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1 PREFACE

The purpose of this thesis is to determine the optimum size of the throat thickness
between welded parts. These parts are used in Charmec 605 mining machine be-
tween a NT100 chassis and a boom mounting frame. Because Charmec 605 is a
mobile elevating work platform, the design has to comply with the EN 280:2001 stan-
dard.

When a durable joint is needed, welding is one of the most common ways to attach
steel parts together. When measuring a welding size the right term to use is throat
thickness. Throat thickness tells the weld height from the root of the weld to the weld
face in millimeters. The needed throat thickness is mostly determined by forces which

have an impact on the parts.

The production department of Normet has suspected that the weld between these
parts is too thick and in this way it is not as productive as possible. The throat thick-
ness is now 20 mm but production department has estimated that a throat thickness
of 12 mm would be enough. It has been evaluated that reducing the welding size by 8
mm can lower the welding time to the half and thus in practice cut down the welding
time from two to one shift. In a year, these kind of chassis are manufactured around
100 pieces so if one hour of welding costs 40 €, the yearly saving would be around
15 000 to 30 000 €.
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In this thesis, three kinds of steps (Figure 1) are used to solve optimum throat thick-
ness. The first step is to make finite element method (FEM) analysis with the calcu-
lated forces and verify the created model with a strain gage verification. If this
process is acceptable, the second step is to use actual forces in FEM and compare
the results of different throat sizes. The final step is carry out a fatigue analysis of the
welds. This is an important step because fatigue is a common reason for welded
parts to get broken. If the results of these methods are accepted, then the calculation
of throat thickness can be done with the FEM model.

FEM model FEM analys Fatigue life
verification with EN 280 analysis
[
Analytic i
vt 20 mm throat 12 mm throat Fatigue
calculations size size measurements
I— _ i -
calculations calculations
) according to according to
FEM EN280 EN280
calculations
—
e Rainflow
Result M analysis
verification Comparing the
with strain results
gages A
I — SR
C ing th .
omparing the Improverpent Data processing
results suggestion
o o
|" If similar -> ‘| gy
I enaso ! I Estimated |
1 calculationis 1 l lifetime I
1 1 ]
\ 7
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—~——— e — o= —— ---‘/—
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N
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1 Updated :
: manufacturing 1
l drawnings ,'

Figure 1. Thesis process
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2 BACKGROUND

2.1 Normet Group

Normet provides different kind of solutions for underground mining and tunneling
needs. The company has almost 50 years of experience in the development, produc-
tion and sales of underground mining equipments. With over 7500 manufactured ma-
chines, Normet Oy has become one of the most significant manufacturers in its seg-

ment.

Number one priority in the company is to make customers satisfied by exceeding
their expectations. Safety, quality of products, environment aspects and great co-
operative network are the main priorities of working. These working aspects are com-
bined to ISO 9001 Quality standard, ISO 14001 Environment certification and OH-
SAS 18001:2007 Safety certification.

Main products of the company are concrete spraying, explosive charging, lifting,
transport and scaling machines and also installations services. To keep these ma-
chines and processes running smoothly Normet also provides Life Time Care (LTC)

which includes a full range of services.

The company’s head office, manufacturing and R&D functions are located in lisalmi,
Finland. Normet employs over 600 workers in 23 locations in 16 countries all over the

world. Normet Group's turnover in 2010 was over EUR 115 million. (Normet Group)

2.2 Charging

Charging machines are used to blast soil in underground conditions. To ensure the
best result it is very important to use good quality drilling, right kind of blasting opera-
tion and proper kind of bulk explosives (example ammonium nitrate-fuel oil, ANFO).
To fill these above mentioned steps is the way to success. To maximize the benefits
of the right kind of mining technique, it is important to use equipment which is de-
signed to work in tough conditions. An example of this kind of machine is Charmec
MC605 which is shown in Figure 2.
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Figure 2. Charmec MC605. (Normet Group).

2.3 Standard for Mobile Elevating Work Platform

SFS-EN 280: 2001 + A2: 2009, European standard for mobile elevating work plat-
forms includes important issues which has to be noted and verified during the design.
These kinds of things are design calculations, stability criteria, construction, safety,
examination and tests. Because Charmec 605 includes a lifting platform the design

process has to pay attention to this standard.

The meaning of this standard is to define safety introduction to peoples and their
property against the risk of accident with the operation of Mobile Elevating Work Plat-
forms (MEWP). Standard determinate technical safety requirements and measures to
all types and sizes of MEWPs which are designed to lift persons to working position
where they can carrying out work from the work platform. Because there are no pre-
vious acceptable national standard for explanation of dynamic factor in stability calcu-
lations, the test results of the CEN/TC 98/WG 1 workgroup determinate suitable fac-
tors and calculations to MEWPs. (SFS-EN 280: 2001 + A2: 2009, 2009)

When defining the safety factors for load and forces next 6 steps have to take ac-

count of;

Rated load

Structural loads

Wind loads

Manual forces

Special loads and forces
Dynamic factor

More precise information of the definitions can be found in the standard.
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A primary design for all Normet machines with a mobile elevating work platform is
developed and produced with SFS-EN 280 standard, but there are also some excep-
tions in the structure engineering. When comparing standards among different coun-
tries, the European standard is the most demanding in safety. Some countries may
have some special requirements for certain features which need to be taken into ac-

count when the designed machines are delivered outside of the European area.

