SCADA DESIGN AND ENTERPRISE CONNECTIVITY
FOR A WATER PROCESSING SYSTEM

Bachelor’s thesis
Degree Programme in Automation Engineering
Valkeakoski 18.11.2011

Stanley Twumasi
ABSTRACT

This thesis is a development project designed to monitor and control a laboratory water processing system for Hamk University of Applied Sciences Automation Engineering Department.

The main areas of this thesis can be categorized into four main sections. The first part deals with the technical documentations of the water processing system. The second section involves the installation and configuration of the Beckhoff (PLC) input and output cards used as a remote terminal unit.

The third section involves graphical programming and the development of the human machine interface with LabVIEW to acquire or generate data from or to these sensors and actuators of the process through Beckhoff’s input and output cards by utilizing ACTIVE X control and AdsOCX standards or protocol.

The final part deals with enterprise integration demonstrating how process data is captured from the process and circulated or made available in the local area network (LAN) of Hamk University of Applied Sciences.

Keywords: process, control, configuration, active x, enterprise integration

Pages 58p+ appendices 3p.
CONTENTS

1 INTRODUCTION .. 1
 1.1 Terminology .. 1
 1.2 Objectives .. 2
 1.3 Problem description .. 2
 1.4 Motivation .. 3

2 TECHNICAL DOCUMENTATION .. 3
 2.1 Process structure ... 3
 2.2 Main sensors and actuators .. 4
 2.2.1 Water pump .. 4
 2.2.2 Control valve ... 4
 2.2.3 Magnetic flow meter ... 5
 2.2.4 Magnetic solenoid valves .. 6
 2.2.5 Level transmitters ... 6
 2.2.6 Limit switch/float switch ... 7
 2.3 Process and instrumentation diagram .. 8
 2.4 Loop function principle ... 9
 2.5 Process circuit diagram .. 10
 2.6 Instrumentation specification sheet .. 11
 2.7 I/O reservation table ... 11

3 BUS COUPLER AND BUS TERMINALS ... 12
 3.1 Current to voltage signal conversion .. 14

4 CONFIGURATION OF BECKHOFF I/O SYSTEM (RTU/PLC) .. 15
 4.1 Scanning devices automatically ... 16
 4.2 Scanning boxes automatically .. 17
 4.3 Scanning terminals automatically ... 18
 4.4 Scanning devices manually ... 19
 4.5 Scanning boxes manually ... 21
 4.6 Scanning terminals manually .. 22

5 LABVIEW AND TWINCAT DATA PATH IMPLEMENTATION .. 24

6 GRAPHICAL PROGRAMMING .. 25
 6.1 Inserting an active X object ... 27
 6.2 Adding a property ... 28
 6.3 Adding AdsAms Server NetId and AdsAms Server Port Properties 29
 6.4 Entering data for AdsAms Server NetId ... 30
 6.5 Entering data for AdsAmsServer Port .. 31
 6.6 Adding a flat sequence structure .. 32
 6.7 Creating a while loop ... 33
 6.8 Coding binary input terminals ... 35
 6.9 Coding binary output terminals ... 37
 6.10 Coding analog input terminals .. 39
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.11 Coding analog output terminals</td>
</tr>
<tr>
<td>6.12 Adding constants to coded terminals</td>
</tr>
<tr>
<td>7 INDICATORS, DATA DISPLAYERS AND ALARMS</td>
</tr>
<tr>
<td>7.1 Pump fault indicator and alarm</td>
</tr>
<tr>
<td>7.2 Water Tank1(WT1) limit switch and alarm</td>
</tr>
<tr>
<td>7.3 Tank2 and Tank3 filling - draining valves switches, and pump switch</td>
</tr>
<tr>
<td>7.4 Tank 2 and Tank3 level transmitters, and flow meter transmitter</td>
</tr>
<tr>
<td>7.5 Pump Speed and control valve</td>
</tr>
<tr>
<td>7.6 X-scale offset and multiplier</td>
</tr>
<tr>
<td>7.7 Wait until millisecond multiplier and iteration</td>
</tr>
<tr>
<td>7.8 Process control principle</td>
</tr>
<tr>
<td>8 ENTERPRISE CONNECTIVITY</td>
</tr>
<tr>
<td>8.1 Process data access</td>
</tr>
<tr>
<td>9 CONCLUSIONS</td>
</tr>
<tr>
<td>9.1 Recommendation</td>
</tr>
</tbody>
</table>

SOURCES 58

Appendix 1 Control cabinet box and field layout

Appendix 2 Controller and power supply
1 INTRODUCTION

1.1 Terminology

Acronym SCADA stands for supervisory control and data acquisition. These are normally computer based systems used to control and monitor a process. These industrial or infrastructure processes can be monitored and controlled by computer systems. (National Communication System 2004).

SCADA systems were introduced about six decades ago and they have evolved with technological advancement. SCADA systems have also shifted from closed proprietary systems to an open system allowing designers to choose equipment that can help them monitor their unique system using equipment from mixed vendors. (National Communication System 2004). These SCADA systems utilize common communication protocols such as Ethernet and TCP/IP to transmit information or data from field devices to the master control unit. (National Communication System 2004).

