

Theoretical and practical Requirements

Engineering

Sebastian Lönnfors

Degree Thesis

Information Technology

2012

DEGREE THESIS

Arcada

Degree Programme: Information Technology

Identification number: 3667

Author: Sebastian Lönnfors

Title: Theoretical and practical Requirements Engineering

Supervisor (Arcada): M.Sc. Magnus Westerlund

Commissioned by: Elisa corporation

Abstract:

The objective of the thesis was to produce a software system design for Elisa Corporation

that included a requirements list, requirement specification and an architectural design.

The idea was to use the UML model for this purpose. The UML diagrams would later be

used as a basis for agile system development.

The main focus of this thesis is requirements engineering and architectural design. Re-

quirements engineering consists of two main processes: Requirements determination and

requirements specification. In the requirements determination process the requirements

are gathered, negotiated, analyzed and determined to provide a describing definition of

the software system. In the requirements specification process the requirements are mod-

eled into specification requirements, in this case using use cases which are one example

of behavior diagrams of the UML model. In the architectural design process a solution

strategy is used to define the client and server components of the system. Software devel-

opment including generic phases and processes models are also presented on a general

level.

The result of this thesis is a set of UML design diagrams of a fictive software system to

provide an overview of the methods used. The process to determine and specify require-

ments is described and also the architectural design for the system is presented. UML di-

agrams produced are use cases and a deployment diagram. Use cases are also document-

ed.

Keywords: Requirements Engineering, Requirements determination,

Requirements specification, Architectural Design, UML,

Use Case, Deployment diagram, Elisa Corporation.

Number of pages: 45

Language: English

Date of acceptance: 11.5.2012

EXAMENSARBETE

Arcada

Utbildningsprogram: Informationsteknik

Identifikationsnummer: 3667

Författare: Sebastian Lönnfors

Arbetets namn: Teoretisk och praktisk Kravhantering

Handledare (Arcada): M. Sc. Magnus Westerlund

Uppdragsgivare: Elisa Abp

Sammandrag:

Avsikten med examensarbetet var att producera ett system för Elisa Abp vilken skulle

innehålla en lista på de krav som skulle uppfyllas, en kravspecifikation och en design på

arkitekturen. För att uppfylla syftet för arbetet skulle UML modellen användas. Doku-

ment och diagram producerade med hjälp av UML modellen skulle i ett senare skede

andändas som grund för agil systemutveckling.

Examensarbetet fokuserar huvudsakligen på kravhantering och design av arkitekturen.

Kravhanteringen består av två huvudsakliga processer: Fastställande av krav och krav-

specifikation. I processen var kraven fastställs, ingår insamling, förhandling, analyse-

ring och fastställning av krav för att leverera en beskrivande definition av systemet. I

kravspecifikationsprocessen ingår skapandet av definitioner på hur de fastställda kraven

skall realiseras, i det här fallet med UML modellens användarfall diagram och doku-

mentation. I processen var arkitekturen för systemet skapas ingår användningen av en

lösningsstrategi för att definiera klient och server komponenter för systemet. Systemut-

veckling vilken inkluderar generiska faser och processmodeller är också generellt pre-

senterade.

Resultatet av examensarbetet är en samling UML diagram och dokumentation av ett

påhittat system för att skapa en blick över de metoder som användes. Processen för att

fastställa och specificera krav samt arkitekturen för systemet är presenterad. De UML

diagram som är producerade är användarfall diagram samt deployment diagram. Dess-

sutom produceras dokumentation av användningsfallens diagram.

Nyckelord: Requirements Engineering, Requirements determination,

Requirements specification, Architectural Design, UML,

Use Case, Deployment diagram, Elisa Corporation.

Sidantal: 45

Språk: Engelska

Datum för godkännande: 11.5.2012

OPINNÄYTE

Arcada

Koulutusohjelma: Informaatiotekniikka

Tunnistenumero: 3667

Tekijä: Sebastian Lönnfors

Työn nimi: Teoreettinen ja käytännön vaatimushallinta

Työn ohjaaja (Arcada): M. Sc. Magnus Westerlund

Toimeksiantaja: Elisa Oyj

Tiivistelmä:

Tässä opinnäytetyössä tavoitteena oli suunnitella ohjelmistojärjestelmä Elisa Oyj:lle.

