

Ville Jukarainen

FROM DATA MINING TO
SENTIMENT ANALYSIS

Classifying documents through existing

opinion mining methods

Bachelor’s Thesis
Degree Programme in Business Information Technology

May 2012

KUVAILULEHTI

Opinnäytetyön päivämäärä

14.5.2012

Tekijä(t)

Ville Jukarainen

Koulutusohjelma ja suuntautuminen

Tietojenkäsittelyn koulutusohjelma

Nimeke

Tiedonlouhinnasta mielipiteen analysointiin - Tekstidokumenttien luokittelu olemassa olevien mieli-
piteiden louhintatekniikoiden avulla.

Tiivistelmä

Tässä opinnäytetyössä ehdotetaan ratkaisua dokumenttitason yleisen mielipiteidenlouhinnan ongel-
maan, jolla etsitään mielipiteitä esimerkiksi tuotearvioista, uutisartikkeleista ja blogikirjoituksista.
Tämä ratkaisu perustuu olemassa oleviin metodeihin sekä itseorganisoituvan kartan avulla tehtävään
luokitteluun. Tarkoituksena on luoda järjestelmä, joka voi luokitella englanninkielisiä dokumentteja
mielipideluokkiin, kuten positiivisiin, neutraaleihin ja negatiivisiin. Lisäksi ratkaisulle ehdotetaan
toteutusta, jolla se voidaan sulauttaa Cluetail Oy:n olemassa oleviin järjestelmiinsä käyttäen Python-
ohjelmointikieltä.

Työ alkoi tutustumalla koneoppimiseen, tiedonlouhintaan ja luonnollisenkielen prosessointiin, joihin
mielipiteen analysointi pohjautuu. Tässä opinnäytetyössä etsitään mielipiteitä osittain ohjattujen sekä
ohjaamattomien tekniikoita avulla. Sanastoihin perustuvaa positiivisten ja negatiivisten termien lu-
kumäärää sekä lauseenjäsensääntöjen, ja ohjaamattoman statistisen mielipideorientaatiomenetelmän
avulla poimittuja sanapareja käytetään luomaan mielipidevektori, joka kuvastaa annetun tekstidoku-
mentin yleisesti vallitsevaa mielipidesuuntausta. Järjestelmä testattiin kahdella tuotearvosteluaineis-
tolla. Mielipideorientaatiota (positiivinen - negatiivinen) sekä useampaa mielipideluokkaa (erittäin
positiivinen, positiivinen, neutraali, negatiivinen, erittäin negatiivinen) etsittiin näistä aineistoista, ja
suoritettujen testien tulokset esitellään. Lopuksi opinnäytetyössä käydään läpi opinnäytetyön aikana
nousseita ongelmia, parannusehdotuksia sekä mahdollisuuksia laajentaa järjestelmä toisiin kieliin.

Kaiken kaikkiaan tämä opinnäytetyö on askel kohti toimivaa mielipiteiden louhintajärjestelmää sekä
kapea johdanto mielipiteiden analysointiin aiheesta kiinnostuneille.

Asiasanat (avainsanat)

Itseorganisoituva kartta, Koneoppiminen, Luonnollisen kielen prosessointi, Mielipiteiden louhinta,
Mielipiteen analysointi, Neuroverkot, Python, Tiedonlouhinta

Sivumäärä Kieli URN

50

Englanti

Huomautus (huomautukset liitteistä)

Liite 1. Lähdekoodi Itseorganisoituva kartan implementaatio Python ohjelmointikielellä.

Ohjaavan opettajan nimi

Jari Kortelainen

Opinnäytetyön toimeksiantaja

Cluetail Oy

DESCRIPTION

Date of the bachelor’s thesis

14.5.2012

Author(s)

Ville Jukarainen

Degree programme and option

Degree Programme in Business Information
Technology

Name of the bachelor’s thesis

From Data Mining to Sentiment Analysis – Classifying documents through existing opinion mining
methods

Abstract

This thesis proposes a solution for document-level opinion mining, a method of finding overall opinion
from given sources, for example, product reviews, news articles and blogs. This suggestion was done
by using existing methods and an unsupervised self-organizing map for classification. The task is to
create a system that can classify documents written in the English language, according to opinion
categories, for example, positive, neutral and negative. Also, a design suggestion is made for how the
presented solution could be implemented in Cluetail Ltd. systems, using Python programming-
language.

Thesis process started by learning about the underlying techniques (Machine learning, data mining
and natural language processing). These techniques create the foundation for learning sentiment
analysis. Partially supervised and unsupervised learning methods were chosen for this approach.
Lexicon based positive - negative term appearance features, and bigram features extracted according
to part-of-speech tags and with calculated opinion orientation using an unsupervised statistical meth-
od. These features formed a feature vector for each document which describes the found overall opin-

ion. Two review datasets with known opinion categories were used, and the capabilities were tested
both with opinion polarities (positive - negative) and multiple opinion categories (very positive, posi-
tive, neutral, negative, very negative). The findings from these results, issues, improvements and the
ways to extend this work in other languages are discussed on the last pages of this thesis.

Overall this work is the first step towards functional document-level opinion mining system, and a
simple introduction to sentiment analysis meant for anyone who may have interest to learn about it.

Subject headings, (keywords)

Data mining, Natural language processing, Neural networks, Machine learning, Opinion mining,
Python, Sentiment analysis, Self-organizing map

Pages Language URN

50

English

Remarks, notes on appendices

Appendix 1. Source code for Self-organizing map implementation in Python.

Tutor

Jari Kortelainen

Bachelor’s thesis assigned by

Cluetail Oy

CONTENTS

1 INTRODUCTION ... 1

2 PYTHON PROGRAMMING LANGUAGE TOOLS ... 2

2.1 Python programming language... 3

2.2 NeuroLab library .. 4

2.3 Natural Language Toolkit... 5

2.4 SQLite... 5

3 DATA MINING AND MACHINE LEARNING .. 6

3.1 Data Mining .. 6

3.2 Neural Networks ... 8

3.2.1 Biological Neural Networks .. 9

3.2.2 Artificial Neural Networks .. 9

3.2.3 Kohonen Self-Organizing Maps.. 14

3.3 Other learning models .. 17

3.3.1 Support Vector Machines .. 17

4 SENTIMENT ANALYSIS AND TECHNIQUES .. 20

4.1 N-gram word model .. 24

4.2 Part-of-Speech tagging ... 25

4.3 PMI-IR Algorithm .. 26

4.4 K-fold cross-validation ... 29

5 APPROACHING THE PROBLEM .. 29

5.1 Choosing document features .. 30

5.2 Generating lexical database .. 31

5.3 Extracting the document features ... 32

5.4 Training SOM and identifying the clusters .. 34

5.5 Testing Process ... 36

5.5.1 Used datasets ... 36

5.5.2 Results ... 38

5.6 Empirical Work .. 40

5.7 Issues .. 42

5.8 Extending to other natural languages ... 44

5.9 Further work ... 45

6 CONCLUSION .. 46

BIBLIOGRAPHY .. 50

APPENDIX

1 Kohonen Self-Organizing Map Python implementation

1

1 INTRODUCTION

This thesis suggests a preliminary proposal for discovering the overall opinion within

text documents from various publication sources. These sources can be, for example,

news articles, blog posts, social media and product reviews. Sentiment analysis, also

called opinion mining, is a relatively new field of study which has gained more and

more interest during the recent decade. It is used, for example, to classify written doc-

uments in semantic groups like Positive and Negative. Neutral could also be men-

tioned but it can be seen as having no opinion or that there are the same amount of

positive and negative opinions that cancel each other.

As the computers are getting faster, an increasing amount of data on the internet is

becoming more available for everyone. A demand has risen for data mining that ena-

bles individuals and companies to extract and find useful information from the availa-

ble data. This is also the case with sentiment analysis. There is a need for a way to

identify the opinions of people regarding companies, products and people. Through

this, for example, companies might gain valuable knowledge about their brand image,

how their new product was received in media after launching, or how PR-campaign

affected the publicity of a politician. By seeing the opinions, the information can be

used to pinpoint possible problems that require more attention or to confirm successful

moves. It could also be used helping people for searching relevant products, giving

them an overall view of available options ranked by people’s opinions. Sentiment

analysis has many different uses and the task of finding opinion polarity within a doc-

ument is just one of many. Other use cases are, for example, detecting subjectivity in

documents, which means finding the subjective perspectives expressed by the writer,

and it can also be applied for finding the different and possibly controversial perspec-

tives that are expressed in a document.

What makes sentiment analysis difficult is that opinions are quite often subjective. A

sentence like “God is great” can be positive for some people, but some would not

agree. From an objective point of view, that sentence can be positive because there is

a commonly known adjective “great” which may refer to something positive. On the

other hand it could also be about one’s size. Often opinions are domain dependent.

This means a sentence like “The weather has been really hot and sunny.” can have a

positive orientation if it was about summer vacation. However if it was mentioned

2

when talking about gardening, the sentence might have completely the opposite mean-

ing because plants do not necessarily enjoy similar weather conditions as humans.

The goal of this thesis is to research and suggest a method for creating a sentiment

analysis tool using Python programming language, unsupervised machine learning

methods, and public data. This assignment was given by Cluetail Ltd., a Finnish com-

pany specializing in web and social media monitoring services. The focus is in identi-

fying opinion alignment of documents written in the English language. The research

problem is to study how unsupervised learning is performed in neural networks, what

sentiment analysis is, and how to perform sentiment analysis by using unsupervised

neural networks. Even though this thesis’ techniques are focused on being used for

documents written in the English language, it may also be possible to extend the same

techniques for other languages. Suggestions for this will be discussed in further chap-

ters.

As mentioned, there has been a lot of work in sentiment analysis during the past dec-

ades. All of the features used in this work to detect opinions can be found from a sur-

vey called “Opinion mining and sentiment analysis” by Pang & Lee (2008). This sur-

vey gathers existing techniques and approaches used in sentiment analysis. It was used

as a pointer for finding more information to complete this thesis, also research made

by Turney (2001, 2002) and Pang et al. (2002) contributed in looking for the solution.

The books; Web Data Mining by Liu (2011) and Artificial Intelligence: A Modern

Approach by Russell & Norvig (2011) helped in understanding the problem and look-

ing for the solutions.

2 PYTHON PROGRAMMING LANGUAGE TOOLS

Python programming language was chosen because the existing systems are pro-

grammed in Python, therefore using the same language is natural. The availability of

modules that helped in the development process contributed to choosing the language.

Python offers good portability across different environments. The tools used include

SQLite-database for data storage, NeuroLab library which provides pre-existing neu-

ral network algorithms implemented in Python, and Natural Language Toolkit that

was used for Part-of-Speech tagging (Santorini 1990) and n-gram word extraction.

3

More details about these tools and how they were used are explained in further chap-

ters.

2.1 Python programming language

The first version of Python programming language (http://www.python.org/) was

released in the late 1980’s by a Dutch developer Guido van Rossum. It is named after

“Monty Pythons Flying Circus” TV-series. Python is claimed to be easy to learn and

portable across multiple platforms. Python aims for usability and simplicity; this is

achieved by providing easy syntax and advanced features like garbage collection.

Garbage collection is an internal memory management system that automatically at-

tempts to free memory reserved by application after data objects leave the scope of the

program and are not needed anymore. Applications developed in Python are compiled

to bytecode before they are executed in the Python virtual machine; however, it also

has an interactive shell which allows users to type and execute code without the trou-

ble of writing code into a file, and compiling it separately. Python also tosses out

some of the common characteristics, like the curly brackets and semi-colons that are

used in other languages. Instead of curly brackets, statements are organized in blocks

by indentation. In the beginning, these small differences can make Python frustrating

for developers who have used more “traditional” programming languages like C/C++.