The main components to a SCADA system are the instrumentation and control devices, RTUs (Remote terminal units) or PLCs (Programmable logic controllers), communications systems, and the master station HMI (Human machine interface) (Figure 1). (National Communication System 2004).

The RTU/PLC provides an interface to the instruments and control devices of the process. The communication system provides the path for data transmission between the RTU/PLC and the master station. (National Communication System 2004). These communication systems can be wire connected or wireless. The HMI displays this information in an easily understood graphical form, saves the data received, transmits alarms and permits operator control as required. (National Communication System 2004).

![Figure 1](Bailey. D & Wright 2003, 70).
SCADA design and enterprise connectivity for a water processing system

1.2 Objectives

The objectives of this thesis were to develop a SCADA system that would monitor and control a water processing system, gather the process information and disseminate this information to the appropriate work station located in the local area network of Hamk University of Applied Sciences.

1.3 Problem description

At an earlier development phase of the water processing system at Hamk University of Applied Sciences the system utilized a control panel equipped with knobs, lights, and switches (Figure 2).

To implement supervisory control, the operator must manually push the switches and turn the knobs. Data acquired from the process is trapped internally making it impossible to share.

![Figure 2: Earlier phase control panel](image)

A modern processing system must have an open network infrastructure that is able to disseminate data from the field device network all the way up to the execution and business level allowing the hardware of different manufacturers to communicate between themselves. (Berge 2011, 3).

Likewise a state-of-the-art processing system must also have an open software infrastructure beginning from the control network all the way up to the business network, allowing the software from different developers to communicate between themselves. (Berge 2011, 3).
1.4 Motivation

The motivation for this research came from a current trend of software and hardware applications in the automation industry. These highlight and the increasing importance of data distribution within an enterprise between software and hardware from different software developers as well as automation device manufacturers.

2 TECHNICAL DOCUMENTATION

2.1 Process structure

The process structure is made of anodized aluminum profile. It is mounted on four castors so that it can be moved from one station to another. The frame comes with a working surface to accommodate computers and other devices. A laminated timber slab is fitted between the frame ends. All the connection devices that are needed are mounted on this slab: power sources, terminal connectors and a converter.

The process consists of a reservoir tank made of transparent acrylic 700x400x500mm and two transparent acrylic vertical tanks. There are pipes made of plastic, except the ones from the pump to the T-piece, which is made of 38mm steel pipe, and from there onto a 25mm steel pipe of the magnetic valve. (Figure 3).

Figure 3 Process structure
2.2 Main sensors and actuators

The water process further consists of two level transmitters (hydrostatic pressure), a magnetic flow meter, a control valve, a pump equipped with an internal frequency converter, and four magnetic solenoid valves.

2.2.1 Water pump

A Grundfors water pump is equipped with an internal frequency converter, two indicator lights and a warning or fault signal output terminal block built into the MLE terminal box. The warning or fault signal output can be wired to indicate normal operation as well as warning or fault. (Figure 4).

The main function of the pump in the process is to pump water from Tank1 into either Tank 2 or Tank3.

![Grundfors water pump](image)

Figure 4 Grundfors water pump

2.2.2 Control valve

The control valve is made up of two components. There is a valve coupled to an actuator (AQM24-05) with a control signal ranging between 0-10V DC. The actuator has an automatic calibration function for the calibration of the starting point and stroke. This allows a simple adaptation to various valves. (Figure 5).

The function of the control valve in the process is to control the amount of water that is flowing back from either Tank 2 or 3 into Tank1. The opening and closing of the valve can also be done manually.
2.2.3 Magnetic flow meter

A magnetic flow meter measures the amount of water that is flowing into Tank 2 and Tank 3. (Figure 6).

Figure 5 Control valve

Figure 6 Valmet flow meter
2.2.4 Magnetic solenoid valves

There are two filling and two draining magnetic valves. The functions of the filling valves are to allow pumped water to flow into Tank 2 and Tank 3 when opened. When opened the draining valves allow water from Tank 2 and tank 3 to flow back into Tank 1. (Figure 7).

![Magnetic solenoid valves](image)

2.2.5 Level transmitters

Hydrostatic pressure level transmitters mounted at the base of Tank 2 and Tank 3 measure the level of water inside the tanks. (Figure 8).

![Hydrostatic pressure transmitters](image)
2.2.6 Limit switch/float switch

The switch consists of a micro switch inside a polystyrene cover, from which a 3wire cable with acrylic sheath protrudes. It has a counter weight which is fixed to the cable at a desired distance from the float. In the process the limit switch defines a minimum level of water in Tank 3. (Figure 9).

![Figure 9 Float switch](image-url)
2.3 Process and instrumentation diagram

The process and instrumentation diagram illustrates how different components (piping, instrument and equipment) of the process are connected together and act as the basis for all design activities (Figure 10). (Battikha 2007, 253).
2.4 Loop function principle

The loop function principle describes the detailed arrangement of instrumentation components in a loop. (Table 1). (Battikha 2007, 268).

