RSA ALGORITHM ON ARM

The previous chapter has been used to thoroughly introduce the concept of RSA

algorithm, how it works, its pros and cons. In this chapter, the implementation of

the algorithm on the hardware used for this project will be detailed below.

The implementation started with the setup of the MCU and subsequent activation

of other parts necessary for the completion of this project. Configuring the

hardware for the using the UART port, which is necessary for serial data

transmission to and from the MCU. The system setup will be explained in the

subsequent subheadings, followed only by the implementation and testing of the

software. Results will then be discussed and possible improvements proposed.

5.1 ARM microcontroller hardware setup

The MCU used for the purpose of this project has been introduced at the start of

this report. The hardware setup required to program the device is not a lot as it is a

very compact device. When setting up the MCU for programming, there are

several ways to achieve this, depending on the available means of programming

the hardware. For the purpose of this project, the only software used to program

the microprocessor is WinARM, which uses Programmer’s Notepad as its

compiler.

5.1.1 Software setup for microcontroller programming

WinARM happened to be the cheapest solution to programming, successfully, the

MCU. The only piece of hardware needed to communicate with it is an RS-232

cable. The MCU has two UART ports, one of which is used by the bootloader to

program the MCU flash memory in the absence of an external programmer. This

happens to be the case regarding this project, therefore UART channel 0 (UART

34

0) was used for programming and also testing the performance of the MCU

according to the programmable instructions.

The bootloader is enabled when the BSL jumper on the MCU is shortened at the

time of power up. For programming the MCU, the JRST and BSL jumper have to

be shortened at time of power up. However, when running the code, both jumpers

should be left open and the manual reset button on the MCU pushed to enable to

microcontroller to exit bootloader mode.

The LED on the board has to be shortened before it can be activated. This can be

done at any time while running the code or before the MCU has been programmed

for whatever function.

The figure below shows the image of the interface that was used to compile and

program the MCU.

 Figure 7. An image of programmer’s notepad.

The platform is a very basic one, but very efficient as it has a customizable

makefile and linker. This makes for having an efficient run-time environment.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

5.1.2 Start up function for the microcontroller

The microcontroller start up uses the PLL present on the MCU for getting the

microcontroller to run at different configurable speeds. PLL is able to boost the

system clock up the 60 MHz, depending on the input frequency. The system clock

runs between 10 – 25 MHz normally. This PLL clock is used to provide the on-

chip clock for the ARM microprocessor. This allows the LPC 2129 run at its

maximum configurable frequency with a low value oscillator, thus minimizing the

EMC emissions of the device /6/. The PLL consists of two values, which include

the multiplexer and the divider. Cclk, which is the CPU clock of the MCU, is the

output of the PLL after the fundamental crystal frequency has been multiplied /7/.

There is a current controlled frequency on the path of the PLL and it must be

between the frequency ranges of 156–320 MHz. The PLL parameters are shown

below.

Cclk = M × Fosc;

Fcco = Cclk × 2 × P;

156 ≤ Fcco ≤ 320 MHz.

From the equations above, Fcco can be simplified to become:

 Fcco = Fosc × M × 2 × P;

The MCU has an external frequency of 14567 KHz; the runtime clock of the

system was configured to run at the maximum PLL speed. This means that the

values of M and P have to be deduced based on the equations above. Therefore:

For the value of P, we have:

156 ≤ 14567000 × 4 × 2 × P ≤ 320;

Therefore; P = 2.

36

The values of P and M are the ones that are used to initialize the register. After

configuring the resgister responsible for PLL output frequency, PLL is first

disconnected, while PLLFEED register is update according to the sequence

required for the activation of the MCU. After the PLLFEED sequence, there is a

condition to check for PLL to set and lock at the required frequency. The

connectiong register for PLL is then set to activate the preset frequency. The

PLLFEED sequence is again updated after which comes the activation of the

peripheral clock. The register for setting the peripheral clock is the VPBDIV. The

equation below shows how the register value is calculated.