Python can be extended with external modules and there are multiple ways to do it.

One the most straightforward methods would be searching the module from Python

Package Index (Pypi) or finding the project website and then downloading and in-

stalling using the provided instructions. There are also tools like “easy_install” that

allow users to search and install packages with single command. Packaging system

like “apt” on Debian-based systems, contain many common Python modules that can

be installed.

The original version of Python is made in C-programming language, also called as

cPython, but there exists implementations in Java (Jython) and .Net (Iron Python).

Python can run on Windows, Linux/Unix and Mac OS platforms. Many of the

Unix/Linux operating systems come with Python preinstalled. Besides these plat-

forms, there are also implementations on Symbian, iOS and Android. Python can

achieve equal and faster execution speed compared to programs developed in pure C.

4

This is partly because many of its built-in modules that are actually made in C-

language, and it also allows developers to make custom extension modules that give a

possibility of creating new object-types and to use C-libraries.

Python has gained popularity in scientific and mathematical computation and there are

packages like Numpy and Scipy, which provide scientific computation tools similar to

Matlab. Python is known to be used by organizations like NASA, Google, and Euro-

pean Space Agency. It is also used for scripting in applications like Blender and Au-

todesk Maya, and web application frameworks like Django which have been devel-

oped with Python.

Python has become popular in artificial intelligence and natural language processing.

Pre-existing maintained packages and simplicity help in the development process and

keep the work focused on the problem without having to worry about each tool and

how long it will take to developed them.

2.2 NeuroLab library

NeuroLab library (http://packages.Python.org/neurolab/index.html) is a collection of

neural network algorithms written in Python programming language. These algorithms

can be easily accessed and implemented after installing the library. At this moment the

used version 0.2.1 supports following the neural networks:

 Feed Forward Multilayer Perceptron

 Competing layer

 Single Layer Perceptron

 Learning Vector Quantization

 Elman Recurrent network

 Hopfield Recurrent network

Neural networks, especially the competing layer neural network known as Kohonen

Self-Organizing Map is explained in more detail in chapter 3.

The library can be downloaded and installed from the above-mentioned web-site and

it can be found from Python packaging index by its name. Using the library is relative-

5

ly easy. An example code to create and test neural networks can be found in NeuroLab

Online Manual (2012).

2.3 Natural Language Toolkit

Natural Language Toolkit (NTLK) (http://www.nltk.org) is an open source library,

distributed under Apache 2.0 license, multiplatform collection of tools and modules

for natural language processing and text analysis, available in Python programming

language. It provides a large set of tools and algorithms for text tokenization, stem-

ming, tagging, chunking, parsing, classification, clustering, measurements and seman-

tic interpretation. It also provides an access to many text corpora and lexicon.

In this work, NLTK is used for n-gram extraction and part-of-speech tagging from

documents. The use of these features is explained more in the chapter 2. More about

using NLTK library can be found in the book Natural Language Processing with Py-

thon (Bird et al. 2009).

2.4 SQLite

SQLite (http://www.sqlite.org/) is a multiplatform library that is a self-contained SQL

database engine. Its strength comes from the lack of need for additional configuration

and special server software. SQLite is published in public domain which means it is

available for everyone.

SQLite can be used in environments where traditional databases are not convenient or

even impossible, for example, handheld devices and smart phones. Web-browsers like

Firefox, Chrome and Opera utilize SQLite to store data easily and without extra bur-

den for the user. Self-containment makes it also convenient for testing purposes where

new databases need to be created and removed without going through the trouble of

setting up dedicated server software. Databases can also be easily distributed and cop-

ied.

In Python SQLite is used via sqlite3 database-API that provides a simple access to the

engine. In this work SQLite was used for storing words and rules that have been ex-

tracted and classified from data. SQLite was chosen because of the simplicity and

6

portability across the environments. An example code can be found in Python 2.7.3

Documentation (2012) concerning SQLite3.

3 DATA MINING AND MACHINE LEARNING

This section introduces data mining and machine learning techniques. In the first

chapter, data mining, web data mining and the concept involved in these fields are

introduced. In the second chapter, neural networks are explained and unsupervised

Kohonen self-organizing map is discussed more in-depth. In the last chapter of this

section, other learning models are introduced and a model called support vector ma-

chines is presented.

3.1 Data Mining

As mentioned in chapter 1, computing power and the amount of public and private

data is expanding. Modern computers, growing number of storage space, and the in-

ternet have made data collection an easy task. But just collecting data is not always

enough. Individuals, businesses and organizations keep looking for ways to use data to

learn and to gain valuable information. This is not anything new. It has been done

since the beginning of time and has even kept humans alive. By understanding pat-

terns in human and animal behavior, humans have avoided dangers and succeeded in

the search for food. So it is in human nature to look for these things and it is taught in

schools to help students improve their problem solving skills.

In modern time, data mining has grown along with computers providing means to do

these kinds of tasks intelligently, from electronically stored and/or produced data.

Theories and algorithms developed for digital computer systems help to search data

more efficiently and detect information that could be hidden otherwise. This infor-

mation can provide knowledge about the current and/or help to predict the coming

events; for example, companies use data mining to detect shopping habits and patterns

to strategize their sales and help them to provide more personal service for their cus-

tomers. Data has also become a valuable asset that is being collected and sold. Big

companies like Google, Facebook and Amazon collect and analyze data to gain useful

information and harness it for their internal and external use. This also raises many

7

questions about privacy because the digital footprint left behind the user can tell a lot

about what a person likes, does and spends money on.

Witten et al. (2011) explains: “Data mining is about solving problems by analyzing

data already present in databases. Suppose, to take well-worn example, the problem is

fickle customer loyalty in a highly competitive marketplace. A database of customer

choices, along with customer profiles, holds the key to this problem. Patterns of be-

havior of former customers can be analyzed to identify distinguishing characteristics

of those likely to switch products and those likely to remain loyal. Once those charac-

teristics are found, they can be put to work to identify present customers who are like-

ly to jump ship. – More positively, the same techniques can be used to identify cus-

tomers who might be attracted to another service the enterprise provides, one they are

not presently enjoying.”

Description by Witten et al. (2011) for data mining, points that the search process

should be fully- or semi-automated, and the discovered result patterns need to be

meaningful so they can be used for beneficial purposes. These patterns should also

make it possible to get more information from the new data.

Liu (2011) describes that the data mining task begins by getting understanding about

the domain. This is usually done by the data analyst who finds the appropriate sources

and data. Mining can be accomplished in three steps; it begins by pre-processing raw

data from all the noise and abnormalities. In the case where there is too much data,

sampling is applied, and required data attributes or features are chosen. The second

step is mining the data to find patterns or knowledge. The last step is to post-process

the mined results by choosing ones that are useful.

Web data mining is a field which has come to exist with the internet. Liu (2011) de-

scribes it in the following manner: “Web mining aims to discover useful information

and knowledge from Web hyperlinks, page contents, and usage data. Although Web

mining uses many data mining techniques, as mentioned above, it is not purely an

application of traditional data mining techniques due to the heterogeneity and semi-

structured or unstructured nature of the Web data.” Online search engines are exam-

ples how web data mining is used. Modern search engines crawl through, index and

8

analyze millions of web-pages and their context enabling people to search information

quickly and easily.

3.2 Neural Networks

The idea of creating an artificial neural network came from observing human brain

functions. Human brains consist of huge network of cells also known as neurons that

link together creating connections and communicating via electrochemical signals.

These neurons link together in a topological network. This is also what the earliest

approaches to artificial neural networks tried to model, the functions of biological

brains. These neural networks have advantageous characteristics that can also be ap-

plied for digital systems. Computers are developed to provide help in doing complex

calculations; however these tasks are commonly specific and the algorithms are engi-

neered to fit the problem in hand. This means they are not flexible for changes without

specifically re-programming the algorithms to meet the requirements.

Artificial neural networks can be used to solve complex problems by using simple

mathematical operations. They can be applied to different problems, for example, pat-

tern recognition, voice recognition, medical applications, business applications, signal

processing and robotics. Following features are common in both biological and most

of the advanced artificial neural networks. According to Kohonen (1997):

1. Analog representation and processing of information (which allows any degree

of asynchronism of the processes in massively parallel computation without in-

terlocking).

2. Ability to average conditionally over sets of data (statistical operations).

3. Fault tolerance, as well as graceful degradation and recovery from errors; this

ability has a great survival value.

4. Adaption to changing environment, and emergence of “intelligent” infor-

mation processing functions by self-organization, in response to data

For example, human brains lose brain cells everyday but it does not normally render

people functionless nor prevent them from learning new things or performing daily

tasks. Even in the cases of serious brain damage, it is known that other parts of the

brain could replace the lost areas, recovering lost skills.

9

3.2.1 Biological Neural Networks

Biological neurons consist of three important components that can be seen in figure 1.

Dendrites; one neuron can have up to hundreds of individual inputs that are connected

to surrounding neurons where they receive signals. Cell body or soma; sums the in-

coming signals from dendrites and when the wanted input has been reached, causes

the cell to fire the response output. Axon; transmits an output signal to connecting neu-

rons when the cell has received the satisfactory input causing it to fire. These input

signals are not weighted equally and some of them are more important than the others.

In human brain this happens in the matter connecting axons and dendrites, the similar

function is also modeled in artificial neurons by adding additional weight to some of

the inputs. Neurons can be seen to function in a binary manner, but the rate in which

they fire also adjusts the weight giving a different value to a cell that activates more or

less often than the others (Fausett 1994).

FIGURE 1. Biological neuron

3.2.2 Artificial Neural Networks

Artificial neural network consist of individual neurons, also called units that are in

layers. They function in similar manner as their biological counterparts. Artificial neu-

rons receive inputs that are summed together. An activation function is then used to

10

decide when the neuron should fire. Upon activation an output is transmitted forwards.

Artificial neural networks have three characteristics. Architecture of the network de-

termines how the neurons are connected together. Training algorithm defines how the

neurons learn from received input. And an activation function decides when the neu-

ron has received necessary input causing it to fire. (Fausett 1994)

There are many different activation functions that have been developed and used in

neural networks. One commonly used is a non-linear activation function also known

as step activation function, see figure 2. It uses a hard threshold which means the acti-

vation function works in binary manner, having only two output states; it is either 1 or

0. So, the activation level is given by

 () {

 (1)

FIGURE 2. Non-linear activation function

11

Another commonly used activation function is called sigmoid function, which is a

logistic function, see figure 3. Sigmoid perceptron uses a soft threshold therefore it

can have an output value between 0 and 1. The activation level is given by

 ()

 (2)

These activation functions can also be scaled to meet the output requirements, for ex-

ample, by making the sigmoid function to output value between -1 and 1 (Fausett,

1994). This is called as bipolar sigmoid function.

FIGURE 3. Sigmoid function

Training algorithm defines learning behavior of neural network. First of all, there are

two different types of learning schemes; supervised and unsupervised learning. Super-

vised learning is the most commonly used method for teaching artificial neural net-

works. Learning is performed by training the network with pairs of input - output vec-

tors. This method requires a prior knowledge about the data and is commonly used in

pattern recognition.

