

TravelersAround

Find fellow travelers around you based on your current location - on the go

Nimrod Dayan

 Thesis report

 Business Information Technology

 2011

 Abstract

 30.09.2011

Business Information Technology

Author or authors
Nimrod Dayan

Group or year of
entry
BIT

Title
TravelersAround
Find fellow travelers around you based on your current location - on the
go

Number of pages
and appendices
24 + 75

Supervisor
Juhani Välimäki

The objective of this thesis was to develop an online service for travelers who’d like to meet

other travelers while on the go. The development process covered the software analysis, de-

sign and implementation of the system.

TravelersAround is an online service provided to travelers around the world, who would like

to spontaneously meet fellow travelers or even the locals, without any need to plan anything in

advance. Many times, travelers decide to go on a trip alone, because none of their friends were

available at that time or they couldn’t find common interest for the same destination. That’s

where TravelersAround comes in. As a solo traveler, you would benefit the most out of it.

Travelers log onto the system and receive a report of fellow travelers around their current

location. The report is shown in real-time and provides up-to-date information.

The system was developed in a short time and therefore includes the core features and func-

tions, such as: searching for fellow online travelers in the area, sending and receiving messages,

profile status updates and managing friends list. These features will provide the building block

of the system’s further development. Future development will feature mobile phone applica-

tion for the popular smart phones in the market.

The system was developed in C# programming language, .NET Framework 4.0 and SQL

Server 2008 and released under the MIT OSI license. In addition, several third party open

source libraries were used (refer to the Appendix 2 : Software Design documentation for the

full list).

Keywords
Travelers, Social Network, Location-based, real-time

Table of contents

Vocabulary ... 1

Abbreviations... 1

1 Introduction .. 2

1.1 Background .. 2

1.2 Deliverables .. 3

1.3 Learning Objectives .. 3

1.4 Scope ... 3

1.5 Methodologies ... 3

1.6 Sponsor ... 4

2 Technology .. 5

2.1 GeoIP .. 5

2.2 Service Oriented Architecture ... 6

2.3 Haversine Formula .. 7

2.4 Design Patterns.. 8

3 Presentation .. 9

3.1 Tools ... 9

3.2 Project Plan .. 10

3.3 Analysis phase .. 11

3.3.1 Analysis Phase problems and solutions .. 12

3.4 Design phase .. 13

3.4.1 Design Phase problems and solutions .. 15

3.5 Implementation phase .. 16

3.5.1 Implementation Phase problems and solutions .. 18

4 Evaluation ... 19

4.1 Software Requirements Analysis Document ... 19

4.2 Software Design Document .. 19

4.3 Implementation ... 20

4.4 Deployment ... 20

4.5 Quality of Deliverables ... 20

4.6 Other Deliverables .. 21

4.7 Commissioning Party Evaluation .. 21

5 Conclusion .. 22

6 Recommendations.. 24

Bibliography ... 25

Appendix 1 : Software Requirements Analysis Documentation

Appendix 2 : Software Design Documentation

Appendix 3 : Implementation Documentation

1

Vocabulary

On the go refers to a person who is constantly travelling from one place to anoth-

er

Around refers to people who are in the vicinity of others

Abbreviations

UML Unified Modeling Language

BIT Business Information Technology

T-SQL Transact Structured Query Language

GUI Graphical User Interface

ORM Object Relational Mapping

IP Internet Protocol

MIT Massachusetts Institute of Technology

OSI Open Source Initiative

API Application Programming Interface

2

1 Introduction

1.1 Background

The Internet is full of social networks and they keep growing day by day. Each social

network has its own concept and focuses on certain audience. What actually defines a

social network?

We define social network sites as web-based services that allow individuals to (1) con-

struct a public or semi-public profile within a bounded system, (2) articulate a list of

other users with whom they share a connection, and (3) view and traverse their list of

connections and those made by others within the system. The nature and nomenclature

of these connections may vary from site to site. (Ellison & Boyd 2007. Article 11.)

The idea of the thesis is based on my own experience as a traveler and as a spontane-

ous person. Unlike existing services in the market such as CouchSurfing.com, which re-

quires the traveler to plan in advance who he is going to meet and when, the target of

this project is to enable travelers to spontaneously meet fellow travelers around their

current location as they are on the go without the need to stick to a certain plan.

TravelersAround is an online social network for travelers around the world. It pro-

vides travelers the facilities to interact with fellow travelers who are currently at their

vicinity. The location of each traveler is determined when the traveler is logged on to

the system and then a list of fellow online travelers around his current location is gen-

erated. The traveler can then communicate with other travelers and from that point

and on, the sky is the limit.

3

1.2 Deliverables

The objectives of this thesis project were to develop the system through its Software

Development Life Cycle as explained in System Analysis & Design (Dennis, Wixom & Roth

2006, 2). That includes the analysis phase, the design phase and the implementation

and deployment of the system. The following are the main documents produced dur-

ing this thesis:

 Software Requirements Analysis Documentation

 Software Design Documentation

 Software Implementation Documentation

1.3 Learning Objectives

Prior to beginning the project, few learning goals were set:

 Location-based programming

 Improve graphic designing and user interface styling

 Improve UML diagram skills

 Improve project management skills

 Develop a platform independent compatible application

1.4 Scope

This project covers the analysis, design and implementation phases of the architecture

and main features of the system. The results consist of documentation and the system

itself as a package of web application, web services and database.

Due to time limitation, the management panel of the system was left out.

1.5 Methodologies

The analysis and design phases of this project followed the Waterfall Development Metho-

dology, which defines a sequential process for analyzing requirements of a system and

4

producing the software requirements analysis document and the software design doc-

ument (Dennis et al. 2006, 10-11). The documentation produced followed the guide-

lines given in Haaga-Helia’s course: Information System Development Project

(SYS1TF080-7). I chose to use this methodology in order to produce a complete and

thorough documentation of the system as required by the BIT bachelor thesis guide-

lines for product based thesis.

The implementation phase of this project followed the Agile with SCRUM development

methodology, which emphasizes simple and iterative application development, for the

implementation management part of the project (Dennis et al. 2006. 16-18). The deci-

sion to use this methodology in the implementation part comes from my own interest

for experiencing this methodology as it is widely used nowadays, mostly in the imple-

mentation phase, by many companies around the world.

1.6 Sponsor

Avi Tours is a small tourism agency located in Israel. The owner of this company and

the writer of the thesis came up with the system idea and saw it as a potential for future

travelling portal. One of the key decision makers made by the company was that the

system is developed free of charge and the business potential within.

5

2 Technology

In this chapter, the architecture and algorithm theory that were used and followed in

the implementation of the system are described.

2.1 GeoIP

GeoIP is a proprietary technology developed by MaxMind that utilizes geographical

position of a device that’s connected to the Internet by its IP address (MaxMind 2011,

What is GeoIP). The product is available for a certain fee as a web service or a data-

base file, but is also available for as a free edition database file with lower resolving

accuracy. MaxMind indicates that the free edition database file provides accuracy of up

79% to a city level in the United States, while its commercial solutions can reach 83%.

MaxMind features an API which is compatible with common programming languages

such as C#, Java, C/C++, etc. Developers use the API to query the database/web ser-

vice to resolve an IP address. The results are then generated and are represented as a

custom data type which contains the city, country, Internet provider and a geographical

coordinates pair called latitude and longitude.

The Geographical Coordinates System defines a location on the surface of Earth by a set of

numbers called Latitude and Longitude which are commonly used in navigation.

Lines of Latitude run parallel to Earth's equator and are divided into 180 equal portions

from south to north. Lines of longitude run perpendicular to the equator and converge

at the poles. (Riesterer, J. 2008. Geographical Coordinate System.)

TravelersAround uses MaxMind's C# API with its free edition database file to resolve

an IP address into its Geographical Coordinates System representation. The informa-

tion is then saved in the database for later calculations, using the Haversine formula (See

section 2.3 Haversine Formula), to determine the closeness of travelers in the system.

6

2.2 Service Oriented Architecture

Service Oriented Architecture (SOA) is a software developing approach to separate

concerns of an application design into distinct components which communicate with

each other, yet act as an independent part of the application (Erl 2009. 32).

SOA is commonly used in a distributed business systems and allows platform indepen-

dency when it comes to the clients consuming them. The service is described by a ser-

vice contract (an interface), which specifies the functions offered by the service. Each

function in the service acts as a separate autonomous unit that performs a certain task.

The building block of SOA dictates that each service function should be completely

independent and therefore not requiring its user to follow a certain workflow to run it.

(Millett. 2010 .154-157.)

The development of TravelersAround followed the concept of SOA to enable ease of

integration with possibly other existing systems in the market and to allow the devel-

opment of different kind of user interfaces to be implemented easily (Millett. 2010

.154-157). Since the core of the system is contained within a web service, the client

application can solely concentrate on building a well designed user interface and not

worry about application logic. In addition, this enables smooth and easy future system

integration with 3rd party systems.

7

2.3 Haversine Formula

Haversine formula is an equation to calculate distance between two points on a sphere

by providing longitude and latitude coordinates and is normally used in navigation (Ve-

ness 2010. Distance).

Figure 2-1: Haversine formula

 haversin is the Haversine function, haversin(θ) = sin2(θ/2) = (1−cos(θ))/2
 d is the distance between the two points
 R is the radius of the sphere
 φ1 is the latitude of point 1
 φ2 is the latitude of point 2
 Δλ is the longitude separation

The Haversine formula is used in the system to calculate the distances among travelers.

The formula is represented as a T-SQL query in which the maximum radius of 20km is

defined in order to generate a list of travelers around each other.

8

2.4 Design Patterns

A common mistake made by junior developers is to confront a problem which has

already been solved by many developers in the past. Design Patterns come to ease their

learning path through experiences and skills which were earned by senior developers.

Design Patterns are high-level abstract solution templates. Unlike a framework that can

be simply applied to an application; design patterns are reached by refactoring applica-

tion code and generalization of problems. Design Patterns originated from the expe-

rience and knowledge of programmers over many years. (Millett 2010. 4-12.)

Patterns are essential in application development as they indicate an intension through

a common vocabulary when solving a problem at the design phase as well as at the

implementation phase. They provide a description to solutions of complex problems

and are language agnostic, which enables portability among different programming

languages. (Millett 2010. 4-12.)

The key point of Design Patterns is that they have been tried and tested. Therefore,

they are proven to be effective in the case they are aimed to solve. Developers who are

familiar with Design Patterns have more chances to deliver their intensions to other

developers through an application source code, when working in a team. (Millett 2010.

4-12.)

TravelersAround makes a wide use of Design Patterns to provide clean and maintaina-

ble code and provide interoperability between different layers. Among the used pat-

terns are the Repository Pattern, Domain Model and Factory Pattern which are described in

appendix 2: Software Design Documentation.

