
Förnamn Efternamn

Mobile Guide

An offline web application for mobile devices

Ted Mellin

Degree Thesis

Information technology

2011

EXAMENSARBETE

Arcada

Utbildningsprogram: Informationsteknik

Identifikationsnummer:

Författare: Ted Mellin

Arbetets namn: Mobil Guide

Handledare (Arcada): Magnus Westerlund

Uppdragsgivare: Art and Design Center Helsinki (ADC Helsinki)

Sammandrag:

Avsikten med examensarbetet var att skapa en tjänst som ger företag och organisationer

möjligheten att skapa en digital guide för att förevisa ett geografiskt sett avgränsat om-

råde. Ett av de viktigaste kraven var att tjänsten bör vara både enkel att använda samt

fungera utan Internet anslutning, detta på grund av dyra dataöverföringskostnader spe-

ciellt då man befinner sig utomlands.

Examensarbetet är uppdelat i teori och praktik. I teoridelen utreds ramverket Codeigni-

ter som är stommen för tjänsten, dessutom analyseras HTML5 språket och möjligheter-

na det medför i utveckling av moderna webbapplikationer, speciellt med tanke på den

mobila världen.

Den praktiska delen av examensarbetet beskriver administrationsverktyget och använ-

dargränssnittet, de tekniska lösningar som använts för utvecklingen och hur HTML 5

samt Codeigniter PHP-ramverket använts för att lösa problem och snabba upp utveckl-

ingsprocessen.

Nyckelord: HTML5, mobil, jquerymobile,offline,turism,guide, Co-

deigniter, cms, ramverk,php,karta

Sidantal: 48

Språk: Engelska

Datum för godkännande:

DEGREE THESIS

Arcada

Degree Programme: Information technology

Identification number:

Author: Ted Mellin

Title: Mobile Guide

Supervisor (Arcada): Magnus Westerlund

Commissioned by: Art and Design Center Helsinki (ADC Helsinki)

Abstract:

The goal of the thesis was to create a service which enables companies to create map-

based mobile guides, restricted by a geographic area. One of the fundamental require-

ments was that the end-user web application had to be easy to use and also be functional

even without an Internet connection. The reason for this is the high roaming costs for data

transfer over mobile networks when visiting a foreign country.

The thesis is divided into two parts, the theoretical part and the practical part. The theo-

retical part describes the PHP framework Codeigniter. HTML 5 is also analyzed, specifi-

cally from a mobile web application perspective.

The practical part goes through the administration interface and the frontend application

in detail. All problems and their solutions are covered as well as the usage of HTML 5

and Codeigniter to solve issues and speed up the development process.

Keywords: HTML5, mobile, jquerymobile,offline,tourism,guide, Co-

deigniter, cms, framework,php,map

Number of pages: 48

Language: English

Date of acceptance:

OPINNÄYTE

Arcada

Koulutusohjelma: Informaatiotekniikka

Tunnistenumero:

Tekijä: Ted Mellin

Työn nimi: Mobiiliopas

Työn ohjaaja (Arcada): Magnus Westerlund

Toimeksiantaja: Art and Design Center Helsinki (ADC Helsinki)

Tiivistelmä:

Tämän opinnäytetyön tavoitteena oli kehittää palvelu jonka avulla yritykset sekä organi-

saatiot voisivat luoda karttapohjaisia mobiilioppaita maantieteellisesti rajoitetuille alueil-

le. Yksi tilaajan keskeisimmistä vaatimuksista oli että palvelun täytyi olla helppokäyttöi-

nen ja toimia yhteydettömässä tilassa. Syynä tähän on matkustaviin turisteihin kohdistu-

vat kalliit ”roaming” kulut.

Opinnäytetyö on jaettu kahteen osaan, teoreettinen osio kuvailee PHP runkoa Codeigni-

teria sekä HTML5, eritoten mobiili-näkökulmasta.

Käytännön osiossa esitellään itse palvelua sekä sen hallintapaneelia perusteellisesti.

Kaikki kohdatut ongelmat sekä niiden ratkaisut on tarkasti kuvailtu tässä osiossa.

Avainsanat: HTML5, mobiili, jquerymobile,yhteydetön,turismi,opas,

Co-deigniter, cms, framework,php, kartta

Sivumäärä: 48

Kieli: Englanti

Hyväksymispäivämäärä:

CONTENTS

1 INTRODUCTION ... 9

1.1 Background ... 9

1.2 The goal of the thesis .. 9

2 Codeigniter PHP Framework ... 11

2.1 How Codeigniter works ... 11

2.2 Installation ... 13

3 HTML5 .. 14

3.1 Offline web applications .. 14

3.2 Geolocation API ... 16

3.3 HTML5 support in modern browsers ... 17

4 jQueryMobile .. 18

4.1 Single page design .. 18

5 The frontend ... 20

5.1 Device support ... 20

5.2 Multilingual ... 21

5.3 Going offline .. 22

5.3.1 Dynamic manifest file .. 23

5.4 Mobile optimization .. 26

5.5 Map view ... 27

5.5.1 Leaflet usage and functionality .. 28

5.5.2 Caching map tiles .. 29

5.6 List view ... 31

5.7 POI window ... 32

6 The admin interface ... 34

6.1 Registration and authentication ... 35

6.2 Map creation and selection ... 36

6.3 Map languages .. 37

6.4 Map styling .. 38

6.5 POI .. 40

7 Discussion ... 42

7.1 Application testing ... 42

7.2 Further development ... 42

7.3 Conclusion ... 43

References .. 44

Appendencies ... 45

Abbreviations

POI Position of Interest

ADC Art and Design City

WDC World Design Capital

HTML Hypertext Markup Language

PHP PHP: Hypertext Preprocessor

CSS Cascading Style Sheet

URL Uniform Resource Locator

CMS Content Management System

ICSID International Council of Societies of Industrial Design

MVC Model-View-Controller

MySQL My Structured Query Language

RFID Radio Frequency IDentification

Wi-Fi Wireless Fidelity

MAC address Media Access Control address

GSM Global System for Mobile communications

CDMA Code Division Multiple Access

id Identifier

API Application Programming Interface

Figurer / Figures

Figure 1 Codeigniter application flow chart (Codeigniter,2011) 11

Figure 2 A simple example of a Codeigniter controller class .. 12

Figure 3 The tree structure of a Codeigniter project .. 13

Figure 4 Example of an html file and its manifest file ... 15

Figure 5 Example code for repeated location querying using the Geolocation API 16