Suunnitelma sisältäisi listan järjestelmän vaatimuksista, käyttötapaukset ja suunnitelman

järjestelmän arkkitehtuurista. Tavoitteena oli käyttää UML mallia tuottamaan kaavioita

jotka myöhemmin voitaisiin hyödyntää ketterässä ohjelmistokehityksessä.

Opinnäytetyö keskittyy vaatimuksien hallintaan ja arkkitehtuurisuunnitteluun. Vaati-

muksien hallinta sisältää kaksi pääprosessia: Vaatimuksien päättäminen ja vaatimuksien

määrittäminen. Vaatimuksien päättämisen prosessissa vaatimukset kerätään, sovitaan,

analysoidaan ja päätetään, tavoitteena luoda kuvaus järjestelmän vaatimuksista. Vaati-

muksien määrittämisen prosessissa päätetyt vaatimukset muunnetaan määrittelyiksi, täs-

sä tapauksessa käyttäen UML mallin käyttötapauksia. Arkkitehtuurisuunnittelun proses-

sissa ratkaisu strategiaa käytetään määrittelemään komponentteja järjestelmän arkkiteh-

tuurissa. Järjestelmäkehitys sisältäen yleisiä vaiheita ja prosessimalleja esitetään myös

yleisellä tasolla.

Opinnäytetyön tulos on sarja fiktiivisiä esimerkkejä UML kaavioista ja dokumentaatios-

ta joiden tarkoitus on kuvata käytetyt menetelmät järjestelmäkehityksessä. Prosessi vaa-

timusten päättämiseen ja määrittämiseen sekä arkkitehtuurisuunnitteluun on kuvattu.

Avainsanat: Requirements Engineering, Requirements determination,

Requirements specification, Architectural Design, UML,

Use Case, Deployment diagram, Elisa Corporation.

Sivumäärä: 45

Kieli: Englanti

Hyväksymispäivämäärä: 11.5.2012

CONTENTS

1 Introduction .. 10

1.1 Background ... 10

1.2 Objective .. 11

1.3 Theoretical ... 11

1.4 Practical ... 12

1.5 Limitations ... 12

2 System development theory ... 12

2.1 Software security ... 13

2.2 Development approach ... 13

2.3 Agile software development .. 16

2.4 UML ... 17

2.5 Use case .. 18

2.5.1 Use case diagram .. 19

2.5.2 Use case documentation ... 21

2.6 Architectural design ... 22

2.6.1 Deployment diagram ... 25

3 Development process .. 27

3.1 Requirements determination phase .. 28

3.2 Requirements specification phase .. 29

3.3 Architectural design phase .. 30

3.4 Detailed design phase ... 31

3.5 Development phase... 32

3.6 Testing phase .. 32

3.7 Maintenance phase ... 33

4 Practical system development .. 33

4.1 Determination of requirements .. 34

4.2 Specification of requirements .. 36

4.2.1 Discovering use cases... 36

4.2.2 Documenting use cases .. 38

4.3 Designing the architecture ... 39

4.3.1 Deployment diagram ... 41

5 Discussion ... 43

5.1 Further development ... 43

5.2 Conclusion ... 43

References .. 45

Figures

Figure 1, Waterfall model (Wikipedia, 2012) .. 14

Figure 2, Iterative process .. 15

Figure 3, Incremental process ... 16

Figure 4, UML Diagrams (Fakhroutdinov, 2010) .. 18

Figure 5, Use case example. ... 20

Figure 6, Major elements of the use case diagram (Fakhroutdinov, 2010) 21

Figure 7, Use case document. ... 22

Figure 8, Client - Server architecture. .. 23

Figure 9, Three-tier Client-Server architecture. ... 24

Figure 10, Multi-tier architecture. .. 24

Figure 11, Node. ... 25

Figure 12, Artifact. ... 26

Figure 13, Device. .. 26

Figure 14, Communication path. (Fakhroutdinov, 2010) ... 26

Figure 15, Deployment diagram example. (Fakhroutdinov, 2010) 27

Figure 16, System development process .. 28

Figure 17, Actors. ... 37

Figure 18, Use case illustration. ... 38

Figure 19, Use case example. ... 39

Figure 20, Multi-tier client-server architecture using the login example. 40

Figure 21, Deployment diagram using the login example.. 42

ABBREVATIONS

ICT Information and Communications Technology

UML Unified Modeling Language

XP eXtreme Programming

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

OS Operative System

GUI Guided User Interface

SQL Structured Query Language

ACKNOWLEDGMENTS

I would like to thank my teacher M. Sc. Magnus Westerlund at Arcada who has given

me valuable feedback and guidance during the writing process. I would also like to

thank my colleagues and project members at Elisa for the help and guidance finding the

right solutions for the system. Especially I would like to thank M. Sc. Jani Sammalmaa

for introducing me to the project and helping me to find a suitable topic for the thesis.