Table 1 Loop function table

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LICA-110</td>
<td>Tank level measurement and controller</td>
</tr>
<tr>
<td>P-120</td>
<td>pump</td>
</tr>
<tr>
<td>LT-150</td>
<td>Hydrostatic level measurement transmitter</td>
</tr>
<tr>
<td>LT-120</td>
<td>Hydrostatic level measurement transmitter</td>
</tr>
<tr>
<td>LS-130</td>
<td>Switch for Tank WT2 level</td>
</tr>
<tr>
<td>MV1-130</td>
<td>Tank WT2 inlet valve</td>
</tr>
<tr>
<td>MV2-130</td>
<td>Tank WT2 outlet valve</td>
</tr>
<tr>
<td>LS-140</td>
<td>Switch for Tank WT3 level</td>
</tr>
<tr>
<td>MV1-140</td>
<td>Tank WT3 inlet valve</td>
</tr>
<tr>
<td>MV2-140</td>
<td>Tank WT3 outlet valve</td>
</tr>
<tr>
<td>LS-150</td>
<td>Tank WT2 level measurement</td>
</tr>
<tr>
<td>LT-150</td>
<td>Tank WT2 hydrostatic level measurement transmitter</td>
</tr>
<tr>
<td>LS-110</td>
<td>Tank WT3 level measurement</td>
</tr>
<tr>
<td>LT-110</td>
<td>Tank WT3 hydrostatic level measurement transmitter</td>
</tr>
</tbody>
</table>
2.5 Process circuit diagram

The process circuit diagram shows the detailed wiring arrangement. This helps to trace where a particular wire is going and coming from. This makes trouble shooting and maintenance activities less cumbersome (Figure 11).

Figure 11 Circuit diagram
2.6 Instrumentation specification sheet

The objective of the instrument specification sheet is to list all the important details of the various instruments involved in the process (Table 2). (Battikha 2007, 266).

<table>
<thead>
<tr>
<th>Device</th>
<th>Device Amoun Manuf.</th>
<th>Supply</th>
<th>Signal</th>
<th>I/O</th>
<th>Note!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump CRE 4-20</td>
<td>1 Grundfors 230 VAC</td>
<td>0...10 VDC RPM Control ON/OFF</td>
<td>AO BI</td>
<td>max 2,2 l/s</td>
<td></td>
</tr>
<tr>
<td>Magnetic Valve L180B17-1(25) (filling)</td>
<td>2 Sirai 24 VAC</td>
<td>24 VDC</td>
<td>BO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Valve 6213/R1 (drainage)</td>
<td>2 Burkert 24 VAC</td>
<td>24 VDC</td>
<td>BO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level transmitter, (hydrostatic pressure) NAS 0,2A</td>
<td>2 Trafag 24 VDC</td>
<td>4...20 mA</td>
<td>AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Valve Valve VB7215-049 (DN32)</td>
<td>1 Regin 24 VAC</td>
<td>Control 0...10 VDC Position 4...20 mA</td>
<td>AO AI</td>
<td>Run Time 108 s</td>
<td></td>
</tr>
<tr>
<td>Actuator AQM24-05</td>
<td>1 Regin 24 VAC</td>
<td>0...2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Flowmeter MP150/8EVL</td>
<td>1 Valmet 230 VAC</td>
<td>3600 puls/l</td>
<td>max 2,2 l/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f/I-μunnin EM-M17b</td>
<td>1 Phoenix 24 VDC</td>
<td>4...20 mA</td>
<td>AI</td>
<td>0...10 V</td>
<td></td>
</tr>
<tr>
<td>Level Switch, Float Switch AKO 5315</td>
<td>1 AKO-elect.</td>
<td>Limit can be set</td>
<td>BI</td>
<td>Upper/Lower</td>
<td></td>
</tr>
</tbody>
</table>

2.7 I/O reservation table

The inputs and outputs reservation table shows how the channels of the bus terminals are assigned to the process sensors and actuators (Table 3).

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>KL3064(AIU)</th>
<th>KL4004(AOU)</th>
<th>KL1104(BIU)</th>
<th>KL2408(BOU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LT-150</td>
<td>LV-110</td>
<td>P120(pump fault)</td>
<td>MV2-130</td>
</tr>
<tr>
<td>2</td>
<td>LT-110</td>
<td>P-120</td>
<td>LS-120</td>
<td>MV1-130</td>
</tr>
<tr>
<td>3</td>
<td>FT-120</td>
<td></td>
<td></td>
<td>MV2-140</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>MV1-140</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>PS-120</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BUS COUPLER</td>
<td>BK9000</td>
<td>BK9000</td>
<td>BK9000</td>
</tr>
<tr>
<td>TERMINATOR</td>
<td>KL 9010</td>
<td>KL 9010</td>
<td>KL 9010</td>
<td>KL 9010</td>
</tr>
</tbody>
</table>
3 BUS COUPLER AND BUS TERMINALS

Bus Terminal Controller BK 9000 is a Bus Coupler with integrated PLC functionality which has a fieldbus interface for Ethernet. The BK 9000 is an intelligent slave that can be used as non-central intelligence in the Ethernet system. One unit consists of the Bus coupler (Figure 12), any number of bus terminals (Figures 13-16) between 1 and 64, and a bus end terminal (Figure 17). (Beckhoff Automation 2011).