Figure 6 HTML5 support on a range of modern browsers (Mobile HTML5,2011) 17

Figure 7An example of a simple jQueryMobile page .. 19

Figure 8 An example of how internal linking works within jQueryMobile 19

Figure 9 Mobile Guide ran in a mobile phone and on a PC ... 20

Figure 10 A view of the front-end language select .. 21

Figure 11 A view of the front-end operation mode select .. 22

Figure 12 Dynamic manifest file using PHP .. 23

Figure 13 HTML5 Manifest file example .. 24

Figure 14 Javascript code for calculating total amount of files within the manifest 25

Figure 15 Screenshot of the download process .. 25

Figure 16 The map view ... 27

Figure 17 Leaflet demo map ... 28

Figure 18 A quick example of a Leaflet map in use (Leaflet, 2011) 29

Figure 19 Algoritm for calculating required map tiles ... 30

Figure 20 The Mobile Guide list view for the Arabianranta map 31

Figure 21 A simplified example of the code used to order the list view 32

Figure 22 Example of a POI window ... 32

Figure 23 The POI gallery .. 33

Figure 24 A screenshot of the admin interface ... 34

Figure 25 Login and Registration page for Mobile Guide ... 35

Figure 26 Screenshot of the map creation form ... 36

Figure 27 Screenshot of the map language definition form ... 37

Figure 28 The Mobile Guide style editor ... 38

Figure 29 Color update in real time .. 39

Figure 30 The POI editors main view, all defined POIS are accessible from this map . 40

Figure 31 The POI definition page, all text and image data is entered through this page

 .. 40

Figure 32 The image handler, here the administrator can add and remove POI images 41

9

1 INTRODUCTION

1.1 Background

World Design Capital is a worldwide project to encourage the use of design in the

world’s cities. Every other year a city is recognized for its commitment to design and

the use of it to reinvent and improve its social, cultural and economic life. Once chosen,

the city commits to a yearlong program of design related events, which are planned and

organized by the WDC Organizing Committee (WDCOC), the working group of the

International Council of Societies of Industrial Design (icsid) and the local WDC Pro-

ject Management teams.

Once a city is recognized as the Design capital of the year, it is showcased on the inter-

national forum and promoted globally. For the city, and the country itself, this means

growth within the tourism sector. As more tourists travel to the city seeking cultural and

design attractions, there needs to be ways for them to discover and find these so called

positions of interest.

After Helsinki was chosen as the World Design Capital of the year 2012, multiple pro-

jects within the region were initiated to improve the tourism experience. One of these

projects was Mobile Guide, commissioned by Art and Design Center Helsinki (referred

to as ADC hereafter).

1.2 The goal of the thesis

ADC, which is in charge of Arabianranta, one of the capitals most important design are-

as, wanted a way to present the area in a modern and effective way. Traditional tour

guides usually consists of a group of tourists and a guide, which together walk around

an area and admire its attractions. While this most likely is a great experience with con-

versations and interaction it has a few drawbacks or limitations. The tour is restricted by

10

a schedule and a predefined route. Furthermore tourists are usually required to pay a fee

to participate in the tour.

ADC wanted to reduce the need of traditional tour guides while maintaining or prefera-

bly improving the visitor overall experience. The solution was a pocket guide, an appli-

cation that could be run on the tourist’s mobile phone, containing all the basic infor-

mation a traditional tour guide would have of the area. While this reduces the need for

personnel it also solves all drawbacks mentioned earlier. The tourists no longer have to

pay for the tour, and they can decide for themselves in which order and time to visit the

attractions they have an interest in seeing.

The initial requirements were to develop and design a digital guide for the area Arabian-

ranta. The guide had to be easy to administer and update as well as have an elegant and

usable frontend. One of the big realizations made in the early stages of development

were that the main target group, namely tourists, rarely have cheap Internet access when

visiting a foreign country. This realization came to change the entire development pro-

cess as all functionality built into the service had to work without an active Internet

connection.

Apart from the offline support, ADC also insisted on making the guide as accessible as

possible, meaning that the installation process had to be quick and easy. This was solved

by removing the traditional installation process completely, by utilizing HTML5 func-

tionality. This solution will be covered in great detail as it is one of the cornerstones for

the whole system.

The theory part of this paper describes the three main building blocks of the system,

namely the PHP framework Codeigniter, the hypertext language HTML5 and the mo-

bile web framework jQueryMobile. The practical part will examine the admin interface

as well as the end-user application and how the theory was applied in practice.

11

2 CODEIGNITER PHP FRAMEWORK

PHP frameworks exist to speed up the development and keep the project code orga-

nized. They also help the developer follow standards such as MVC, which is short for

the Model–view–controller design pattern.

Codeigniter is one of the most popular PHP frameworks and this was part of the reason

why it was chosen. Out of the 10 frameworks examined and compared, it quickly be-

came clear that Codeigniter had the shortest learning curve. One reason for this is its

loose approach to MVC it introduces, as it does not force the developer to use models

for defining data structures. Models aid the developer in the database communication

within the application. It is often better and faster to build your own helper libraries to

handle database operations and the representation of your data.

2.1 How Codeigniter works

Every Codeigniter page is called through the index file. Here all the resources required

for Codeigniter to function are loaded. It also accepts URL parameters which dictate

which controller should be loaded.

Figure 1 Codeigniter application flow chart (Codeigniter,2011)

As Figure 1 shows, the application controller then proceeds to load helpers and libraries

which can contain added functionality, one example of a helper usually loaded in Co-

deigniter is an authentication helper which handles the system access control. Once the

Controller has carried out given tasks a view (or views) can be loaded.

12

Upon loading the view(s), parameters can be passed from the controller. As an exam-

ple, the controller could fetch and parse data from the application and pass the manipu-

lated data to the view. This in turn means that the view only takes care of visualizing the

given data, and keeps the application logic and interface code separated.

Aside from loading views, the controller is useful for handling data manipulation and

background calculations through asynchronous communication.

class Load extends CI_Controller {
 function __construct() {
 parent::__construct();
 $this -> load -> helper('url');
 }
 function map(){
 $data['name'] = $this -> uri -> segment(3);
 $this -> load -> view('map_view', $data);
 }
}

Figure 2 A simple example of a Codeigniter controller class

The example code in Figure 2 is a Codeigniter controller class in its most simple form,

here the controller name is “Load”, which means the above code is located in “applica-

tion/controllers/load.php”. The method “map” is programmed to load a view called

“map_view” which in reality is a file called “map_view.php” located in the folder “ap-

plication/views”. This method could be successfully run with the URL

“index.php/load/map/helsinki”, where helsinki is the third URL segment expected by

the method.

One thing to remember when starting development with a PHP framework is, do not

expect to get a fully functional CMS. A framework does not come with a working ad-

min interface or templates. It only contains code to aid the developer in the creation of

such interfaces. The folder structure of a Codeigniter project is presented in Figure 3,

the most crucial folders are displayed in blue.