2.4 Machine Description

2.4.1 Technical Perspective

The Charmec 605 product family includes five different models which have the same
purpose of usage but with some differences. These models are the MC 605 short,
MC 605 long, LC 605 short, LC 605 long and LC 605 VE(C).

The Charmec 605 family is designed for charging in mines and tunnels with up to 65
m? cross sections where the maximum face height is 8.4 m. It weighs from 15 000 kg
to 23 000 kg in full operating phase. For example 605 main dimensions are shown in
Figure 3. The power source of these machines is a liquid cooled turbo charged Mer-
cedes-Benz 904 LA diesel engine which produces its highest performance of
110 kW / 170 kW (MC / LC) at 2200 rpm.
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Figure 3. Main dimensions of LC 605 short end. (Normet Group)

The front chassis includes the cabin and lifting boom (Figure 4) with charging equip-
ment. The lifting capacity of the platform is 500 kg and the boom can be lifted be-
tween -18° to 60° and slewing the boom is possible between = 30° from the middle
position.
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Figure 4. Normet Basket Boom 3S. (Normet Group)
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2.4.2 Operation Conditions

All Normet Group machines are designed to work in all kind of mining environment.
Circumstances in underground work are difficult because humidity in the mines are
always very high. As known raw metal combined with water will not last long without
getting rusted if protection is done poorly. Some mines can also contain minerals
which can corrode metal very fast so keeping the paint in good condition is important
thing to increasing the lifecycle of the machines.

In normal use working the weight in a work platform is nowhere near the stress what
is used in testing. Usually there is only one man with his equipments in the platform.
However, calculation to the stability is made with 500 kilograms. Actual using loads

which are measured with strain gages in tests are presented later in this final thesis.

Also a user size can influence usability of a machine and this issue has to be taken
into account. Asian people usually have a smaller frame than for example people
from South-America or Europe. Engineering of cabins and working platforms is made
done in accordance ISO 3411:2001: Earth-moving machinery - Physical dimensions
of operators and minimum operator space envelope. This standard take account 95
% of the people in the world so machine production done in accordance this standard

guarantees products suitability to almost every people in the world.
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3 THEORY

3.1 Hooke’s Law

In the elastic range of material the method of calculating the material stress from
measured strains are based on Hooke’s Law. The name of this phenomenon was
discovered by a British naturalist Robert Hooke who was the first person who experi-
mentally proved linearity between stress and strain.

The most common construction material behaviour in the beginning of the stress-
strain curve is usually linear until the offset yield strength point. Young’s module
presents slope in the linear part of oe-curve as in Figure 5. (Outinen & Salmi, 38-39)

4
Vo Strain lo frocture ————

\c— Uniform strain ———rl

= /
& Offset
S | yield Tensi
~ ensile
X I, strength strength
/ Frocture

/ stress

!

/

Fi 1
Conventional strain e

Figure 5. Stress strain curve to steel (Key to metals)

Structural engineering is usually accomplished with the assumption that material be-
havior is linear elastic. In these cases the link between stress and strain can be de-

fined simply with equation 1.

Where

o is material stress
& is material strain
E is Young’s modulus
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3.2 Stress

Normal stress presents dependence between force and area. This behavior can be
described with equation 2. (Outinen & Salmi 2004, 25-26)

oo )
A
Where
c is material stress
F is force
A is area

Result unit is in Pascal (Pa, N/mmz), but because this unit is so small it is more natu-

ral to use units: kPa, MPa or GPa which:

kPa 10°Pa
MPa 10°Pa
GPa 10°Pa

This equation is very basic of material behavior in one dimensional force. When cal-
culating behavior of multi axis stress state in viscous steel, the most accurate method
for this is von-Mises hypothesis. According to this method, material damaged occurs
in that point where distortion energy density reaches crucial point of material and
damage type.

Distortion energy of certain material point can be describe with equation

1 2 2 2 1 2 2 2

Uso =55 (0. -0 + (0, ~0 ) + (0, 0 oo o e+l
Where

U is distortion energy

G is shear modulus

o, is stress x-axis

o, is stress y-axis

o, iS stress z-axis

Ty is shear stress xy-plane

Ty, is shear stress yz-plane

is shear stress xz-plane
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On the other hand, in the catastrophic perspective of the axial stress, the equivalent

distortion energy density is

1 2 2
Uoo =156 (O +0t) @
Where
Tt is equivalent stress

When these equations (3) and (4) are marked equal, o, can be solved from:

(2, 2 2 2 4,2 4 .2
Oy _\/ax +0, +0, —0,0,-0,0,—0,0,+3(t,, +7,, +7,) ()

This equation also works in main coordinate system, so

2 2 2
Oev = \/0'1 T 0, +0;3 —0,0, =0,03 ~0,03 (6)
Where
o is first principal stress
o, is second principal stress
O3 is third principal stress

The Von-Mises yield criterion gives a rather accurate result, because it takes into
account all three shearing stress extreme values. A questioned hypothesis can be
also used in the rainflow method to determine fatigue life. (Outinen & Salmi 2004,
349-351)