Figure 12 BK9000 Ethernet TCP/IP bus coupler (Beckhoff Automation 2011).

Figure 13 KL 1104 four channel binary input terminals 24VDC (Beckhoff Automation 2011).
SCADA design and enterprise connectivity for a water processing system

Figure 14 KL 2408 eight channel binary output terminals 24VDC (Beckhoff Automation 2011).

Figure 15 KL3064 four channel analog input terminals (0-10V). (Beckhoff Automation 2011).
3.1 Current to voltage signal conversion

The analog input terminal KL 3064 can read only voltages and the signals from the level transmitters and the flow transmitter are current signals (4-20mA). 500Ω resistors were placed across these devices and the voltages across the resistors measured and connected to the analog input terminal KL 3064 (Figure 18).
SCADA design and enterprise connectivity for a water processing system

500Ω

Signal from device (4-20mA)

Voltage signal (2-10V) to KL3064

Figure 18 Current to voltage resistor converter

4 CONFIGURATION OF BECKHOFF I/O SYSTEM (RTU/PLC)

The TwinCat (Beckhoff) PLC is used as the remote terminal unit to provide an interface to the instruments and control devices of the process (Figure 19).

The TwinCat system manager has a scan device function that enables it firstly to scan the PC for known devices and place them into the system manager under I/O devices.

Secondly the system manager scans the network connected to a device to locate any known boxes and placing them into the system manager under the appropriate device.

Finally it scans the terminals connected to a bus coupler and places them into the system manager also under the appropriate box.
SCADA design and enterprise connectivity for a water processing system

This enables all inputs and outputs of the system to be made available for use by a higher level controller or a custom written external control program.

4.1 Scanning devices automatically

Devices can be scanned automatically or manually. To scan a PC automatically for known devices, firstly right clicking on I/O devices and then selecting “Scan Devices…” (Figure 20).

![Scan device automatically](image)

Figure 20 Scanning devices automatically

The system manager will scan the PC for any known devices, and place them under I/O device. In this case the system manager should find a real time Ethernet (standard) in the PC, with a BK9000 connected to the Ethernet port (Figure 21)
4.2 Scanning boxes automatically

Right clicking on the device 1(RT-Ethernet) and then selecting “Scan Boxes…” (Figure 22) the boxes can be automatically scanned.

The system manager will scan the Ethernet network and display a list of detected bus couplers, by selecting BK 9000 and clicking OK. The system manager will place BK 9000 under device 1(RT-Ethernet) (Figure 24).
4.3 Scanning terminals automatically

To automatically scan the “terminals” connected to a bus coupler and to update the I/O terminal configuration, you have to first right click on the “box”. (BK9000-0000….) and then select “Scan Terminals…” (Figure 25).
The system manager will scan the bus coupler (BK 9000) and update the I/O terminal configuration for the selected box (Figure 26).

4.4 Scanning devices manually

To add a “device” to system manager manually, you have to first right click on “I/O Devices” and then select “Append Device…” (Figure 27).
A list of all currently supported hardware devices appears in the “Insert Device” screen. You have to left click on Ethernet and select Real-time Ethernet (Standard) and click OK (Figure 28).

Now the system manager will place Real-time Ethernet (Device1 RT-Ethernet) under I/O devices (Figure 29).
4.5 Scanning boxes manually

You have to first right click on the device 1 (RT-Ethernet) and then select “Append Box…” (Figure 30).

The list of all currently supported hardware devices appears in the “Insert box” screen. Select BK 9000 and click OK (Figure 31).
SCADA design and enterprise connectivity for a water processing system

The system manager shows device 1 (RT-Ethernet) with one box (BK 9000) connected to it (Figure 32).

4.6 Scanning terminals manually

To add terminals manually you first have to right click on the box BK 9000 then select the append terminal (Figure 33).
Figure 33 Appending terminals manually

Double click on the type of I/O required in the insert terminal pop-up menu. Name it and click ok. The system manager will add the terminal to the terminal configuration list for BK 9000 (Figure 34).

Figure 34 List of a bus terminals
SCADA design and enterprise connectivity for a water processing system

5 LABVIEW AND TWINCAT DATA PATH IMPLEMENTATION

In order for live process variables to be seen and interpreted on the human machine interface created with LabVIEW a data path must be established between the two software.

Data exchange between LabVIEW and TwinCAT software’s is implemented by ADS (Automation Device Specification) interface. An interface that permits communication between ADS devices (Figure35).