The register value for the peripheral clock was set to 1, this ensures that the

peripheral clock runs at the same frequency as the MCU frequency of 60MHz.

The last part to be set is the activation of memory accelerator module (MAM)

registers which help to latch the next set of ARM instructions so as to avoid the

system stalling. The figure below shows a snapshot of the function for activating

the MCU.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

Figure 8. Code snipet showing MCU setup.

5.2 UART configuration function

For the purpose of this project, only one UART channel (UART0) was used. This

is the same UART channel used for programming the MCU. The function mainly

deals with the setup of the UART0 port for transmission and reception of data.

Also set in the function is the data rate at which the MCU will be using to

communicate with other devices, in this case, the terminal emulator. The port is

setup by activating the corresponding input for the PINSEL register. The data rate

used for this project is 9600 bps (bits per second). The data format was set for no

start bit, 8 data bits, 1 stop bit, and no parity bit. The same settings were applied to

BrayTerm which is the emulator that was used. A formula for the determination of

the data rate or baud rate is shown below:

For an expected baud rate of 9600, the equation becomes:

This value is equivalent to 187hex. This provides the value used for setting the

U0DLL and U0DLM registers. The code used for the configuration of UART0 for

this project is shown in the figure below.

38

 Figure 9. UART0 setup function.

5.2.1 UART0 Transmission and Receiving functions

This project was implemented basically to be able to transmit data serially;

therefore, there are a few functions which have been used to configure the

UART0 port for receiving and transmitting data. The configuration supports the

reception of data in ASCII (American Standard Code for Information Interchange)

format. Some further notes are given below.

1. Receiving functions: there are two functions programmed to perform this

action. One receives data character by character while the other receives a

data string all at once. UART_Instring is the function receiving a string of

data at once. This function calls the first function and stores each value in

a buffer to be closed once the return key has been pressed. Below is a code

snippet showing both functions.

 Figure 10. UART0 receiving functions.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

2. Transmitting functions: there are three functions written for this part of

the implementation so as to enable all output as expected from the project.

One of the functions transmits data, one character at a time. The second

one transmits data character strings. The third one actually formats data. It

takes in an integer and formats it into hexadecimal format before

transmitting the converted data through UART0.

All three functions helped make the communication of the MCU work

seamlessly, without any problem at any point in time. The code snippet

below shows the functions.

 Figure 11. UART0 transmitting functions.

5.3 RSA implementation

Implementing RSA algorithm efficiently is essential in applications. This is so

because the algorithm is slow compared to the symmetric means of encryption

and decryption. Due to this reason, implementing it in an efficient manner is very

important to any application in which it is being used. There are a few algorithms

that help to make this possible; among them is the Chinese remainder theorem

which improves the processing time for decryption and generation of signature by

using modular representation /5 Page 612/. Also the Garner’s algorithm, which

has its efficiency in the calculation of RSA moduli and due to its exponentiation

40

factors, results in the computation of decryption being four times faster.

Exponentiation is another well-known method of implementing RSA algorithm. It

is regarded as one of the most important arithmetic operations for public-key

cryptography/5 Page 613/. The RSA scheme requires exponentiation for a positive

integer. An efficient method for multiplying two elements in a group of finite

elements is essential to performing efficient exponentiation. For cryptographic

applications, the order of the group finite group exceeds 2
160

, and these days, it

exceeds 2
1024

 for RSA algorithm.

Two ways exist for the reduction of time required to perform exponentiation. One

is to decrease the time to multiply two elements; the other is to reduce the number

of multiplications used to calculate the exponent of a number. In ideal

applications, both would be implemented. There are three types of exponentiation

algorithms that can be considered when referring to RSA algorithm and its

variants. A brief description is given below for all three.

1. Basic techniques for exponentiation: this uses arbitrary choices for the

base and exponent.

2. Fixed-exponent exponentiation algorithms: as the name implies, the

exponent is fixed, that is, unchanging and arbitrary values of the base are

allowed. This are the algorithms RSA encryption and decryption are most

reliable upon.