13

Figure 3 The tree structure of a Codeigniter project

2.2 Installation

The installation process of Codeigniter is quite similar to any other framework or Con-

tent management system. First you need to make sure the server requirements are met,

these vary depending on version being installed, the latest version of Codeigniter (v.

2.0.3) requires a PHP version of 5.1.6 or newer and supports the databases MySQL

(4.1+), MySQLi, MS SQL, Postgres, Oracle, SQLite, and ODBC (Codeigniter 2011).

Once the server requirements are met, the installation is as simple as downloading the

installation package and extracting the package to a folder on your server. After this the

config file needs to be edited, that is located in application/config/config.php. In the

config file the projects base URL and encryption keys are set.

14

After this Codeigniter is up and running, however if a database is required, which is

usually the case, the database login information needs to be set in applica-

tion/config/database.php

On top of this, the Codeigniter community contains a lot of user-generated libraries and

helpers which can be installed to add general functionality. An example of such a helper

is Tank Auth which Mobile guide utilizes to control user authentication and their privi-

leges. The installation of this helper function was pretty similar to the installation of

Codeigniter itself. It involved extracting the helper package to the Codeigniter root and

creating tables in the database. Some minor tweaks were required to get this working,

but these were described in great detail in the libraries installation guide.

3 HTML5

HTML5 is the newest revision to HTML. First drafted six years ago it still remains at a

stage of Working Draft according to the World Wide Web Consortium (W3C). Even

though it is not considered an official standard yet, it is already supported in the latest

versions of most modern browsers, both desktop and mobile ones.

HTML5 is much more than a structuring language for web pages. The greatest benefit

of HTML5 is the introduction of numerous application programming interfaces (API),

such as Canvas, Video, Local storage, Offline web applications, Geolocation and more.

Mobile guide utilizes two of these HTML5 APIs, Offline web applications for storing

data on the user’s device and the Geolocation API for locating the user. None of the

APIs introduces new requirements on the server, as it does not involve server side

scripting.

3.1 Offline web applications

HTML5 lets developers make their web applications work without an Internet connec-

tion. This has been possible in the past, e.g. by using Google Gears, but now it’s becom-

ing a standard included in HTML5, which means that the same application can be run

15

on a multitude of modern browsers, including Firefox, Chrome, Safari, Opera, Android

browsers and more.

As any offline application, the offline web application has to be loaded on to the device.

This means that in order to use the web application offline, an initial visit to the website

while connected to the Internet is required. Once the page is loaded in the browser, the

server tells the browser which files are needed for the website to function offline, these

files are then downloaded. The files required are all listed in a file called the manifest,

which can be modified by the developer. The next time the website is visited, even

without an Internet connection, it will display the page as if the user was online, if all

elements of the page are listed in the manifest. Sometimes a developer might want the

page to look or function differently, which is also possible through some minor tweaks.

Figure 4 contains the minimal amount of code to run a webpage in offline.

<!DOCTYPE html>
<html lang="en" manifest="somemanifest.appcache">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>HTML5 - offline</title>
</head>
<body>
<h2>HTML5 - offline</h2>

</body>
</html>

CACHE MANIFEST

CACHE:

imagename.jpg

Figure 4 Example of an html file and its manifest file

The manifest file is always defined within the html tag of the web page. The browser

proceeds to download all files located under the CACHE line. The file which calls the

manifest is automatically downloaded so it is not required in the manifest file itself.

16

The manifest is divided into sections, the CACHE section mentioned above being the

most relevant one. Besides the CACHE files the manifest is also able to tell the brows-

ers which files should never be cached, these go under the header NETWORK.

3.2 Geolocation API

The Geolocation API can be used to retrieve the device position. The common source

for location data is GPS, however sometimes the device or the browser does not support

GPS, in this case other sources are automatically used such as RFID, Wi-Fi and Blue-

tooth MAC addresses, and GSM/CDMA cell IDs. Most browsers require the user to au-

thorize the use of location services. If they deny the browser access then no location da-

ta will be available through the Geolocation API.

The API can do a one-time location query or alternatively be set to retrieve the location

on a defined interval. The method for retrieving the location only once is “naviga-

tor.geolocation.getCurrentPosition(callback_function)”. The given callback-function

then takes the result as a parameter and can read the longitude and latitude values from

it. The code for fetching the location continuously is usually a bit more complex, as it

involves starting and stopping the location querying and handling potential errors. Fig-

ure 5 shows a simple example of how to repeatedly fetch the location and use the data.

function scrollMap(position) {

// Scrolls the map so that it is centered at (position.coords.latitude, posi-

tion.coords.longitude).

}

// Request repeated updates.

var watchId = navigator.geolocation.watchPosition(scrollMap);

function buttonClickHandler() {

// Cancel the updates when the user clicks a button.

navigator.geolocation.clearWatch(watchId);

}

Figure 5 Example code for repeated location querying using the Geolocation API

17

3.3 HTML5 support in modern browsers

Even though HTML5 is not an official standard, it has been widely accepted and im-

plemented by both desktop and mobile browsers. Some of the HTML5 functionality

however can be implemented differently depending on the browser, and it is crucial to

have a good understanding of these differences when targeting multiple platforms and

browsers.

Figure 6 HTML5 support on a range of modern browsers (Mobile HTML5,2011)

There are many sources online for a quick overlook of HTML5 support on different

browsers. Figure 6 contains a comparison of a few, but not nearly all functionality de-

fined within the HTML5 structuring language.

Making sure the target platforms supports the required functionality is important, but it

is also crucial to know exactly in what way it is supported. As an example, Android im-

plements Application Cache without any limitations on the total size of the files to be

cached. Mobile Safari on the other hand has a 10MB limit per website. After this limit is

reached the user is prompted with a message asking them for permission to increase the

cache limit up to a total of 25MB for the active website. The best possible research is to

actually test the applications on as many browsers as possible yourself, although this

18

might not be feasible. Browser manufacturers usually provide developers with extensive

documentation over their HTML5 implementations.

4 JQUERYMOBILE

jQueryMobile is a framework built on jQuery with a focus on mobile devices. The

framework helps the developer create mobile-optimized web applications which work

and look the same on all major mobile operating systems, such as Android, IOS, Black-

berry, Bada, Windows phone, Palm web OS, Symbian and Meego.

Touch optimization is one of the most important features found in jQueryMobile. The

framework consists of many different widgets and layouts which mimic the usability

found in the most popular mobile operating systems and applications.

4.1 Single page design

One big difference with jQueryMobile compared to traditional web design is that a page

is not identified by a file on the server, but as a div element with a unique ID so that all

pages are defined within the same file and body tags.

It might take some time to get used to this way of working, especially since it limits

some functionality widely used in traditional web development. As an example, it is not

possible to exchange data between pages using the traditional methods GET and POST.

It is however possible to pass variables around from page to page using JavaScript vari-

ables.