3.3 FEA / FEM fundamentals

Nowadays computers are developed and they have become one of the most impor-
tant way to solve complicated mathematical problems. Forces in the structure which
have many 3-dimensional parts are impossible to solve with simply hand calculation.
To solve this kind of problems there have to be some kind of computer aid system. A
method of this kind of procedure is the Finite Element Analysis process (FEA), also
called the Finite Element Method (FEM).
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Basically, in the finite element method the program first calculates force-displacement
relations in each element of the structure and summarizes the calculations through
each connecting point of the structure. These points are commonly called by nodes.
From the result of these equations, unknown displacements can solved. This proce-
dure can be describe with equation 7. (Mac Donald 2007, 73)

K- Ui=1F) )

where
[K] is stiffness matrix of the structure
{U } is displacement vector of the structure
{F} is total force vector of the structure

Depending on the problem it is necessary to make some fair assumptions like ignor-
ing small features which will not influence the results but can decrease calculation
time significantly. When making this kind of assumptions it is very important to make
the modification to the safer side. When adding the additional factor of safety (FOS) it
can be ensured that catastrophic failure will not happen. This process is summarized

in the chart which is presented in Figure 6.
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Simple problem Complexprobkm

Make simplifying assumptions

Usse Elementary Theery

Use Elementary Theory

Solution

Praliminary K’Q:ﬁ"t
Apply Factor of Satety.

Svlutiony

Figure 6. Solution method of simple and complex problems (Mac Donald 2007, 3)

The inner loop in the Figure 7 presents the building process of the finite element
model, obtaining a solution for the nodal unknowns and post-processing the results.
Nowadays there are many computer software’s like graphic interfaces and CAD
modeling to help part processing. The outer loop represented the engineering deci-

sion making process which requires major of the time to perform the analysis.

Physical Problem ¢ Change Physical
Problem
[
Mathematical Problem |+ L L
h
Finlte Element Solution of
Mathematical Model
A
Interpretation of Results A'::?;s‘fs

Design Improvements
Structural Optimisation

Figure 7. Basis procedure of FEA. (Mac Donald 2007, 47)
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Simply, engineers have to make decisions how to transform a physical problem to
mathematical model for the FEM analysis. To do this step it is necessary to make
some assumptions that enable to bring a real life problem to the computer. These
kinds of assumptions are usually related to geometry, loading, forces or material
types. (Mac Donald 2007, 47-50)

Undisputed, the FEM solution calculates precisely the problem that the user inserts to
the software. It is impossible to expect any accuracy information that the mathemati-
cal model contains. This is the reason why the most of the time is spend on doing
proper FEM model and the actual calculation with the FEM software can be only a
small part of the whole process. (Mac Donald 2007, 47-50)

3.4 Making of a FEM Model

3.4.1 Model Combining

The company usually makes welding assemblies in which there is free space be-
tween the each part. These gaps are reserved to welds to reach the right kind of final
structure. With these kinds of structures the FEM model can be created but then con-

tacts between each part have to be done manually with certain laws.

The final problem comes when trying to make a common mesh to the structure which
consists of separate parts. The mesh can be created but the mesh will not be conti-
nuous between the parts. This feature causes transition discontinuity of nodes and
mathematical solutions are not as accurate as they could be. To avoid this problem it
is recommendable that the whole structure is combined to be a one part. Because the
whole model is now one part there have to be small gaps between the parts and only

the modelled weld keeps the parts together like in real life (Figure 8).
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Figure 8. Proper kind of combining. (PHLEXcrack: A Meshless Code for Dynamic

Fracture Propagation)

This method takes a serious amount of time and this is why the company usually
makes only a simplified model and use ready-made connections to spare time. With
current technology of the software and accuracy of the modelling the result usually

are very near to the reality.

3.4.2 Defeaturing the Model

Components usually have some features which are important to manufacturing or
aesthetic point of view, but which have no influence to mechanical behavior. This kind
of features make FE-model complicated and may do meshing almost impossible,

whereas removing or suppressing these things will not affect much to the result.
This kind of features can be small holes, fillet, chamfers, screw threads etc.

When removing unnecessary attributes you have to know exactly what you are doing.
Especially when defeaturing is focused to areas where are huge forces, you have to
understood structural behavior in order to make competent decisions how much of

details can be deleted.

Defeaturing the pointless features can lower amount of tetrahedron significantly and
that way lower calculation time and usage need of memory. Great example of this is

shown in Figure 8.
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Fig. 1la. CAD model with chamfer, hole, Fig. 1b. Hex mesh of the defeatured
steps, pegs, fillet, and imprint model

Fig. lc. 27,181 tets with average ele- Fig. 1d. 3,879 tets with average el-
ment quality 0.8411 on original model ement quality 0.8615 on defeatured
model

Figure 9. Example of defeatured part. (William & Owen 2010, 302).

3.4.3 Mesh Optimizing

When the mechanical perspective of a structure is optimized the next very important
step is to make a proper mesh that mathematical problems can be solved without
heavy need of the calculation time. Obviously finer mesh need put to the places
where strain or stress is changing rapidly (Figure 10) and especially places where
investigation is focused. If mesh is not fine enough forces can divide to the wrong

places which can cause inaccuracy to the results.