I also want to thank my family who have encouraged and supported me during my time

at Arcada. Finally I would like to thank my friend Farzan Yazdani for the support, ideas

and advices for my thesis.

Sebastian Lönnfors

Helsinki 4.5.2012

1 INTRODUCTION

This thesis focuses on the first steps of the system development process; Requirements

determination, requirements specification and architectural design. Other phases are al-

so mentioned to get a good understanding of the whole system development process.

The requirements determination phase is where the requirements are gathered and orga-

nized into proper groups, for example functional-, operational- performance- or delivery

requirements. The outcome of the step is requirement documents were all the require-

ment statements are gathered.

The requirement specification phase is the phase were requirement document is mod-

eled into use cases using the UML model. The use cases are discovered by the require-

ments in the requirements document and by discovering the actors and their role in the

system. Discovery is done by asking questions about the system. The behavior of a sys-

tem is then illustrated in use case diagrams where after the behavior is documented in

use case documents.

The architectural design phase is the phase were basic structure of the system that iden-

tifies the key components and the communication between these components is de-

signed. An often used method is the multi-tier client-server architecture, were the net-

work load is distributed between groups of servers. The deployment diagram is the dia-

gram were the system architecture is illustrated which displays the execution architec-

ture and relationship between the nodes, devices and artifacts of the system.

1.1 Background

Elisa is a telecommunications and ICT service company. Elisa online and ICT services

provide experiences and businesses with productivity.

Elisa serves approximately 2.2 million consumers, companies and public administration

organizations. As the market leader in mobile subscriptions, Elisa offer the most com-

prehensive and fast 3G network and 4G speeds in Finland. In 2011, Elisa's revenue was

€1.53 billion and employed 3,750 people. Elisa offer international services in partner-

ship with Vodafone and Telenor. (Elisa Corporation, 2012)

1.2 Objective

In this thesis the goal was to produce a software system design for Elisa Corporation.

The design includes a requirements list, requirement specification list including use cas-

es and a specification of the architecture of the hardware system. The purpose is to

make a design using UML modeling concepts which later on could be used when the

agile system development would start to increase the iterative cycles and thereby get the

product delivered faster with little or no change.

The questions answered in this thesis are: How are requirements determined? How are

requirements specified? How is the architecture for a system designed?

The thesis is divided into a theoretical and a practical part.

1.3 Theoretical

The theoretical part examines the theory of software system development from a system

developer's point of view with the goal to know how to follow the right methods when

designing the system. It includes system development approaches and system develop-

ment phases were it focuses on the requirement determination, requirement specifica-

tion and the architectural design phase. The design follows the UML model were use

case diagrams and documentation is studied followed by the deployment diagram theo-

ry.

1.4 Practical

The practical part of the thesis consists of requirements determination, requirements

specification and architectural design phases using the UML model. The requirements

are determined were after they are documented. The documented requirements are

turned into use case diagrams and documented as recommended by the UML model.

The architectural hardware system is designed into the deployment diagram. The system

development follows the iterative and incremental methods and changes are made to the

system several times during the process.

1.5 Limitations

This thesis will focus on the first steps in system development process; Requirements

determination, specification and architectural design. The other steps are covered in the

theoretical part to get a good understanding of the complete process. The first steps cov-

er only the parts that the customer has requested to fulfill the requirements, the UML

model with all the diagrams are for example not studied in this thesis.

2 SYSTEM DEVELOPMENT THEORY

System development includes the wide and complex processes were a new software

product is developed. A product developed can also be a specific part for an existing

system. The process is divided into phases and consists of the following main phases:

(Sommerville, 2007:64)

 Requirement determination and specification

 Architectural design

 Development

 Testing, verification and validation

 Maintenance

2.1 Software security

Software security is important to keep in mind during the system development process.

It's common with software failures which appear during the maintenance phase which in

most cases causes inconvenience but not serious damage. Some system failures can in

some circumstances result in economic loss, physical damage, or even threat to human

life. Because of these it's important for the system to be secure and by that to hold the

following main features: (Sommerville, 2007: 44-49)

 Availability, were services are delivered when requested.