9

3 Presentation

This chapter describes the thesis project process. It provides information concerning

what tools have been used and the steps that were followed.

3.1 Tools

The system was developed in C# .NET. The following tools were used:

For analysis and design:

 Microsoft Visio 2007

 Microsoft Word 2007

 Microsoft Project 2007

For implementation and deployment:

 Visual Studio 2010 Ultimate Edition

 Microsoft SQL Server Management Studio Express 2008

 IIS 7.5 Express

 FireFox 7 with FireBug and Developer Tools plug-ins

 Fiddler

10

3.2 Project Plan

The development process was carried out according to the work plan which was made

before starting the project. The main tasks included:

Task Outcomes

1. Analysis phase Software Requirements Documentation

Defining Use Cases General system specifications, Use Case Model

Specifying data to be stored Class Models and Diagrams

Analyzing Use Case implemen-

tations and their information

needs

Use Case Diagrams and Class Models

Usability Development Process

Description of the Usability Process and Form for the Usabili-

ty Test

Finalizing documentation Parameters and rules of functions

Review Improved and corrected documentation

 2. Design phase Software Design documentation

User Interface Design Page layouts and navigation, User Interface Style Guide

Planning the testing Plan for the Software Testing

Database Design Logical Database Design

Application Design Software Architecture

Steering meeting Improved and corrected documentation

 3. Implementation phase System Implementation & Documentation

Creating the Database Database

Implementing User Interface GUI

Implementing application code Application code

Unit testing Bug free code

Implementation phase complete milestone reached

Planning the testing Test Plan and Test Data

Testing activities Testing minutes and documents

11

3.3 Analysis phase

The analysis phase outcome was the Software Requirements Documentation (Appen-

dix 1). The foundation of the whole project and therefore was the first step in the sys-

tem development process. The following are the descriptions of each step:

System Overview

The first step in the system development consisted of specifying what the system should do

and what are the features and services it provides.

Use Cases

In this step the specifications turned to sketching and writing the proposed use cases on a

paper. It was then reviewed and refined to form the systems specification and its users. After

that, each specification was described to detail, resulting in the use case analysis model and

diagram.

Class Model

In this step, the data to be stored by the use cases was defined. First, a sketch of a class

diagram was made on a paper and later on refined to fit the specifications. The results

of this step were the class model and diagram. Afterwards, the class model created was

tested by creating an object life cycle diagram which considered an object from each

class and its states.

Non-functional requirements

In this step, the non-functional requirements were determined. The usability require-

ments were specified along with the security and operational requirements.

12

Test Cases

In this step, the developed use cases were review through specific simulations of use

cases scenarios. Each scenario is described in details along with a collaboration dia-

grams.

User Interface Classes

In this step, each use case was described as a user interface class. Specifying the data

required and its types, the operations it provides and its associations with other user

interface classes.

3.3.1 Analysis Phase problems and solutions

The following are problems which were encountered during this phase and their solu-

tions:

Problem

The idea and main principles of this document were already known, but still some spe-

cific points were missing to complete the task.

Solution

Consulting the thesis supervisor provided a lot of answers and directions concerning

which standards to follow.

Problem

I was unsure of the diagrams quality I produced as a result of lack of experience with

UML notation.

Solution

Researching and studying UML specifications.

13

3.4 Design phase

The design phase main outcome was the Software Design Documentation (Appendix

2) based on the previous documentation produced in the analysis phase, the software

requirements documentation. The work on this document couldn’t be started until the

previous document was finalized and clear understanding of what needs to be done

had been reached. The design documentation served as the building block for the

software implementation, providing clear tasks how and what should be done.

The following are the descriptions of each step:

System Specifications

In this step, the system technology to be used along with tools and frameworks has

been decided and described.

Architecture Design

In this step, the system architectural design was decided and described to details. The

architecture defined the model that will be used to develop the system along with pat-

terns that will be followed to produce high quality system architecture.

User Interface Design

In this step, the user interface structure and navigation was designed. It specified the

flow between each feature of the system and the steps needs to be done to reach it.

Interface Metaphor, Interface Objects and Interface Actions were defined and de-

scribed. Later on, user interface prototypes have been made according to the structure

diagram that was produced earlier and according to the use cases analysis in the pre-

vious phase.

14

Application Design

In this step, the application design was decided and described. Each component was

given a brief description and its part in the whole system. Later on, a sequence diagram

was built to show how these components interact with each other to form a response

for one use case and serve a user’s request.

Database Design

In this step, the logical database structure was built and described, which formed the

Logical Database Diagram. The diagram shows the relation among the database enti-

ties in a closer look to how it will be implemented in the system. The actual require-

ments of the database preferences were taken into consideration and a decision regard-

ing which database system to use was made. In addition, each entity was given a detail

description to form the Data Dictionary.

Test Plan

In this step, a test plan was made to cover the testing part of the implementation

phase. Each test was given a brief description and its role in the implementation phase.

Each test covered a specific scenario and was described in a test form, which then was

used by the thesis supervisor to test the system.

15

3.4.1 Design Phase problems and solutions

The following are problems which were encountered during this phase and their solu-

tions:

Problem

Lack of experience and knowledge with user interface prototyping.

Solution

Having a look at other social networks and some common user interface guidelines

helped.

16

3.5 Implementation phase

In this phase, the system itself was developed according to the documents produced so

far. The implementation proceeded fluently and rapidly, fulfilling the time limitation.

The Implementation Documentation (Appendix 3) was produced to cover the main

principles of the software code algorithms and architecture. The main deliverables of

this phase were the system’s source code and assets, which were released under the

MIT OSI license, can be found here: ttps://github.com/Nimrodda/TravelersAround.

The following were the main steps and in this order:

Visual Studio Solution Creation

This was the first step in the implementation phase. All the necessary project types

were added to the solution.

Database creation

In this step, the physical database diagram was designed in Visual Studio 2010 accord-

ing to the logical database diagram design. Primary and foreign keys were defined along

with their constraints.

Generating database entities with Entity Framework ORM

In this step, an Entity Framework file was added to the data access layer project, which

then generated the database entities.

17

Creating the Data Access layer – the repository

In this step, the data access program class was built. This class included the basic

CRUD operation to be done in the database.

Unit Testing the Data Access layer

In this step, the data access layer program classes were unit tested using MSTest, the

built-in Visual Studio 2010 testing framework.

Creating the Application Logic layer – the service

In this step, the application logic program class was built. The class was designed as a

WCF service contract, which included the system features presented as a web service.

Unit Testing the Application Logic layer

In this step, the application logic program class was unit tested using MSTest, the built-

in testing framework in Visual Studio 2010.

Integration Testing for the two layers

In this step, the above layers were integrated together and tested.

Creating the Presentation layer – View Models, Controllers and Views (GUI)

In this step, the user interface was designed with Photoshop and then later on styled to

fit HTML representation. Each user interface prototype was implemented in the sys-

tem with its View Model to contain its data. The controllers were built to form the na-

vigation and flow of the user interface.

18

Unit Testing the Presentation Layer

In this step, the application logic program class was unit tested using MSTest, the built-

in testing framework in Visual Studio 2010.

Integration Testing all layers together

In this step, all layers were tested together.

Final touch ups and testing

In this step, the application was tested as a whole in black box testing.

3.5.1 Implementation Phase problems and solutions

No notable problems were found in this phase.

19

4 Evaluation

This part of the thesis report presents the actual results achieved during the thesis

project and their value. The deliverables are the Software Requirements Analysis doc-

ument, Software Design document, Implementation Document and the implemented

system source code.

4.1 Software Requirements Analysis Document

The requirements analysis was done thoroughly and as expected, according to the plan

and proposal. In this phase, Haaga-Helia study material definitely helped me complete

the task and provided me with clear goals of what should be done and what is actually

to be included in this document. The main topics of this document covered:

 The system overview

 Use case analysis

 Class model

 Non-functional requirements

 Test cases

4.2 Software Design Document

The design document was also done thoroughly and complete. Also in this part, I

heavily relied on Haaga-Helia study material and guidelines to complete the task. The

results are very sufficient and informative for a clear implementation of the system.

This document was tightly written according to the software requirements analysis to

maintain the consistency of the system.

20

The main topics of this document covered:

 System Specification

 Architecture Design

 User Interface Design

 Application Design

 Database Design

 Test Plan

4.3 Implementation

The implementation process followed the design document and the project plan very

well. The standards that were set included designed patterns and models were also

achieved. The requirement to make the system platform independent has been

achieved. The system itself functions as it should be and covers all the required fea-

tures and functions. The user interface design can definitely be improved, but this is

due to lack of experience in GUI designing. The deliverable included the system itself

as a Visual Studio 2010 solution folder along with a short implementation document,

which gave a brief description of the system components.

4.4 Deployment

The deployment phase was postponed as a result of not finding suitable hosting pro-

vider. The sponsor and the developer are looking for offers and will deploy the system

once a proper deal had been found. The service will be hosted under the domain:

www.travelersaround.com.

4.5 Quality of Deliverables

The documents produced in this thesis followed the guidelines of the course ”Informa-

tion System Development Project” of Haaga-Helia. Each document has reached the

required quality of that course.

21

The system implementation itself followed my own work experience and ethics as a

commercial software developer for the past two years along with programming design

patterns literature obtained from the Internet and textbooks. (See Bibliography for

complete list of used literature).

4.6 Other Deliverables

The thesis project followed the guidelines for BIT bachelor’s thesis in Haaga-Helia and

therefore includes the additional deliverables which are part of the administration fold-

er: Project Plan document, Final Report document, the agenda and steering meeting

review documents, Progress reports.

4.7 Commissioning Party Evaluation

The results of the thesis were presented to the sponsor and accepted. The sponsor was

satisfied with the results and agreed to release the service to the public. The sponsor

and developer will look for an affordable web hosting company and deploy the appli-

cation within the next couple of weeks after concluding this thesis.

22

5 Conclusion

The thesis project goal was to analyze, design and implement an online service for

travelers around the world. The service behaves as a social network and enable travel-

ers to see other travelers in their vicinity in real-time. During the thesis project’s

process, a number of documents have been produced which were the foundation of

the implemented system. Among these documents were: Software Requirements Anal-

ysis documentation, Software Design documentation and a short Implementation do-

cumentation.

The chosen development methodology for the documentation part, Waterfall Develop-

ment, was definitely a wise decision as it covered every aspect of the system according

to the requirements of Haage-Helia’s system based thesis. In addition, there was no

business pressure to release the system . On the other hand, if the system wasn't devel-

oped as a thesis work, a lighter and a more iterative approach towards the documenta-

tion phase would have been used.

The chosen methodology for the implementation phase, Agile development with SCRUM,

might not have been the best methodology for a solo developer. The reason for choos-

ing this methodology was to experience the usage of this methodology in project im-

plementation management. Nevertheless, I am confident that the chosen methodology

proved to be very efficient for the short span system development such as in this the-

sis.