To define how fine the mesh need to be is almost impossible to say. Situations are
always different and one rule cannot be used in all cases. Nevertheless there are
some basic rules for determining how thick mesh should be. This rule is called by five
percent rule. It means that if results of calculation differs less than five percent with
finer mesh the coarser mesh should be enough. (Mac Donald 2007, 204-208)
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Figure 10. Points where finer mesh should be used. (FEM Modeling:Mesh, Loadsand
BCs)

3.5 Fundamentals of Material Fatigue

Various types of failure have to be avoided through relevant mechanisms design,
structural dimensions and in the materials choices. Criteria limits to the designs are
set by yielding, buckling, creeping, corrosion and especially the fatigue life. Point is
that, the welded joints are very vulnerable to the fatigue damage because joints are
subjected to variable loadings. The fatigue crack may even slowly grow even if a dy-
namic stress to weld is much below yield strength. The amount of how much fatigue
joints will last depends of very much of the range of stress and what is the amount of
the loading cycles. These are the reasons why the fatigue inspection is one of the
most important points of the design. (Lassen & Réche 2006, 3)

Fatigue process can usually split to three phases (Figure 11):

e Picture A: Crack initiation
e PictureB&C: Crack growth
e Picture D: Final fracture
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A: Small cracks emanate from the B: Crack growth and cealition
weldl toe

Figure 11. Various stages of fatigue crack. (Lassen & Réche 2006, 28)

For the fatigue life calculation there is usually a need for the long time stress history.
One way to get the needed information of the stress is to use a Hot Spot method.
This method is available when the critical point of the structure is known. Usually this
point locates in the root of the weld. When this stress histogram is combined to

Palmgren-Miner calculations it is possible to obtain the fatigue life.

3.5.1 Hot Spot Method

In this approach the fatigue strength is generally based on strain measurements in
specific spots near to critical crack initiation. One huge advantage of the hot spot
stress approach is the possibility of predicting fatigue behaviour of many types of joint
only by using one S-N curve. More S-N curves may be needed if there is a variation
of welding types, material thickness effects or if environmental effects have to be

taken into account.



26

Structural Hot Spot stresses are measured with the strain gages which are usually
installed near of the weld root. FEM analysis has revealed that, the notch effect is
practically gone from the distance of 0.4 times plate thickness. Test result can be
obtained with two strain gages which are placed to the certain place from the weld
toe. Defined places for the gages are shown in Figure 12. (Niemi 1994, 100)

0,4t

r* 0,6t

Ohot spot

Figure 12. Gage Places in Hot Spot Method.

It is recommended that the Hot Spot measuring gages are fitted parallel to the princi-
pal stress direction. Assuming that, the shear strain near the weld is inconsiderable
and the Hot Spot stress can be calculated with lineal extrapolation to the weld root by
equation 8. (Niemi 1994, 20)

Yo=Y
y_ylz—(x_xl) (8)

Xy =X

=0 is calculated hot spot stress

X is extrapolation point from the weld root in mm

X is dimension from the weld root to closer hot spot gage

X, is dimension from the weld root to further hot spot gage

Yi is closer stress to the weld

Y, is further stress to the weld
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3.5.2 Rainflow

In practice, stress levels on machine components are always irregular and random. If
there is need to measure the possibility of the fatigue under irregular stress there has
to use some kind of method to calculate this variety. It is important to take account alll
stress levels and not only the maximum amplitude. One of the most common me-
thods to do this is a method called the rainflow counting. This algorithm was devel-
oped by Tatsuo Endo and M. Matsuihi in 1968. The simplified rainflow method calcu-
lates how many cycles there are at certain stress levels. Figure 13 presents a typical

rainflow histogram which follows logarithmical curve.

Figure 13: Rainflow Histogram

This method is especially used in long time period experiments. The main reason to
this is that this particular method does not require a lot of memory to be logged. The

data which a machine collects is basically histogram of different cycles of stress.

3.5.3 Equivalent Stress Cycle

The equivalent stress cycle (o, describes variations of stress in different kind of load
cases. This stable amplitude curve has the same fatigue effect than the original
stress curve. The equivalent stress cycle can be used to determine fatigue life esti-
mation from the rainflow data with the Equation 9 (Westerholm 2000, 19). This cycle
counting method suits best to long testing periods which last from couple days to
weeks. In shorter time period's 0.4 would not work properly and because of that there

may be huge variances in the results.
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ZAaimlni

i=ig 9)
eq N—d

Where

| is number of stress level

iy is number of stress level when cut-off
my .
is slope of S-N curve
n, is number of stress cycle in stress level |
o, is amplitude of stress cycle in stress level |
Ny is time which is determine from the stress period

3.6 Strain Gages

Strain gages are the most common devise to measure strain from the object. The
principal idea is that measured strain transfers from measurable surface to the gage
without any loss lose of strain value. This is why preparation of the measurements
has to do properly to ensure as good results as possible. This means that surface of
material have to be very smooth when attaching the gages.

Active Grid

Length

Solder Tabs

Camer /

Alignment Marks STRAIN GAUGE

Figure 14. Metallic strain gauge (Strain Gauge - how does it work)
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The operating principle of the strain gage is based on the consistency of the strain
and resistance of electrical conductors. This means that the electrical conductor re-
sistance changes by mechanical stress. When the microstructure of material trans-
forms, it changes the resistivity of the conductor. This phenomenon can be described
with the Equation 10 (Hoffmann 1989, 2-13)

dR d
—=e(l+ 2v)+—p (10)
0 P
Where

R is electrical resistance
& is train
1% is Poisson’s ratio
P IS resistivity

Strain gages (Figure 14) are connected to Wheatstone Bridge (Figure 15) and when
stain in the particle changes, resistivity of the gauge also changes. This causes that
voltage between power supply (U) and gauges (V) differs from the original.