 Reliability, were services are delivered as specified.

 Safety, were services are separated to avoid catastrophic failure.

 Security, were the system is protected from accidental or deliberate intrusion.

Also other properties are important for security; these include reparability, were the sys-

tem can be repaired in a short time when a failover situation occurs, maintainability,

were the software can be modified to operate with new requirements, survivability, were

the system continues to deliver service while a part of the system is disabled and error

tolerance, were user input errors are avoided and tolerated.

In system development it's important to know about the security problems. The most

common security problems which exist in software are: Buffer overflows, were memory

is allocated so that the system crashes which leads to loss of data or change in data

which changes the behavior of the system. Unverified inputs, when unverified data acts

on the behavior of the system. Unclear and vulnerable functions, when commands or

functions which are not intended for the system may be used. Configuration problems,

when configuration problems can make the system unstable.

2.2 Development approach

When a software system becomes larger and many people work together on the devel-

opment, in form of projects, it's even more important that every person involved work

on the system using a specific method. The method describes how a specific problem is

solved step by step and shows how to act at every single step. (Wiktorin, 2003:28)

Depending on the system the software development methods varies from case to case.

One approach to system development is the sequential and transformational structured

method, were the development is assumed to go straight from the top to the bottom to

deliver solutions that satisfies business functions. (Maciaszek, 2001:24)

The waterfall approach which follows transformational structured method is displayed

in Figure 1.

Figure 1, Waterfall model (Wikipedia, 2012)

Change during the software development process is in almost every case unavoidable.

New technologies and business needs, often cause change in the system requirements

(Sommerville, 2007:71). The material from the earlier phase can include errors or may

be insufficient (Wiktorin, 2003:30). The need for change in design and implementation

during the system development requires the process to be iterative. An example of the

iterative development process is visualized in Figure 2 were the whole system develop-

ment process is divided into different iterative phases.

Figure 2, Iterative process

In software development it is possible to divide the software specification, design and

implementation into different pieces were every piece represents a well separated in-

crement of the system. The increments are each developed individually. (Sommerville,

2007:71)

By dividing the system into increments it is possible to deliver the product in several

versions. First the most critical pieces of the system are processed and after that the oth-

er parts are processed as extensions to the original system. The advantages with incre-

mental development are: (Witkorin, 2003:34-35)

 The increments are controllable and easier to review. It's possible in an earlier

stage to determine misunderstandings and errors.

 The system can in an earlier stage be delivered in pieces to the customer to satis-

fy tight schedules.

An example of the incremental system development is represented in Figure 3 were the

input is divided into three different pieces of increments, each developed individually

and finally gathered to one final system.

Figure 3, Incremental process

Another system development approach is the spiral model which follows the incremen-

tal and iterative design. In the spiral development model the design is following a spiral

were all the system development phases are passed by several times. (Görling 2009:59-

60)

2.3 Agile software development

Agile software development methods are iterative and incremental and different from

traditional software development methods because they focus on the adjustment to

change and the delivery of high quality systems using a simple process. Agility is to

thin down the traditional software development to a lightweight process so that chang-

ing architectural environments, changes in user environments and changes in project

timetables can be adjusted to the new situation. (Dingsøyr, Dybå, Moe 2010:15-16)

In agile software development, feedback is used and acquired in short loops to change

the product to correspond to new needs so that a desirable product can be delivered to

the customer. (Dingsøyr, Dybå, Moe 2010:15-16)

Many different agile software development methods exists which all varies from each

other, some examples of these are XP, Scrum and Kanban.

2.4 UML

In system design different design models can be used to help to describe and visualize

the system. A system development approach is the object oriented approach which fol-

lows the iterative and incremental process. The object oriented approach has got an ap-

proved standard known as UML (Unified Modeling language). It leads to better reusa-

bility of code and information, shorter development time, improved software quality

and greater understandability. (Maciaszek, 2001:24-26)

Object-oriented modeling languages started to increase in the later 1980s and became

more complex at the same time as the applications grew larger. Modeling became im-

portant, providing the blueprint of the system and being a central part of all the activities

that lead up to the deployment of good software. Every system may be described in a

different way using different models; each model is thereby an abstraction of the sys-

tem. (Booch, Rumbaugh, and Jacobson, 1998:14-17)

The Unified Modeling Language was created by the Object Management Group as a

standard to provide a modeling language for object-oriented software engineering. The

UML models provide the following features: (Booch, Rumbaugh, Jacobson. 1998:17)

 Visualization, were the planned system is visually described.