3. Fixed-base exponentiation algorithms: here the base is fixed and

arbitrary choices of the exponent can be chosen. Variations of RSA such

as ElGamal and other public-key systems such as Diffie-Hellman key

agreement favour this kind of techniques.

Out of all three the first one will be explained further as this was the method

employed for the algorithm in this project. The reason for the use of this method

of implementation was the availability of resources which helped to make clearer

the method of implementation. Another reason, which was also important, was the

ability to implement methods of abstraction to the data being used for the

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

algorithm. The manipulation of large numbers in software level can be very

difficult to perform. The use of basic arithmetic operations of addition,

subtraction, multiplication, squaring, and division for multiple-precision integers

had to be introduced because of the large key sizes used by RSA. The C

programming language has its limitations whenever the integer being computed

exceeds 64-bits. As was discussed earlier, RSA key-lengths are of the minimum

these days of 1024-bits. Handling that size of integer poses a challenge already

before the introduction of the exponentiation to compute RSA encryption and

subsequent decryption.

As a result, multiple-precision integer arithmetic has to be discussed in order to

fully understand the method of implementing RSA encryption and decryption.

5.3.1 Multiple-precision integer arithmetic

Multiple-precision integer can be explained to be calculations that are performed

on numbers whose digits of precision are limited only by the available memory of

the host system. In C language, multiple-precision integers are handled by using

variable-length arrays of digits. There are several libraries provided for such data

manipulation readily available for use with the C language. A few of these are

available for free for non-commercial purposes. One of such library was used for

this project. The only other option would have been to write all functions

necessary for such integer arithmetic, which in itself would have greatly extended

the period of time necessary to complete this project.

The library used for this project is the BigDigits library, available for free use,

provided by D.I. Management Services Pty Limited. The use of this library made

it easier to deal with the data being used RSA algorithm.

This library deals with multiple precision arithmetic parts of implementing the

RSA algorithm. There are several functions to handle single and multiple

precision numbers, however, the algorithm for handle multiple precision numbers

will be detailed below.

42

1. Addition and subtraction for multiple precision integers: this type of

arithmetic is performed on two integers with the same number of digits.

The numbers must be of a similar base before such operations can be

performed. If one of the numbers is of a different base, then such number

will need to be converted to the required base number. Concerning a

condition where one of the numbers has a different length, the shorter

number needs to be padded with 0s on the left, that is, the most significant

bit position. The algorithm for performing the addition arithmetic is

outlined below:

INPUT: takes in positive integers a and b, each with n + 1 base x digits.

OUTPUT: returns the sum a + b = (wn+1, wn… w1, w0)b in x

representation.

1. k ← 0 where k is the carry digit.

2. For j count (from 0 up to n); n is the number of digits.

a. wi ← (ai + bi + k) mod b.

b. Check if (ai + bi + k) ˂ b, then k ← 0; else k ← 1.

3. wn+1 ← k.

4. Return ((wn+1, wn… w1, w0)).

The algorithm for calculating multiple precision subtractions is outlined

below:

INPUT: takes positive integers a and b, with n + 1 with base x digits,

while a ≥ b.

OUTPUT: difference a – b = (wn, wn-1 … w1, w0)x in b representation.

1. k ← 0.

2. While counting down from n to 0; n is the number of digits.

a. Check if a ˂ b, return -1.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

Check if a ˃ b, return 1.

2. Multiplication for multiple precision integers: this type of arithmetic

will have the length of n + t + 1, where n and t are the number of digits of

each of the integer to be multiplied, at the most. The algorithm is a

modification of the standard method used in schools. The algorithm is

outlined below:

INPUT: positive integers a and b with n + 1 and t + 1 same base digits

respectively.

OUTPUT: the product ab = (wn+t+1… w1 w0)x in base x representation.