Apart from the documentation, there have been also learning points which were set

and achieved during the thesis. The main learning objectives were: location-based pro-

gramming, improving graphic designing, improving project management skills and ex-

perience project management using Agile with Scrum methodology.

The achieved deliverables fulfilled the requirements and allowed for smooth imple-

mentation of the system. The sponsor and the developer are very satisfied with the

outcome of the implementation and see the system as a potential for future travelers

portal. The system will surely contribute travelers around the world to get more out of

23

their trips; by meeting other travelers, they can discover things which they didn’t plan

to do and experience.

The service will be launched shortly after finalizing the thesis and will be provided free

of charge.

24

6 Recommendations

The system development will continue after finishing this thesis project. As mentioned

before, few features were left out of this project’s scope as a result of time limitation.

The sponsor and the developer have already discussed the possibility of mobile appli-

cation development for the common smart phones in the market. In addition, a man-

agement panel will be developed in high priority.

Other possible future development might include integration with existing social net-

works, such as Facebook, Twitter, etc. More features will be added to the system to give it

a more social network feeling like. Few of these features are planned to be: the ability

of friends to comment of each other’s profile, the ability to rate travelers' profiles, the

ability to express their own experiences, the ability to define privacy rules, etc.

25

Bibliography

Boyd, d. m., & Ellison, N. B. 2007. Social network sites: Definition, history, and scho-

larship. Journal of Computer-Mediated Communication, 13(1), article 11.

URL:http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html. Quoted: 8.10.2011

Dennis, A., Wixom, B.H. & Roth, R.M. 2006. System Analysis & Design.

3rd Edition. John Wiley & Sons, Inc.

MaxMind's IP Intelligence Solution

URL: http://www.maxmind.com/app/ip-locate Quoted: 8.10.2011

Erl, T. 2009. Service-Oriented Architecture (SOA): Concepts, Technology, and Design.

Pearson Education, Inc. Crawfordsville, Indiana. United States.

Riesterer, J. 2008. Geographical Coordinate System.

URL: http://geology.isu.edu/geostac/Field_Exercise/topomaps/grid_assign.htm.

Quoted: 8.10.2011

Millett, S. 2010. Professional ASP.NET Design Patterns.

Wiley Publishing, Inc., Indianapolis, Indiana, USA.

Course Materials, Information System Development Project. SYS1TF080-7.

2011. Haaga-Helia. Helsinki.

Veness, C. 2010. Calculate distance, bearing and more between Latitude/Longitude

points. URL: http://www.movable-type.co.uk/scripts/latlong.html. Quoted: 20.9.2011

Software Requirements Analysis Documentation

TravelersAround

Version

Created by

Reviewed by

Approved by

1.0

Nimrod Dayan

Juhani Välimäki

Juhani Välimäki

18.8.2011

31.8.2011

31.8.2011

Version Date Description Author

0.1 18.8.2011 Introduction, system overview, use case
diagram, services and actors have been
added.

Nimrod Dayan

0.2 19.8.2011 Use case dependency diagram, use cases
descriptions and data requirements have
been added.

Nimrod Dayan

0.3 20.8.2011 Class model along with class diagram and
class description, object life cycle have
been added.

Nimrod Dayan

0.4 21.8.2011 Summary of data use and non-functional
requirements have been added.

Nimrod Dayan

0.5 22.8.2011 Test cases, scenarios and collaboration
diagrams have been added.

Nimrod Dayan

0.6 23.8.2011 User interface class's description has
been added.

Nimrod Dayan

1.0 31.8.2011 Corrections after review of steering
meeting.

Nimrod Dayan

Table of contents

1 Introduction .. 1

2 System overview ... 1

2.1 Overall workflow description .. 1

2.2 Use Case diagram .. 2

2.3 Actors .. 2

2.4 Services ... 3

2.4.1 Register ... 3

2.4.2 Log on ... 3

2.4.3 Search for fellow travelers .. 3

2.4.4 Update profile .. 3

2.4.5 Manage friends list ... 3

2.4.6 Manage messages ... 4

3 Use cases ... 5

3.1 Sub use cases description ... 5

3.1.1 Send message ... 5

3.1.2 Read message ... 5

3.1.3 Add friend .. 5

3.2 Use case analysis .. 6

3.2.1 Register ... 6

3.2.2 Logon .. 7

3.2.3 Search for fellow travelers .. 8

3.2.4 Add friend .. 8

3.2.5 Update profile .. 9

3.2.6 Manage friends list ... 10

3.2.7 Manage messages ... 11

3.2.8 Send message ... 12

3.2.9 Read message ... 13

3.3 Data requirements ... 13

3.3.1 Register ... 13

3.3.2 Logon .. 13

3.3.3 Search for travelers .. 14

3.3.4 Add friend .. 14

3.3.5 Update profile .. 14

3.3.6 Manage friends list ... 14

3.3.7 Send message ... 15

3.3.8 Read message ... 15

3.3.9 Manage messages ... 15

4 Class model ... 16

4.1 Conceptual Level Class diagram .. 16

4.2 Class definitions ... 17

4.2.1 Traveler ... 17

4.2.2 Message ... 18

4.3 Objects life cycle .. 19

4.3.1 Traveler ... 19

4.3.2 Message ... 20

5 Summary of data use .. 21

6 Non-functional requirements ... 22

6.1 Usability .. 22

6.1.1 Navigation .. 22

6.1.2 Efficient usage.. 22

6.1.3 Error handling and messages ... 22

6.2 Security ... 23

6.3 Performance ... 24

6.4 Operational requirements... 24

6.4.1 Traveler’s location determination .. 24

6.4.2 Platform independency ... 24

7 Test Cases .. 25

7.1 Register ... 25

7.1.1 Scenario ... 25

7.1.2 Collaboration Diagram ... 25

7.2 Logon .. 26

7.2.1 Scenario ... 26

7.2.2 Collaboration Diagram ... 26

7.3 Search for fellow travelers .. 27

7.3.1 Scenario ... 27

7.3.2 Collaboration Diagram ... 27

7.4 Update profile .. 28

7.4.1 Scenario ... 28

7.4.2 Collaboration Diagram ... 28

7.5 Manage friends list .. 29

7.5.1 Scenario ... 29

7.5.2 Collaboration Diagram ... 29

7.6 Manage messages ... 30

7.6.1 Scenario ... 30

7.6.2 Collaboration Diagram ... 30

7.7 Add friend .. 31

7.7.1 Scenario ... 31

7.7.2 Collaboration Diagram ... 31

References .. 32

Appendix 1 – User Interface classes .. 33

Register .. 33

Logon ... 33

Search for travelers .. 34

Update profile ... 35

Manage friends list ... 36

Send message .. 36

Read message .. 37

Manage messages ... 37

Add friend ... 38

1

1 Introduction

The purpose of this document is to analyze and describe the requirements for my the-

sis project, TravelersAround, and establish the foundation for the next step in the de-

velopment of the system: the design phase. It is based on the system proposal by the

sponsor and describes theoretically what features the system will have, who are its us-

ers and what are the main benefits it provides.

The system services and its class models are presented in UML notation along with

detailed description. The documentation contents follow the guidelines taught in Haa-

ga-Helia for Software Requirements Analysis document.

2 System overview

TravelersAround is an online service provided to travelers around the world, who

would like to spontaneously meet fellow travelers or even the locals, without any need

to plan anything in advance.

2.1 Overall workflow description

New travelers register to the system and fill in their personal details. After successfully

completing the registration phase, the system will identify their location or feed in their

location manually.

Once the location is determined, the traveler can search for fellow online travelers in

his area and receive a list of the results. He can then add the person to his friends list

or just send a private message. From this point on, it’s all up to the travelers how they

decide to continue.

2

2.2 Use Case diagram

Figure 2-1: The system’s Use Case diagram- the main features

2.3 Actors

Unregistered Traveler

A random traveler who’s not registered and therefore has no access to the system’s

features besides registration.

Registered Traveler

The registered traveler is the main user of the system and can use all the features and

functions in the system without restrictions.

3

2.4 Services

The following is a brief description of each use case presented in the figure 2-1:

2.4.1 Register

This use case describes how a new traveler becomes a member of the system. The

traveler enters his personal details into the form. As a result, the system creates a user

profile and the user gets the privileges required to interact with the system.

2.4.2 Log on

This use case describes how an existing member identifies himself and gains the re-

quired privileges to interact with the system.

2.4.3 Search for fellow travelers

This use case describes how a traveler can search for nearby fellow travelers. The

search is defined according to the user’s current location and a filter, which is defined

by the traveler, specifying whether to show only available or unavailable marked per-

sons in the search results. The results are displayed in a list providing names, profile

pictures, gender, age, status messages and availability mark of fellow travelers nearby.

The traveler can then send a message, initiate a chat or add a person to his friends list.

2.4.4 Update profile

This use case describes how the traveler can update his personal details, profile picture,

status message and availability mark.

2.4.5 Manage friends list

This use case describes how the traveler can manage his friends list and remove friends

from the list by setting a mark next to each friend’s name.

4

2.4.6 Manage messages

This use case describes how the traveler can browse his messages list and remove un-

wanted messages. Messages which are already read are marked as read. The user can

reply or send a new message (by extension use cases). The user can also send a new

message, but in this use case the user is restricted to send new messages only to his

friends. When sending a new message, the user chooses the recipient from his friends

list.

5

3 Use cases

Figure 3-1: Use case dependency diagram

The above diagram shows the main use cases with sub uses cases and their relation.

3.1 Sub use cases description

3.1.1 Send message

This use case describes how traveler can send a message.

3.1.2 Read message

This use case describes how traveler can read a message.

3.1.3 Add friend

This use case describes how traveler adds a fellow traveler, whom he found in the

search results for nearby fellow travelers, to his friends list.

6

3.2 Use case analysis

The following are detailed descriptions of each use case. The following notation is

used:

Step marked with the letter E represents a possible error on a specific step.

Step marked with the letters RE represents the detailed error message.

Step marked with the letter V represents another variation the use case may take.