An object that is accessible via ADS and offers server services is known as an ADS device examples are TwinCAT and LabVIEW software’s.4

But in this case the TwinCAT is acting as a server while the LabVIEW acts as a client.

There is an ADS-OCX that provides methods, events and properties so that information can be exchange between TwinCAT and the LabVIEW software via the TwinCAT message router. (Beckhoff Automation 2011).

The ADS-OCX is executed as an Active X control element implemented with LabVIEW software. (Beckhoff Automation 2011)

![Diagram of LabVIEW and TwinCAT with ADS-OCX](figure35.png)

Figure 35 ADS device concept(Beckhoff Automation 2011).
6 GRAPHICAL PROGRAMMING.

LabVIEW has two main components to each virtual instrument (VI) the front panel (Figure 36) and the block diagram (Figure 37).

Figure 36 The water process human machine interface
Figure 37 Graphical programming of the human machine interface
6.1 Inserting an active X object

To start the programming, the first thing needed on the front panel is an ActiveX container (Figure 39). Right-clicking anywhere on the front panel brings up the controls pallet. Going to the .NET and active X pallet the active X container icon was chosen (Figure 38).

Moving the mouse over to the front panel and clicking ActiveX Container an empty ActiveX container should be on the screen (Figure 39).

An ActiveX Control needs to be placed inside the container. Right-clicking the mouse inside the active X container, a pop-up window appears and Insert ActiveX Object... was selected (Figure 40).
A new pop-up window appears with a list of all available ActiveX controls. Click **AdsOcx** Control, then OK (Figure 41).

![Inserting an active x object](image1)

Figure 40 Inserting an active x object

Moving to the LabVIEW diagram window. The AdsOcx control should appear in the diagram. This is the graphical reference to the Beckhoff AdsOcx control.

![List of active x controls](image2)

Figure 41 List of active x controls

6.2 Adding a property

Next is adding blocks to expose the Properties and Methods the AdsOcx control allows to interface within LabVIEW. Right-clicking in an open area of the diagram window displays the Functions pallet (if it is not already being displayed). Moving the mouse over the Connectivity pallet item displays the Connectivity pallet. Hovering the mouse over the ActiveX pallet item shows all available ActiveX tools. The Property Node icon was chosen by clicking on it (Figure 42).
6.3 Adding AdsAms Server NetId and AdsAms Server Port Properties

Placing the mouse on the Properties item in the pop-up and Left-Clicking brings a list of all items that are available. Selecting AdsAmsServerNetId and left-clicking replaces the item that was previously shown when the Property Node box was first wired to the AdsOcx Property Node icon. A second Property item was added from the list. By right-clicking in the pink area again and choosing Add Element from the list of selections (Figure 43).

The same item is now in the list twice. Right-clicking on the new, lower pink box, brings up the pop-up window again. The Properties item was selected. Scrolling down the list of available properties the AdsAmsServerPort was chosen (Figure 44).
SCADA design and enterprise connectivity for a water processing system

Now the property item can be written to, by right-clicking in the pink area and selecting **Create Constant** from the pop-up menu (Figure 45). Repeat the same steps for the blue property item.

A box is now available for entry of data to both the **AdsAmsServerNetId** and **AdsAmsServerPort**.

6.4 Entering data for AdsAms Server NetId

To find out what to enter for the **AdsAmsServerNetId**, the TwinCAT System Manager was consulted. By right-clicking on the Beckhoff **TwinCAT icon** in the computer's system tray area and clicking the properties item (Figure 46).
The TwinCAT system properties box will appear (Figure 47). The AMS Router tab was selected and the AMS Net Id: address copied out of this window and the value pasted in the pink AdsAmsServerNetId box in the Labview diagram (Figure 48).

6.5 Entering data for AdsAmsServer Port

The Port number needs to be 301 to get the variables in the TwinCAT system manager's Additional Task.
6.6 Adding a flat sequence structure

The OCX control only needs to be referenced once for all the items to be exposed. A structure called a flat sequence was put around the code created so far in the LabVIEW diagram to make sure this section happen only once. Right-clicking in an open area of the LabVIEW diagram window displays the functions pallet. Moving the mouse over the Structures item, a new pop-up window appears. From that window the Flat Sequence icon was selected.

The Flat sequence structure was rubber-band completely around the items created in the diagram . The LabVIEW connections diagram should now look like the picture in (Figure 50).
SCADA design and enterprise connectivity for a water processing system

The number written to the AdsAms Server NetId will be what is needed to access the server on the computer. By left-clicking on the flat sequence structure and selecting add frame after. The flat sequence structure is divided into two sections.

The first section contains the code created. This allows the code in the first section of the flat sequence to be executed first before the codes in the second section.

6.7 Creating a while loop

By right-clicking somewhere inside the second section of the flat sequence structure brings up the Functions pallet (Figure 51). Moving the mouse over the Structures item, the Structures pallet appears. By left-clicking and selecting the While Loop icon, the while loop was used to rubber banded a fairly large area inside the second section of the flat sequence structure. This space is where most of the coding will be done.