Unsupervised learning is used in training self-organizing networks like so called Ko-

honen Self-Organizing Maps. Unsupervised learning algorithms use only input vectors

for learning, no target outputs are provided. Network self-adjusts in to clusters that

present the typical cases learned from provided input vectors, and the amount of neu-

12

rons define the maximum amount of different classes that can be found. Unsupervised

learning is effective when the expected target weights and class memberships are not

known in advance.

Error functions are used to determine how well neural network performs, by finding

the difference between calculated output and the given target output. Knowing the rate

of error helps adjusting the neurons in network layers to match closer to the targeted

output. Commonly used error functions include Euclidean distance and mean-square

error.

In the following, three common network architectures are shortly explained.

Single-layer feed-forward networks, see figure 4, have only one layer of connecting

weights wij that are received from l input neurons xi. Each input neuron xi is connected

to all outputs yj that fire when activation function is satisfied (Fausett 1994), by

 (∑

) (3)

The name feed-forward describes the flow in the network which goes only one direc-

tion from input layer to output layer. Perceptron and Adaline (Adaptive Linear Neu-

ron) (see Fausett 1994) are examples of single-layer feed-forward networks. Applica-

tions for these networks can be found, for example, in the field of pattern recognition.

FIGURE 4. Single-layer feed-forward network

13

Multi-layer feed-forward networks were created because the limitations of single-

layer networks were known. They can have from one up to n layers of neurons. Com-

monly the layers between inputs xi and outputs zj are called hidden layers that consist

of hidden units yk. In feed-forward network all the layers receive inputs from upstream

and send output to next layer.

As seen in Figure 5 input weights wij for hidden layer are received and the output yj

calculated in hidden layer is forwarded to output zm using weights hjm. Multi-layer net-

works can solve more complex problems compared to single-layer but they can be

harder to train. Training algorithms like back-propagation have been developed for

teaching multi-layer feed-forward networks. The so called Universal Approximation

Theorem says that any multi-layer feed-forward network with one hidden layer repre-

sents a continuous function under mild assumptions on the activation functions.

FIGURE 5. Multi-layer feed-forward network

Recurrent networks, see figure 6, add an important feature to previously mentioned

structures. They give the network a short-term memory which enables it to remember

the previous outputs. This can be useful, for example, in pattern recognition and it

helps speeding up the training process. Recurrence is performed by making the hidden

14

layer neuron or neurons to feed own calculated output back to its inputs. Old outputs

are then taken in to account when calculating the new output.

FIGURE 6. Recurrent network

3.2.3 Kohonen Self-Organizing Maps

Suggested by Teuvo Kohonen (Kohonen 1984) Kohonen Self-Organizing Map (SOM)

is a topology-preserving unsupervised neural network that forms topological structure

among the cluster units (Fausett 1994). This kind of network can be used to visualize

and analyze high dimensional data, acquired by calculating and mapping the input

data into clusters that present the typical cases. Because the training is performed un-

supervised, no target outputs are required for teaching. Kohonen Self-Organizing

Maps, see Figure 7, consists of m cluster units that are in one- or two-dimensional

array, inputs are received as n-tuples (Kohonen 1989). This neural network approach

differs from the previous ones introduced in the previous chapter by its structure be-

cause the SOM-layer also serves as an output.

Self-organizing maps can also be a hybrid-model. Together with other types of neural

network layers, for example, Counter Propagation neural network (see Graupe 2007,

161 - 166). The network uses Kohonen-layer together with Grossberg-layer in which

case the Kohonen-layer is used to cluster the similar clusters through the “Winner-

15

Takes-All” method and then the Grossberg-layer is applied to calculate the wanted

output. This setup enables the network to generalize received input.

FIGURE 7. Kohonen SOM

Weight-vectors presenting each cluster in the network determine the sample input

pattern matching the target cluster. Network is trained through “Winner-Takes-All”-

method which means only the cluster-unit matching closest to the given input is cho-

sen. In the beginning, no target outputs are given and the received input is treated as

the desired output for the chosen cluster unit. Cluster units are called reference vectors

in this work. Reference vector and its neighboring reference vectors are updated to

match closer to the received input pattern. This closeness between input vector and

each cluster is commonly determined by using the squared minimum Euclidean dis-

tance to decide which one is chosen as the winner. In the case where there is more

than one equally distanced unit, the winner is decided by randomly choosing between

matching units. So, for an input data vector x and reference vectors mi the best match-

ing reference vector mc satisfies (Kohonen 1997)

 {‖ ‖} (4)

16

After determining the winner, neighboring cluster units that receive updates are decid-

ed by given radius R and the units found by using so called neighborhood function are

updated. Suggested by Kohonen, the beginning of the radius should be around half of

the largest dimension of the array.

Training of the network is performed over time and the input data vectors are cycled

on each time moment t. These moments in time are also called as epochs. At the time

moment t, all the reference vectors mi that belong to the set of neighboring vectors

Nc(t) have learning rate α(t) otherwise the learning rate is 0 and no learning happens.

Thus we have learning rates

 {
 () ()

 (5)

Calculating the updated reference vectors given by (see Kohonen, 1997)

 () () [()] (6)

Both learning rate and neighborhood of the winning cluster unit mc degrade over time.

Kohonen (1997) explains the ordering of the clusters happens approximately during

the first 1000 steps and then the rest of the steps are needed for fine adjustments.

Therefore, in the beginning, the learning rate should be close to the initial learning rate

and then decrease later on. However there is no importance in choosing between line-

ar, exponential or inversely proportional time function.

17

FIGURE 8. Algorithm, (see Fausett, 1994)

Algorithm in figure 8 described by Fausett (1994) presents a pseudo-code structure for

creating topology-preserving Kohonen Self-organizing maps.

3.3 Other learning models

Along the neural networks, there are other machine learning methods. Support Vector

Machines (SVM) is possibly the most popular supervised learning method used in

sentiment analysis and text classification currently. It has a strong theoretical basis

and has been found as most accurate when supervised learning is possible. SVM’s are

able to generalize well which leads to its high accuracy. Another popular learning

model is Bayes Network which is based on probabilistic reasoning and it can be re-

garded as a graph that indicates associations between random variables in the network.

Probabilities can then be calculated for given input indicating the likelihood that it

belongs to a certain category. More about Bayes networks can be read from books

written by previously mentioned Russell & Norvig (2011) and Liu (2011).

3.3.1 Support Vector Machines

This section is based on Liu (2011, 109 - 124). As stated before, support vector ma-

chines maybe the most popular approach for sentiment analysis and classification.

Multiple studies have been conducted evaluating differences between machine learn-

Step 0 Initialize reference vectors mi

Set topological neighborhood parameters

Set learning rate parameters

Step 1 While stopping condition is false, do Steps 2-8.

 Step 2 For each input vector x, do Steps 3-5.

 Step 3 For each i, compute:

 𝐷(𝑖) ∑ (𝑚𝑖𝑗 𝑥𝒋)
2

𝑗

 Step 4 Find index I such that D(i) is a minimum

 Step 5 For all reference vectors mi

 𝐦𝑖(𝑛𝑒𝑤) 𝐦𝑖(𝑜𝑙𝑑) 𝑐𝑖[𝐱 𝐦𝑖(𝑜𝑙𝑑)]
 Step 6 Update learning rate

 Step 7 Reduce radius of topological neighborhood at

 specified times.

 Step 8 Test stopping condition

18

ing techniques and support vector machines have been found to be very accurate in

most applications, especially the ones required to handle high-dimensional data.

Support Vector Machines (SVM) is a linear learning system that creates a two-class

classifier. The training examples used for teaching SVM are a set of input vector and

class label (xi, yi) pairs, where input vectors are real-valued r-dimensional and class

labels are class where they belong, for example, 1 or -1 which can also be denoted as

yi ∊ {1, -1}. And b is a real-valued bias. In the task to create a classifier, the first

task is assigning input vectors into positive and negative classes; according

 {
 〈 〉

 〈 〉
 (7)

FIGURE 9. Linearly separable dataset

This section is based on the description about Support Vector Machines by Liu (2011,

109-124). The goal for SVM is to find a hyperplane that is separating positive and

negative samples in two distinct groups as seen in figure 9. Other names used for the

hyperplane are decision boundary and decision surface. Hyperplane is a line in 2-

dimensional space and plane in 3-dimensional place.

19

In general there are 3 distinct cases that require different approaches when SVM is

used. These cases are caused by the input data and how it is located in the vector

space. The goal of SVM is to maximize the margin between hyperplane locating it as

far from both positive and negative data points as possible, and at the same time still

separating these two classes. This is achieved by finding the data points that are clos-

est to the hyperplane and they are used to support it, thus the name Support Vector

Machines. The easiest and most clear case happens when all the data points are clearly

linearly separable in two classes. Then a maximal margin hyperplane can be found

and it presents the decision boundary.

The second case is when all the data points cannot be separated in two distinct classes.

This case is often the most common due to noisiness in the data. In the first case, it

would have been impossible to solve the problem of finding a satisfactory hyperplane.

However this can be fixed by introducing a so called soft-margin SVM, which allows

errors to exist among the labeled data points. The final decision boundary is then

found by taking into account all the data points that are on the margin, in the margin

and the ones that are error cases.

The third case is called kernel functions. They extend the SVM to work with nonline-

arly separable data and use the same formulas and techniques as given for linear data.

Nonlinear data located in input space is transformed in to higher-dimensional space

which is called feature space. This enables SVM to find a linear decision boundary

which separates the data in to positive and negative classes. Kernel functions are used

for finding the separating plane which requires calculating the dot products for the

data points in transformed feature space.

Though Support Vector Machines can be used for solving many problems, there are

still some limitations that need to be known. Liu (2011, 109-124) describes the limita-

tions as following:

1. It works only in real-valued space. For a categorical attribute, we need to con-

vert its categorical values to numeric values. One way to do this is to create an

extra binary attribute for each categorical value, and set the attribute value to 1

if the categorical value appears, and 0 otherwise.

20

2. It allows only two classes, i.e., binary classification. For multiple class classi-

fication problems, several strategies can be applied, for example, one-against-

rest, and error-correcting output coding.

3. The hyperplane produced by SVM is hard to understand by users. It is difficult

to picture where the hyperplane is in a high-dimensional space. The matter is

made worse by kernels. This, SVM is commonly used in applications that do

not require human understanding.

4 SENTIMENT ANALYSIS AND TECHNIQUES

Sentiment analysis is an application of natural language processing used for finding

and extracting opinionated information from variable sources. Finding this infor-

mation can provide deeper knowledge about a topic, feature, writer or the document in

hand. Sentiment analysis or opinion mining has gained a lot interest in the past decade

because the internet has provided such a vast sea of opinionated documents that are

now available for anyone.

Before the internet was so common, opinions were shared by asking friends, co-

workers or relatives but now it is all available on the internet. People can search and

read opinions written by strangers about everything a man can imagine. Web-sites like

Epinions, Amazon and IMDB collect reviews written by customers and have them

available for everyone. Along with big sites mentioned, Web 2.0 technologies have

encouraged individuals and professionals to express their opinions and ideas in blogs,

forums and social media. These expressions are then soaked in by readers and some-

times used to help in the decision process.

This ability to share opinions has given them a lot of weight. Companies, individuals

and institutions now acknowledge that bad reviews, blog posts or comments cannot

just be ignored. Bad reviews can ruin the reputation of a person or whole company if

nothing is done to fix it. Therefore, there is a need for technology that helps to follow

what is being said and for an easy way to detect and show specific opinions. So, con-

ceptually data-mining generally is not enough for opinion mining. Opinion mining

demands its own methods, perhaps based on natural language processing, which may

apply data-mining techniques.