A page can, but doesn’t have to contain a header, content and footer container. When

using one of the default themes that comes with jQueryMobile these give the website a

look and feel of a real mobile application. There is also endless of styling possibilities

available using traditional CSS. The default themes are mainly there to give the devel-

opers something to start off with. Figure 7 contains a simple example of the document

structure for a jQueryMobile website.

19

<body>
<!-- Start of first page -->
<div data-role="page" id="index">
 <div data-role="header">
 <h1>Mobile Guide</h1>
 </div><!-- /header -->
 <div data-role="content">
 <p>I'm first in the source order so I'm shown as the page.</p>
 <p>View internal page called Map view</p>
 </div><!-- /content -->
 <div data-role="footer">
 <h4>Page Footer</h4>
 </div><!-- /footer -->
</div><!-- /page -->
<!-- Start of second page -->
<div data-role="page" id="mapview">
 <div data-role="header">
 <h1>Map view</h1>
 </div><!-- /header -->
 <div data-role="content">
 <p>This is where the map view is displayed.</p>
 <p>Back to main page</p>
 </div><!-- /content -->
 <div data-role="footer">
 <h4>Page Footer</h4>
 </div><!-- /footer -->
</div><!-- /page -->
</body>

Figure 7An example of a simple jQueryMobile page

One of the reasons why jQueryMobile is designed to run within a single page is page

transitions. This would not be possible if the user was redirected every time the page is

changed. The page can be changed programmatically and traditionally using traditional

web links. Both approaches accept a page identifier as a value, furthermore a transition

effect such as “flip”, “slide”, “pop” can be given to make the transition more smooth

and modern looking. Figure 8 shows how transition effects are applied.

Clickable link</ a>

$.mobile.changePage("#mapview", { transition: "slideup"});

Figure 8 An example of how internal linking works within jQueryMobile

20

5 THE FRONTEND

The frontend is a simple to use tool for exploring the area and its positions of interest

either through a list view or a map. It is particularly intended for mobile devices but

does support stationary devices, even though these come with a few limitations, such as

no real geo-positioning.

5.1 Device support

One of the most important requirements for the application was that it had to work on as

many devices as possible. Many cross-platform development frameworks such as Phon-

egap, Titanium Appcelerator and pure HTML5 were considered. HTML5 was eventual-

ly chosen as all modern phones, tablets and computers support it. Furthermore a web

application does not have to but can be installed on a device, greatly speeding up the

usage. HTML5 suited all of the applications needs perfectly, such as the ability to pro-

grammatically store data on the device and look up of the user’s location using various

localization methods such as GPS. As seen in Figure 9, Mobile Guide can be run on

both desktop and mobile devices thanks to jQueryMobile and HTML5.

Figure 9 Mobile Guide ran in a mobile phone and on a PC

21

5.2 Multilingual

Mobile Guide is primarily designed for tourists, to aid them in finding and exploring

new areas. This means that localization is of great importance. That is why the first step

when the guest visits the web application is to choose the desired language from a list of

available languages, see Figure 10. The system is built so that administrators have the

alternative to define multiple languages and provide each position of interest with trans-

lations in desired languages. In the case of a missing translation for a specific position

of interest, the info is displayed in the maps default language, e.g. English.

Figure 10 A view of the front-end language select

22

5.3 Going offline

After choosing a language the user is presented with a selection of operating mode, see

figure 11. Going offline means that all “Positions of interest” (POI) along with required

map tiles are downloaded and stored in the browser cache using a HTML5 manifest file.

As mentioned in the manifest file chapter, in its most simple form the manifest contains

a list of files required for the website to function without an Internet connection. Once

the user visits the website for the first time, all files listed in the manifest are download-

ed. After this users can visit the website again without an active Internet connection, and

use the website as if they were connected to the Internet.

Figure 11 A view of the front-end operation mode select

23

5.3.1 Dynamic manifest file

Mobile Guide itself is a highly dynamic application, completely customizable by the

map owners. This means that the manifest file also had to be just as dynamic as the ap-

plication itself. The whole process is described in Figure 12, with code taken out of con-

text.

// index.php:

<?php

<html manifest="<?=base_url()?>manifest/view/<?=$mapID?>/<?=$langID?>">

?>

// manifest file:

header('Content-Type: text/cache-manifest'); // !important

echo "CACHE MANIFEST\n"; // !important

echo "CACHE:\n"; // !important

echo base_url()."assets/js/jquery/jquery.js\n";

echo base_url()."assets/js/jquerymobile/jquery.mobile-1.0rc2.min.js\n";

echo base_url()."assets/js/jquerymobile/images/ajax-loader.png\n";

echo base_url()."assets/js/leaflet3/leaflet.css\n";

$mapID = $this->uri->segment('3'); // third parameter in url

$langID = $this->uri->segment('4'); // fourth parameter in url

$this -> map_info -> initialize($mapID);

$this -> map_info -> mapBounding();

$this -> map_info -> mapTiles($this->map_info->zoom);

$this -> map_info -> poiHtml($langID);

foreach($this->map_info->poiDataArray as $poiObject){

 foreach($poiObject->image as $mediaFile){

 echo base_url().$mediaFile->source."\n";

 }

}

foreach($this->map_info->tileArray as $tile){

 $url = $this->map_info->tileUrl;

 $placeholders = array('{z}', '{x}', '{y}');

 $replacewith = array($tile->z, $tile->x, $tile->y);

 echo str_replace($placeholders, $replacewith, $url)."\n";

}

Figure 12 Dynamic manifest file using PHP

The only requirement for the page to be cached is to tell it where its manifest file lies.

Because the manifest file needs to be able to generate a list of files based on the selected

map, the parameters $mapID and $langID are passed along with the path.

Because a regular manifest file is not capable of interpreting PHP code, a PHP file is

required (extension .php). The other problem here is that a browser does not recognize a

PHP file as a manifest file, and will not be able to parse it. That is why we manually set

the content type of the PHP file to "text/cache-manifest" using PHP:s header() function.

24

As mentioned in the chapter "Offline web applications" chapter the "CACHE

MANIFEST" line is always required to be the first line in the document for

the caching process to work. The "CACHE:" line in turn tells the browser, that each line

beneath it contains a file that should be cached. Alternatives to CACHE are NETWORK

and FALLBACK, which are not required in this application.

Now that the manifest file is set up to handle PHP code, the special map classes are

available. All required map data such as images, text, configurations and map tiles are

fetched and echoed into the manifest file. Figure 13 shows a small portion of the files

found in the manifest for a Mobile Guide Map.