 Specification, were the structure or behavior of a system is described.

 Template, were the template works as a guide for the system.

 Document, were decisions are documented.

In the UML model there are two main diagrams to provide graphical representation of a

system. The diagrams contain symbols that represent the graphical elements in the UML

model of system. The two main classes of diagrams are structure-and behavior dia-

grams. (Fakhroutdinov, 2010)

The static structure of the system and its parts on different generalizations and imple-

mentation and relation between them are presented in structure diagrams. The dynamic

behavior of the objects in a system, illustrated as a series of changes to the system over

time is presented in behavior diagrams. The hierarchical categorization of the UML dia-

grams is presented in Figure 4. (Fakhroutdinov, 2010)

Figure 4, UML Diagrams (Fakhroutdinov, 2010)

2.5 Use case

Use cases are categorized under behavior diagrams in the UML model. The behavior of

a system is described in use case diagrams. During analysis of system requirements the

use cases are captured by focusing on the behavior of the system. The behavior of the

system can be used to specify how it is going to be implemented during design of the

use case views. (Maciaszek, 2001:133-134)

A use case can represent different things. It can represent functionality, including main

flow of logic, variations (sub flows) and exceptional conditions (alternative flows), also

externally visible functionality (not an internal function) can be represented. It can rep-

resent orthogonal functionality, were use cases can share objects during executions but

the execution of each use case is independent of the others. It can also represent func-

tionality that brings an identifiable value to an actor and that value is achieved in a sin-

gle use case. The functionality can also be started by an actor, but once started the use

case can work together with other actors. (Maciaszek, 2001:134-135)

Use cases are discovered by analysis of the requirements, which are identified in the

requirements document. Actors and their part in the system are also examined from the

requirements. (Maciaszek, 2001:134-135)Functional requirements are used for discov-

ering use cases. Use cases can be identified from the analysis of tasks performed by ac-

tors. It's suggested to ask questions about actors for use case discovery, the questions

can be of the type: (Maciaszek, 2001:134-135)

 What are the main tasks performed by each actor?

 Is an actor able to access or modify information in the system?

 Can the system notify an actor about any changes in other systems?

 Should an actor be informed about unexpected changes in the system?

2.5.1 Use case diagram

The use case diagrams describe the act that a system should achieve in association with

other users of the system. A diagram assigns use cases to actors which is the principal

visualization technique for a behavioral model of the system. A use case diagram exam-

ple is displayed in Figure 5. (Maciaszek, 2001:51)

Figure 5, Use case example.

Use cases represent the interaction and the actors involved. Actors are represented as

stick figures and each class of interaction (use case) is represented as a named eclipse.

The use cases together represent all the possible interactions in the system requirements.

(Sommerville, 2007:155)

Specification of use cases includes graphical presentation of actors, use cases and four

different relationships. The association relationship establishes the communication path

between an actor and a use case. The include relationship is an included use case that is

necessary to complete the use case that activates it. The extend relationship extends a

behavior of a use case by activating another use case at specific extension points. The

use case generalization relationship can exist between two use cases or two actors that

have commonalities in behavior, structure, and purpose. (Maciaszek, 2001:135-136)

Figure 6 illustrates the essential elements needed in use case notation.

Figure 6, Major elements of the use case diagram (Fakhroutdinov, 2010)

2.5.2 Use case documentation

Graphical use case representation is only one part of the complete use case model. Each

use case in the diagram has to be further described in a flow of events document.

(Maciaszek, 2001:52)

The use case document describes the systems functionality when an actor triggers a use

case. The structure of the document can vary, however it is recommended to contain

some features. The structure should include a short description of the use case followed

by participating actors and preconditions to be able start the use case. The use case doc-

ument should also include a description of different types of events. These events are

main course of events, sub course of events, alternative courses and post conditions.

(Maciaszek, 2001:52-53)

An example of the use case document structure is displayed in Figure 7.

Figure 7, Use case document.

Normally use cases changes several times during the development process. The first

stage is to specify a short description of the requirements, after that the document is

written iteratively step by step. The document is completed at the end of the require-

ment specification stage. At the end of the system development process the document

will be used to create user documentation of the implemented system.

2.6 Architectural design

The architectural design is the design were the basic structure of the system that identi-

fies the key components and the communication between these components is designed.