The outputs of the AdsOcx properties box was then wired to the edge of the While Loop structure (Figure 52).
By this a "tunnel" is created to pass the data from one structure to the other. The Blue-Green line is the reference to the AdsOcx Control and the Pink line is what LabVIEW calls a "cluster" of data. A cluster is just an array that contains differing data types.

To expose the **Methods** the AdsOcx control uses to interface within LabVIEW an open area of the diagram window was right clicked to display the **Functions** pallet (Figure 53). Moving the mouse over the **Connectivity** pallet item displays the Connectivity pallet and moving the mouse over the **ActiveX** pallet item displays all available **ActiveX tools** and then the **Invoke Node** icon was selected.
Changing to the wiring tool on the diagram, the boxes on the left of the **While Loop** structure was wired to the inputs of the new **Ads Ocx Invoke Node** block and the block named limit switch. Pressing and holding down the control key and left-clicking on the limit switch block diagram created, a copy was then dragged. The output of the limit switch block diagram was then wired to the input of the second diagram and named pump fault (Figure 54).

There are only two binary inputs to be coded these are the limit switch and the pump fault signal. This was done by right-clicking in the **Method** text area of the limit switch block diagram by doing this a pop-up menu appears as shown in figure 55.
By picking the **Methods** item a second window appears with all the possible methods the **AdsOcx Control** can expose. Scrolling down the list of items the **AdsSyncReadBoolReq** item was found, clicked and selected (Figure 55).

![AdsOcx control method adsSyncReadBoolReq](image1)

The **AdsOcx Invoke Node** box now changes to show the items required to implement this method. The picture below (Figure 56) shows the coding of the limit switch. The same procedure was repeated on the pump fault block diagram (Figure 57).

![Limit alarm block diagram](image2)
6.9 Coding binary output terminals

There are five binary outputs to be coded. These are the two filling and two draining valves for each tanks, and the binary output to turn the pump on and off.

These binary outputs were created by right-clicking anywhere inside the while loop to display the Functions pallet. Hovering the mouse over the Connectivity pallet item displays the Connectivity pallet.

Then hovering the mouse over the ActiveX pallet item displays all available ActiveX tools. The Invoke Node icon was then chosen as it was done when coding the binary inputs in figure 54. Four copies of this was dragged and wired together as shown in figure 58.
SCADA design and enterprise connectivity for a water processing system

Figure 58 Creating AdsOcx invoke nodes for binary outputs block diagrams

Now right-clicking in the **Method** text area of the pump (ON/OFF) block diagram a pop-up menu appears.

Picking the **Methods** item and scrolling down the list of items. The method **AdsSyncWriteBoolReq** was chosen this time (Figure 59).

Figure 59 AdsOcx control method adsSyncWriteBoolReq
This procedure was repeated to all the coded binary outputs block diagrams.

![Block diagrams of binary inputs and outputs](image-url)

Figure 60 Binary inputs and outputs block diagrams

6.10 Coding analog input terminals

There are three analog inputs to be coded. These are the two level transmitters each for the two tanks, and the flow meter transmitter.

The same steps were repeated as in our previous coding, this time selecting the method `AdsSyncReadIntegerReq`.
6.11 Coding analog output terminals

There are two analog outputs to be coded. The code controlling the speed of the pump and the code controlling the control valve. Two block diagrams one for the pump speed and the other for the control were created and wired together. By right-clicking in the Method text area of the pump speed block diagram a pop-up menu appears.

Picking the Methods item and scrolling down the list of items. The AdsSyncWriteIntegerlReq method was chosen.

The same steps were repeated on the valve control block diagram. This is how the coding should look like (Figure 62).
6.12 Adding constants to coded terminals

All the block diagrams can be written to or read from. Constant values for nIndexGroup, nIndexOffset, and cbLength are important. These constants were created by right clicking on the inputs to these constants, selecting create and choosing constant. The constants created are automatically wired to the appropriate input (Figure 63).
It is necessary that the **nIndexGroup** should be change as a HEX value to match the TwinCAT System Manager item being referenced.

This was done by right clicking on the **indexGroup** letter box. A pop-up screen appears and format and precision was selected (Figure 64).

A numerical constant properties window appears. Hexadecimal was selected and ok pressed (Figure 65). Repeat the same procedure to all the block diagrams.
In the TwinCat system manager expanding the additional task, task 1, and finally the inputs exposes all the configured input terminals.

To have the rest of the constants that needs to be entered into a block diagram the appropriate terminal must be selected to expose these constants.

With the Alarm limit (limit switch of tank1 WT1) highlighted the system manager exposes all the variables related to the alarm limit block diagram that needs to be entered as shown in figure 66.

The same procedure must be followed by the rest of the inputs to expose the constants that needs to be entered:

Likewise expanding the output exposes all output units. The same steps must be repeated as it was done to the input units.
Figure 66 Filling in input terminals constants exposed by the TwinCAT system manager
7 INDICATORS, DATA DISPLAYERS AND ALARMS

All process variables must be displayed in an easily understood graphics form in the LabVIEW front panel and the right controls or indicators must be created. These indicators and controls are found inside the controls palette from the LabVIEW front panel.