Figure 15. Wheatstone Bridge

Where

U is Power Supply
V is Potential difference

There are possible to arrange strain gages in three different kinds of setups depend-
ing on what kind of phenomenon is intention to inspect. In these situations gauges
are installed to R1 - R4 in groups of one, two or four. Names of these setting are %4,

%, and full-bridge configuration. (Strain Gage Measurements, 3-4)
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4 CREATING OF THE FEA MODEL

The purpose of making the FEM model was to create a consistent part where mesh
can be divided smoothly through the parts. In fact the built model won't include sepa-
rated parts in critical area. When making this kind of model there were some difficul-
ties to create wanted individual model. Program what was used to do this part of the
work was Autodesk Inventor professional 2010. Appropriate software have certain
kind of methods how model can be created, this is why model cannot be done without

many steps. Progress chart of this procedure is described in Figure 16.

Part Defeaturing

v
Assembly of

Defeatured Parts
A 4

f Welding Assembly to )

a20 and al2
'

Model integration
¥

Final Assembly
4

e '

Ready FE Model

. A

Figure 16. CAD modelling process

4.1 CAD Modeling

Normet Oy already has a finished model of welding assembly (Figure 17). This model
includes gaps between parts and this is why the whole model had to be remade. In
conversion work, assembly was divided in three parts: Frame, boom base and exten-
sion. To do proper kind of model which can be used wanted way in FEM calculations,

there have to make following five steps in Inventor.
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Figure 17. Original frame assembly

Part defeaturing: Aim of this step was to make three solid parts which can be
used in FEM analysis. This phase is base of whole process and it have to be
precisely. All dimensions and connections are dependence from this step.
First the model was divided to the parts. Then all unnecessary features are

suppressed and gaps were filled.

Assembly of Defeatured parts: When separated parts are defeatured then up-
coming phase is to assemble part to the right places where are small gap be-
tween the frame and boom base. This gap reveals the space where are no
welding in final model and in this way parts are connected only by the welding

beams. More detailed picture of this is shown in Figure 8.

Welding assembly to a20: These separated parts are connected with weld

which throat size is 20 mm. This weld presents existing weld in real machine.

Model integration: To make parts homogeneous, Inventor have tool named
derive which converts assemblies to the one part. This step connects parts
together through welding beam. After this step mesh can be divided smoothly

through the whole part.
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5. Final assembly: In the last phase, the boom bracket and bolts will be attached
to the assembly. The reason why these features was not added earlier is that
the bolt connections cannot make in properly in FEM. Besides forces which
locate near the bolts are not interested in calculations.

After these five steps model is ready and it can be transferred to FEM software. This
model is shown in Figure 18. Final assembly

Figure 18. Final assembly

4.2 Making of the FEM Model

When the final assembly of the model is ready the structure can transferred to FEM
program. In this analysis used program is called by Ansys 14. Inventor 2010 pro in-

cludes an interface to Ansys so model can be transferred straight to the software.

When opening project in the Ansys workbench, the program automatically creates
link between these software’s. This is a huge assist if there were need to edit model
later. The model can be updated in the Inventor and then only refresh the geometry in
the Ansys 14.
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After the geometry is finished Ansys needs four basic definitions to solve the wanted

mathematical problem:

Meshing

Contacts
Supports
Forces

When these features are defined the program can solve the problem if there are no
conflicts between the certain features.

4.2.1 Meshing

The mesh was generated by using an automatic mesh tool which generates the mesh
around the model with defined accuracy. The common mesh was generated with
medium relevance, but if this kind of mesh is used in the inspected area the results
could be remarkably divergent. This is why the model with thicker mesh is needed in
the surrounding area of the weld and in the critical points of the structure. Thicker
mesh was generated with 12 mm element size and mesh near critical points with 3
mm element size. If thicker mesh is used in the whole part then calculation time
would be excessively longer and the overall advantage of the finer mesh would be

quite small.

L
ly

Figure 19. Part meshing
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In the strain gage installation places it is useful to use mapped mesh where gage
locations are placed to nodes like in Figure 20. This gives a benefit when want to find
the principal stress directions or the stress levels in these points. After modifications,
model contains around 1.4 million nodes and 950 000 elements

Weld root
pd ~

()
\J\
N
Stain gage places "
v

R

Figure 20. Mapped mesh

4.2.2 Contacts

In this situation there are no needs of the contacts in critical area because the part is
consistent. Only possible place for contacts is located in the bolts which connects the
boom clamp to the boom base. In Ansys, there were a way to make proper kind of
bolt fastening between parts; this feature is called by bolt pretension. Required pre-
tension forces for M24 bolts is 188 kN for on each. (Valtanen 2007, 565)

Nevertheless, bolt fastening is not necessary because the bolt joints area is not under
inspection. Instead of bolt connections, it is possible to use bounded connection be-

tween the boom clamp and the boom base.
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4.2.3 Forces

Forces which are used in an analysis are calculated earlier to the NBB3S boom. Par-
ticular boom is the heaviest which is mounted to the boom base so calculations with
the NBB3S covers all lighter boom models. These calculations already includes safe-
ty factors and it also takes notice of the dynamic loadings which are defined in the
standard EN 280:2001.