21

Sentiment analysis can be used to detect and classify texts or documents in polarity

groups like; Positive: “The band played well”, Neutral: “The band was playing” or

Negative: “The band played badly”. These opinions are then collected from docu-

ments and overall polarity is determined. Subjectivity information can also be detected

from documents, like from the sentence “I was looking at the pre-match statistics and

I believe they made the worst possible choice.”

Aspect-based opinion mining or feature-based opinion mining can be used to find spe-

cific opinions from documents instead of overall polarity groups, because often docu-

ments contain both positive and negative opinions. Finding and extracting individual

opinions can be useful when dealing with documents that contain opinionated com-

ments about features: “The price of these shoes is too high” where “price” is the fea-

ture and “too high” is the opinion related to it. However finding the opinion about the

price does not tell the overall opinion of the shoes. Another use case for sentiment

analysis is finding opinion holders and targets, for example, in a sentence: “Ville said

this chair is uncomfortable”, “Ville” is the opinion holder and “chair” is the target

receiving the opinion.

In this thesis, only document-level sentiment classification will be discussed and cov-

ered more in-depth. More about the other tasks related to sentiment analysis can be

read from the book: Web Data Mining by Liu (2011) and from a survey Opinion min-

ing and sentiment analysis by Pang & Lee (2008).

Finding opinion polarity with a sophisticated computer system is a complicated task

and it identifies many problems that need to be solved before an effective system

could be created. Solving the problem can be approached by using data mining and/or

knowledge-based approaches. According to Liu (2011) there are following problems

that need to be solved.

The first problem is finding the opinion target. This means finding the entity (term

suggested by Liu) that is being evaluated and then the aspects that together form the

entity. These entity-aspect relations could also be denoted with hierarchical tree as

seen figure 10. This example tree is not complete and does not cover all the possible

aspects that continue to lower sub-levels, but will hopefully demonstrate the concept.

22

FIGURE 10. Hierarchical tree for entity banana

Aspect consists of attributes and components related to the entity, for example, in the

sentence “Company A is successful, their campaign went really well however their

attitude is not good.” We can see the entity “Company A” and the related opinion

word “successful”. Then we have the aspect “campaign” with the opinion “went really

well” and the aspect “attitude” with the opinion “not good”. These aspects could also

have sub-aspects, however due the complexity of the described details and because it

can be difficult to understand the hierarchical representation, these sub-levels can be

simplified and flattened under the term aspects, mapping all the aspects on second

level under the root level entity. (Liu 2011)

The second task is to find the opinions. There are commonly two types of opinions;

comparative and regular. Comparative opinions usually evaluate two or more entities

and express the differences between them and/or they can resemble the preference of

opinion holder based on some of the shared aspects of the entities. Regular opinions

are commonly positive or negative views, attitudes, entities, emotions or appraisals

about an entity or aspect that comes from the opinion holder. The term opinion holder

denotes a person or organization that holds an opinion. (Liu 2011)

The main part of opinion mining task is finding a set of features that are used to de-

scribe sentiment information in the document, for example, the following list of fea-

tures, composed by Liu (2011) have been used by researchers:

 Terms and their frequency. Term can be a single word or n-gram (n contiguous

words) and frequency is how often term appears in a document. A study done

23

by Pang & Lee (2002) has shown that simple term presence (true/false) in a

document may be a better indicator for opinion than the term frequency.

 Part-of-Speech. Studies have shown that certain word categories like adjec-

tives, nouns and verbs can be good indicators for opinion.

 Opinion words and phrases. Common positive words like amazing, beautiful,

good and negative words like bad, horrible, ugly indicate an opinion. Opinion

phrases and idioms like “worth its weight in gold” are also important opinion

indicators but they can be hard to find without prior knowledge.

 Negations are important and they have to be handled carefully. A single nega-

tion can turn the polarity of whole sentence, for example, “I like this movie”

vs. “I do not like this movie”.

 Other features include syntactic relations and rules of opinions that try to indi-

cate opinions in a deeper linguistic level than by simple opinion words or

phrases.

To find a document-level opinion some assumptions need to be made. First of all it is

assumed that the whole document is related to a single entity and there is only one

opinion holder. This makes reviews more ideal because they are commonly written by

one person about a single product or service. For example, in the case of forums and

blogs there can be multiple entities that are mentioned, evaluated and/or compared

together. This means there are multiple opinions in the same document and finding the

overall sentiment over multiple entities does not provide relevant information. There

can also be multiple opinion holders distorting the results with different opinions.

Document-level opinion does not either provide information about specific aspects. In

some domains the location, end, middle or beginning, where the opinion has been ex-

pressed can carry more weight. This is the case in movie reviews; often people write

their conclusion in the end which carries the overall opinion of whole document. (Liu

2011)

There are also general problems that make opinion mining difficult. Opinions are of-

ten subjective. Subjectivity can be causal effect of domain, culture, environment

and/or experiences. For example, a single sentence may have a different meaning de-

pending on the domain. Sentence “Scariest experience in my life” can have a positive

meaning if someone is telling about their time in an amusement park, however if it is

about test driving a new car, it can be assumed that it does not express anything posi-

24

tive for most. When it comes to natural language, there are indirect ways to express

opinion. For example, saying “My feet felt much better after I started using these

shoes.” we can see that there is a subtle opinion that is telling the shoes are good. (Liu

2011)

4.1 N-gram word model

The n-gram word model is a method of finding a set of n-gram words from a given

document. The most commonly used ones are unigram, bigram and trigram models.

N-gram words are used, for example, in text prediction, categorization; this can be a

task to detect email spam, classify documents in specific domains like sports, music

and movies, also for other natural language processing purposes like sentiment analy-

sis.

EXAMPLE 1. Unigrams

EXAMPLE 2. Bigrams

EXAMPLE 3. Trigrams

The simplest model of these is the unigram model. A set of unigrams consist of all the

individual words in a document as seen in example 1. Bigrams are set of word pairs

that appear adjacent to each other in a document. Each of these word pairs forms a

Text: “A fat cat sat on a hat and talked to a rat”

Unigrams: “A”, “fat”, “cat”, “sat”, “on“, “a”, “hat”, “and”, “talked”, “to”,

“a”, “rat”

Text: “A fat cat sat on a hat and talked to a rat”

Bigrams: “A fat”, ”fat cat”, ”cat sat”, “sat on”, “on a”, “a hat”, “hat and”,

“and talked”, “talked to”, “to a”, “a rat”

Text: “A fat cat sat on a hat and talked to a rat”

Trigrams: “A fat cat”, “fat cat sat”, “cat sat on”, “sat on a”, “on a hat”, “a hat

and”, “hat and talked”, “and talked to”, “talked to a”, “to a rat”

25

single bigram, as can be seen in example 2. Trigrams are a set of words that consist of

three adjacent words appearing next to each other (example 3). In n-gram model same

words can appear multiple times because the task is to find all the possible matches

that meet the criteria.

Bigram and trigram words are considered more informative compared to unigrams

words that present quite general view and alone they are not enough for tasks like sen-

timent analysis. Bigrams and trigrams, on the other hand provide more information

about word location and probabilities that give better knowledge about the document

in hand. N-grams are extensively utilized in this thesis.

4.2 Part-of-Speech tagging

Part-of-Speech (POS) tagging is a method of detecting lexical categories of words in

documents and labeling them accordingly. Common linguistic word categories in-

clude; adjectives, adverbs, verbs, nouns etc. There are various methods how the detec-

tion can be achieved. One commonly used approach is using statistical techniques to

calculate the probabilities how often words appear next to each other within the used

text corpus. Sometimes, the words may belong to multiple categories depending on

how they are positioned in a sentence. In such situation knowing the likelihood for

that specific position may help to determine the correct category. More information

about the part-of-speech tagging methods can be found, for example, in the previously

mentioned book written by Russell and Norvig (2011).

Penn Treebank Part-of-Speech tags, introduced by Santorini (1990), are used in this

work and they are found in Natural Language Toolkit introduced in section 2.3 that

was used for POS tagging document. The complete list of tags can be seen in table 1.

POS tags are used because they have been found to be an excellent method of detect-

ing characteristics in the text.

26

TABLE 1. Part-of-Speech tags

CC - Coordinating conjunction
PRP$ - Possessive pronoun (prolog version

PRP-S)

CD - Cardinal number RB - Adverb

DT - Determiner RBR - Adverb, comparative

EX - Existential there RBS - Adverb, superlative

FW - Foreign word RP - Particle

IN - Preposition or subordinating con-

junction
SYM - Symbol

JJ - Adjective TO - to

JJR - Adjective, comparative UH - Interjection

JJS - Adjective, superlative VB - Verb, base form

LS - List item marker VBD - Verb, past tense

MD - Modal VBG - Verb, gerund or present participle

NN - Noun, singular or mass VBN - Verb, past participle

NNS - Noun, plural VBP - Verb, non-3rd person singular present

NNP - Proper noun, singular VBZ - Verb, 3rd person singular present

NNPS - Proper noun, plural WDT - Wh-determiner

PDT - Predeterminer WP - Wh-pronoun

POS - Possessive ending
WP$ - Possessive wh-pronoun (prolog version

WP-S)

PRP - Personal pronoun WRB - Wh-adverb

For example, adjectives and adverbs are known to contain opinionated information.

The certain word categories that appear together as bigrams and trigrams, for example,

an adjective being followed by a noun are known to be containing opinion infor-

mation. This information is used in this thesis to extract bigrams from the documents.

4.3 PMI-IR Algorithm

Pointwise Mutual Information and Information Retrieval (PMI-IR) is an unsupervised

learning algorithm first suggested by Turney (2001) for recognizing polarity of syno-

nyms and later (2002) to classify reviews as recommended and not recommended. The

27

PMI algorithm is used to measure Semantic Orientation (SO) for a given phrase. PMI

is the degree of statistical dependence that word1 and word2 co-occur, given by

 (2) 2 (
 ()

 () ()
) (8)

The SO measure for each individual phrase is calculated based on the affiliation with a

positive reference word "excellent" and negative reference word "poor" and it is given

by

 () () - () (9)

The terms “poor” and “excellent” are used because often 5 stars or point review sys-

tems use these words to describe the lowest and highest ends in the rating scale.

Therefore the Sematic Orientation gets higher when the given phrase is more often

associated with the word “excellent” and lower, if the phase exists more often with the

word “poor”.

To get the PMI-IR score, a set of queries is deployed to a search engine and the num-

ber of received hits is recorded. The original research by Turney (2001) used AltaVis-

ta search engine and the search queries were done by using AltaVista’s NEAR opera-

tor, which allows searching terms existing within the defined number of words from

each other. The distance Turney (2002) used was 10 contiguous words. Now, the Se-

mantic Orientation of a phrase, where hits(phrase) indicates one search query, can be

rewritten as

 () 2 [
 () ()

 () ()
] (10)

Zero division can be avoided by adding 0.01 to all the hits (Liu 2011). In this thesis,

Bing search engine was used for querying the semantic orientations because currently

it is the only mainstream search engine offering a free API access for doing the

searches through queries which is an important aspect. Bing search engine was also

chosen because the previously mentioned AltaVista search engine does not exist any-

more as it was during the time when Turney’s research was done. Bing also offers the

28

NEAR operator in the searches, however it is not supported in the API, so the AND

operator was used instead. The differences between AND and NEAR operators were

experimented by Turney (2001). The algorithm was tested using 80 synonym test

question from Test of English Language as a Foreign Language (TOEFL) and 50

synonym test questions from a collection of tests for students of English as a Second

Language (ESL). In the TOEFL tests AND operator was about 10% less accurate than

the NEAR operator, still resulting in better scores than just arbitrarily choosing be-

tween the two options. The results in ESL tests were much lower for AND operator

resulting in about 48% accuracy, whereas NEAR was still above 60%.