7.1 Pump fault indicator and alarm

To indicate on the HMI When there is a pump failure a pump fault indicator was created. This was done by right clicking on the pump’s fault block diagram pData letter box, selecting create and choosing indicator. The indicator is automatically wired to the output of the pData.

Right clicking on the indicator and selecting create and choosing local variable creates a local variable and then right clicking on the local variable and selecting change to read changes the read function of the local varia-
ble to a write function. This was then wired to the input of pData (Figure 68).

To create an alarm sound, right clicking inside the while loop. The function palette appears, graphics and sounds were selected and the beep.vi was chosen. This was also wired to the output of the pData as shown in figure 68.

![Diagram of SCADA design and enterprise connectivity for a water processing system]

7.2 Water Tank1 (WT1) limit switch and alarm

This indicates and receives an alarm sound from the HMI when the water level is below the lower limit in Tank1 (WT1). This was done by repeating figure 68 on the limit alarm block diagram.

![Diagram of creating local variable, limit alarm and limit indicator]

Figure 68 Creating local variable, pump fault alarm and indicators

Figure 69 Creating local variable, limit alarm and limit indicator
7.3 Tank2 and Tank3 filling - draining valves switches, and pump switch

These switches are used to turn the filling valves, draining valves of Tank 2 and 3 and the pump either on or off. This is achieved by right clicking on the input of the pData of pump (ON/OFF) block diagram and selecting create and then choosing control. A switch is created which automatically get wired to the input of pData.

These steps were repeated on filling valve tank3 (MV1-140), draining valve tank3 (MV2-140), filling valve tank2 (MV1-130) and draining valve tank2 (MV2-130) block diagrams (Figure 70).

Indicators to indicate when the valves are on or off were also wired to the inputs of their pDatas.

![Figure 70 Creating switches and indicators for the pump and valves](image-url)
7.4 Tank 2 and Tank 3 level transmitters, and flow meter transmitter

There are two level transmitters each connected to Tank 2 and Tank 3 to measure the level of water inside the tanks, a flow meter measures the amount of water flowing into Tank 2 (WT2) and Tank 3 (WT3).

To indicate this information on the HMI. The output of the pData of level transmitter Tank 2 block diagram was right clicked, create selected and indicator chosen. The indicator automatically gets wired to the pData output.

A local variable of the indicator was created, by right clicking on it and selecting change to write .This was then wired to the pData input.

The same steps were repeated on level transmitter Tank 3, control and flow meter block diagrams.

The data being read is an integer and must be converted to a floating point number. This is achieved by selecting numeric on the function palette, conversion and then choosing double precision float. This is wired to the output of the pData.

The output of the double precision float is wired to a sub vi. For scaling, the reason being that the +10VDC analog bus terminals generate values based on counts. 0 count is equal to 0 VDC, 32767 counts is equal to +10VDC and -32767 counts is equal to -10VDC. /5/

After scaling the values are wired to tank indicators and wave form charts to display the level of water in Tank 2 and 3 under level transmitter tank 2 and level transmitter tank 3 block diagram, and a numeric indicator to display the amount of water flowing into Tank 2 and 3 under flow meter block diagram.

These indicators can be located inside the control palette of LabVIEW under numeric and graphs.

To indicate the set point and the levels of Tank 2 and Tank 3 respectively on the wave form charts during water level control inside the tanks.
Data from the set point knob and data from tank 2 level transmitter (LT-110) is wired into bundle 2 and then from bundle 2 to waveform chart 2. Similarly data from the set point knob and data from tank 3 level transmitter (LT-150) are also wired into bundle 3 and from bundle 3 into waveform chart 3.

The function of the bundles is similar to the function of a multiplexer and can be found in the function pallet under cluster and variant.

Waveform chart 2 displays the set point and the level of Tank 2 and chart 3 displays the set point and the level of Tank 3.

The pressure inside Tank 2 and 3 is calculated using the formula $P = \rho gh$ inside sub vi’s press. Scaling 2 and press. Scaling 3.

$P =$ pressure in tank.

$\rho =$ density of water (1000kg/m3 at 4°C).

$g =$ acceleration due to gravity (9.81 m/s2).

$h =$ level of water in tank from transmitters.

After which the values is wired to gauge indicators to display the values of pressures in Tank 2 and 3.

![Figure 71 Creating indicators for level transmitters, pressure and flow meter](image)
The output of the flow meter transmitter is converted from integer to double precision float or floating point number and then wired to a flow meter scaling sub vi for scaling.

The output from the flow meter scaling sub vi is then wired to a write measurement file function which generate live data on the total amount of water that has flown into Tank 2 or 3 from Tank1 into a specified folder on the master control unit on the control network.

These live data can be accessed by any workstation on the information network with either note pad, excel or spread sheet application.