3.2.1 Register

Actor Unregistered Traveler

Pre condition -

Goal A new traveler is stored in the system and given a unique identifier

Step Description

1
The actor enters his details (name, email address, password, birth date, gend-

er) and accept the terms of use

2
The actor defines that the information has been entered and the system

should save it

3 The system grants access to interact with itself

E3a
The actor did not enter all the required information or entered invalid data

(RE3)

3.1 The system displays an error message

3.2 The system informs the user about which information is missing/invalid

3.3 The actor indicates that they have recognized the message

3.4 The system redirects the actor back to step 1

RE3

Required information: all information is required

Invalid data: data that has a length not allowed by the system, an incorrect

type or an existing email address in the system

7

3.2.2 Logon

Actor Registered Traveler

Pre condition Actor is already registered in the system

Goal Identify and authenticate the traveler and grant permissions

Step Description

1 The actor enters his credentials (email address, password)

2
The actor defines that the information has been entered and the system

should process it

3 The system validates credentials and grants access to interact with itself

E3a
The actor did not enter all the required information or entered invalid data

(RE3)

3.1 The system displays an error message

3.2 The system informs the user about which information is missing/invalid

3.3 The actor indicates that they have recognized the message

3.4 The system redirects the actor back to step 1

RE3

Required information: all information is required

Invalid data: data that has a length not allowed by the system, an incorrect

type or format and incorrect email/password

8

3.2.3 Search for fellow travelers

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal Search for fellow travelers around the actor according to his loca-

tion

Step Description

1
The actor chooses whether he wants to see all nearby travelers or only availa-

ble ones

2
The actor defines that the information has been entered and the system

should process it

3 The system processes the request and shows the results of the search as a list

4
The actor sends a message to selected traveler from the results (Include UC:

Send message)

V2a Add friend

2.1
The actor clicks on the add friend button, which is next to each person dis-

played in the search results’ list (Extension UC: Add friend)

3.2.4 Add friend

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal Friend is added to the traveler’s friends list

Step Description

1
The actor defines that he wants to add the person to his friends list and the

system should save the changes

2
The system processes the request and shows a message indicating that the

person has been added to the friends list

E2 The actor tried to add a person who’s already in his friends list

2.1 The system displays an error message

2.2 The system informs the user about which information is missing/invalid

9

2.3 The actor indicates that they have recognized the message

2.4 The system redirects the actor back to step 1

3.2.5 Update profile

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal The traveler information is updated

Step Description

1
The system displays the traveler’s information (name, email address, pass-

word, birth date, gender, status message, availability mark)

2 The actor modifies the desired information

3
The actor defines that the information has been updated and the system

should save it

4 The system displays a message that the save was successful

V2a Deletion Mark

2.1 The actor adds a deletion mark to the profile

E4 The actor removed required information or entered invalid data (RE4)

4.1 The system displays an error message

4.2 The system informs the user about which information is missing/invalid

4.3 The actor indicates that they ha7ve recognized the message

4.4 The system redirects the actor back to step 2

RE4

Required information: all information is required

Invalid data: data that has a length not allowed by the system, an incorrect

type or an existing email address in the system

10

3.2.6 Manage friends list

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal The traveler’s friends list is modified

Step Description

1
The system displays the actor’s friends in a list with a checkbox next to each

name

2
The actor checks the box next to the friends he wishes to remove from the

list

3 The actor defines that the system should save it

4 The system displays a message that the save was successful

E4 The actor hasn’t indicated which friend he wishes to remove (RE4)

4.1 The system displays an error message

4.3 The actor indicates that they have recognized the message

4.4 The system redirects the actor back to step 2

RE4 Required information: at least one checkbox has to be selected

11

3.2.7 Manage messages

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal The traveler’s messages are managed

Step Description

1

The system displays traveler’s messages in a list. Each message has its send-

er’s name, subject, date and state mark, which defines if the message was read

or not

2 The actor clicks on the message’s subject to read it

3 The system displays the message content (Extension UC: Read message)

V2a Deletion mark

2.1
The actor adds a deletion mark to a message in the list by marking the check-

box next to the message he wishes to delete

2.2 The actor defines that the system should save it

2.3 The system processes the request and redirects the actor to step 1

V2b Send message

2.1
The actor can click on send message button to send new message (Extension

UC: Send message)

E2.3 The actor hasn’t indicated which message he wishes to remove (RE2.3)

2.3.1 The system displays an error message

2.3.2 The actor indicates that they have recognized the message

2.3.3 The system redirects the actor back to step 1

RE2.3 Required information: at least one checkbox has to be selected

12

3.2.8 Send message

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal Traveler sends a new message

Step Description

1 The actor writes the message (recipient name, subject, content)

2
The actor defines that the message has been written and the system should

send it

3 The system processes the request and indicates the operation was successful

E3a
The actor did not enter all the required information or entered invalid data

(RE3)

3.1 The system displays an error message

3.2 The system informs the user about which information is missing/invalid

3.3 The actor indicates that they have recognized the message

3.4 The system redirects the actor back to step 1

RE3

Required information: all information is required

Invalid data: data that has a length not allowed by the system or an incorrect

type

13

3.2.9 Read message

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal Traveler reads a message

Step Description

1
The system displays the message (sender name, subject, content) and sets the

message state as read

V2a Reply message

2.1 The actor clicks the reply button

2.2

The system redirects the actor to UC: Send message and prepares the reply

message (sets the new message’s recipient to the original message’s sender

and inserts the subject & content of the original message to the subject &

content of the new message)

3.3 Data requirements

The following is the data required by each use case in the conceptual level.

3.3.1 Register

Email address

Password

Name

Date of birth

Gender

Save message

Registration status message

3.3.2 Logon

Email address

14

Password

3.3.3 Search for travelers

Filter: Availability mark

Travelers list result including pictures, names and status

messages

Send message button

Add to friends list button

3.3.4 Add friend

Traveler name

Update message

3.3.5 Update profile

Email address

Password

Name

Date of birth

Gender

Status message

Availability mark

Profile picture

Deletion mark

Update message

3.3.6 Manage friends list

Deletion mark

Friends list

Update message

15

3.3.7 Send message

Sender

Subject

Content

Recipient

Send message status

3.3.8 Read message

Message ID from messages list

3.3.9 Manage messages

Messages list including message ID, sender, subject and

deletion mark

Delete message status

16

4 Class model

In this chapter I present the conceptual class model diagram followed by each class

detailed description presented in a table.

4.1 Conceptual Level Class diagram

Figure 4-1: Conceptual Level Class diagram

Class descriptions are in the next page.

17

4.2 Class definitions

4.2.1 Traveler

Class name Traveler

Definition Represents an individual traveler in the system

Super class -

Attributes email Alphanumeric,
50 characters

Traveler’s email address. Also used as the username to

log onto the system

Password Alphanumeric, 8
characters

Traveler’s password. Must be 6-8 characters and con-

tain both digits and letters

Name Alphanumeric,
50 characters

Traveler’s name

Date of birth Alphanumeric, 8
characters

Traveler’s date of birth

Gender Alphanumeric, 6
characters

Traveler’s gender

Status message Alphanumeric,
150 characters

Traveler’s status message to be displayed on search

results

Availability mark yes/no Specifies whether the traveler is available or not at the

moment

Associations

Traveler is friend of 0 to many travelers

Traveler sends 0 to many messages

Traveler receives 0 to many messages

Operations Create

Update

Delete

Responsibilities -

Volume -

18

4.2.2 Message

Class name Message

Definition Represents a single message managed by traveler in the system

Super class -

Attributes Sender Alphanumeric, 50
characters

The traveler who sent the message

Subject Alphanumeric, 50
characters

Subject of message

Content Alphanumeric, 500
characters

Message content text

Recipient Alphanumeric, 50
characters

Receiver’s name

State Yes/No Yes if message was read

Date Date and time Date message was sent

Associations

Message is managed by one to one traveler

Operations Create

Update

Delete

Create link to two traveler (sender and receiver)

Responsibilities Message knows the traveler it is connected to

Volume -

19

4.3 Objects life cycle

4.3.1 Traveler

Waiting for updates

[Created]

[Deleted]

[Updated]

[Keep updating]

Figure 4-2: Traveler object state diagram

20

4.3.2 Message

[Created]

[Discarded]

Waiting to be read

[Read]

[Deleted]

[Stored]

[Sent]

[Unread]

[Deleted]

Waiting to be received

[Received]

Figure 4-3: Message object state diagram

21

5 Summary of data use

In this chapter we can see the relation between each use case and the classes it uses.

 Class

Use case

Traveler Message

Register C -

Logon R -

Update profile RUD -

Search for fellow travelers R -

Manage friends list RU -

Add friend U -

Manage message - RUD

Send message - C

Read message - R

C-Create, U-Update, R-Read, D-Delete

22

6 Non-functional requirements

6.1 Usability

6.1.1 Navigation

The system will feature easy navigation paths to its functions through simple to use

panel, decorated with descriptive icons per each function. Only the main use cases will

be displayed in the panel. Therefore, decreasing the amount of buttons on the screen,

and prevent user’s confusion. Each main use case will be accompanied with its sub-

panel and its functions, if any sub use cases exist.

6.1.2 Efficient usage

The system will use a principle of maximizing usage of stored data, decreasing the need

for typing. Users will choose from lists of stored information menus instead of ma-

nually typing it. This will increase the efficiency of the user and the results expected

from the system.

6.1.3 Error handling and messages

The system will include descriptive-human friendly error messages along with suitable

icons to guide the user exactly what went wrong and how to correct it.

23

6.2 Security

The system is membership based, meaning that each user has a unique username and

password. The user is authenticated by the system and is then authorized to interact

with the system. All members have the same access rights to the system, there are no

administrators or super users at this point.

 Actor

Use case

Registered

Traveler

Unregistered

Traveler

Register - X

Logon X -

Update profile X -

Search for fellow travelers X -

Manage friends list X -

Add friend X -

Manage message X -

Send message X -

Read message x -

24

6.3 Performance

The system will provide data in real-time. Therefore, it is important that all features are

optimized to provide current data in the fastest way possible without any delays. Each

response shouldn’t take than 10 seconds.

6.4 Operational requirements

6.4.1 Traveler’s location determination

The system will draw information from a third party service, which contains informa-

tion regarding location determination around the world.

6.4.2 Platform independency

The system will be developed in a way that features easy integration with different

technologies on different platforms.

25

7 Test Cases

In this chapter, each use case and the appropriate class are tested in a specific test sce-

nario in order to confirm the validity and consistency of the content analyzed so far in

this document. The test is presented in a collaboration diagram, which shows what use

cases and classes are used in the given scenario and what are the steps taken. The tables

show the main steps from each use case scenario.

7.1 Register

A new traveler is registered to the system. All required fields are entered and valid. The

traveler becomes a user of the system and gets permissions.

7.1.1 Scenario

Actor Unregistered Traveler

Pre condition -

Goal A new traveler is stored in the system and given a unique identifier

3
The actor enters his details (name, email address, password, birth date, gend-

er) and accept the terms of use

4
The actor defines that the information has been entered and the system

should save it

6 The system grants access to interact with itself

7.1.2 Collaboration Diagram

Unregistered Traveler

+register user()

-email address

-password

-name

-date of birth

-gender

<<use case>>: Register

-name

-birthdate

-email

-password

-status message

-availability mark

-current location

-gender

:Traveler

5. Create new traveler

1. Selects the Register function

3. Enters personal information (list 1)

4. OK to save

2. The system displays registration form

6. Grant permissions

Figure 7-1: Register scenario collaboration diagram

List 1: name, email address, password, birth date, gender

26

7.2 Logon

A registered traveler is logging on to the system. All required fields are entered and

valid. The system should grant permission to use itself.