The biggest limitations Turney (2001) noted for this algorithm were the high network

traffic caused from querying the search engine, which may not be so problematic an-

ymore due the evolved connection speeds.

One possible solution Turney (2001) proposed was using a hybrid system that incor-

porates a local search engine for searching the most common words and then, relying

the big search engines when the search term is not so commonly known. This is a via-

ble solution that could be accomplished quite easily these days. Powerful search serv-

er software like, for example, Sphinx and Apache Lucene, that index and allow search-

ing within local documents and databases could be used for this tasks if a good set of

documents are available.

The problem that might exist now is the access to the search engines which is becom-

ing limited. The only efficient and legal way of doing automated queries with a com-

puter system is by using the API’s. They often charge the user by the amount of sent

queries which can get costly with a system that heavily relies on using an external

search engine. Of course once the query is done, the calculated score can be stored

into a database along with the phrase for later use. In the beginning when the lexical

database that stores these results is generated, the time required to query all the

phrases can be quite long, because often there are set limitations how often one should

query the search engines during short period of time.

29

4.4 K-fold cross-validation

Described by Russell and Norvig (2011), the idea of k-fold cross-validation is to eval-

uate how well a learning system performs, by first splitting the used dataset in to k-

subsets. Each of these subsets then serves, both as the training data and test data. On

each k-round one subset is chosen for testing, and the other subsets are used for teach-

ing. Each subset is used only once for testing. Calculating the average score received

from these test rounds is proposed to give better estimation than using just one score.

However, this evaluation method is mainly usable when labeled datasets are available

because it requires prior knowledge about the data.

5 APPROACHING THE PROBLEM

This thesis searches for a solution for document-level opinion mining from the docu-

ments belonging to various domains. With sentiment analysis the given documents

can be classified into opinion categories. The commonly used ones are positive and

negative. Sometimes neutral is also included which may be considered as having no

opinion or that there is same amount of positive and negative opinions. The approach

is not domain dependent which means the attempt is to find features that are common

in all the domains, for example, no matter if the article is a movie review, a blog post,

tweet or news article. This can be complicated task because opinion is often subjec-

tive, and some of these domains are hard to classify due their nature. The biggest

complications may rise from social media, forum and blog posts that can often contain

more than one entity and have multiple opinion holders, making document-level sen-

timent analysis hard and in worst case the results are irrelevant when examining the

document content. However there are some features that may be used to give us a

good overview.

The thesis work started by studying the existing techniques that have been researched

and tested in the past. Multiple books and research papers, some that are mentioned in

the chapter 1, were read to find features that are commonly used. Previously, multiple

studies have been done in the area that incorporates supervised machine learning.

Choosing Support Vector Machines as the classifier would have been a valid choice

based on their good performance in sentiment classification as described in chapter

30

3.3.1. However for this thesis unsupervised approach was chosen, due to the fact that

it is hard and time consuming to create a good set of labeled training documents that

would cover various domains. Creating a set of labeled training documents is a task

that is necessary if supervised learning is used. Kohonen Self-Organizing Maps was

chosen as the unsupervised classifier as it is well known for being able to classify

high-dimensional data into clusters according their similarity without need to have

prior knowledge about the data.

Another idea might be building a hybrid system that uses different opinion mining

methods and combines them together to provide more accurate classification; this can

lead to better results as demonstrated by Prawobo and Thelwall (2009).

Creating a functional sentiment analysis system is a big task and requires a lot of

work. The assignment given by Cluetail Ltd. was to design a system which could be

used to classify documents according to their opinion orientation by using Python

programming language. Sets of existing documents are used for training and teaching

the system, and also used to confirm the results how well the system performs.

5.1 Choosing document features

It became clear quite early in the work that having a good feature set which can de-

scribe the opinion information is important. It is perhaps the most important thing in

sentiment classification process. Choosing the used features was not an easy task, and

some of the ideas required complex systems to be made. So far there is no universal

solution that would work for everything.

The first chosen feature was term frequency which is simply the count on how often

positive and negative words appear within the given document. This is the simplest of

all the features and alone will not provide good results. It is a naive approach and does

not represent any deeper context nor provide "understanding" about the content. How-

ever when combined together with other features it may give a good but sometimes

unreliable direction. This is a lexicon based feature and the accuracy can get better

together with the increasing amount of positive and negative words that are known.

The second used feature is expanding set of over 4000 bigrams. These bigrams were

extracted by using Part-of-Speech rules introduced in chapter 4.2 and their semantic

31

orientation (Turney 2001) is calculated with PMI-IR algorithm as described in the

chapter 4.3. Later on, new terms were automatically extracted and added to the data-

base when they were discovered from the documents.

5.2 Generating lexical database

Building the lexical database could have been considered both a supervised and unsu-

pervised approach. A corpus of positive and negative opinion words composed over

the years by Hu and Liu (2004) was used for term detection. Because the words had

been tagged a priori, the task was just to transfer them to the used database. A total of

6785 words were extracted and stored according their polarity.

In case of the bigrams; all the bigrams matching the given POS tag rules were extract-

ed and two attributes calculated for each bigram. First the overall appearance in the

dataset was calculated. Next, the amount of documents that contained each bigram

was calculated. This process was inspired by Term Frequency – Inversed Term Fre-

quency (TF-IDF) technique used in data mining to evaluate how important a given

term is within a set of documents, however the process was not the same because the

aim was to find the most commonly occurring items within the dataset.

The dataset where bigram rules were extracted is a set of over 5.8 million Amazon

product reviews collected by Jindal and Liu (2008) for their paper “Opinion Spam and

Analysis.” This dataset consists of individual product reviews extending over 20 cate-

gories. The reviews come with rating scores ranging from 1.0 to 5.0; however all the

reviews with 3.0 rating had been removed. That was a small downside because includ-

ing the so called neutral ones would have been preferred, but it did not affect building

the lexicon.

A set of over 100 000 terms was extracted from the previously mentioned Amazon

product review set, and they were stored in a database. From these, all the terms with

less than average appearance value were directly eliminated, which left a set of around

14 000 terms. After doing more manual cleaning in the dataset, about 4400 bigrams

were left and the PMI-IR algorithm was used to calculate the semantic orientation for

these bigrams which then served as the base lexicon. All the scores were normalized

and scaled so scores with semantic orientation over 2.0 and less than -2.0 were updat-

32

ed to match these set boundaries. An implementation was also made which extracted

and calculated semantic orientation for all the unknown bigrams that matched the part-

of-speech rules. This way the system was enabled to expand its knowledge because

clearly, 4400 bigrams is far from enough to cover all the necessary terms in English-

language.

The reason why product reviews were used to create the lexicon (although, this thesis

is presenting a domain independent approach), is because product reviews are good

sources for finding strong opinions. By extracting the most often appearing opinionat-

ed bigrams from multiple domains within the reviews, a set of the most general opin-

ion phrases may be generated and then scoring for these can be calculated.

5.3 Extracting the document features

The first task in extracting the document features is cleaning the used documents. It

was known from the beginning that the system will always have access to relatively

clean documents; therefore, the only thing left for the system to do was to remove all

the special characters like dots, commas, quotation marks etc. Removing the charac-

ters was done in Python by using regular expressions and string operations that allow

to search, substitute and remove unwanted characters within a given string.

The next task was extracting features introduced in chapter 5.1.1. First all the terms t

within the given document D where are extracted, possible negations are

checked and the words are added to set T+ or T- according terms positive or negative

orientation. Deciding whether a term is positive or negative is first done by querying

word lexicon described in chapter 5.1.1, and then checking the possible negation. All

the unknown terms are ignored.

To formulate a document-level feature vector, three different features are determined

(roughly) as follows. The feature score1 represents term appearance. It is calculated

from the amount of positive term appearances T+ and negative term appearances T-

found in the given document D.

Next, the part-of-speech tagging is done by using the NLTK-module’s POS tagging

function. It happens by splitting the given text in to a list which is used as an input for

33

the NTLK’s “pos_tag”-function that attempts to tag the given words according to

Penn Treebank tagset which is described in chapter 4.3. The function returns a list of

pairs that consist of the word and the corresponding POS-tag. An example of how to

use the part-of-speech tagging can be seen in figure 11.

FIGURE 11. NLTK POS tagging

After the tagging is complete, all the bigrams are listed by using “bigram” function in

the NLTK-module. Then all the found bigrams matching the described POS tagging

rules are extracted from the tagged document. Bigrams are chosen according to the

rules that define the word category and order in which they appear. Only the matching

ones are extracted, third word following the bigram is also checked but is not extract-

ed. Complete list of part-of-speech rules used in this work is seen in table 2. The listed

rules are based on the list suggested by Turney (2002) with one additional rule “RB +

VBP ^ *”. The complete list of all Penn Treebank part-of-speech tags can be found in

chapter 4.2.

34

TABLE 2. Part-of-Speech extraction rules

First Word Second Word Third Word

JJ NN or NNS any word

JJ JJ not NN nor NNS

RB or RBR or

RBS
JJ not NN nor NNS

NN or NNS JJ not NN nor NNS

RB or RBR or

RBS

VB or VBD or VBN or

VBG
any word

RB VBP any word

Calculating the positive and negative bigram feature vectors are performed by calcu-

lating the average semantic orientation score2 for the set of positive bigrams P (see

formula 9 in chapter 4.4, how to calculate SO for each bigram b), and score3 for the

set negative bigrams N. Both sets P and N are subsets of the extracted bigrams B found

in the given document. All the bigrams b ∊ B with SO(b) > 0 are considered positive

and bigrams with SO(b) < 0 are considered negative. With the three scores, a docu-

ment-level feature vector x can be presented as a triplet

x = (score1, score2, score3) (11)

This feature vector is calculated for each document within the dataset and used to de-

scribe the document-level opinion features.

5.4 Training SOM and identifying the clusters

Two different Kohonen Self-Organizing Map implementations were experimented for

this thesis. The first one is called “competing-layer” found in NeuroLab library (see

chapter 2.2 for more details). Using this implementation resulted in fast training times

and good clustering, however documentation did not provide good enough knowledge

about the implementation and how everything was calculated so an alternative was

also made.

Creating the custom implementation later called as custom SOM gave free hands to

experiment with the learning algorithms and also gave an opportunity to understand

35

better how self-organizing maps really work, because sometimes it is easier to learn

from the hands on experiences. Full source code for the implementation in Python can

be found from appendix 1.

The network training is first done by extracting the document-level feature vectors

from documents in the used dataset. Then manually or arbitrarily chosen set of docu-

ments with calculated feature vectors are used for training the SOM. The network is

then set to organize in to a given number of separate clusters that may be decided

based on the knowledge about the dataset. A good rule of thumb is that each individu-

al opinion category should be presented with at least one cluster. Therefore if it is

known that the used dataset has documents from three categories Positive, Neutral and

Negative, there should be at least three cluster units, presenting each of these catego-

ries. The training set should contain a good amount of samples from each category,

which can be found by testing. Having too small amount of training samples might not

provide enough information and having too many training samples can lead in overfit-

ting. Overfitting may decrease networks capability to generalize outside the used

training set and it is a common problem for all the learning models, also the time re-

quired to train the network increases with the amount of training samples.