7.5 Pump Speed and control valve

The pump speed can be controlled either manually or automatically by a PID controller. The pump is the final control element when the controller is in automatic state. The control valve controls the amount of water flowing back into Tank1 (WT1).

The output of the PID controller and the output from the control valve knob are converted into integers and scaled after which they are wired to the inputs of pData of pump speed and control valve block diagrams respectively.

The set point wired to bundles 2 and 3 is also wired to the set point of the PID controller (Figure 73).
Flow meter data generation

Figure 73
7.6 X-scale offset and multiplier

This allows the wave form charts to start with an empty data when the LabVIEW virtual instrument is started.

This was done by right clicking the input of the wave form chart2 and then selecting create, property nodes, X scale, offset and multiplier and final multiplier.

The write function of the X scale multiplier of the wave form chart is change to a read function by right clicking on the output of the X scale multiplier and selecting change to read.

Next a history data function needs to be added. This is achieved by right clicking on the X scale multiplier letter box and selecting history data (Figure 74).

An empty data was created and wired to the history data input by right clicking the input and selecting create and chosen constant.

The same procedure was repeated to create the X scale multiplier and history data for wave form chart 3.

A numeric controller was created and wired to the inputs of the X scale multipliers in order to be able to control the timing x axes of the wave form charts (Figure 75).
7.7 Wait until millisecond multiplier and iteration

The function of the wait until next milliseconds in the loop is to control the while loop execution rate. The **millisecond multiple** is the input that specifies how many milliseconds lapse when the VI runs and the iteration indicates the number of cycles that has been executed (Figure 76).

![wait_until_next_milliseconds]

Figure 76 Wait until next milliseconds and iteration

7.8 Process control principle

The control loop consists of a selector which allows either Tank 2 (WT2) or Tank 3 (WT3) to be controlled. When Tank 2 is selected the filling and draining valves of Tank 2 open and that of Tank 3 closes. The signal from Tank 2 level transmitter becomes the process variable.

Likewise when Tank 3 is selected the filling and draining valves of Tank 3 open and that of Tank 2 closes and the signal from Tank 3 level transmitter now becomes the process variable.
The control logics of the filling and draining valves are executed by the case structure only when the process is in the automatic state.

In both cases the process variables (levels of water inside tanks) are compared to the set point. The errors generated are forward to the PID controller which performs the necessary algorithm and transmits a signal to the final control element (pump) to adjust it accordingly (Figure77).

Figure 77 Control loop.
8 ENTERPRISE CONNECTIVITY

In most processing plants decisions are made based on up-to-date data acquired from the automation system. The process data must therefore be processed and presented in different and useful formats to all the available workstations on the network to access the information in a format they can understand and interpret.

8.1 Process data access

Data or information from the water process can be relayed to the information network in an HTML (Hyper Text Markup language) format by activating the LabVIEW web server on the workstation located on the control network (Figure 78). The hyper text markup language is primarily a format in which web pages are delivered in. (Berge 2005, 24).

The hyper text transfer protocol (http) acts as a communication protocol. Microsoft internet explorer installed on the workstations located on the information network acts as the client application and the master control workstation on the control network as the host or server.
The client application submits an HTTP (http://172.24.66.18:8000/water_%20process.html) message requesting information on the process from the server. The server which stores the contents of the process in an HTML format returns a response message to the client. The response normally contains completion status information about the request and the content requested by the client in its message body.

A request sent to monitor, control or have a snap shot of the process by the client computer can either be allowed or refused by the master control unit on which the server is located. It is advisable that the client applicant uses a Netscape browser.

Process data for analytically and business oriented issues can be acquired in an Excel format in a shared folder on the master control workstation on the control network by all workstations on the network.
9 CONCLUSIONS

The developed SCADA system proved to be very efficient and it exhibited all the functions of a typical industrial SCADA system.

The SCADA system and its enterprise connectivity were also a success. The system was able to generate and save all required or important process data and to disseminate these data into the local area network of Hamk University of Applied Sciences, Valkeakoski unit.

The process information is easily accessible by the most commonly known communication protocols and can easily be understood and interpreted also by most common software.

Interoperability was no longer a bottleneck. The system was open to accept third party system integration either through the developed software or hardware infrastructure of the design SCADA system of the process.

9.1 Recommendation

It is recommended based on the results of this project that an advanced web visualization that supports Active X to be used to access the process remotely. This allows the client computer on the network to remotely load, view and interact with the animated graphic display. Plain web visualization, however simply takes a static snap shot when it's used to access the process and does not allow supervisory control to be executed by a remote work station on the network. Another means by which these two software can exchange data can be achieved by using OPC (Object linking and embedding for process control).

The OPC standards specify the communication of industrial process data, alarms and events, historical data and batch process data between sensors, instruments, controllers, software systems, and notification devices.
SCADA design and enterprise connectivity for a water processing system

SOURCES

Appendix 1

CONTROL CABINET BOX AND FIELD LAYOUT
SCADA design and enterprise connectivity for a water processing system
CONTROLLED AND POWER SUPPLY
SCADA design and enterprise connectivity for a water processing system