CACHE MANIFEST

CACHE:

#1320

http://kokonniemi.fi/guide/assets/js/jquerymobile/jquery.mobile-1.0rc2.min.css

http://kokonniemi.fi/guide/assets/js/jquery/jquery.js

http://kokonniemi.fi/guide/assets/js/jquerymobile/jquery.mobile-1.0rc2.min.js

http://kokonniemi.fi/guide/assets/js/jquerymobile/images/ajax-loader.png

http://kokonniemi.fi/guide/assets/js/leaflet3/leaflet.css

http://kokonniemi.fi/guide/assets/js/leaflet3/leaflet.js

http://kokonniemi.fi/guide/assets/js/leaflet3/images/marker.png

http://kokonniemi.fi/guide/assets/js/leaflet3/images/marker-shadow.png

http://kokonniemi.fi/guide/assets/images/layout/user.png

http://kokonniemi.fi/guide/assets/images/layout/user-bw.png

http://kokonniemi.fi/guide/assets/images/layout/home.png

http://kokonniemi.fi/guide/assets/images/layout/home-bw.png

http://kokonniemi.fi/guide/assets/images/layout/poi-icon.png

http://kokonniemi.fi/guide/assets/js/tinysort/jquery.tinysort.min.js

http://kokonniemi.fi/guide/assets/js/photoswipe/simple-inheritance.min.js

http://kokonniemi.fi/guide/assets/js/photoswipe/code-photoswipe-jQuery-1.0.19.min.js

http://kokonniemi.fi/guide/assets/js/photoswipe/photoswipe.css

http://kokonniemi.fi/guide/assets/js/photoswipe/photoswipe-icons.png

http://kokonniemi.fi/guide/assets/js/photoswipe/photoswipe-loader.gif

http://kokonniemi.fi/guide/assets/images/layout/arrow-left-icon.png

http://kokonniemi.fi/guide/assets/images/layout/arrow-up-icon.png

http://kokonniemi.fi/guide/assets/images/layout/bullet-2-icon.png

http://kokonniemi.fi/guide/assets/images/layout/list.png

http://kokonniemi.fi/guide/assets/images/layout/map.png

http://kokonniemi.fi/guide/index.php/view/map/13/20/1

http://kokonniemi.fi/guide/index.php/manifest/view

http://kokonniemi.fi/guide/upload_pic/resize_1317224456.png

http://kokonniemi.fi/guide/upload_pic/resize_1317224333.png

http://a.tile.cloudmade.com/84b255854c18417b8641e17eb887c074/997/256/16/37312/18955.png

http://a.tile.cloudmade.com/84b255854c18417b8641e17eb887c074/997/256/16/37312/18956.png

http://a.tile.cloudmade.com/84b255854c18417b8641e17eb887c074/997/256/16/37312/18957.png

http://a.tile.cloudmade.com/84b255854c18417b8641e17eb887c074/997/256/16/37312/18958.png

……

Figure 13 HTML5 Manifest file example

The Mobile Guide application also implements some user friendly functionality by

showing the progress of the caching progress. The HTML5 offline web application API

contains events for each stage of the caching progress, by listening to these events and

examining the data they return, it is possible to count the number of files that have been

cached. The event cacheProgress(e) is triggered every time a file listed in the manifest is

25

downloaded. There is however no documented way to quickly count the amount of files

that are left. Mobile Guide therefore contains a quick solution for this.

<script>

$.ajax({

 type: "get",

 url: "<?=base_url()?>manifest/view/<?=$mapID?>/<?=$langID?>",

 dataType: "text",

 cache: false,

 success: function(content) {

 // Strip out the non-cache sections.

 // NOTE: The line break here is only to prevent wrapping

 content = content.replace(new RegExp("(NETWORK|FALLBACK):" +

"((?!(NETWORK|FALLBACK|CACHE):)[\\w\\W]*)", "gi"), "");

 // Strip out all comments.

 content = content.replace(new RegExp("#[^\\r\\n]*(\\r\\n?|\\n)", "g"), "");

 // Strip out the cache manifest header and trailing slashes.

 content = content.replace(new RegExp("CACHE MANIFEST\\s*|\\s*$", "g"), "");

 // Strip out extra line breaks and replace with a hash sign that we can break on.

 content = content.replace(new RegExp("[\\r\\n]+", "g"), "#");

 // Get the total number of files by counting the amount of # symbols

 var totalFiles = content.split("#").length;

 cachable = totalFiles;

}

</script>

Figure 14 Javascript code for calculating total amount of files within the manifest

As seen in Figure 14, everything not referring to a file is removed from the manifest

file. After this, every line left contains a file to be downloaded, so the amount of lines is

equal to the total amount of files that are to be downloaded. The system then divides the

amount of downloaded files with the total amount and displays the percentage to the

user within an animated horizontal bar (Figure 15).

Figure 15 Screenshot of the download process

26

5.4 Mobile optimization

One big problem in traditional web design is creating websites which look good and

function in all resolutions. Developers usually end up designing their pages for the

smaller desktop resolutions. To make a website mobile-optimized, it needs to be built

from the ground up with scalability in mind. This means all Interface elements such as

buttons and forms need to scale and reposition depending on the current resolution.

Scaling can be achieved with CSS and JavaScript, but requires a lot of tweaking and

work to make it cross-browser compliant. There are many mobile frameworks based on

CSS and JavaScript which aid the developer in optimizing their website for all resolu-

tions and browsers. jQTouch, jQueryMobile and Sencha Touch are a few popular ex-

amples of such frameworks. jQueryMobile was the framework of choice for this appli-

cation, mainly because of its interoperability with the leading JavaScript framework

jQuery.

Thanks to jQueryMobile, the application can be run in any resolution and preserve its

look and feel, as an addition to this jQueryMobile also enables sleek transitions when

changing pages. This functionality is utilized on every page of the application.

As mentioned earlier, jQueryMobile also comes with default themes which tell the

browser in which sizes and colors the elements should be rendered. The Mobile Guide

front-end uses parts of the default theme framework for sizing and positioning of ele-

ments. But the color schemes and images are completely customizable by the map ad-

ministrator and therefore replace much of the default theme.

27

5.5 Map view

The map view is a graphical representation over the area and its POIs. All POIs are rep-

resented on the map, and once clicked-on a small popup with the position name and a

picture of the position is displayed. By clicking the popup the user is redirected to the

POI page, containing all text data and images provided for that specific position.

Figure 16 The map view

The map view is navigated by touch input, so the user can touch and drag the screen to

pan the map in all directions. The zoom level is locked so that the amount of tiles to

download is held to a minimum. Since it is not possible to zoom, there are two buttons

which help the user navigate around the map, see Figure 16. In the top-left corner lies

the “My location” button, which when clicked pans the view to the users position and

activates the user tracking. When activated, the user tracking automatically pans the

map according to the user’s position, always keeping the user centered in the view.

In the top-right corner sits an info icon, which is linked to a special position of interest,

the info point. The info point is a location which represents a central point of the area.