1. For i count (from 0 to n + t + 1); initialise wi to 0.

2. For j count (from 0 to t);

a. k ← 0.

b. For i count (from 0 to n):

i. Calculate (uv)b = wi+j + aibj + k, and set wi+j ←v, k←u.

c. wi+n+1 ←u.

3. Return ((wn+t+1… w1 w0)).

Calculating (uv)b is known as the inner-product method. Since wi+j, ai, bj

and k are all of the same base x. the result of the operation is at the most (x

- 1) + (x – 1)
2
 + (x – 1) = x

2
 – 1, and therefore it can be represented by to

base x digits. The outline above requires (n + 1) (t + 1) single precision

multiplications.

3. Squaring for multiple precision integers: from the previous algorithm

one will notice that (uv)b has both u and v as single precision integers. In

this section, u and is used as a double precision integer in such a way that

0 ≤ u ≤ 2(x - 1). The value v still remains a single precision digit.

The algorithm for this is outlined below:

INPUT: positive integer y = (yt-1 yt-2…y1 y0)b.

44

OUTPUT: (y) (y) = y
2
 in base b.

1. For i count (from 0 to (2t - 1)); wi ← 0.

2. For i count (from 0 to (t – 1));

a. (uv)b ← w2i + yi yi, w2i ← v, k ← u.

b. For j from (i + 1) to (t – 1);

(uv)b ← wi+j + 2yjyi + k, wi+j ← v, k ← u.

c. wi+j ← u.

3. Return ((w2t-1, w2t-2… wiw0)b).

From the step 2a, there comes up a situation where u can become

larger than a single precision number. This situation is shown below:

Since wi+j takes the value of v, wi+j ≤ b – 1.

If k ≤ 2(b – 1), then wi+j + 2yjyi + k ≤ (b – 1) + 2(b – 1)
2
 + 2(b – 1) = (b

– 1) (2b + 1); which implies 0 ≤ u ≤ (2b – 1). The value of u in this

case can exceed single precision. This had to be handled in the

algorithm.

4. Division for multiple precision integers: the division operation is the

most complicated out of all the arithmetic for multiple precision integers.

The algorithm below calculates the quotient q and remainder in base b

representation when u and v are divided where v is the denominator. The

algorithm is outlined below.

INPUT: positive integers u = (un … u1u0)b, v = (vt ... v1 v0)b where n ≥ t ≥

1, vt ≠ 0.

OUTPUT: the quotient, q = (qn-t ... q1q0) and remainder r = (rt ... r1r0)b so

that u = qv + r, 0 ≤ r ≤ v.

1. For j count (from 0 to (n – t)); qj ← 0.

2. While (u ≥ vb
n-t

); do qn-t ← qn-t + 1, u ← u - vb
n-t

.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

3. For i count (n down to (t + 1)); do

a. If ui = vt, set qi-t-1← b – 1; else, set qi-t-1 ← [(uib + ui-1)/vt].

b. Test the condition (qi-t-1(vtb + vt-1) ˃ uib
2
 + ui-1b + ui-2; perform

qi-t-1 ← qi-t-1 – 1.

c. u ← u - qi-t-1vb
i-t-1

.

d. If u ˂ 0, set u ← u - vb
i-t-1

 and qi-t-1 ← qi-t-1 – 1.

4. r ← u.

5. Return (q, r).

This algorithm was implemented using two different functions to make it

more efficient. The first function, spDivide(), returns the high digit of the

quotient, q. The second function, mpShortDiv(), returns the value of the

remainder, r. Normalization is ensured in binary by left-shifting the binary

form of u and v.

5.3.2 Left-to-right binary exponentiation algorithm

This method is one of the basic techniques used for exponentiation. The general

idea behind the algorithm and a walk-through for it are discussed next. The

function performing this logic is outlined below:

INPUT: g (a member of finite elements) and a positive integer e = (et et - 1… e1

e0)2.

OUTPUT: g
e
.

1. A ← 1.

2. For i count (from t down to 0):

a. A ← A × A.

b. If ei = 1, then A ← A × g.