Different architectural models can be used to design the architecture of the system.

The client - server architecture model presented in Figure 8 is used when designing sys-

tem architecture. The model describes the relationship between programs in an applica-

tion were the server offers service to one or more clients.

Figure 8, Client - Server architecture.

In a client - server architecture, a client browser displays the web pages delivered by the

web server. The clients use HTTP to get web pages from the server. The web page can

be scripted or it can include executable modules or objects. Scripted pages and applets

can be downloaded and run within the browser. Additional functionality can be provid-

ed by objects such as ActiveX controls. (Sommerville, 2007:274)

The deployment design of the system must take security problems into consideration.

Secure transfer and encryption methods and authentication methods ad further deploy-

ment demands to the system. The detailed design also consists of planning the network

loads and backups.

The application server is often used when distributed objects are involved in the imple-

mentation. In many solutions the application server and web server is the same node.

The database server is used to store data, providing scalable storage and multiuser ac-

cess.

An expanded model of the client-server architecture is the three-tier client-server archi-

tecture which is presented in Figure 9. The architecture is used were the presentation,

application, processing and the data management are logically separate processes which

execute on different processors. (Sommerville, 2007:273-274)

Figure 9, Three-tier Client-Server architecture.

In some systems it is appropriate to extend the three-tier server architecture model to a

multi-tier alternative were additional servers are added to the system shown in Figure

10. This is done to distribute workload across multiple servers for load balancing to re-

duce network traffic to a single server. The architecture is normally divided into four

different groups of nodes: (Sommerville, 2007:273-274)

 Client with browser

 Web server

 Application server

 Database server

Figure 10, Multi-tier architecture.

2.6.1 Deployment diagram

In UML, system architecture is represented as deployment diagrams, which illustrate

the execution architecture of the system. This includes nodes, either hardware or soft-

ware execution environments, as well as the middleware connecting them. (Maciaszek,

2001:207)

The computational resource on which artifacts can be deployed for implementation is

called a node and is graphically represented as a 3 dimensional cube as shown in Figure

11. The node has a memory and some computational capabilities. (Fakhroutdinov,

2010)

Figure 11, Node.

The software component (artifact) is a part of the implementation or a software system

and is graphically represented as a class rectangle often with the keyword «artifact» as

illustrated in Figure 12. (Fakhroutdinov, 2010) UML defines different types of artifacts

which optionally can be displayed as an icon in the upper right corner. The artifact can

be an executable, library, table, file, document, report and prototype.

Figure 12, Artifact.

A device represents a physical computational resource with processing capability and is

presented as a 3-dimensional view of a cube as a node explained with keyword device,

as displayed in Figure 13. On the device artifacts can be deployed. (Fakhroutdinov,

2010)

Figure 13, Device.

The deployment diagram illustrates the dependency relationship between the nodes, de-

vices and artifacts. The connection relationship represents an association between the

nodes as shown in Figure 14. (Fakhroutdinov, 2010)

Figure 14, Communication path. (Fakhroutdinov, 2010)

A complete example of the deployment diagram is presented in figure 15.

Figure 15, Deployment diagram example. (Fakhroutdinov, 2010)

3 DEVELOPMENT PROCESS

The system development activities vary depending on the method used. Some methods

focuses on the practices of software development and others focus on management of

the software product while some provide full coverage over the development lifecycle.

Another variation between the processes is how much work is spent on the different

phases.

The system development process can further be divided into the phases displayed in

Figure 16. (Maciaszek, 2001:15-16)

Figure 16, System development process

3.1 Requirements determination phase

Requirement determination is the first phase of the system development lifecycle. The

purpose of requirement determination phase is to provide a describing definition of

functional and other requirements that the customer expect to hold in the implemented

and deployed system. The requirements define the expected services of the system and

the rules that the services have to follow. (Maciaszek, 2001:80)

Requirements can consist of different types of requirements, which are: Functional re-

quirements, external interfaces, functional relationship, operational requirements, quali-

ty for user experience, business requirements, performance requirements, security re-

quirements, design requirements, competence of target group and delivery time and

costs. (Wiktorin, 2003:40)

In this phase the requirements should be gathered, negotiated, analyzed and determined

with the customer by a business or system analyst. (Maciaszek, 2001:80) The iterative

software specification process includes four main activities. These activities are re-

quirement discovery, requirement classification and organization, requirement prioriti-

zation and negotiation, and requirement documentation.