This could for example be a tourist office or simply a location in the middle of all at-

tractions. Once the user clicks the info icon in the top-right corner the map pans to the

info point. This helps the user locate the attractions on the map.

28

When selecting the API for displaying the map to the user two criteria's had to be met.

The map API had to be touch capable, so that the user could pan the map by swiping the

screen. Another requirement was that it had to be possible to download the API and dis-

play locally stored map tiles. Google Maps was first evaluated, while having excellent

touch support it was not possible to use offline. Technically it is possible to cache

Google Maps tiles and scripts through some tweaking. This was tested and proved to

work well. However, Google has strict terms of service regarding bulk download of

their content:

"(c) No Mass Downloads or Bulk Feeds of Content. You must not use the Service in a manner that gives you or any

other person access to mass downloads or bulk feeds of any Content, including but not limited to numerical latitude

or longitude coordinates, imagery, visible map data, or places data (including business listings). For example, you

are not permitted to offer a batch geocoding service that uses Content contained in the Maps API(s)." -

http://code.google.com/intl/fi-FI/apis/maps/terms.html 10.1.3

This meant that the Google Maps API was not an alternative, as offline support was one

of the most important parts of the Application. Other open source alternatives such as

OpenLayers, CloudMade, TouchMapLite and Leaflet were evaluated. Leaflet was cho-

sen due to small script file sizes, good looking interface elements and its great mobile

support.

Figure 17 Leaflet demo map

5.5.1 Leaflet usage and functionality

Getting started with Leaflet is in itself quite easy, all that is required is to include the

CSS and JavaScript source files in the document, add a container div and assigning it a

unique identifier. Then initialize the map using a few lines of code, where the developer

defines the desired tile source and a few optional options. Figure 18 contains all the

code required to display a map view similar to the one found in Figure 17.

29

<!DOCTYPE html>

<head>

<script src="http://leaflet.cloudmade.com/dist/leaflet.js"></script>

<link rel="stylesheet" href="http://leaflet.cloudmade.com/dist/leaflet.css" />

<!--[if lte IE 8]><link rel="stylesheet" href="leaflet/leaflet.ie.css" /><![endif]-->

<script type="text/javascript">

var map = new L.Map('map');

var cloudmadeUrl = 'http://{s}.tile.cloudmade.com/YOUR-API-KEY/997/256/{z}/{x}/{y}.png',

 cloudmadeAttrib = 'Map data © 2011 OpenStreetMap contributors, Imagery © 2011 CloudMade',

 cloudmade = new L.TileLayer(cloudmadeUrl, {maxZoom: 18, attribution: cloudmadeAttrib});

var london = new L.LatLng(51.505, -0.09); // geographical point (longitude and latitude)

map.setView(london, 13).addLayer(cloudmade);

</script>

</head>

<body>

<div id="map" style="height: 200px"></div>

</body>

</html>

Figure 18 A quick example of a Leaflet map in use (Leaflet, 2011)

5.5.2 Caching map tiles

Map tiles are small blocks of images containing the graphical part of the map. There are

many free sources for map tiles, some come with limitations and some are completely

free to use. A great service providing map tiles is Cloudmade. After registering devel-

opers are allowed access to existing maps hosted on Cloudmade, but can also customize

and create their own styles. Leaflet is a map script developed for displaying mainly

Cloudmade maps. Once the developer has chosen which map style the application

should use, it is defined in Leaflet using the map URL.

"http://{s}.tile.cloudmade.com/DEVELOPERS-API-KEY/MAP-STYLE-ID/256/{z}/{x}/{y}.png"

The variables with { } tags are constants in the Leaflet API and should not be changed,

{s} stands for server, this lets the map API fetch tiles from multiple servers at once to

speed up the download process. {z} stands for zoom, this variable is replaced by the

current zoom level of the map, {x} & {y} naturally represent the coordinates. 256 in the

above example defines the size of each tile in pixels, 256 pixels is the standard.

This functionality is quite straightforward, the API checks where the user is positioned

and which zoom level is active, and fetches all the tiles required to fill the screen with

graphics from the server. It is however not as simple when there is no connection to the

server. For the tiles to become available offline the system first has to calculate which

30

tiles are required (since downloading all tiles is not a possibility). This is done using the

algorithm in Figure 19.

function mapBounding() {

if(isset($this->mapID)){

$poiCoordinates = $this -> ci -> db -> query('select * from mg_pois where map_id = ' . $this->mapID);

foreach($poiCoordinates->result() as $row) {

 array_push($this->mapPois,$row->poi_id);

 $poiLat = $row -> latitude;

 $poiLon = $row -> longitude;

 $this -> maxLat = ($poiLat > $this -> maxLat || $this -> maxLat == null ? $poiLat : $this -> maxLat);

 $this -> minLat = ($poiLat < $this -> minLat || $this -> minLat == null ? $poiLat : $this -> minLat);

 $this -> maxLon = ($poiLon > $this -> maxLon || $this -> maxLon == null ? $poiLon : $this -> maxLon);

 $this -> minLon = ($poiLon < $this -> minLon || $this -> minLon == null ? $poiLon : $this -> minLon);

}

}

}

function mapTiles($zoom){

if(isset($this->mapID)){

$NWxtile = floor((($this->minLon + 180) / 360) * pow(2, $zoom));

$NWytile = floor((1 - log(tan(deg2rad($this->maxLat)) + 1 / cos(deg2rad($this->maxLat))) / pi()) /2 * pow(2, $zoom));

$SExtile = floor((($this->maxLon + 180) / 360) * pow(2, $zoom));

$SEytile = floor((1 - log(tan(deg2rad($this->minLat)) + 1 / cos(deg2rad($this->minLat))) / pi()) /2 * pow(2, $zoom));

 for ($x = $NWxtile; $x <= $SExtile; $x++) {

 for($y = $NWytile; $y <= $SEytile; $y++){

 $tile = new tile;

 $tile->y = $y;

 $tile->x = $x;

 $tile->z = $zoom;

 array_push($this->tileArray, $tile);

 }

 }

}

}

Figure 19 Algoritm for calculating required map tiles

Simply put, the mapBounding function gathers all coordinates defined in the map, and

determines the south most, north most, east most and west most points within these co-

ordinates. After this the application has a rectangular area as a bounding box, which

means that all coordinates within this box must get a tile.