3. Return (A).

This can be better understood when thinking about the computational efficiency

of the algorithm. If one would consider the bit-length of the binary representation

of e, and the number of 1s in e would also be noted, one would discover that the

46

algorithm performs the squaring of g the bit-length number of times and

multiplication of g onetime less than the number of 1s available in e. The

advantage of using this method is that multiplication is always with the fixed

value g. For a g with a special structure, multiplication becomes easier than

multiplying two arbitrary elements.

Other functions that were used and their functionalities are listed in table 2 below.

Table 2. Function names and their functionalities.

FUNCTION NAMES FUNCTIONALITY

spMultiply() Optimizing for 8 bits architecture.

mpSetEqual() Equalizes the sizes of two arrays.

mpSetZero() Initializes all array members to zero.

mpSetDigit() Sets a multiple precision digit to single

precision digit.

mpSizeof() Returns the size of significant bits in an

array.

mpShiftLeft() Left-shifts a binary number by required

spaces left and pads with 0s.

mpShiftRight() Right-shifts a binary number by

required spaces left and pads with 0s.

moduloTemp() Returns remainder r of modular

arithmetic.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

5.4 Compilation and code download

For the function used in implementing this project, the encryption process works

by taking in the public-key e, modulo number n, the number of bits and creating

also a space for handling the output ciphertext. Calling this function returns the

ciphertext, while a call to this function with the ciphertext and plaintext position

reversed, decrypts the data. Figure 10 shows a code snippet in the main() function

for encrypting and decrypting. Figure 11 shows the microcontroller being

programed using WinARM. For the implementation on this MCU, 512-bits key-

length was used. The key size was chosen considering the type of device available

for this project. Decryption time was one of the considerations taken into account

be the key-length size was decided. While 512-bits key-length is not considered

very safe these days, for this project this sufficiently addresses the purpose of this

project. The requirement was to be able to communicate between two MCUs with

the data encrypted on one side and decryption of encrypted data on the other side.

Encryption and decryption sequence calls the function mpModExp(), which

implements the binary left-to-right exponentiation algorithm for calculating RSA

encryption. This is logical because both sequence use the same algorithm. The

first difference is that encryption takes in the plaintext and returns the ciphertext,

while decryption takes in the encrypted ciphertext and returns the decrypted

plaintext. The second difference, which really affects the time of execution of

both sequence is that, encryption uses the public key e, which is of a shorter

length while decryption sequence uses the private key d, which is of a similar

length with the modulo n. the effects are easily noticeable in the execution time of

both sequence.

48

 Figure 12. Calling encryption and decryption sequence.

 Figure 13. Programming the MCU.

Programming the MCU with the project took about 15 seconds in total which

already shows that the overhead of the algorithm is quite time consuming.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

Running the algorithm for testing clearly shows the effect of the difference in key-

sizes between encryption and decryption. As mentioned earlier, the private key

type being the same size as the modulo number makes the computing of the

ciphertext to that power quite time consuming for any type of computer

architecture. In the next section, the result of the implementation will be

discussed.

50

6 TESTING FOR RSA AND PROBLEMS

The project was completed successfully with both encryption and decryption

being implemented. The only drawback perhaps would be the availability of only

one MCU for the whole project. The unavailability of the other MCU, however,

did not affect the ability to test the performance of the system. This was made

possible with the use of brayterm which serves as a means of viewing the

encrypted and corresponding decrypted data or plaintext, however the case may

be.

6.1 Testing

Testing of the project was carried out after first programming the MCU and then

changing it from the bootloader mode by disconnecting the jumper for the JRST

and BSL pins on the device. A thing to note about the device is that it is 16-bits

based. This has also contributed to help speed up the process. The output of the

program can be viewed only after connecting it to BrayTerm. With BrayTerm, the

user interface is very friendly and as such easily configurable. The connection

parameters were chosen based on previously configured data rate parameters

when activating the UART0 channel on the MCU. The preconfigured values are

9600 bps for the data rate and for the data format, 8-N-1, which indicates, no start

bits, 8 data bits, no parity bit and 1 stop bit.