The techniques used for discovering requirements are interviews with the customers and

other valid recourses, observations of business needs and activities, questionnaires,

study of documents, forms and software systems. (Maciaszek, 2001:81) The require-

ments should be the best combination between manual and automatic operations. The

fully or partly automated operations are the ones which should be gathered as require-

ments. (Wiktorin, 2003:40)

The idea to automate something usually done manually is a strategic decision that is af-

fected by economical or resource savings considerations or then it's something that

could be made just more effective or with more precision.

The requirements are organized into appropriate groups (Sommerville, 2007:148). The

service statements can be grouped into those which define the scope of the system, the

necessary business functions and the required data structures (Maciaszek, 2001:80).

The requirements are prioritized and conflicting requirements are found. Identification

of restrictions on the system is included in the process. It also includes activities such as

estimating the impact of change on other requirements and on the rest of the system.

(Maciaszek, 2001:81) Errors at this stage leads to problems in later phases. (Sommer-

ville, 2007:75)

The requirement document is the outcome of the requirements determination phase. The

main body of the document consists of gathered requirements statements. The service

statements can be divided into function requirements and data requirements.

(Maciaszek, 2001:80) (Maciaszek, 2001:98)

3.2 Requirements specification phase

Definition of services which are required from the system takes place in the require-

ments specification phase. The determined requirements in the earlier phase are mod-

eled into specification requirements by using particular methods (such as UML).

(Maciaszek, 2001:17)

The requirement specification phase produces three different categories of models; state

models, behavior models and state change models. Behavior specification models can

be used to provide an operational view of the system. (Maciaszek, 2001:106) The most

important method to use for behavior specification is use case diagrams. (Maciaszek,

2001:17)

Use cases identify the individual interactions between the actor and the system and rep-

resent a function often performed by an actor. They can be documented by text or linked

to UML diagrams that develop the scenario in more detail. (Sommerville, 2007:155)

Requirements need to be traced to use cases in the specification document (Maciaszek,

2001:134). The use case driven approach relies on the completeness and correctness of

the use case to determine the classes. (Maciaszek, 2001:110-111)

Use case modeling is iterative and incremental. If user requirements change during the

development process then the change is first made in the requirements document and

then in the use case model. Changes to the use cases are then traced down to the other

models. (Maciaszek, 2001:134) The outcome of the requirement specification phase is a

list of all the requirements that should be fulfilled. (Maciaszek, 2001:17)

3.3 Architectural design phase

The architectural design phase is the phase where the system design begins either by

planning a new system or by using an existing system. The phase includes specification

of the hardware and software that the system is going to be implemented on.

(Maciaszek, 2001:18)

The architectural design is the first stage in the actual design process and is an important

link between the design and the requirements processes. The architectural design pro-

cess is about establishing a basic structural framework that identifies the major compo-

nents of a system and the communication between these components. The architecture

defines the performance, robustness and maintainability of a system. (Sommerville,

2007:242)

The design may thereby depend on non-functional system requirements such as perfor-

mance, security, safety, availability and maintainability. (Sommerville, 2007:242-243)

The design of the system is done by the conditions of the software and hardware plat-

form on which the system is going to be implemented. In iterative and incremental sys-

tem development the analysis models are constantly added with technical details. Once

the technical details include hardware and software considerations then it becomes a

design model. (Maciaszek, 2001:196)

The description of system modules is called an architectural design. The architectural

design includes decisions about the solution strategies for the client and for the server

components of the system. Detailed design is the description of the internal mechanism

of each module (use case). In this phase complete algorithms and data structures for

each module is designed.

The architectural design consists of choosing a solution strategy and the modularization

of the system. The solution strategy needs to resolve the client and server issues as well

as any middleware needed to combine the client and the server.

The client server architecture is a computing process were the client makes requests to

the server process which services the client request. The client can access any number

of servers in a system called distributed system.

Strategies of software reuse are defined in UML. The class, component or solution idea

can be reused. The solution idea can be reused by using analysis and design patterns. It

is used when objects or some specific parts represent good development practices and

has been shown to work well in a number of situations. (Maciaszek, 2001:201-203)

3.4 Detailed design phase

In this phase detailed algorithms and data structures are developed for each module

which were designed in the earlier architectural design phase. (Maciaszek, 2001:18-19)

The design provides a detailed specification for each component, describing interfaces

and functions provided by each component. This detailed design will serve as the basis

for the development phase.