7.2.1 Scenario

Actor Registered Traveler

Pre condition Actor is already registered in the system

Goal Identify and authenticate the traveler and grant permissions

3 The actor enters his credentials (email address, password)

4
The actor defines that the information has been entered and the system

should process it

6 The system validates credentials and grants access to interact with itself

7.2.2 Collaboration Diagram

Registered Traveler

+logon user()

-email address

-password

<<use case>>: Logon

-name

-birthdate

-email

-password

-status message

-availability mark

-current location

-gender

:Traveler

5. Asks for traveler with matching credentials

1. Selects the Logon function

3. Enters credentials (list 1)

4. OK to validate

2. The system displays logon form

6. Traveler is given access to the system

6. Traveler

Figure 7-2: Logon scenario collaboration diagram

List 1: email address, password

27

7.3 Search for fellow travelers

Registered traveler makes a search for travelers around him. The result list shows a

number of travelers in the list and then he sends a message to one of the travelers in

the list. All required fields are entered and valid and the message is successfully sent.

7.3.1 Scenario

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal Search for fellow travelers around the actor according to his loca-

tion

3
The actor chooses whether he wants to see all nearby travelers or only availa-

ble ones

4
The actor defines that the information has been entered and the system

should process it

6 The system processes the request and shows the results of the search as a list

7
The actor sends a message to selected traveler from the results (Include UC:

Send message)

7.3.2 Collaboration Diagram

Registered Traveler

+search travelers()

+send message()

-availability mark

<<use case>>: Search for fellow travelers

-name

-birthdate

-email

-password

-status message

-availability mark

-current location

-gender

:Traveler

5. Asks for travelers list around the traveler

1. Selects the Search function

3. Defines filter (list 1)

4. OK to process input

7. Sends a message to traveler from the list

2. The system displays search form

6. Travelers list of nearby travelers is presented

11. Message sent status message

6. Travelers list

-subject

-content

-sender

-recipient

-state

-date

Message

-subject

-content

-sender

-recipient

<<use case>> :Send Message

8. Message content (list 2)

9. Creates new message

10. Message created

Figure 7-3: Search for fellow travelers scenario collaboration diagram

List 1: availability mark

List 2: subject, content, sender, recipient

28

7.4 Update profile

A registered traveler updates his profile information. The traveler’s current information

is displayed. All required fields are filled and valid. The system saves the data and indi-

cates that it was successful.

7.4.1 Scenario

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal The traveler information is updated

2
The system displays the traveler’s information (name, email address, pass-

word, birth date, gender, status message, availability mark)

3 The actor modifies the desired information

4
The actor defines that the information has been updated and the system

should save it

6 The system displays a message that the save was successful

7.4.2 Collaboration Diagram

Registered Traveler

-name

-birthdate

-email

-password

-status message

-availability mark

-current location

-gender

:Traveler

5. Update traveler profile

1. Selects the Upadate profile function

3. Modifies (list 1)

4. OK to save

2. The system displays profile info

6. profile saved

+Update()

-name

-birthdate

-email

-password

-status message

-availability mark

-current location

-gender

-deletion mark

<<use case>>:Update profile

Figure 7-4: Update profile scenario collaboration diagram

List 1: name, email address, password, birth date, gender, status message, and availabili-
ty mark

29

7.5 Manage friends list

A registered traveler who has a number of friends in his list and removes friends from

his friends list by marking the checkbox next to each friend he wishes to remove and

saves the list. The list is then refreshed and the friend is no longer there.

7.5.1 Scenario

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal The traveler’s friends list is modified

2
The system displays the actor’s friends in a list with a checkbox next to each

name

3
The actor checks the box next to the friends he wishes to remove from the

list

4 The actor defines that the system should save it

6 The system displays a message that the save was successful

7.5.2 Collaboration Diagram

Registered Traveler

-name

-birthdate

-email

-password

-status message

-availability mark

-current location

-gender

:Traveler

5. Removes friends

1. Selects the Manage friends function

3. Checks which friend to remove

4. OK to save

2. The system displays friends list

6. list saved

+remove friend()

+send message()

-friends list

-deletion marks

<<use case>>:Manage friends list

Figure 7-5: Manage friends' list scenario collaboration diagram

30

7.6 Manage messages

A registered traveler reads a message from his messages list which has a number of

messages that he received by clicking on the message’s subject. The message content

should display.

7.6.1 Scenario

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal The traveler’s messages are managed

4

The system displays traveler’s messages in a list. Each message has its send-

er’s name, subject, date and state mark, which defines if the message was read

or not

5 The actor clicks on the message’s subject to read it

9 The system displays the message content (Extension UC: Read message)

7.6.2 Collaboration Diagram

Registered Traveler

7. Asks for selected message

1. Selects the Manage messages function

5. Clicks on which message to read

4. The system displays messages list

+read message()

+send message()

+delete message()

-messages list

-deletion marks

<<use case>>:Manage messages

-subject

-content

-sender

-recipient

-state

-date

Message

+delete()

+reply()

-subject

-content

-sender

-recipient

-sent date

<<use case>> :Read message

8. Message

9. The system displays the message content

6. Asks to read a message

3. messages list

2. Asks for messages list

Figure 7-6: Manage messages scenario collaboration diagram

31

7.7 Add friend

The traveler makes a search for travelers around him. A results list of number of trav-

eler is presented. The traveler adds one of the persons to his friends list by clicking on

the add friend button. The process is successful and the traveler gets a notification of

the process success.

7.7.1 Scenario

Actor Registered Traveler

Pre condition Actor is logged onto system

Goal Search for fellow travelers around the actor according to his loca-

tion

3
The actor chooses whether he wants to see all nearby travelers or only availa-

ble ones

4
The actor defines that the information has been entered and the system

should process it

6 The system processes the request and shows the results of the search as a list

7
The actor clicks on the add friend button, which is next to each person dis-

played in the search results’ list (Extension UC: Add friend)

7.7.2 Collaboration Diagram

Registered Traveler

+search travelers()

+send message()

-availability mark

<<use case>>: Search for fellow travelers

-name

-birthdate

-email

-password

-status message

-availability mark

-current location

-gender

:Traveler

5. Asks for travelers list around the traveler

1. Selects the Search function

3. Defines filter (list 1)

4. OK to process input

7. Clicks on add friend button on selected

traveler

2. The system displays search form

6. Travelers list of nearby travelers is presented

10. Friend added status message

6. Travelers list

+add friend()

-traveler name

<<use case>> :Add friend
9. Add traveler name to friends list

8. Traveler name

Figure 7-7: Add friend scenario collaboration diagram

32

References

Dennis, A., Wixom, B.H. & Roth, R.M. 2006. System Analysis & Design.

3rd Edition. John Wiley & Sons, Inc.

Course Materials, Information System Development Project. SYS1TF080-7.

2011. Haaga-Helia.

Tang, T.D., 2009. Thesis: Requirements Engineering Process for Sales Management

System Case study: Tin Phong Trading Co., Ltd. Haaga-Helia. Helsinki.

Pukkila, V. 2009. Thesis: Hotel System with Java and MySQL. Haaga-Helia. Helsinki.

33

Appendix 1 – User Interface classes

In this appendix, each scenario from the Test Cases chapter is described as a class,

showing its used data and operations.

Register

Class name Register

Definition The program class taking care of registering new users in the sys-
tem

Super class -

Attributes Email address Alphanumeric, 50 Email address of traveler

Password Alphanumeric, 8 Password of traveler

Name Alphanumeric, 50 Name of traveler

Date of birth Alphanumeric, 8 Date of birth of traveler

Gender Alphanumeric, 6 Gender of traveler

Operations Register user

Associations -

Responsibilities -

Volume -

Logon

Class name Logon

Definition The program class taking care of logging on existing users in the
system

Super class -

Attributes Email address Alphanumeric, 50 Email address of traveler

Password Alphanumeric, 8 Password of traveler

Operations Logon user

Associations -

Responsibilities -

Volume -

34

Search for travelers

Class name Search

Definition The program class taking care of searching for online travelers
around the traveler and communicate with them

Super class -

Attributes Availability

mark

Boolean Filter for search indicating
whether to show only trav-
elers who are available or
show everybody

Operations Search travelers
Send message

Associations -

Responsibilities -

Volume -

35

Update profile

Class name Update profile

Definition The program class taking care of updating traveler personal profile
in the system

Super class -

Attributes Email address Alphanumeric, 50 Email address of traveler

Password Alphanumeric, 8 Password of traveler

Name Alphanumeric, 50 Name of traveler

Date of birth Alphanumeric, 8 Date of birth of traveler

Gender Alphanumeric, 6 Gender of traveler

Status message Alphanumeric,
150 characters

Free text for the traveler to
write a message which will
be displayed in the search
results along with his pic-
ture and personal details

Availability

mark

Boolean Indicates whether the trav-
eler is available or not

Deletion mark Boolean Indicates that the traveler
wishes to remove himself
from the system and stop
using the service

Operations Update

Associations -

Responsibilities -

Volume -

36

Manage friends list

Class name Manage friends list

Definition The program class taking care of managing traveler’s friends list

Super class -

Attributes Friends list List of Traveler
objects

List of the traveler’s friends

 Deletion marks List of Boolean List of marks indicating
which friend the traveler
wishes to remove from the
list

Operations Remove friend
Send message

Associations -

Responsibilities -

Volume -

Send message

Class name Send message

Definition The program class taking care of sending a message in the system
between two travelers

Super class -

Attributes Sender Alphanumeric, 50
characters

The traveler who sent the
message

Subject Alphanumeric, 50
characters

Subject of the message

Content Alphanumeric,
500 characters

Body content of the mes-
sage

Recipient Alphanumeric, 50
characters

The traveler to receive the
message

Operations Send

Associations -

Responsibilities -

Volume -

37

Read message

Class name Read message

Definition The program class taking care of displaying a received message

Super class -

Attributes Sender Alphanumeric, 50
characters

The traveler who sent the
message

Subject Alphanumeric, 50
characters

Subject of the message

Content Alphanumeric,
500 characters

Body content of the mes-
sage

Recipient Alphanumeric, 50
characters

The traveler to receive the
message

Sent date Date and time The date and time message
was sent

Operations Reply
Delete

Associations -

Responsibilities -

Volume -

Manage messages

Class name Manage messages

Definition The program class taking care of managing traveler’s messages

Super class -

Attributes messages list List of Message
objects

List of the traveler’s mes-
sages

Deletion marks List of Boolean List of marks indicating
which message the traveler
wishes to remove from the
list

Operations Read message
Send message
Delete message

Associations -

Responsibilities -

Volume -

38

Add friend

Class name Add friend

Definition The program class taking care of adding a friend to traveler’s
friends list