Tiles are defined by splitting up the world in a grid, which means that one tile X,Y con-

tains multiple longitude, latitude points. So for each corner coordinate (Northwest,

Northeast, Southeast and Southwest), a corresponding X,Y grid coordinate has to be

calculated. After this the application has four corners in a grid system all represented by

X,Y coordinates, so it only has to loop through each row and column in the grid system

to determine the required tiles, X1,Y1 to Xn,Y1 and so on. All of these coordinates,

along with the predefined zoom level are stored in an array, when generating the mani-

31

fest file (See Dynamic Manifest file chapter) the array is parsed and each element is

used to create the full path, /ZOOM/X/Y:

http://a.tile.cloudmade.com/84b255854c18417b8641e17eb887c074/997/256/16/37314/18957.png

5.6 List view

The list view is the view loaded up first in the application. It contains all positions of

interest, ordered by their distance to the user’s position. By looking at the list, users can

quickly determine which position of interest is closest to them.

Figure 20 The Mobile Guide list view for the Arabianranta map

From the list view (Figure 20) the user can either jump directly back to the map view by

clicking the map icon located in the top right corner, or alternatively have a closer look

at any of the positions by selecting them from the list. This opens the POI window, cov-

ered in the next chapter.

In order for the list to be precise, it has to be updated every time the user moves, since

the distances change for every move the user makes. Each list item has data-attributes

containing their geographic location, and their distance to the user. Each time the user

32

moves, a function loops through each list item, compares their coordinates to the users

and resets their distance value. Once the function has looped through all elements, the

list is ordered using jQuery Tinysort (Figure 21).

$('.poiListItem').each(function(){

 $(this).attr("data-distance", distanceHaversine(user_lat,user_lon,poi_lat,poi_lon));

}

$('ul.poiList>li').tsort({attr:'data-distance'});

Figure 21 A simplified example of the code used to order the list view

5.7 POI window

As seen in Figure 22, the POI window contains all text and image data defined for that

position. This window contains three navigational buttons which are fixed to the top of

the page, and remain visible even though the page is scrolled. The back button located

to the left, takes the user back to the list or map view, depending on which was last

used. The center button scrolls the page back up to the top, which can be useful espe-

cially when there is a lot of text. The Rightmost button opens up the map view and

zooms in on the POI. By combining this with the list view, one can quickly locate a

specific POI on the map.

Figure 22 Example of a POI window

33

Besides text data, POIs can also contain multiple pictures. If there are pictures defined

for a POI, the user is displayed an image link, which opens a mobile optimized gallery

of the images defined for the position, see Figure 23 for an example. The gallery listens

to touch interactions, so the user can swipe through the images like in the native galler-

ies found in touch based operating systems.

Figure 23 The POI gallery

34

6 THE ADMIN INTERFACE

The admin interface consists of multiple pages for managing maps and POIs. The sys-

tem is built to function as a service which means that anyone could register and start

creating maps and POIs of their own. Figure 24 contains a screenshot taken from the

admin interface with multiple maps already defined.

Because the target user group of the admin interface would be companies and tourist

departments there needs to be a way to personalize and brand the maps according to the

organizations branding and needs. This is why the admin interface also contains func-

tionality for customizing the color schemes and logos for each map.

In order to broaden the user-base the admin interface also lets the administrator(s) de-

fine available map languages, which means companies in any country could start offer-

ing their own mobile guide for their guests, in any language. Once a language is defined

for the map, every POI can be translated in the new language. In case the translation is

not given for a specific position, the frontend text will be displayed in the default lan-

guage, which is also defined by the administrator and can be changed at any time.

Figure 24 A screenshot of the admin interface

35

6.1 Registration and authentication

Figure 25 Login and Registration page for Mobile Guide

In order to start creating and modifying a map, users are required to register to the ser-

vice through the registration form (Figure 25). The registration and authentication are

handled by a Codeigniter library called Tank Auth. Upon registering, the users are sent

an email to confirm their registration. After this they are able to login to the service and

start creating maps.

When handling passwords Tank Auth uses the Portable PHP password hashing frame-

work for added security, which basically means that passwords are never transferred to

or from the database without first being hashed by OpenBSD-style Blowfish-based

bcrypt, which is considered more safe then md5, sha1 and other hashing functions.

Tank Auth handles the login and registration of users, but does not directly control user

privileges. For this a special library called “Can_access” was built. Each time an admin-

istrator performs an operation on a map, POI or even an image, Can_Access checks if

this user has the right to make changes to that particular item.

36

6.2 Map creation and selection

Once the user has successfully registered and logged in, the main view is shown. From

this view the user can change and create an endless amount of maps. Once the user de-

cides to add a new map, the form shown in Figure 26 is opened, where all the general

information over the map is given.

Figure 26 Screenshot of the map creation form

All of the options given in the map creation process are customizable at a later stage,

but are initially required in order to proceed with the creation of POIs. The first line, the

map name is used both in the backend and the frontend, letting the user know which

map is currently being edited or viewed.

The second line tells Mobile Guide, which map tiles should be used. There are some

free tile service providers around the Internet that can be used. As an example,

MapQuest provides Open Aerial tiles through the following url:

http://oatile1.mqcdn.com/naip/15/5240/12661.jpg

To use MapQuests Aerial tiles, the last three url segments have to be changed to zoom

{z}, X coordinate {x} and Y coordinate {y}. So the tile url would in this case become:

http://oatile1.mqcdn.com/naip/{z}/{x}/{y}.jpg

37

The default tile server used is generated through a service called Cloudmade, where us-

ers can, after a free registration, style their maps exactly as they please. Cloudmade pro-

vides instructions on how to do this on their website cloudmade.com.

The third line in the map creation determines the zoom level for the map, 18 being the

maximal value which is the closest possible zoom. This number is not recommended as

the number of required tiles would increase to thousands. This in turn would greatly af-

fect the download time when using the application in offline mode.

Finally, the map center, referred to as the info point needs to be set. This is done be

dragging the marker to its place using the map widget.

6.3 Map languages

Map languages are used for presenting data in multiple languages, which is important if

there is an international user base. After the map has been created, the map languages

have to be defined through the map language definition form (Figure 27), since it is not

possible to create POIs unless the map contains at least one language.

Figure 27 Screenshot of the map language definition form

38

The administrator can add, rename and remove languages. It is however important to

note that once a language is removed, the translations connected to that language will no

longer be available in the front-end.

One language is always defined as the master language of the map. The master language

is used to substitue missing translations, so if the user choses Finnish as the display

language, and a specific POI is not translated into Finnish, the master language English

would be used to present the data. In case a translation is not provided in the master

language nor in the currently selected language, the POI will be completely hidden from

the end user.

6.4 Map styling

The map styling page enables map administrators to customize the frontends color

scheme, logos and background images to their liking (Figure 28). This is a great way to

brand the map and improve the overall experience.

Figure 28 The Mobile Guide style editor

39

All colors are chosen using a RGB color picker. The header, info box and background

can be assigned a background color or gradient color. The background can alternatively

be applied an image instead of colors. The header image can be set by uploading a logo.

If it’s not set the map name will be displayed in text format.