Dynamic calculations of the boom base are made in position where the boom is fully
out in horizontal position. Impacting forces in this position are XXX kN vertically in
upper bracket and XXX kN horizontally in both brackets but separate directions. Im-
pacting directions and places can be found in Figure 21.

Other interesting situation in dynamic load aspect is the situation when driving vehicle
and the boom is on the driving support. This kind of use may impact frame with very
large but short lasting force. This kind of data cannot be confirmed by FEM calcula-
tions easily. So this is the situation where the practical strain gage measurements

present significant part.

Figure 21.Impacting forces
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4.2.4 Supports

Supports in the model are accomplished with the remote displacement tool. In both
supports, movements to xyz- direction are bound but rotations around xyz- axes are
possible. Supports are shown in yellow color in Figure 22. In the left picture (a), offset
to support point locate 1850 mm along x-axis and 400 mm along z-axis. In the right
picture (b), support locations are 600 mm to z-axis and 1010 mm to outside from the
center of the frame. Figure 23 present these supports in actual use.

Figure 23. Supports in actual use
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4.3 FEM Results

To analyze the results the most relevant way is to use the von-Mises stress, which
indicates the highest equivalent stress in the part. Different kind of steel sustains dif-
ferent size of stress without any change in shape; this point is also called lower yield
point (ReL). If this point exceed there will be plastic deformation in the material and
this is highly restricted.

The NT100 frame includes two types of steel which are under observation. These
materials can be found in Table 1 and strain gage places in Figure 28.

Table 1. Material types in the model

Part nro in Strain ReL
Part Appendix 1 gages Material |(Mpa)
Flat iron (frame) 17 1,2,6,7 |S235JRG2 235
Boom base 2 8,9,10 S355K2+N 355
Extension 4 3,45 S355K2+N 355

Where in material column: (European structural steel standard EN 10025:2004)

S... is structural steel

.235... is lower strength (ReL) in MPa @ 16mm

..JR.. is longitudinal Charpy V-notch impacts 27 J @ +20°C
.K2.. is longitudinal Charpy V-notch impacts 40 J @ -20°C
..+tN is supply condition normalized or normalized rolled

4.3.1 Results with 20 mm Throat Thickness

In case one, where the welding throat thickness is 20 mm (Figure 24) stress levels
stay around XXX MPa which is low enough and there is no plastic deformation in
material. This is obvious because the existing machine is similar to the created FEM
model. The highest stress value locates on the tension of the boom base. The strain
gage measurements are planned to be done in this area so that FEM calculations will

supports the preliminary measuring plan.

As earlier mentioned, the main reason to do FEM calculations to a 20 mm throat
thickness is to verify results between the mathematical model and a real life case by
using strain gages. Strain gage places and directions are defined by the result of the

FEM model and this is why the model should be as accurate as possible.
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Figure is not available on public version

Figure 24. Von-Mises stress with throat size of 20 mm

Total displacements of model are shown in Figure 25. As figure presents transition of
parts are very small in examination point. In real life the structure will be even stiffer

because part includes additional welded parts.

Figure is not available on public version

Figure 25. Displacements with throat size of 20 mm

4.3.2 Results with 12 mm Throat Thickness

In case two where the welding throat thickness is 12 mm (Figure 26) stress levels
near the welding in flat iron are little larger than in the case one. Stress is about XXX
MPa which stays in acceptable range because lower yield limit of material is 235
MPa. Besides these values are located in very sharp geometry discontinuation point
and real values of these points have to be calculated by the hot spot method. After
measurements and results comparing it is possible to say how much deviance is be-

tween the FEM model and the actual machine.

Figure is not available on public version

Figure 26.Von-Mises stress with throat size of 12 mm

As Figure 27. Displacements with throat size of 12 mm presents displacements stays
around the same with both throat size values. This indicates that welding between

boom base and frame will not present the demanding part in the structural stiffness.

Figure is not available on public version

Figure 27. Displacements with throat size of 12 mm
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4.4 Conclusions

At the first look of the result it seems that there are two critical points in the welding.
These spots are located in tensile and compressions side of the boom base. These
locations will be the main interest during strain gage measurements. As Figure 24
and Figure 26 there are no plastic deformations in the model and stress levels in
these spots stays in acceptable area. Best way to more accurate measurements of
stress in these places is type "A" hot spot method which gives the real stress level in
the root of the weld.

After investigation of the structure there were two simple developing spots in the
structure. First possible thing to do is to replace flat iron which is S235JRG2 to more
durable steel like S355K2+N. S355 in nowadays more common structural steel than
S235 and it is even slightly more durable. But in fatigue perspective changing to the
S355 will not increase crack grows speed but it will effect to initial crack formation in
the root of the weld. (Niemi 2003, 95)

Another issue locates in the compression side of the boom base where filling weld is
located. In this area, there are two high risks of fatigue in one place in one place. First
one is fast geometrical change and secondly there is even welding at the same spot.
These features cause quite high stress peak in the corner. This problem can be fixed
very easy by changing the geometry of boom base near corner and add around 30
mm fillet before welding. By doing this stress can divide smoothly through fillet and
there are no longer so high stress peaks in the welding area. Nevertheless stress

levels in this area are so small that this change is not necessary to make.