The figure below shows the setup of BrayTerm showing selected parameters used

for testing the project.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

 Figure 14. BrayTerm with data transfer settings.

As can be seen from the figure, the COM port used was COM1, the baud rate was

set to 9600 bps. Data bits, 8, no parity bit selected, 1 stop bit and no hand shaking

measure between the MCU and BrayTerm was used.

Connecting the MCU unit can be achieved by just clicking the connect button on

the interface. This can be seen from the first figure shown below. This can be

confirmed from the connected text at the bottom left corner of the interface. In

addition, the connect button has been replaced with the disconnect button. Testing

the project requires that it be connected and the run for execution to commence.

This device can be put in run mode by pressing the reset button on the device. The

LED on the board was programmed to show each encryption and decryption

completion by alternating between switching on and off. A delay function was

also used to slow down the execution so that the start of the decryption. After the

program on the device has started to run, it transmits a welcome message and then

requires a user input, which in this case serves as the plaintext being encrypted.

This is shown in the other figure below.

52

Figure 15. BrayTerm connected to the MCU.

The next figure shows the program running on the MCU. In this figure, the user

input is being awaited.

 Figure 16. Code running on the MCU.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

After the user input is confirmed by hitting the return key, the MCU then starts to

encrypt the input plaintext into a cipher text. This is seen from the input word

‘hello’. This is shown in the next figure.

 Figure 17. Ciphertext for ‘hello’ after encryption.

The decryption is done using the ciphertext derived from encryption based on the

RSA algorithm. As can be seen, the ciphertext length is up to 512-bits used for the

value of modulo n. Something that should be noted about decryption is that it

deals in whole with 512-bits of ciphertext and then uses a modulo and the private

exponent d, with the same bit length. That considerably slows down the speed of

computing the plaintext from ciphertext. Figure 15 below shows decryption part

of the project.

54

 Figure 18. Decrypted ciphertext for ‘hello’.

From the figure above it can be seen that the decrypted data corresponds to the

plaintext hello. The decrypted text is displayed in hexadecimal format using the

ASCII conversion method. The decryption time was at an average of 9 seconds

each time, which is about 4 times the time required to encrypt the same text or

data. The reason for this has been discussed in detail in the previous chapter.

6.2 Problems

The problems encountered during the course of completing this project were

mostly based on the device of choice. The main reason for this is the lack of

experience with the use of the platform. A lot of time was spent just trying to

figure out how to make the device work and generally just testing that all part of it

are still fully functional. A lot of research time was lost based on this reason.

The compiler choice also did not help as it is, in my opinion, very primitive. It has

to be totally configured to work manually and anyone without any prior

knowledge of compilers may find it almost impossible to work with. The support

for the compiler was also very limited, perhaps because it was developed by

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

enthusiasts working on the ARM processor at the time. The choice was perhaps

mostly because other components such as a JTAG connector would have been

required for connecting to other platforms.

Another challenge faced was in being able to adapt the multiple-precision

arithmetic library so as to work with the MCU of choice. This also took some time

for research but eventually was worth it.

56

7 CONCLUSION AND SUGGESTIONS

7.1 Conclusion for RSA

After the completion of the project, various concepts of security, under the

specific field of data integrity, authentication and data confidentiality have been

extensively discussed. In particular, asymmetric-key (public-key) cryptography,

specifically RSA algorithm has been delved into. The known issues, advantages,

implementation, and drawbacks as a result of its algorithm have also been

discussed. As a result of this, one can deduce the importance of the RSA scheme

in daily applications.

One major advantage that the keeps the algorithm relatively safe is its basis on

factoring of big numbers which is still something very difficult to achieve, even

with the availability of processing power needed to achieve it. An RSA scheme is

said to be relatively safe if the factoring of the algorithm modulo is infeasible. The

last key-length that was broken was the 512-bits key-length. Even that took about

7 months and a lot in terms of finances and processor power before this was

achieved. So one may say that it is still relatively safe to use the key-length (512-

bits), but that will have to depend on the type of data to be kept hidden and for

how long it is going to be kept hidden.