Super class -

Attributes Traveler name Alphanumeric, 50 Name of traveler to be add-
ed to friends list

Operations Add friend

Associations -

Responsibilities -

Volume -

Software Design Documentation

TravelersAround

 Version

Created by

Reviewed by

Approved by

1.0

Nimrod Dayan

Juhani Välimäki

Juhani Välimäki

23.8.2011

31.8.2011

31.8.2011

Version Date Description Author

0.1 23.8.2011 System specifications has been added Nimrod Dayan

0.2 24.8.2011 Architecture design has been added Nimrod Dayan

0.3 25.8.2011 User interface diagram and user interface
structure have been added

Nimrod Dayan

0.4 26.8.2011 User interface prototypes have been added Nimrod Dayan

0.5 27.8.2011 Application design has been added Nimrod Dayan

0.6 28.8.2011 Database design has been added Nimrod Dayan

0.7 29.8.2011 Test plan has been added Nimrod Dayan

1.0 31.8.2011 Corrections made after review. Nimrod Dayan

Table of contents

Abbreviations... 1

1 Introduction .. 2

2 System Specifications ... 2

2.1 Technical Environment .. 2

2.2 System Integration .. 2

2.3 Tools ... 2

2.4 Frameworks.. 3

3 Architecture Design ... 4

3.1 Multi-tier Architecture Model .. 4

3.2 Layers Description .. 5

3.2.1 Presentation layer .. 5

3.2.2 Application layer .. 5

3.2.3 Data Access layer ... 5

3.3 Design Patterns.. 5

4 User Interface Design .. 7

4.1 Interface Structure Diagram .. 7

4.2 Interface Standards Design .. 8

4.2.1 Interface Metaphor .. 8

4.2.2 Interface Objects ... 8

4.2.3 Interface Actions ... 8

4.2.4 Interface Icons ... 9

4.2.5 Input Design .. 9

4.2.6 Output Design ... 9

4.2.7 Interface Template .. 10

4.3 Interface Design Prototype .. 11

4.3.1 Logon and landing page ... 11

4.3.2 Registration ... 12

4.3.3 Update Profile .. 13

4.3.4 Search for travelers around .. 14

4.3.5 Manage friends list ... 15

4.3.6 Manage messages ... 16

4.3.7 Send message ... 17

4.3.8 Read message ... 18

5 Application Design .. 19

5.1 Components Description ... 19

5.1.1 View ... 19

5.1.2 View Model .. 19

5.1.3 Controller.. 19

5.1.4 Service ... 20

5.1.5 Repository ... 20

5.1.6 Database ... 20

5.2 Application Process Sequence Diagram ... 21

6 Database Design ... 22

6.1 Mission Statement ... 22

6.2 Mission Objectives .. 22

6.3 Logical Database Diagram ... 23

6.4 Data Dictionary ... 23

6.4.1 Traveler ... 23

6.4.2 Message ... 24

6.4.3 TravelerRelationship ... 24

6.5 Foreign key integrity rules .. 25

6.5.1 Traveler ... 25

6.5.2 Message ... 25

6.5.3 TravelerRelationship ... 25

7 Test Plan .. 26

7.1 Unit Test ... 26

7.2 Integration Test ... 26

7.3 System Test .. 26

References .. 27

Appendix 1 System Testing Forms ... 28

1

Abbreviations

GPS Global Positioning System

MVC Model View Controller

WCF Windows Communication Foundation

xHTML Extensible Hyper Text Markup Language

ORM Object Relational Mapping

SOA Service Oriented Architecture

DBMS Database Management System

SQL Structured Query Language

OS Operating System

API Application Programming Interface

IP Internet Protocol

CSS Cascading Style Sheet

CMS Content Management System

REST Representational State Transfer

CRUD Create Read Update Delete

LINQ Language Integrated Query

SOAP Simple Object Access Protocol

IDE Integrated Development Environment

2

1 Introduction

The purpose of this documentation is to describe the system design in a technical

manner which includes a detailed description of its infrastructure and architecture. This

document is based on the system’s software requirements documentation and intended

to be the foundation and guidelines of the system’s implementation.

2 System Specifications

2.1 Technical Environment

The system will operate over Web environment with IIS 7.5 Web Server and Microsoft

SQL Server 2008 R2 DBMS over Windows Server 2008 R2 OS on the server side, and

with a known web browser on the client side (such as: FireFox, Internet Explorer).

The system will be mainly developed in C# .NET technology, JavaScript, xHTML and

CSS.

2.2 System Integration

 The system will identify the traveler’s location based on his IP address using an

external GEO IP database by MaxMind.

2.3 Tools

The tools that will be used to develop the system are:

 Visual Studio 2010 IDE – C# .NET development tool

 GIT – Version control program

 FireBug – plug in to FireFox for examining and debugging HTML markup, CSS

and JavaScript

 Selenium – Test automation tool for web application

3

2.4 Frameworks

The following frameworks will be used in the system development:

 ASP .NET MVC 3 – web application development framework

 WCF 4 – web services development framework

 Entity Framework – ORM framework

 Ninject - Inversion of Control container framework

 Log4Net – Logging framework

 LINQ – adds native data querying capabilities to .NET framework

 MSTest – Unit Testing framework

 Moq – mocking library that takes the advantage of LINQ for Unit Testing

 AutoMapper – automates object mapping between identical classes

 Validation Application Block 5.0 – validation framework integrated with WCF

4

3 Architecture Design

3.1 Multi-tier Architecture Model

The system will be developed in the three-tiered architecture partitioning, providing

separation of concerns for easy maintainability, upgradability and platform dependen-

cy.

Tier Layer Part Description

C
lie

n
t

Presentation Views, Controls User interface representation

W
eb

 S
er

v
er

Resources Images, Sound files, etc.

Application Controller classes

Control application flow

View Model classes Contain view data, view logic

Repository classes

Facilitate simple access to da-

tabase tables operations

ORM classes Represent database entity

classes

Service classes

Business logic and system fea-

tures classes

D
at

ab
as

e
S
er

v
er

 Data Storage DBMS Relational database

W
eb

 S
er

v
ic

es

Web Service API Enables accessing web service

via REST architecture

5

3.2 Layers Description

3.2.1 Presentation layer

The presentation layer will consist of dynamic content which is sent by the web server

to the user’s internet browser and then rendered by the client’s browser. It’s in charge

of how the data is displayed, sorting and arranging it according to the user’s prefe-

rences. This layer will be using the MVC architecture based on ASP.NET MVC 3

Framework. Each use case will have its own view.

3.2.2 Application layer

The application logic layer will provide the core functionality of the system according

to the use case analysis and will be based on the Service Oriented Architecture using

WCF 4 Framework to keep the system platform independent and enable easy integra-

tion.

3.2.3 Data Access layer

The data access layer will behave as a bus for data retrieval and persistence. Each func-

tion in this layer will consist of bare data retrieval and storage, without filtering or sort-

ing.

3.3 Design Patterns

The system will make wide use of programming design patterns to enable efficiency,

maintainability and interoperability. The main patterns that will be used are described

shortly below:

 Dependency Injection – helps decoupling software units through dependency

of abstractions rather than concrete implementations.

 Repository – acts as in-memory collection completely isolating business enti-

ties from the underlying data infrastructure

 Factory – handling creation of objects without specifying the exact class

6

 Domain Model – object-oriented approach involving creation of an abstract

model of real business domain, ignoring the underlying persistence infrastruc-

ture

 Request Response – design pattern for service oriented application dictating

that each operation request and response should be defined by a class which is

known by the client and server.

7

4 User Interface Design

The following diagram shows the navigation among each of the system’s component

the user will take.

4.1 Interface Structure Diagram

0

Logon /

Registration

1.1

1

Profile Update

1.1.1

1.1

Profile Details

Form

1.1.1

2

Search for

travelers

1.1.2

2.1

Search Form

1.1.2

2.2

Search Results

Report

1.1.2

3

Manage Friends

1.1.3

3.1

Manage Friends

Form

1.1.3

3.2

Friends List

Report

1.1.3

4

Manage

Messages

1.1.4

4.1

Send Message

1.1.4

4.2

Read Message

1.1.4

4.3

Messages List

Report

1.1.4

8

4.2 Interface Standards Design

4.2.1 Interface Metaphor

The system interface metaphor used is a cartoon drawing of the globe with the sys-

tem’s name around it. The globe represents the travelers around the world.

4.2.2 Interface Objects

The following names will be used as interface objects:

 Traveler – represents a traveler in the system

 Message – represents a message sent/received by a traveler

 Profile picture – represents a traveler’s personal picture

 Status message – represents a message that will be displayed in search results

next to travelers’ profile pictures

4.2.3 Interface Actions

The following names will be used as interface actions:

 Profile – represents update profile function

 Friends – represents manage friends list function

 Messages – represents manage messages function

 Search – represents search for travelers function

 Login – represents logging in to the system function

 Register – represents registration of new user function

 Send – represents the confirmation to send a message

 Save – represents the confirmation to save changes to the database

 Submit – represents the submission of a form to the system

9

4.2.4 Interface Icons

The system will make use of common used icons which are already familiar to users

from other web domains and applications. Such icons include:

 Portrait icon to represent user’s profile update action

 Magnifying glass icon to represent search for travelers action

 Group icon to represent the manage friends list action

 Shutdown symbol icon to represent the log out action

 Envelope icon to represent manage messages/send message action

 + Plus icon to represent add friend action

4.2.5 Input Design

The system will use the built-in xHTML form controls for user input: textboxes, radio

buttons, checkboxes, list boxes dropdown menus, etc. The system will validate user’s

input prior to processing it or storing it in the database and display appropriate mes-

sages to the user. Each required field will be marked with * and invalid input will be

marked with a red underline per each invalid input field followed by a message.

4.2.6 Output Design

The system will use the built-in xHTML formatting elements to format system output

to be rendered by the user’s web browser.

10

4.2.7 Interface Template

The following interface template will be used throughout the system:

The header area will contain the main menu, logo and other possible navigation links.

The Side area will contain sub menus of each feature. The main area will contain the

part where the user will interact with the most, including forms, reports, etc. The foo-

ter will contain links and copyright information.

11

4.3 Interface Design Prototype

The following are user interface prototypes for each of the system’s features.

4.3.1 Logon and landing page

12

4.3.2 Registration

13

4.3.3 Update Profile

14

4.3.4 Search for travelers around

15

4.3.5 Manage friends list

16

4.3.6 Manage messages

17

4.3.7 Send message

18

4.3.8 Read message

19

5 Application Design

The application design will be consistent among the system’s features. Each feature will
go through the same workflow which is described in the following sequence diagram.
The application logic is divided into different components. Each component is in
charge of a step in a process and combined together to fulfill a user’s request.

5.1 Components Description

5.1.1 View

View is the main presentation unit that forms the user interface and will consist of

xHTML markup constructed by the web server and sent back to the user as response.