These assumptions are purely made by using the FEM model with static load and the
results have to be verified by using the strain gage measurements. These measure-
ments also produce information of the metal fatigue and this way the life time of the

structure can be calculated.

In summary, structure will last throat size changing from 20 mm to 12 mm in static
use without any plastic deformation. These forces which are used in the FEM analy-

sis include safety factors according to the EN 280:2001.
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5 MEASURING

Strain gage measurement is one of the most significant parts of this thesis and this is
why the test must be carefully planned. The main purpose is to verify result of the
FEM calculation near the weld but with few extra gages it is possible to ensure whole

model correction.

To protect the gages from out coming risk, there have to add some protections for the
gages. Gages are covered with silicon and sealing compound which keep humidity
away from the electrical circuit. Wiring and the central unit have to also put places
where are no possibility to get damaged.

5.1 Purpose of Strain Gage Measurements

In phase one, intention is to ensure the results of the FEM. Point of this verification
ensure that stress levels in the FEM model and the real live machine are equal. In
this case it is important to think how is possible to imitate stress calculation as accu-
racy as possible in a test course. Stresses in the FEM calculations and the laboratory
tests need to be the same that results are acceptable. It is obvious that boom position
have to be in horizontal direction and fully out as in calculations, but more demanding
part is to solve how lateral direction of the forces can be accomplished in the tests.
There were also some extra equipments in the platform which need to be take ac-

count when measuring verification loads.

In phase two, point was collect data from the test drive where machine is under
heavy driving. From these results it is possible calculate due life time of welding in hot
spot places as mentioned earlier. When main priority of phase one is only check FEM
calculation results seconds step concentrate fatigue life in driving situations. Effort of
this operation stage can be remarkably different and this is why both situations have
take in account with high priority.
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5.2 Measuring Equipments

Measurements were accomplished with ten strain gages which were connected to the
eDAQ plus base processor. Four gages measured hot spot stresses from two differ-
ent locations and other gages measured one dimension stresses. Gage properties
are shown in Table 2 and eDAQ specification can be found in a appendix 7. Real
values of the gage resistivity was measured before testing and updated to the soft-
ware. A data processing program to hot spot stresses and estimated life calculation
are done with GlyphWorks software which is developed for signal processing, data

visualization and metal fatigue analysis.

The measuring of the data was done with the quarter bridge connection with a fre-
guency of 2500 Hz. This frequency is quite high, but there was enough memory ca-
pacity to accomplish the test such a high data collecting frequency. High collecting
frequency make possible to collect rapid load changes in gages. This feature comes

useful when there is a striking load on the frame during the use.

Table 2. Strain gage properties
ONE DIMENSION STRESS

Type KFG-5-120-C1-11L1M2R
Gage factor 2.08+1%

Gage length 5mm

Gage resistivity 1204+04Q

HOT SPOT

Type KFG-1-120-D9-11N10C2
Gage factor 2.08+1%

Gage length 1mm

Gage resistivity 120.4+0.8Q
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5.3 Locations of the Strain Gages

After the highest values of the stress are calculated in the FEM it is possible to de-
termine locations for the strain gages. Gage locations and directions are depending
from the material thickness and the action lines of principal stresses. When using
only one direction gages in hot spot method, gages should be placed exactly parallel
to principal stress direction. These directions can be added to model by stress tool
named by vector principal stress. Because the plate where gages are installed is 15
mm thick the strain gage positions are 7 mm and 15 mm from the root of the weld.
The reason why ten gages are installed instead of only few was the meaning to en-
sure the match of the FEM and real life properly

Other interesting place for measurements is located in boom side of the boom base
where the stress is compression unlike in hot spot location one. Gages in this location
were also installed 7 mm and 15 mm from the weld root. Approximate locations of the
strain gages are shown in Figure 28. More accurate locations for strain gages can be

found from appendix 1.

Figure 28. Strain gage places
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5.4 Measuring Plan

Well designed measuring would provide accurate result with only one test. If measur-
ing need to do again on the same place that would be aimless and expensive.

Before this test can be started strain gages have to glued to the frame. Calibration
position of the boom was accomplished with a crane where is a scale which located
between the crane and the lifting chains. In this way it is possible to light up the boom
influence to boom base when boom mass and it’s center of gravity in known. The
boom mass with all additional parts was 2600 kg and the center of the gravity locates
near the lifting bracket. The best possible situation to lighten up the influence of the
boom would had been detach the whole boom from the boom base by loosen up the
connecting bolts, but this operation was not possible because there were lots of
cables and bolts already tighten up finally. Purpose of this calibration was to set
known zero point to the strain gages in a certain position where are no outside forces

impacting to the parts which are under investigation.

Figure 29. Calibration of the strain gages



44

5.4.1 FEM Verification

Laboratory test were done in Normet Oy proto hall. The purpose of this test was to
run some basic tests and verify the specially planned FEM calculation in the particu-
lar position.

Calculations were based on the basic situation where are some certain equipments.
But in this test machine, there are additional parts in the boom which cause more
weight and in this way more stress to the structure. Because of that, it is purposely to
do some recalculations where all extra equipments are take account. Safety factors
to all loads are irrelevant because they are only additional forces to the calculations.
In this calculation there was also need to plan how to load the platform to right direc-
tion that calculation forces which are used in FEM model are equal. In this situation
best way was to placed 140 kg extra load on the lifting platform which indicates max-

imum working load as in calculations.