After training the network, another challenge will arise; how to identify in which cate-

gory each formed cluster belongs. The following method can be used to identify any

number of formed clusters units. However if the presented feature vectors change, this

solution is not guaranteed to apply anymore. The solution assumes, based on the

knowledge about the chosen features, that the most positive cluster unit, or reference

unit as denoted in chapter 3.2.3, mi has the highest value from (), given by

 () (2) (12)

The most negative cluster will have the lowest value from formula 14. By using the

given function, knowing these two extremities, and doing simple reasoning, we can

label the clusters according the calculated scores.

36

5.5 Testing Process

Testing the performance was done by using k-fold cross-validation method (see chap-

ter 4.4) which happens by partitioning the used dataset in to k-subsets. Then one of the

subsets is chosen for testing and the rest of subsets are used to train the system. This

procedure is repeated for k-times. From each round the calculated scores are remem-

bered and after all the subsets have once been used for testing, the average accuracy

score is calculated by using the scores from all k-rounds. All the presented results

were done with 5-fold cross-validation, which means the used documents were split in

five separate groups.

All the tests were run with the Kohonen Self-Organizing Map implementations found

in NeuroLab library and with the custom implementation which was made along the

process (see appendix 1). A comparison was made how well the system was able to

classify according to document opinion groups and how well the decisions followed

the provided ratings within the used datasets. For this the amount of neurons was ad-

justed to reflect the used ratings; for example if the training data has only two classes,

SOM is trained to represents those two classes. In all the tests both SOM's used "Win-

ner-Takes-All" training algorithm and the networks were set form during 2000 epochs

on each round. For the testing two separate datasets were used and are explained in the

coming chapter.

5.5.1 Used datasets

The first dataset for testing the system was the previously presented Amazon Review

set originally collected by Jindal and Liu (2008). Training the classifiers was done by

setting them to organize into four clusters, because the set was known to have nega-

tive reviews with ratings 1.0 and 2.0 and positive reviews with ratings 4.0 and 5.0. No

neutral documents were included. Knowledge about the ratings was not used in the

training process due the unsupervised approach; however the information was used in

evaluating how well the system performed. Of course one could argue that since the

same dataset was first used to construct the bigram lexicon, that makes it connected to

the domain, and evaluating the results with the same dataset do not alone prove that

the system can generalize to other domains.

37

These presented four clusters that were formed in the training process were dealt with

in two different ways. First it was assumed that out of the four clusters, two of them

presented the positive documents, one corresponding to ratings 5.0 - “Very Positive”

and the other one to 4.0 - “Positive”. The two negative clusters then indicated the doc-

uments with ratings 1.0 - “Very Negative” and 2.0 - “Negative”. This way it was pos-

sible to evaluate how well the system was able to recognize two similar classes from

each other. In the second test, classifiers were set to detect Positive and Negative po-

larities. The same amount of clusters were used. This time the opinion strengths be-

tween the clusters within the same sentiment polarity were not evaluated. Results were

just measured by how well the system was able classify polarities.

Amazon Reviews set was extracted into individual files according to ratings where

reviews with rating > 3.0 were added in positives, and rating < 3.0 added in negatives.

This structure made it is easier to handle the data. Only the ratings and text content

were stored. The output files used a simple XML-scheme, which helped processing

the files later on. To calculate the document-level feature vectors text content was

extracted from the files, but no information about the ratings was exposed to the sys-

tem. A Mixed set of 2000 documents containing 1000 Positive and 1000 Negative

reviews was first created from six different domains. The documents were split and

distributed pseudo-randomly to 5 different groups for 5-fold testing. In other words,

each group had a varying ratio of positive and negative documents.

The second included dataset was chosen from IMDB movie review corpus originally

collected by Pang and Lee (2005). The set is called scale_dataset v1.0 and it contains

a large amount of movie reviews labeled according to scaled ratings. This set comes

with labels for three and four class schemes that have been derived from normalized

numerical ratings that also were included.

For the first test, a set consisting of 900 documents with three class label ratings (Posi-

tive: 312, Neutral: 349, Negative: 239) was made. These documents were randomly

split and distributed in to five groups for 5-fold cross-validation like the Amazon re-

view set. For simplicity, documents were first extracted to separate files that used the

same XML-scheme as the Amazon reviews. This set was tested with the three class

label scheme to see how well system differentiates between these three classes. Both

38

SOM classifiers were set first to form 3 clusters that would represent the 3 classes,

otherwise all the settings were kept same as with the Amazon reviews.

The second test with the same IMDB document set was run after removing all the

neutral documents. That left 550 documents after all the neutrals and one positive

were removed from the set, to make all the groups even. SOM classifiers were set to

form two clusters to represent each polarity.

5.5.2 Results

Reading the result tables is done in following manner: The first column Classifier

indicates the used classifier, which in this case is either NeuroLab or Custom self-

organizing map implementation. The second column k-fold tells in how many subsets

the dataset was split and from how many test rounds the average scores were with-

drawn. The third column Group shows which opinion groups were detected; Pos/Neg

indicates Positive - Negative opinion groups and VP/Pos/Neg/VN represents Very Pos-

itive, Positive, Negative and Very Negative opinion groups. In the table 4 Pos/Neu/Neg

represents the three categories Positive, Neutral and Negative. Documents column

shows the total number of documents in the used dataset. Min-%, Max-% and AVG-%

are the minimum, maximum and average accuracies calculated from the test rounds.

AVG-% column is the most important and it shows the average accuracy, which may

be a better performance estimator than a percentage from individual round.

First, the testing was done by using the Amazon dataset. A positive result straight

from the beginning was the overall difference in the two SOM's performance which

was minimal. It suggested that both implementations worked correctly and there were

no errors that could have affected the results. As seen in table 3, the custom imple-

mentation had a slightly better Max-% and AVG-% compared to NeuroLab when just

opinion polarity was used.

39

TABLE 3. Amazon test results (2 and 4 classes)

Classifier K-fold Group Documents Min - % Max - % AVG - %

NeuroLab 5-fold Pos/Neg 2000 84.00 86.75 84.60

Custom 5-fold Pos/Neg 2000 84.00 87.00 85.40

NeuroLab 5-fold VP/Pos/Neg/VN 2000 39.75 45.00 41.85

Custom 5-fold VP/Pos/Neg/VN 2000 38.75 43.25 41.65

The results from detecting opinion alignment between 4 classes were much worse for

both classifiers. Here NeuroLab had a little bit higher accuracies from all the meas-

urements, that are most likely to flatten out if the tests were run multiple times and the

averages taken. They both scored just above 41 % on average and NeuroLab peaked

45%. This clearly indicates that when measuring document-level opinions, features

that were chosen may not be enough in detecting differences between similar opinion

categories.

To confirm that the system was not affected by the bigram lexicon, generated from the

same dataset which was now used for testing, another testing set was included in the

process. First a set consisting of 900 reviews collected from IMDB (see previous

chapter for more details) and labeled in three classes; positive, neutral and negative

was used to show how well the system can differentiate between three distinct classes.

Then on the second round, all the documents with the neutral label were removed

leaving 551 documents. One of the positive documents was then also removed to even

all the 5 groups.

As can be seen from the results in table 4, using three classes lead to quite low per-

formance, which may be reflecting the fact that the used techniques have been devel-

oped for detecting opinion polarities that often are quite distinct cases. Both SOM's

performed equally, following the trend which was already seen in the previous tests.

TABLE 4. IMDB test results (2 and 3 classes)

Classifier K-fold Group Documents Min - % Max - % AVG - %

NeuroLab 5-fold Pos/Neu/Neg 900 41.12 50.00 44.12

Custom 5-fold Pos/Neu/Neg 900 38.89 48.33 42.89

NeuroLab 5-fold Pos/Neg 550 60.00 78.18 68.36

Custom 5-fold Pos/Neg 550 60.00 77.27 68.54

40

Using just two sentiment classes clearly affected how well the system performed. Av-

erage results went up ~24%, which lead to accuracy better than what is achieved by

arbitrarily guessing long enough. However the system did not reach similar accuracies

than with the Amazon reviews, but it is clearly capable of making a distinction be-

tween positive and negative document-level opinions.

The overall performance that the system demonstrated was satisfying. Calculated av-

erage accuracies created a clear view that the used features are good for detecting

document-level opinion polarity. However some additional feature(s) may be required

to classify similar documents like, positive and very positive. Some additional tests

would be needed to be sure how the performance is affected if the documents were

withdrawn from totally different domain. Adjusting and experimenting with the SOM

classifiers, by running the test with different amount of clusters may also help to make

more accurate choices in border cases. The generalization that happened in the train-

ing process was quite strict. Therefore adding more clusters may help in recognizing

nuances and would also use the available strengths that are found in using the self-

organizing maps.

5.6 Empirical Work

Designing and implementing the described system may be considered its own sub-

problem along the whole opinion mining. It may be implemented in various ways and

one method is suggested. It may not be the best and there are many things like, securi-

ty that needs to be carefully considered when creating a software system. The design

process started, by thinking of the different tasks that are needed to be performed in

order to fulfill the given requirements. Since the only requirement, was to design a

system that can classify documents (preferably using Python), almost complete free-

dom was given to approach this problem.

At this point, it has to be noted that the way the system is implemented has barely any

part in how accurately the document-level opinion-mining is performed. The classifi-

cation accuracy is related to the quality of chosen features including extracted bigram

lexicon and available datasets. It is also related to how well the classifier is able to

generalize what it has learned, how the clusters that are formed in unsupervised man-

ner are classified, and the used part-of-speech tagger may affect the accuracy.

41

All the main modules or components used in the design can be seen in figure 12. Doc-

ument Handler, later referred as DH, is the main component that connects all the parts

together. It receives unlabeled document as input and passes it to the Feature Vector

Extractor (FVE) which extracts all the document-level feature information. FVE sends

the extracted feature vector back to DH that passes it next to the SOM Wrapper. SOM

Wrapper acts as an interface between NeuroLab / Custom SOM and the Document

Handler, providing unified functions that are required to use the classifiers. SOM

Wrapper sends the received feature vector to the used classifier which responds by

returning the opinion orientation matching closest to the given feature vector. The

received classification is then forwarded back to document handler that passes it back

to caller.

FIGURE 12. Sketch for component structure

To provide a simple access within any Python application, the system may be con-

structed in a simple client - server model, see figure 13 for a simplified diagram how

this model work. The server functions as the “Sentiment Analysis Service”, which

receives unlabeled documents as input from the connected client. Received document

is then passed through the document handler to the FVE. The process continues as

previously described. When the document handler receives the classification, it passes

42

it to the server that responds to the connected client with the opinion orientation,

which passes it back to the application that requested classification.

FIGURE 13. Client - Server model

All the inter-process communication between the client and server can be done local-

ly, for example, by using socket module which is a low-level networking interface

found in Python. More about socket can be read from Python 2.7.3 Online Documen-

tation (2012).

This implementation would require that the classifier is either re-trained every time it

is restarted or that it has the capability to "save" and "load" all the necessary infor-

mation about the network which depends on the used SOM implementation. Thus it

was also one of the reasons why client - server model was chosen. This way the net-

work may stay "online" as long as the hosting machine is on and just be restarted to

re-train the network when it is needed, for example, if the used training dataset is up-

dated.