To ease the process of styling the map, a preview widget is included. The widget is up-

dated in real time by resetting its CSS every time the administrator changes a color or

uploads an image. The code responsible for updating the widget CSS is presented in

Figure 29.

$('#backgroundPicker').ColorPicker({

 onSubmit: function(hsb, hex, rgb, el) {

 $(el).val(hex);

 $(el).ColorPickerHide();

 },

 onBeforeShow: function () {

 $(this).ColorPickerSetColor(this.value);

 },

 onChange: function (hsb, hex, rgb) {

 $('#colorpickerField1').val("#"+hex);

 bgstart = hex;

 repaintBackground();

 }

})

function repaintBackground(){

 $.support.backgroundLinearGradient = (function() {

 var test = $('#previewWindow');

 $('.bgimg').addClass("red");

 test.css('background-image', 'none');

 test.css('background-image', 'linear-gradient(top, #'+bgstart+', #'+bgend+')');

 if(test.css('background-image') != 'none') { return "linear-gradient"; }

 test.css('background-image', '-moz-linear-gradient(top, #'+bgstart+', #'+bgend+')');

 if(test.css('background-image') != 'none') { return "-moz-linear-gradient"; }

 test.css('background-image', '-webkit-linear-gradient(top, #'+bgstart+', #'+bgend+')');

 if(test.css('background-image') != 'none') { return "-webkit-linear-gradient"; }

 test.css('background-image', '-o-linear-gradient(top, #'+bgstart+', #'+bgend+')');

 if(test.css('background-image') != 'none') { return "-o-linear-gradient"; }

 test.css('background-image', '-ms-linear-gradient(top, #'+bgstart+', #'+bgend+')');

 if(test.css('background-image') != 'none') { return "-ms-linear-gradient"; }

 return false;

 })();

}

Figure 29 Color update in real time

40

6.5 POI

Figure 30 The POI editors main view, all defined POIS are accessible from this map

The most important functionality in the admin interface is the ability to create and modi-

fy the map’s POIs. The POI editor consists of a main map (Figure 30), where all the

map POIs are painted. To create a new POI, the administrator right clicks the desired

position on the map, and from the dropdown menu select to add a new POI. After this

the POI definition page is opened (Figure 31).

Figure 31 The POI definition page, all text and image data is entered through this page

41

Each POI can be defined a name, a location, a short description and a more in-depth de-

scription. The location can be changed at any time by dragging the marker on the map

widget. The administrator can also open the image handler (Figure 32) from the POI

definition page. From the image handler the administrator has the possibility to manage

and add multiple images to a POI, keeping in mind that each image increases the down-

load time for the end-user. As a precaution, the server side script automatically resizes

all uploaded images to a maximum width of 500 pixels in order to limit the total size of

the map.

Figure 32 The image handler, here the administrator can add and remove POI images

42

7 DISCUSSION

7.1 Application testing

The actual content for ADC was created by another student as a separate thesis (Krista

Fransman, 2011), who used the admin interface for storing the data. Many flaws were

found and fixed due to extensive testing. In order to ensure that the frontend application

was working as expected a real life test was conducted. Students of Arcada were re-

cruited for the test. They formed groups, and walked around Arabianranta with Mobile

Guide running in one of the group member’s phone. As it was not possible to test the

application on all possible phones during the development stage, the test revealed some

unexpected flaws in a few older phones.

The technical comments were mostly related to the missing zoom capability, which was

left out on purpose to decrease the download time. Another desired functionality was

routing, which was disabled before the test for performance issues, but is possible to

implement from a technical point of view. Some devices like the iPhone 3 had problems

with the Leaflet map widget. This has been reported to the maintainers and developers

of Leaflet and will hopefully be fixed in the near future.

Besides writing down the technical experience the students were also asked to comment

on the content, since this is going to be used along with the application itself to guide

tourists during Helsinki WDC 2012.

7.2 Further development

Even though the application is at a stage where it can and will be deployed in real envi-

ronments, there are countless of possibilities to improve the functionality. On the

backend, a map size meter should be implemented. This however is not an easy task as

counting the total size of the map tiles is quite complex. The frontend should undergo

extensive testing on multiple old and new devices to ensure maximal compatibility.

43

As destination routing and zoom capability was the functionality that most test users

were craving for, these could be worth implementing. Actual turn-by-turn routing would

not work in offline mode, but painting a straight line between the user and his/her desti-

nation is possible. The zoom functionality could be implemented by providing the end-

user with two different zoom levels.

7.3 Conclusion

The development of Mobile Guide went through many phases. In the beginning the goal

was to develop a tour guide using a programming framework called Qt. This was how-

ever quickly dropped as Nokia decided to stop developing Symbian, Maemo and Meego

phones, the only mobile operating systems that supported Qt.

After the decision of not developing in Qt was made, many other platforms, such as

Android and IOS were considered. Phonegap, an HTML5 platform which allows devel-

opers to create native applications in HTML5 was evaluated and tested. Phonegap was a

great alternative, but it quickly became clear that it didn’t bring any added value to the

application, as all the required functionality found in Phonegap was available in

HTML5 itself. HTML5 is a safe choice as most mobile browsers already support it, and

all upcoming browser updates will definitely be HTML5 related.

I now have a great understanding of HTML5 and its possibilities, which are close to

limitless. HTML5 is going to be the base for future projects as it is great to work with

and is not platform dependent.

44

REFERENCES

Codeigniter 2011, CodeIgniter User Guide Version 2.1.0

[www] Retrieved 03.05.2011.

Fount at: http://codeigniter.com/user_guide/

Maximiliano Firtman 2011. Mobile HTML5

[www] [Retrieved 08.12.2011]

Found at: http://mobilehtml5.org/

Mark Pilgrim 2011. DIVE INTO HTML5

[www] [Retrieved 08.12.2011]

Found at: http://diveintohtml5.info/

Leaflet 2011, Leaflet documentation

[www] [Retrieved 03.09.2011]

Found at: http://leaflet.cloudmade.com/reference.html

jQueryMobile 2011, jQueryMobile documentation Version 1.0

[www] [Retrieved 09.10.2011]

Found at: http://jquerymobile.com/demos/1.0/

Krista Fransman 2011, Matkaoppaana Arabianrannassa toimiva mobiilisovellus - tehtä-

vänä sisällöntuotanto

BSC Thesis Manuscript

http://codeigniter.com/user_guide/
http://mobilehtml5.org/
http://diveintohtml5.info/
http://leaflet.cloudmade.com/reference.html
http://jquerymobile.com/demos/1.0/

APPENDENCIES

 APPENDICE: Test feedback 1.

 APPENDICE: Test feedback 2.

 APPENDICE: Test feedback 3.

 APPENDICE: Test feedback 4

 APPENDICE: Test feedback 5