In this verification, it was not necessary take account wind loads and other forces
which would make gage measurements harder to accomplish. If this kind of situation
is available it is much easier to adjust the FEM model forces than make hard cable
installation for the test event. Figure 30 present the outline of the test how verification

testing are planned to complete.

S

140 kg mass vertically
downwards

Mass location from above

FEM verification plan

normet D

[ o [ 2322002 | Mass 2455 kg + 140 kg | 1/1 |58
3 T Z

[

Figure 30. Verification position
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5.4.2 Fatigue Calculations

There was purpose to accomplish fields test in Pyhasalmi mine, but the schedule of
tests changed and this is why test was impossible to include in the thesis. A real test
environment would have been really vital to the work, but now the test had to be
completed in a proto hall where boom is moved around the limit points. Fatigue calcu-
lations also include driving test which was droved on the test course. In this condition
the working operation can be imitated, but the test time is much shorter which can
cause unreliability especially in fatigue calculations. If wanted to define precisely fati-
gue life it is supposed to arrange around one week lasting test in real environment. In

this thesis that was not possible, so it have to be satisfied with short time results.

In practice most of the time is spend to charging where the boom makes slow and
controlled movements, opposite to this operation is driving the boom down on its

support which causes striking load to the frame.

Another important part was to calculate the life cycle in a driving situation in two dif-
ferent boom positions. On the first position the boom is on its support and on the
second position the boom is lifted around 20 centimeters up from the support. After
these tests it is possible to say rough assumption of the life time in a driving situation.
Of course driving conditions change a lot between different kind of mines and it is

impossible to cover all possible driving conditions.

Savonia has a premade excel chart to the life cycle calculations which is made by
using the SFS-EN 1993-1-9: Eurocode 3: Design of steel structures. Part 1-9: Fatigue
standard. This chart gives an estimated life time for the structure when rainflow data
is known. This data can be collected from the hot spot gages which are installed to
the gage position one to four.
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6 RESULTS

Half day of measuring from 10 strain gages provided around 40 hours of data which
needed to be post processed to the wanted type. The hot spot gage results needed

to combine to hot spot stress (O},) by lineal extrapolation which is explained in chap-

ter 3.5.1. The results from the other gages express how accurate stress levels were

between the FEM model and the actual machine.

The results are split to three sections which divergence each others quite much. A
static chapter is mainly determination of lowering the throat size with EN 280 stan-
dard but it also operate base to fatigue analysis. Rest two chapters imitate the main
usage function in the mine and present estimated life cycle in these operations.

Processing of data was done in the office with program called GlyphWorks which can
calculate the hot spot stress and rainflow analysis from the measured data. Main view
of the program can be found from the Figure 31. This flowchart procedure shows how

data are extracted and then processed to the wanted form.

Results are not available on the public version
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7  CONCLUSIONS

Overall doing this thesis was pleasant because the project object was interesting and
there a possible to apply studied information to in practice. This project produced an
examination of weld strength calculation which can be used for later needs. The
project goal was clear even from the very beginning of the work and this make possi-
ble to divide the whole work to certain parts. This helped to plan working schedule

and it was easy to follow which part had to be done.

From the point of view of the thesis it was very unfortunate that the mine test was
delayed and it was not possible to include it in to the work. This would have been a
great addition from the experimental and calculation perspective. Otherwise all issues
proceeded as planned and there were no remarkable problems which effected the
schedule. Especially comparing the FEA model and measured strain gage data was
illustrative on how two types of method produce almost the same results. This fortifies
information that FEA models correspond to the real life structures. Working schedule
was fitted well to the thesis and work load was suitable to the whole working time.

From the educational perspective the work was instructive on how all systems and
methods are linked together. Although there are plenty of software available nowa-
days the user may still have to define certain phases step by step because some
features may not work together. To achieve the final results there was a need to get
familia with programs like Sovelia PDM, Autodesk Inventor 2010 pro, Ansys Work-
bench 14 and GlyphWorks.

In the end as an conclusion it can be said that modern Finite Element Method soft-
ware and CAD programs function extremely well together and they are indispensable

to engineering.
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Strain gage positions
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eDAQ Base processor product specification

Physical
Size: 23cmW x 27.6cmL x 6.6cmH
Weight: 8.32lbs (3.78kg)
Temperature: -20° to 65° C
Connectors:
Power - 15 Pin D-Sub
Communications - 26 Pin High Density D-Sub
HSS - SoMat M8 Female Bulkhead Connector
Digital 1/0 - 44 Pin High Density D-Sub

System
Input Power: 10-55 VDC
Fuses: 10A, Automotive Mini-blade
Internal Back-up Battery
Sample Rates:
Master Clock Rates
100 kHz = 0.1Hz to 100 kHz
98.3 kHz = 0.1 Hz to 98,304Hz

Communications
Ethernet: 100 BaseT
Serial: RS232 up to 115,200 baud

Memory
Internal Flash:
Standard: 1GB
Upgrades: 4GB, 8GB, 16GB, 32GB
External Memory: 4GB
Internal DRAM:
Standard: 64MB
Upgrade: 256MB

Inputs
Digital I/O:
Minimum: -0.3V
Maximum: 5.5V
Pulse Counters
Number of Inputs: 8
Pulse Counter Modes: Pulse Time Period, Pulse Frequency, Duty Cycle and
Pulse Rate