5.7 Issues

There were some issues that arose in the thesis process. The first one was the realiza-

tion how hard it is to collect a corpus of opinionated documents that could cover all

the general domains. This clearly sets some boundaries for testing and generating lex-

icon, however, thanks to the datasets collected by Hu and Liu (2004), Jindal and Liu

43

(2008) and Pang and Lee (2005), this problem was not so crucial. In the beginning, It

was not realized how big a task it would be. Opinion mining itself is a higher level

process that is composed from many underlying techniques, which help making it

possible. Therefore being able to use great modules like NeuroLab and Natural Lan-

guage Processing Toolkit, clearly demonstrated that advancements in natural language

processing and machine learning have happened. Building the introduced system from

the scratch may be enormous task, which might be the case in some languages where

the existing implementations are not available.

Another thing that showed up is that the covered fields are sometimes lacking a com-

mon language. This can be seen with the name sentiment analysis which can be also

called as opinion mining or subjectivity analysis depending on author's opinion. Bing

Liu (2011) has tried to standardize the terms he uses, which really helps. The same

issue came up when dealing with neural networks, the information about them is cov-

ered well, however there is small variation in terminology between the authors that

were mentioned in this thesis, for example, artificial neuron can also be called as a

node or unit. Of course, some of the sources go back over 10 years so these things

have hopefully improved. Overall this also shows the fact that understanding the un-

derlying techniques used in data mining, machine learning and natural language pro-

cessing is important. It builds the ground where tasks like sentiment analysis can be

approached even though it may have evolved to its own field of study.

The most difficult task in using unsupervised learning and Kohonen Self-Organizing

Maps might be the process of connecting the formed clusters under opinion labels. In

this work it was relatively easy because of the assumptions that were made. However,

this may not be the case if some other features are used, as also can be seen in the re-

sults, part of the failed classifications may come from incorrectly identified clusters.

One possible solution could be exploiting human understanding, for example, by

graphically representing the clusters and labeling them manually after carefully exam-

ining the used training set. Another way would be by studying the used features and

the results to see possible characteristics that may exist in documents with different

opinions then engineering the system to differentiate results according to these rules.

This makes fine tuning the system a crucial process.

44

5.8 Extending to other natural languages

Extending the work to other natural languages might be possible but have not been

tested. In order to do that, at least the following things are required. First, the opinion-

ated word corpus would have to be generated in the target language. This could be

done using machine translation from English to the target language, how well it may

work might totally depend on the language. There can be unique words and expres-

sions that have opinionated meanings and those may not be included, if it is generated

only from the existing corpus.

Generating the bigram database in other languages might be a difficult task. First a

part-of-speech tagger that works for the specific target language is required. This may

be solved by using existing POS taggers, or in the worst case it has to be developed.

The used part-of-speech rules might not apply, so they have to be engineered to match

the grammar and structure. Using PMI-IR algorithm to calculate semantic orientation

can be possible, especially with the most common languages. The lack of results may

cause a problem with less used ones. Here the previously introduced local search en-

gine approach may be used, if there is access to a documents corpus written in the

target language. If these previously mentioned problems are solved, it may be possible

to apply this document-level opinion mining approach in other languages. Clearly

expert knowledge is a crucial aspect, because, languages can have unique features that

may get overlooked if only the existing knowledge about another language is applied.

Another easier solution may be using machine translation to translate the target docu-

ments into language which is modeled in the system. Using the approach might work,

but there is always a risk. Important contextual information may be lost which cannot

be exactly translated in to the target language. If the translations were done manually

by a person, this approach might be more reliable. This method was quickly tested

with a few reviews written in Finnish language and translated in English using Google

Translator. The results were promising; however deeper and more thorough testing

would be required to confirm these findings.

45

5.9 Further work

There are multiple ways of how the described document-level opinion mining system

could be improved. Some of these ideas for further development are presented. Firstly,

how the calculated semantic orientations are normalized is important, because it great-

ly affects how well the SOM classifier performs. SOM uses Euclidean distance to cal-

culate the distances between given input vectors and reference vectors, and it is com-

pletely blind to the information that might be in within the vectors. That is why all the

choices and balancing between feature vectors has to be done before feeding them to a

classifier. This can be important in order to find all the opinion categories correctly.

Handling the document-level neutrality has to be carefully thought out due to the neu-

trality that can be seen in more than one way. The true neutrality, when there are no

opinions expressed, is probably the most common idea one has when thinking about

neutral opinions. Another type of neutrality comes from differing opinions that are in

balance. This neutrality can also make it difficult to find the relevant document-level

opinion if it is used incorrectly.

The individual opinion categories were represented in this work with only one cluster

unit. Differences between similar opinion categories may be detected by doing the

classification, using multiple cluster units to form clusters that represent individual

opinion categories. An example of this is how the shallow differences between very

positive and positive categories can be found more accurately. This approach would

utilize the strengths found in using SOM's. The formed clusters could then be labeled

in a supervised manner by examining the differences within formed clusters and the

used training data.

Adding the handling for negation, comparison and connection words may also be used

to increase the accuracy. By detecting negation words like no, not, never etc., together

with opinion term, the term opinion polarity can be switched. Applying word stem-

ming may also improve the system, but was not done in this thesis. With word stem-

ming the lexicon size could be kept smaller. Detecting accuracy may also improve due

to many of the grammatical differences that exist, for example, "fail, fails, failed, fail-

46

ure", could be recognized by the root word "fail", and only the information about a

single term needs be included in the lexicon.

6 CONCLUSION

The subject for this thesis came from Cluetail Ltd. The company needed a research to

be done about sentiment analysis; more precisely, about the possibilities in document-

level opinion-mining and how such system could be implemented in Python. Studying

the subject led to an understanding about the problem and the available solutions. It

also helped to understand how sentiment analysis is a high-level application, coming

from an actively studied research field that incorporates techniques from data mining,

machine learning and natural language processing. Finding the document-level opin-

ion is often done using discovered linguistic features. This can be achieved by using

existing or manually assembled corpora, which in the latter case can be a time con-

suming process. The suggested solution comes from combining supervised and unsu-

pervised learning methods. Compared to its counterpart, unsupervised learning may

not have as many learning techniques available; however, using it can lead to good

results with less work. That can be a key factor if the research resources are limited.

The opinion mining process consists of two key elements. The first one is choosing

the set of features that represent the opinion information. The second one is the docu-

ment classification based on the information discovered from the chosen features.

Classification can be done by using machine learning methods, for example, Bayes

networks, Neural Networks or Support Vector Machines. These last two are explained

in chapter 3.

Two different features were chosen to represent the document-level opinion infor-

mation; a term frequency and a bigram based feature. Positive/negative term frequen-

cy measures the amount of positive and negative terms found within a document (see

chapter 5.1). Bigram feature is formed by using three separate methods. It starts by

tagging the processed document with part-of-speech tags (see chapter 4.2). This is

followed by extracting the part-of-speech tagged words as bigrams (see chapter 4.1).

The bigrams are checked against a set of rules, suggested by Turney (2002) (see table

2 in chapter 5.3 for the list of used rules) and the matching bigrams are extracted for

further processing. Unsupervised learning algorithm PMI-IR (see chapter 4.3) is used,

47

and a probability based opinion orientation score is calculated for each individual bi-

gram.

Kohonen Self-Organizing Map (SOM) was chosen as the used classifier. It was cho-

sen because of its ability to form clusters from untagged datasets that are used in the

training process. Compared to supervised neural networks, training unsupervised neu-

ral networks does not require labeled documents with known opinion categories; this

can save a great deal of work in the process. The formed clusters are detected and an

algorithm is used to label the cluster units under the given opinion categories, for ex-

ample, positive and negative. The amount of clusters depends on how many categories

are known, or assumed to be within the training set. Two different SOM implementa-

tions were used to do the classification, and the results were compared with each oth-

er. NeuroLab library's "competing layer" was chosen as one of the used classifiers.

The second one (referred in this thesis, as custom SOM) was built to learn and to have

free control over the network and how it works. The source code for this implementa-

tion can be found in appendix 1.

Testing the suggested system was performed by using two separate datasets with mul-

tiple setups. The first test set was assembled from a corpus of Amazon reviews, com-

posed by Jindal and Liu (2008). The corpus was also used to generate the initial lexi-

con of the most commonly appearing bigrams that were used to detect bigram fea-

tures. Second test set was a collection of IMDB reviews collected by Pang and Lee

(2005). All the tests were run using 5-fold cross-validation method, which happens by

splitting the dataset in 5 subsets and then using each individual subset once for testing

and the other subsets for training. This method leads to five individual rounds where

the average accuracy is calculated. All the test results can be seen in in chapter 5.5.2.

These results gave a clear view that the system is capable of detecting document-level

opinion polarities (positive - negative) with over ~68 percent accuracies. When neutral

sentiment (positive - neutral - negative) and/or more fine-grained sentiment categories

(very positive - positive - neutral - negative - very negative) were introduced, the av-

erage accuracy decreases below 50 percent. This accuracy is far from enough to do

reliable classification. It must be remembered that the results came from highly opin-

ionated reviews; therefore the accuracy may be even lower if the documents have

more subtly expressed opinions. The design introduced in chapter 5.6 was locally im-

48

plemented to test the idea. It proved to be a working solution. The client - server mod-

el can also be used to provide the means to implement the system in other program-

ming languages that support socket networking. These results show that a lot of good

progress has been done and a foundation has been laid. This presented suggestion is

our first step towards sentiment analysis in document-level and a lot of further devel-

opment is still needed. More about possible improvements can be read in chapter 5.9.

The research for this thesis inspired me to think about the document-level opinion

mining approach. There are certain problems (introduced in the earlier chapters), that

makes document-level opinion mining difficult and in some cases the results irrele-

vant. This may happen when there are more than one opinion holders and/or more

than one subject within the opinion mined document. Calculating the overall opinion

from documents like this may not provide useful information. Reviews and other pre-

cisely opinionated documents are in my opinion the best subjects for document-level

opinion mining. To detect opinions from blogs, news articles etc. may require more

developed approaches. This approach could be a hybrid-model, based in aspect-based

opinion mining and opinion holder detection (both introduced in chapter 4). Using

these two approaches together; by finding the individual opinion targets and expressed

opinions connected to the opinion holders could provide detailed information about

the documents. This solution may provide more valuable and exact information about

the documents. It would also give a possibility to compare the found results.

The idea of finding a document-level opinion is difficult because how individuals per-

ceive the information is subjective. This could be solved in various ways. Specifically

engineering the system for each domain, because as stated in the chapter 4, similar

expressions may have different meanings depending on the domain they are used.

This may involve more work to acquire needed knowledge about the covered do-

mains; however it can lead to better results. Another idea could be taking in the con-

sideration the opinions that the target users (to whom the results are targeted) may

have, later referred to as opinion hunter. Based on my personal observations about the

studies regarding opinion mining, they are often focused on looking for the opinions

that the opinion holders are expressing. However, the opinion of the opinion hunter is

left out. I believe that the opinions that the opinion hunter holds are important. Using

this factor could provide more accurate results. For this I suggest an idea about per-

sonalized opinion mining. This may help to adapt the opinion mining system to pro-

49

vide more personalized results, endowing it with the capability to see the opinions

through the users own eyes.