Each view is an APSX file containing xHTML markup and C# code. View will only

contain presentation related logic, such as sorting and ordering and define which con-

trols should be shown. The view makes use of a View Model, which is described below,

to display dynamic data.

5.1.2 View Model

View Model is a C# program class which describes and holds the data presented in a

specific View and its metadata descriptions and requirements. The View Model is in-

stantiated and populated by a Controller, which is described below. Each View Model in

the application design will be constructed specifically per each user interface class ana-

lyzed in the software requirements documentation.

5.1.3 Controller

Controller is a C# program class which is in charge of each action’s workflow. It rece-

ives a request and processes it by the appropriate action method. It is in charge of in-

stantiating the appropriate View Model and performing validation, the workflow of each

action and eventually presenting the right view to the user. A controller makes calls

functions in a service class, which is described below.

20

5.1.4 Service

Service is a C# program class which forms business logic - the core features that the

system offers. Each use case analyzed in the software requirements documentation is

presented here as a method. The service class will be designed as a web service and

behave as another tier in the system. It might be that this service will run on another

web server than the web application itself. It will allow access to it via REST architec-

ture. The service class calls functions from a repository class, which is described below.

5.1.5 Repository

Repository is a C# program class which behaves as a data access layer to the database.

The repository classes in this application design will use an ORM to database entities

and tables. Repository classes will make CRUD calls to modify the database. Each call

will be made using LINQ to SQL commands via the Entity Framework and generate

dynamic SQL queries as needed.

5.1.6 Database

Database is the component where data will be persisted and maintained in the system.

The application design will use Microsoft SQL Server 2008 R2. The database might

reside on another server than the web server.

21

5.2 Application Process Sequence Diagram

:V
ie

w
:V

ie
w

M
o

d
e

l
:C

o
n

tr
o

lle
r

:S
e

rv
ic

e
:R

e
p

o
s
it
o

ry
:D

a
ta

b
a

s
e

1
.
R

e
q

u
e

s
t

4
.

V
a

lid
a

te
 I
n

p
u

t

V
a

lid
a

ti
o

n
R

e
s
u

lt
s

{O
R

}
5

.2
.

V
a

lid
a

ti
o

n
E

rr
o

rM
e

s
s
a

g
e

5
.1

.
C

a
ll

S
e

rv
ic

e
 F

u
n

c
ti
o

n

3
.

In
s
ta

n
ti
a

te
 V

ie
w

M
o

d
e

l

O
p

e
ra

ti
o

n
 S

ta
tu

s

6
.

C
a

ll
C

R
U

D
 o

p
e

ra
ti
o

n

7
.
R

u
n

 S
Q

L
 Q

u
e

ry

R
e

s
u

lt
s
 S

e
t

1
0

.1
.

P
re

s
e

n
ti
n

g
 R

e
p

o
rt

9
.2

.
F

a
ile

d
 S

e
rv

ic
e

 C
a

ll
M

e
s
s
a

g
e

{O
R

}

1
0

.2
.

E
rr

o
r

M
e

s
s
a

g
e

9
.1

.
S

u
c
c
e

s
s
fu

l
S

e
rv

ic
e

 C
a

ll
R

e
s
u

lt
s

8
.
C

h
e

c
k
 O

p
e

ra
ti
o

n
 S

ta
u

s

2
.C

o
n

tr
o

lle
r

A
c
ti
o

n
 C

a
lle

d

The diagram shows the interaction among different components in the system and the

order they are calling each other to form one process. Each feature in the system fol-

lows the above process sequence.

22

6 Database Design

6.1 Mission Statement

The purpose of the database is to store information about travelers around the world

and connects them together while they are on the go and physically in the same city,

area, etc. The data will be kept up-to-date at all times to provide reliable information to

travelers.

6.2 Mission Objectives

 Keep track of Traveler information

 Keep track of Message information

 Keep track of Traveler’s relationships with other travelers

23

6.3 Logical Database Diagram

6.4 Data Dictionary

6.4.1 Traveler

Attribute Type Initial

value

Allow

null

Size Description

Traveler_id GUID - NO - PK. Unique identifier

Firstname String - NO 50 Traveler’s first name

Lastname String - NO 50 Traveler’s last name

Birthdate Datetime - NO - Traveler’s birthdate

Gender Bit - NO - Travler’s gender. 0 de-

fines male. 1 defines

female.

Status_messge String “I’m new

here”

YES 250 Traveler’s status mes-

sage

24

Current_location String - NO - Traveler’s current loca-

tion

Email String - NO 50 Traveler’s email address

Password String - NO 8 Traveler’s password

6.4.2 Message

Attribute Type Initial val-

ue

Allow

null

Size Description

Message_id GUID - NO - PK. Unique identifier

Sender_id GUID - NO - PK. FK1. Traveler ID

of who sent the mes-

sage

Recipient_id GUID - NO - PK. FK2. Traveler ID

of the recipient of the

message

Subject String - NO 150 Message’s subject

Content String - NO 500 Message’s body text

State Integer NO - Message’s state: read,

unread

Date datetime - NO - Date & time the mes-

sage was sent

6.4.3 TravelerRelationship

Attribute Type Initial val-

ue

Allow

null

Size Description

Traveler_id GUID - NO - PK. FK1. Traveler ID

Friend_id GUID - NO - PK. FK2. Friend’s

Traveler ID

25

6.5 Foreign key integrity rules

6.5.1 Traveler

No foreign keys.

6.5.2 Message

 Foreign key sender_id referencing traveler_id(Traveler) on update cascade on delete

no action

 Foreign key recipient_id referencing traveler_id(Traveler) on update cascade on de-

lete no action

6.5.3 TravelerRelationship

 Foreign key traveler_id referencing traveler_id(Traveler) on update cascade on de-

lete no action

 Foreign key friend_id referencing traveler_id(Traveler) on update cascade on delete

no action

26

7 Test Plan

Testing is a crucial part to ensure the system’s is working as it should and stands the

required standards. This plan provides an overview of activities taken during the testing

phase and their chronological order. Each test is assigned to a specific part in the sys-

tem development process and describes who is in charge of it. The following are test

types and they will be conducted in the order mentioned here.

7.1 Unit Test

Each unit or program class will be tested individually to make sure it has no errors and

fulfils its purpose. This testing phase is done by “white box” testing, meaning that each

test is done through examining the class code part and the way it functions. The tool

that will be used in this phase is Visual Studio IDE along with MSTest, .NET Frame-

work’s built-in Unit Testing framework and Moq, a mocking framework, will be used to

assist in this process. This test will be conducted by the developer.

7.2 Integration Test

In this phase, the developer will test the integration of each unit with another unit and

examine its results. The same tool and frameworks will be used here to assist the test as

in the Unit Testing phase with the addition of Selenium, a web browser automation tool.

The test will be carried out right after Unit Testing phase. Some units, mostly third

party units, will be treated as “black box”, meaning that the test is done without seeing

the underlying program code. Any errors that may be found will be fixed right away

and tested again.

7.3 System Test

This test is the last testing phase which basically consists of “black box” testing of the

system as a whole, using the instructions provided in the test forms (See Appendix 1).

It will take place at the project’s closing meeting, the 30th of Sep. 2011 12:00 in Haaga-

Helia, and be conducted by the steering group members, excluding the project manag-

er, who’s also the developer in this case. Any errors found in the outcomes of this test

will be documented and fixed later on.

27

References

Dennis, A., Wixom, B.H. & Roth, R.M. 2006. System Analysis & Design.

3rd Edition. John Wiley & Sons, Inc.

Millett, S. 2010. Professional ASP.NET Design Patterns.

Wiley Publishing, Inc., Indianapolis, Indiana.

Course Materials, Information System Development Project. SYS1TF080-7.

2011. Haaga-Helia. Helsinki.

Pukkila, V. 2009. Thesis: Hotel System with Java and MySQL. Haaga-Helia. Helsinki.

 Mushimiyimana, S. 2009. Thesis: Tin Phong Sales Management System. Haaga-Helia.

Helsinki.

28

Appendix 1 System Testing Forms

Registration

Step Instructions Expected Re-

sults

Errors/Exceptions To be

fixed?(Y/N)

1 Navigate to the main

page by clicking the logo

Main page

appears

2 Click on register link Registration

form appears

3 Fill up the form

4 Click Submit button The system

grants access

and navigates

to Search page

Logon

Step Instructions Expected Re-

sults

Errors/Exceptions To be

fixed?(Y/N)

1 Navigate to the main

page by clicking the logo

Main page

appears

2 Fill up the form at the

top right side

Registration

form appears

3 Click login button The system

grants access

and navigates

to Search page

29

Search

Step Instructions Expected Re-

sults

Errors/Exceptions To be

fixed?(Y/N)

1 Navigate to the Search

page by clicking it on

the main menu

Search page

appears

2 Place a mark in the

checkbox

3 Click search button The system

gives a report

of who’s

around the

logged on

traveler

4 Click the plus icon next

to one of the travelers to

add him to your friends

list

The system

will notify that

the traveler

was added to

friends list

Update profile

Step Instructions Expected Re-

sults

Errors/Exceptions To be

fixed?(Y/N)

1 Navigate to the Profile

page by clicking it on

the main menu

Profile page

appears

2 Change the first name to

John

3 Click Save button The system

notifies that

the save was

successful

30

Manage friends list

Step Instructions Expected Re-

sults

Errors/Exceptions To be

fixed?(Y/N)

1 Navigate to the Friends

page by clicking it on

the main menu

Friends page

appears

2 Place a mark in the

checkbox of one friend

3 Click Save button The system

notifies that

the list was

updated and

shows the

refreshed list

Manage messages

Step Instructions Expected Re-

sults

Errors/Exceptions To be

fixed?(Y/N)

1 Navigate to the Message

page by clicking it on

the main menu

Message page

appears

2 Send a message by click-

ing on the send button

Send message

page appears

3 Fill up the form and

choose a recipient from

your friends list

4 Click the send button to

send the button

The system

will notify that

the message

sent

5 Go back to step 1

6 Click on sent messages

tab on the left hand side

Sent messages

page appears

31

of the interface showing the

messages that

just had been

sent

7 Click on the message’s

subject to open its con-

tent

Message’s

content mes-

sage will ap-

pear

8 Click the delete button The message

will be deleted

from the list

and the system

will notify that

the message

was deleted

and refresh

the messages

list

Implementation Documentation

TravelersAround

 Version

Created by

Reviewed by

Approved by

1.0

Nimrod Dayan

Juhani Välimäki

Juhani Välimäki

13.9.2011

14.9.2011

30.9.2011

Version Date Description Author

0.1 13.9.2011 Added introduction and implementation
content descriptions

Nimrod Dayan

0.2 20.9.2011 Added system workflow diagram and core
units descriptions

Nimrod Dayan

0.3 25.9.201 Added database schema diagram Nimrod Dayan

Table of contents

Abbreviations... 1

1 Introduction .. 2

1.1 Implementation design ... 2

2 Implementation Content ... 3

2.1 Application Logic Layer ... 3

2.2 Data Access Layer ... 4

2.3 Service Layer .. 4

2.4 Presentation Layer ... 4

2.5 Unit Testing ... 5

3 Core Units ... 6

3.1 MembershipService ... 6

3.2 TravelersAroundService ... 7

3.3 HttpRequestAdapter ... 9

3.4 EFRepository ... 9

References .. 10

Appendix 1 : Database schema diagram

1

Abbreviations

GPS Global Positioning System

MVC Model View Controller

WCF Windows Communication Foundation

xHTML Extensible Hyper Text Markup Language

ORM Object Relational Mapping

SOA Service Oriented Architecture

DBMS Database Management System

SQL Structured Query Language

OS Operating System

API Application Programming Interface

IP Internet Protocol

CSS Cascading Style Sheet

CMS Content Management System

REST Representational State Transfer

CRUD Create Read Update Delete

LINQ Language Integrated Query

SOAP Simple Object Access Protocol

IDE Integrated Development Environment

2

1 Introduction

This document is a light version of the implementation phase of TravelersAround the-

sis project. It describes the implementation in general and explains how it works. It

does not cover every unit of the system, but only the core units which are essential to

know. The purpose of this documentation is to provide information on the implemen-

tation components and its structure for other developers or future reference for main-

tenance purposes.