However, currently 1024-bits key-length is the minimum advisable key-length to

be used. If one would take for example a bank that needs to authenticate its user

with the use of passcodes so as to be able to confirm his or her identity. The

waiting time for authentication to be concluded is clearly a worthy price to pay for

the verification of user data. Talks are currently going on about when the new

minimum key-length will be permanently changed from the current length 1024-

bit to 2048–bits key-length.

As a result, RSA algorithm is still a relevant protocol in the security field and will

remain so for a long time to come. It still boasts its (almost) irreversible prime

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

number factorization. While this is true, it does not however, help with the timing

for the decryption part of the process. If the applications using RSA algorithm

continue to require an authentication or data integrity as one of its important

feature, then it is still a rather acceptable price to pay to enable such operations to

be properly functional. There is an Eve in every part of the world waiting at any

opportunity to make a move. In my opinion, therefore one should be able to draw

their conclusions based on the type of data security feature required for such an

application to be secure.

7.2 Conclusion for CRC

The need for detection of errors dates back a very long time and as such several

methods of detection has been designed. CRC-32 is one of the cyclic codes that

were designed to help solve this kind of problem that may arise in data

transmission and reception. CRC-32 has proven to be quite efficient in detecting

errors of different types and under different data transfer rates. It is known to

detect single-bit errors, odd numbered errors, two isolated single-bit error types

and burst error types. Based on this feature the only problem with the use of CRC-

32 is getting the right generator polynomial. This is of utmost importance as it

helps to ensure that all error in transmission is detected and subsequently

retransmitted or handled as desired.

As a result, CRC-32 can be said to be considerably reliable when compare with

other methods of data error detection algorithms. An added advantage with the

use of CRC-32 is that it comes with most applications and the results can be

checked almost immediately as there are several means of doing so available, free

to use, on the internet. Another great advantage it possesses is the fact that it can

be easily implemented in both hardware and software compared with other

protocols. Generally, cyclic codes are exceptionally fast in hardware

implementation.

In conclusion, one can understand why cyclic codes are used extensively in many

networks.

58

7.3 Suggestions and future developments

The consideration that data can be of different format and transferred on various

devices, some wired, others wireless makes it possible to suggest expanding its

use to other devices such as the mobile telephone and perhaps someday, it could

help secure wireless data between communicating computers. Although this may

be challenging, I do believe that it is possible. This is so because new discoveries

are being made from various kinds of researches currently going on around the

world.

__

Keywords Cryptography, UART, RS-232, RSA, microcontroller.

REFERENCES

/1/ Forouzan, Behrouz A. (2007). Data Communications and Networking.

Fourth edition. Singapore. McGraw-Hill.

/2/ RSA website. Accessed 14.11.2011.

http://www.rsa.com/node.aspx?id=2760

/3/ Olimex Ltd website. Accessed14.11.2011. Available under development

and tools. http://www.olimex.com/dev/index.html

/4/ ARM-Projects website. Accessed 14.11.2011.

http://www.siwawi.arubi.uni-kl.de/avr_projects/arm_projects/

/5/ Menezes, Alfred J., van Oorschot, Paul C. and Vanstone, Scott A. (1996).

Handbook of Applied Cryptography (Discrete Mathematics and Its Applications).

First edition. CRC Press.

/6/ NXP semiconductors website. LPC2000 User Manual. Accessed 10.10.2011

http://www.nxp.com/acrobat_download/usermanuals/UM_LPC21XX_LPC22XX_2.p

df, Page 79

/7/ Initialization code/hints for the LPC2000 family. Application note for LPC2000

family.

http://www.rsa.com/node.aspx?id=2760
http://www.olimex.com/dev/index.html
http://www.siwawi.arubi.uni-kl.de/avr_projects/arm_projects/