Overall, a lot of important knowledge about sentiment analysis was gained. The pos-

sibilities and problems in opinion mining are now understood much more clearly. It

provided more perspective, compared to where everything started. It also gave en-

couragement to learn more about the techniques used in data mining, machine learn-

ing and natural language processing. The mentioned fields alone do not provide a so-

lution for sentiment analysis, which is its own field; however, knowing them gives a

foundation of where to begin. These findings also led to thinking more clearly of how

this task should be done. The test results were not as good as expected originally, but

they gave a lot of good information. I believe that with further development, the sug-

gested system can be made more accurate. Considering all the ways it can be used

more thoroughly helps to find tasks where the suggested system can bring further ben-

efits. For me personally, this whole process gave valuable experience and opened up a

starting point to learn more about sentiment analysis. Clearly, there are more things

left uncovered than what was presented. This work was mainly focused on learning

about unsupervised document-level opinion mining. It used a few chosen techniques,

and it is just one possible approach among many others. I hope that this thesis could

serve as a basic overview about the things that are needed to be understood in order to

do opinion mining, and can be useful for anyone who has an interest in sentiment

analysis and might want to learn more.

50

BIBLIOGRAPHY

Bird, Steven, Klein, Ewan, Loper, Edward 2009. Natural Language Processing with

Python – Analyzing Text with the Natural Language Toolkit. United States of Ameri-

ca: O’Reilly Media.

Fausett, Laurene 1994. Fundamentals of neural networks: architectures, algorithms,

and applications. United States of America: Prentice-Hall Inc.

Graupe, Daniel 2007. Advanced Series on Circuits and Systems – Vol. 6: Principles of

artificial neural networks 2
nd

 edition. Singapore: World Scientific Publishing Co. Pte.

Ltd.

Hu, Mingqing Liu, Bing 2004. Mining and Summarizing Customer Reviews. Pub-

lished in Proceedings of the ACM SIGKDD International Conference on knowledge

Discovery and Data Mining (KDD-2004). New York: ACM.

Kohonen, Teuvo 1997. Self-Organizing Maps 2
nd

 Edition. Berlin: Springer-Verlag.

Liu, Bing 2011. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data

2
nd

 Edition. Berlin: Springer-Verlag.

Neurolab Online Manual 2012. Online-manual. http://packages.Python.org/neurolab/.

Last updated 2011. Referred 18.4.2012.

Pang, Bo, Lee, Lillian, Vaithyanathan, Shivakumar 2002. Thumbs up? Sentiment

Classification using Machine Learning Techniques. Published in Proceedings of the

ACL-02 conference on Empirical methods in natural language processing - Volume

10. Philadelphia: ACL, 79-86.

Pang, Bo & Lee, Lillian 2005. Seeing stars: Exploiting class relationships for senti-

ment categorization with respect to rating scales. Published in ACL '05 Proceedings of

the 43rd Annual Meeting on Association for Computational Linguistics. Philadelphia:

ACL.

51

Prawobo, Rudy & Thelwall, Mike 2009. Sentiment Analysis: A combined Approach.

Published in Journal of Informetrics 3 (2009) 143 - 157. United States of America:

Elsevier Ltd.

Python 2.7.3 Online Documentation: SQLite3 – DB-API 2.0 interface for SQLite da-

tabases. Online Documentation. http://docs.Python.org/library/sqlite3.html. Last up-

dated 18.4.2012. Referred 18.4.2012.

Python 2.7.3 Online Documentation: socket – Low-level networking interface. Online

Documentation. http://docs.Python.org/library/socket.html. Last updated 18.4.2012.

Referred 19.4.2012.

Russell, Stuart & Norvig, Peter 2010. Artificial Intelligence, A Modern Approach

Third Edition. United States of America: Pearson Education Inc.

Santorini, Beatrice 1990. Part-of-Speech Tagging Guidelines for the Penn Treebank

Project. University of Pennsylvania, Department of Computer and Information Sci-

ence. Technical Report.

Turney, Peter D 2001. Mining the Web for synonyms: PMI-IR versus LSA on

TOEFL. Published in Proceedings of the Twelfth European Conference on Machine

Learning. Berlin: Springer-Verlag, 491 – 502.

Turney, Peter D 2002. Thumbs up or thumbs down? Semantic orientation applied to

unsupervised classification of reviews. Published in Proceedings of the 40
th

 Annual

meeting of the Association for Computational Linguistics (ACL). Philadelphia:

ACL,417-424.

Witten, Ian H., Frank, Eibe, Hall, Mark A. 2011. Data Mining: Practical Machine

Learning Tools and Techniques 3
rd

 Edition. United States of America: Morgan Kauf-

mann Publishers.

APPENDIX 1 Kohonen self-organizing map implementation in Python

-*- coding: utf-8 -*-

#Kohonen Self-Organizing Map

#Required modules: Numpy (Tested with ver. 1.6.1)

from numpy import random, zeros, sqrt, arange, square, sum, log, exp, array

class KohonenNetwork:

 """Kohonen Self-Organizing Map"""

 def __init__(self, network_layers=1, network_output=4, network_input=3):

 #The amount of layers in the network

 self.layer_in_net = network_layers

 #The amount of output units in the network

 self.output_in_net = network_output

 #The number of input vectors

 self.input_in_net = network_input

 #Initialize network weights

 self.weights = random.uniform(0, 1,

 (self.layer_in_net,

 self.output_in_net,

 self.input_in_net))

 #Distances between input x and network clusters

 self.Y = sum(self.weights, 2)

 #Current learning time step

 self.timestep = 0.0

 #Learning rate in the beginning

 self.learning_rate_original = 0.9

 self.learning_rate = self.learning_rate_original

 #The overall timesteps

 self.epochs = 1

 #Matrix used update winner unit

 self.help_maxtrix = zeros((self.layer_in_net,

 self.output_in_net,

 self.input_in_net))

 #Used to store minimum unit i,j index values

 self.min_i = 0

 self.min_j = 0

 self.minimum = 10000000000000000000

 self.neighborhood_ratio_orig = self.output_in_net / 2

 self.error_delta = 0.0

 self.neighborhood = self.neighborhood_ratio_orig

 def __calculate_distances(self, input_vector):

 """calculate distances between network units & given input """

 self.Y = sqrt(sum(square(input_vector - self.weights), 2))

 def __update_network(self, input_vector):

 """update learning rate and calculate new weights"""

 self.__update_learning_rate()

 self.weights = self.weights + self.learning_rate *\

 self.help_maxtrix * (input_vector - self.weights)

 def __update_learning_rate(self):

 """update the learning rate

 degrates lower over time.

 """

 #self.learning_rate = self.learning_rate_original+

 #(0.01-self.learning_rate_original) * (self.timestep / self.epochs)

 #Kohonen - > 1997 p. 88

 self.learning_rate = self.learning_rate_original *\

 (1.0 - self.timestep / self.epochs)

 def __update_neighborhood_ratio(self):

 """update neighborhood ratio

 gets lower over time.

 """

 #Gradient descending

 sigma = max(self.input_in_net, self.output_in_net) / 2.0

 lbda = self.epochs / log(sigma)

 self.neighborhood = sigma * exp(-self.timestep / lbda)

 #Linear descending alternative

 #self.neighborhood = self.neighborhood_ratio_orig +\

 #(1.0 - self.neighborhood_ratio_orig) * (self.timestep / self.epochs)

 def __find_winner_unit(self):

 """finds the winner unit

 stores the index to min_i, min_j

 """

 self.minimum = 9999

 self.min_i = 0

 self.min_j = 0

 for i in arange(self.layer_in_net):

 for j in arange(self.output_in_net):

 temp_sum = self.Y[i, j]

 if temp_sum < self.minimum:

 self.min_i = i

 self.min_j = j

 self.minimum = temp_sum

 def __choose_updated_units(self):

 """choose updated neighboring units

 uses a hard limit

 indicates which units get update

 """

 #Hard limit, only the matching unit gets update

 self.__update_neighborhood_ratio()

 for i in range(self.layer_in_net):

 for j in range(self.output_in_net):

 distance = sqrt(((i - self.min_i) ** 2) +

 ((j - self.min_j) ** 2))

 if distance > self.neighborhood:

 self.help_maxtrix[i, j, :] = 0

 else:

 self.help_maxtrix[i, j, :] = 1

 def __choose_updated_units_gauss(self):

 """choose updated neighboring units

 indicates which units get update

 uses gauss method, creating a soft limit

 """

 self.__update_neighborhood_ratio()

 for i in range(self.layer_in_net):

 for j in range(self.output_in_net):

 distance = sqrt(((i - self.min_i) ** 2) +\

 ((j - self.min_j) ** 2))

 dist = exp((sum(- distance)) / self.neighborhood)

 if distance > 0:

 self.help_maxtrix[i, j, :] = square(dist * 1)

 else:

 self.help_maxtrix[i, j, :] = dist * 1

 def train_network(self, training_data, epochs=1500):

 """train the network

 takes training dataset and the amount of training steps as input

 """

 self.epochs = epochs

 td_samples = training_data.shape[0]

 for i in range(epochs):

 self.error_delta = 0.0

 self.timestep += 1.0

 random.shuffle(training_data)

 for j in range(td_samples):

 self.__calculate_distances(training_data[j])

 self.__find_winner_unit()

 error = sum(abs(self.weights[self.min_i,

 self.min_j] - training_data[j]))

 self.error_delta += error

 #Uncomment to enable hard threshold

 #self.__choose_updated_units()

 #Comment to disable gauss

 self.__choose_updated_units_gauss()

 self.__update_network(training_data[j])

 if (self.timestep % 5) == 0:

 print "Error on epoch {0} -> {1}".format(self.timestep,\

 self.error_delta / float(td_samples))

 print self.weights

 def __return_winner(self):

 """indicates the winner unit

 returns an output array

 """

 for i in range(self.layer_in_net):

 for j in range(self.output_in_net):

 self.help_maxtrix[i, j, :] = 0

 self.help_maxtrix[self.min_i, self.min_j, :] = 1

 return sum(self.help_maxtrix, 2) / self.input_in_net

 def lookup(self, input_vector):

 """finds the best matching unit

 takes testing vector as input

 """

 self.__calculate_distances(input_vector)

 self.__find_winner_unit()

 #Returns the location of winner unit

 return self.__return_winner()

if __name__ == "__main__":

 #Create new network with 1 layer, 2 outputs and 2 inputs

 network = KohonenNetwork(1, 2, 2)

 #Create 4 training samples - uses numpy.array

 training_data = array(((1.0, 1.0), (0.9, 0.9), (0.0, 0.0), (0.2, 0.2)))

 #Train the network with training samples: training_data

 network.train_network(training_data, 500)

 #Test network, prints the location of winner unit

 print network.lookup(array((0.2, 0.2)))

 print network.lookup(array((0.7, 0.7)))

	1 INTRODUCTION
	2 Python programming language tools
	2.1 Python programming language
	2.2 NeuroLab library
	2.3 Natural Language Toolkit
	2.4 SQLite

	3 Data Mining AND machine learning
	3.1 Data Mining
	3.2 Neural Networks
	3.2.1 Biological Neural Networks
	3.2.2 Artificial Neural Networks
	3.2.3 Kohonen Self-Organizing Maps

	3.3 Other learning models
	3.3.1 Support Vector Machines

	4 Sentiment Analysis and techniques
	4.1 N-gram word model
	4.2 Part-of-Speech tagging
	4.3 PMI-IR Algorithm
	4.4 K-fold cross-validation

	5 Approaching the problem
	5.1 Choosing document features
	5.2 Generating lexical database
	5.3 Extracting the document features
	5.4 Training SOM and identifying the clusters
	5.5 Testing Process
	5.5.1 Used datasets
	5.5.2 Results

	5.6 Empirical Work
	5.7 Issues
	5.8 Extending to other natural languages
	5.9 Further work

	6 conclusion
	BIBLIOGRAPHY