1.1 Implementation design

ASP.NET MVC

WEB APP

WCF REST

WEB SERVICE

STEP 2: Username/password

SQL SERVER

2008

STEP 1: Username/Password

The web application

acts as an

intermidairy to the

web service and

routes the request

accordingly once the

user is authenticated

Serves the UI in

HTML
Serves JSON

STEP 4: Session cookie

STEP 3: API KEY

The web service

recieves the username/

password pair and

converts them into

unique user’s API key

which is then used by

the web app in each

request while the user is

unaware of this

The diagram shows the follow of data in the system. The user is unaware that the web

application is communicating with the web service to process the requests. The web

application role is purely to serve the UI, while not knowing how the requests are

processed and what business rules and logic are applied. This design enables very light

UI implementations and scalability for further UI developments such as mobile

phones, etc.

3

2 Implementation Content

This chapter explains the folders structure of the implementation and the role of each

assembly in the solution.

The source code is available to download from GitHub:

https://github.com/Nimrodda/TravelersAround

Lib – this folder contains external 3rd party reference libraries.

Src – this folder contains the source code of the system divided into assemblies.

Docs – this folder contains the source code documentation.

Builds – this folder contains release builds of the system.

As mentioned earlier, the implementation source code found in SRC folder is divided

into separate assemblies a.k.a. Visual Studio projects. The implementation is divided

into three logical layers. The following is the description of each layer and its assem-

bly's roles:

2.1 Application Logic Layer

This layer contains the application business logic which follows Domain Driven De-

sign principles.

TravelersAround.Infrastructure - contains infrastructure related classes which are

generic for every system usage.

TravelersAround.Model – contains the entities, domain services, interfaces and busi-

ness logic which are persistence ignorant.

TravelersAround.Resources – contains resources such, as localized text, that are

used in the system.

https://github.com/Nimrodda/TravelersAround

4

2.2 Data Access Layer

This layer contains the data access strategy used in the system.

TravelersAround.Repository - contains the data persistence strategy using Entity

Framework and SQLite adapter class.

TravelersAround.GeoCoding – contains the concrete implementation of location

determination using MaxMind GeoCoding library.

2.3 Service Layer

This layer forms the gateway from the presentation layer to the application logic and

data access layers. It is represented as a WCF web service, which is also divided into

separate assemblies to provide scalability and maintainability.

TravelersAround.Contracts – contains the service contracts interfaces and their be-

haviors.

TravelersAround.DataContracts – contains service request/response data types and

their validation rules.

TravelersAround.Service – contains the concrete implementation of each use case of

the system. This assembly communicates among different assemblies in the system and

acts as an intermediary between the client and the server.

TravelersAround.HTTPHost – contains the service host strategy based on WCF

REST web service, which acts as the concrete endpoint for the client.

2.4 Presentation Layer

TravelersAround.ServiceProxy – contains the proxy to the service and provides a

façade to the UI.

5

TravelersAround.WebMVC – contains the UI implementation based on MVC 3

framework. This assembly uses the ServiceProxy to make calls to the system’s service.

2.5 Unit Testing

TravelersAround.Test – contains unit tests of different units in the system.

6

3 Core Units

This part will describe the core classes in the system and show code snippets.

3.1 MembershipService

This class is the implementation of the IMembershipService interface contract which is

responsible for user authentication in the system. When a user (can be a computer or

human) wants to use the services of the system, it must first call the Register or Login

operation endpoints. Once the user is authenticated, an API key will be assigned,

which will then be used to call the system operations.

The following code snippet shows the Login operation implementation:

7

3.2 TravelersAroundService

This class is the implementation of the ITravelersAroundService interface contract

which contains operations that map to the use cases defined in the software require-

ments analysis. The user is required to provide an API key per each call to this service;

otherwise the user will receive an error message indicating that the user is unautho-

rized.

The following code snippet shows the Search operation implementation, which shows

the algorithm used to determine the currently online travelers in the area of the user.

The algorithm uses the Haversine formula to calculate distances between two points in a

sphere (Earth in this case). The formula is called by this operation explicitly through a

database stored procedure for fast response (from optimization reasons).

public SearchResponse Search(bool includeOfflineTravelers, int index, int count, string
ipAddress = null, double lat = 0, double lon = 0)
 {
 SearchResponse response = new SearchResponse();
 LocationService locSvc = new LocationService(_locationDeterminator,
_repository, _geoCoder);
 APIKeyService apiKeySvc = new APIKeyService(_repository, _apiKeyGen);

 try
 {
 Traveler currentTraveler = _repository.FindBy<Traveler>(t =>
t.TravelerID == _currentTravelerId);
 if (!String.IsNullOrEmpty(ipAddress) || (lat != 0 && lon != 0))
 {
 //This part is optional. It will happen only if the client will ex-
plicitly the location, either by IP address or coordinates
 //otherwise the IP address of the client who made the request will
be used to determine the location

 GeoCoordinates coords = new GeoCoordinates { Latitude = lat, Longti-
tude = lon };

 if (!String.IsNullOrEmpty(ipAddress))
 {
 locSvc.UpdateTravelerCoordinates(currentTraveler, ipAddress);
 }
 else if (currentTraveler.IsLocationChanged(coords))
 {
 currentTraveler.Latitude = coords.Latitude;
 currentTraveler.Longtitude = coords.Longtitude;
 currentTraveler.City = coords.City;
 currentTraveler.Country = coords.Country;
 }
 }
 else
 {
 //Normally this will happen
 locSvc.UpdateTravelerCoordinates(currentTraveler, APIKeySer-
vice.CurrentTravelerIPAddress);
 }
 //Updating traveler's location

8

 _repository.Save<Traveler>(currentTraveler);
 _repository.Commit();

 //All online travelers in the system
 IEnumerable<Guid> allOnlineTravelersFromCache = api-
KeySvc.GetCurrentlyActiveTravelers();

 //Raw results of travelers around - including offline users
 PagedList<Traveler> travelersAroundRawResults =
locSvc.GetListOfTravelersWithin(RADIUS, index, count, currentTraveler);

 if (!includeOfflineTravelers)
 {
 //Gets only travelers around who are online at this moment out of
the 10 rows from the DB
 var onlineTravelersAround = travelersAroundRawRe-
sults.Entities.Where(t => allOnlineTravelersFromCache.Contains(t.TravelerID));

 //if we have another page from the DB (10 more travelers) and the
maximum rows for the page hasn't been reached then loop until
 //all the rows for the page are full or until the last page has
reached
 while (travelersAroundRawResults.HasNext && onlineTravelersA-
round.Count() < count)
 {
 index = index + count; //index for the next page
 //get next page from the DB
 travelersAroundRawResults =
locSvc.GetListOfTravelersWithin(RADIUS, index, count, currentTraveler);
 //take only as many as needed to fill up the page
 var onlineTravelersFromNextPage = travelersAroundRawRe-
sults.Entities.Where(t => allOnlineTravelersFromCache.Contains(t.TravelerID)).Take(count
- onlineTravelersAround.Count());
 //pile up the results
 onlineTravelersAround = onlineTravelersA-
round.Concat(onlineTravelersFromNextPage);

 }
 travelersAroundRawResults = onlineTravelersAround.ToPagedList(index,
count);
 }

 //Marks which travelers are online
 for (int i = 0; i < travelersAroundRawResults.Entities.Count; i++)
 {
 if (allOnlineTravelersFrom-
Cache.Contains(travelersAroundRawResults.Entities[i].TravelerID))
 {
 travelersAroundRawResults.Entities[i].IsOnline = true;
 }
 }

 //Converts to the suitable data contract for serialization
 response.Travelers = travelersAroundRawRe-
sults.ConvertToTravelerViewList();
 response.MarkSuccess();
 }
 catch (Exception ex)
 {
 ReportError(ex, response);
 }
 return response;
 }

9

3.3 HttpRequestAdapter

This class is a utility class used by the ServiceProxy assembly to make HTTP requests.

As the Web Service uses REST architecture over HTTP, The ServiceProxy has to

make calls to it via the HttpRequestAdapter class. Therefore, this class’ role in the sys-

tem is crucial. The class take care of serialization of primitive and complex C# data

types and then sends them according to the required HTTP method.

The following is code snippet of the generic method WebHttpPostRequest which rece-

ives a C# object of any kind, serializes it and then sends it to the defined Uri. The re-

sults will be serialized to the specified generic type.

3.4 EFRepository

This class is the implementation of IRepository interface, which is in charge of data

persistence in the system. The repository takes any entity type which is of type IAggre-

gateRoot and performs database operations accordingly.

The following code snippet shows the implementation of the generic method FindBy

which takes in a lambda expression predicate and the required returned type as an in-

put:

10

References

URL: http://www.movable-type.co.uk/scripts/latlong.html

“Haversine formula” 10/9/2011

URL: http://blogs.msdn.com/b/endpoint/archive/2010/01/07/getting-started-with-

wcf-webhttp-services-in-net-4.aspx

“Getting Started with WCF WebHttp Services in .NET 4 - The .NET Endpoint”

13/9/2011

URL: http://msdn.microsoft.com/en-us/library/bb412179.aspx “How to serialize

JSON” data 15/9/2011

Millett, S. 2010. Professional ASP.NET Design Patterns.

Wiley Publishing, Inc., Indianapolis, Indiana.

1

Appendix 1 : Database schema diagram

	Thesis Report
	Software Analysis
	Software Design
	Software Implementation