3.5 Development phase

This phase is also known as the implementation phase and describes the actual devel-

opment of the software system. The system is often developed in different increments

were the system is divided into different modules., This is so that the system can for ex-

ample be released in different revisions, with the most important functionality for the

system implemented in the first version. Finally the different modules are integrated

with each other. (Maciaszek, 2001:19-20)

3.6 Testing phase

Testing occurs continuously, but more effort is done at the end of the process. The pur-

pose with testing is to find problems in the program so early in the system development

process as possible.

Tests can be divided into two main groups, the manual tests and the automatically per-

formed tests. An example of automatic testing is so called smoke testing were the tests

are performed when the versioning takes place. Manual tests which are designed, ana-

lyzed, documented and maintained manually can be automated after they are created.

There are different types of tests, these are: Test of specification, were the specification

is tested. Exploratory testing, were the tests are planned at the same time as they are ac-

complished. Unit tests were automatic code testing guarantee a consistent behavior.

Stress testing, were the system is tested to complete its task without overloading. Ac-

ceptance testing, were the system is checked if it meets the customer's needs. Static

code testing, were unused functions and loops are found. Domain testing, were different

values are tested and were the output is verified. Usability testing, were it's tested how

difficult it is for a common user to use the system.

3.7 Maintenance phase

The final phase is when the solution and system is handed over to the customer and

maintenance of the system begins and continues until the software reaches the end of

the lifecycle. (Maciaszek, 2001:20) The product is often developed in increments and

features are thereby added later in new versions of the system.

4 PRACTICAL SYSTEM DEVELOPMENT

The goal of this thesis is to follow the first phases of the software development process,

which are:

 Requirements determination

 Requirements specification

 Architectural design

By following these steps the goal is to fulfill the requirements of this thesis and provide

Elisa Corporation with a documentation of all possible requirements and from the doc-

umentation create a requirement specification using the use case approach. The use cas-

es would include documentation and should follow the UML modeling system to visu-

alize the use case diagrams. Elisa Corporation also requires a documentation of the ar-

chitecture of the hardware system. The architecture is required to be documented and

visually presented using the UML deployment diagram.

The purpose is to make a design with the acquired models which later on can be used

when the agile system development would start. By doing this the iterative cycles would

be more effective and thereby get the product delivered faster with so little change as

possible.

The method used for system development in this work is an implementation of the wa-

terfall approach, the iterative approach and the incremental approach. The UML model

is used to support the visualization, specification and documentation of the system.

4.1 Determination of requirements

Determination of the requirements is the first phase of the system development lifecy-

cle. The project started by getting the members together for a meeting to set the guide-

lines for the system.

Observations of business needs in an earlier phase had proven that the market had a

clear need of a system that could deliver all the requirements which was to be discov-

ered. Discussions are carried out with the project group members, system administra-

tors, system developers and others to discover all the requirements for the system.

 The project group decides that the following requirements should be determined:

 Functional requirements

 Operational requirements

 Security requirements

 Performance requirements

 Delivery time requirements

 Architectural requirements

The requirements are prioritized so that the most critical and important functions have

the highest priority and additional functions have a lower priority so that they could be

added into a later version of the system.

The functional requirements includes management of different user levels, listing of op-

tions in the system and reports for example of changes made to the system. Operational

requirements include maintainability and reliability. Performance requirements include

availability for dependency. Architectural requirements include the system architecture

requirements which affected on the architecture of the system.

Then the requirements are organized into groups by the functionality that they are

providing. The restrictions on the system are also identified and considered through by

the project group. The restrictions are made on the system because of the underlying

architecture. Also functional restrictions are identified which would provide unneces-

sary features that could be used for purposes that would not be intended for the system.

Finally all the requirements are documented into the requirement specification docu-

ment.

The requirement determination phase follows the iterative and incremental model and

there are some changes made during the process. Several meetings occurred were the

requirements are viewed and determined. The changes made during this phase are addi-

tions to the original requirements. Some additions acquired change in the later require-

ment specification.

Determined requirements from a login example are displayed bellow.

Functional requirements

The user must be able to login.

The user must be able to logout.

The user should be authenticated.

The user login information should be verified.

Operational requirements

The system should be able to be used from anywhere.

The system should be able to be used at any time.

Security requirements

The system should follow security regulations.

Performance requirements

The system should be able to perform with 500 simultaneous users.

Delivery time requirements

The system should be delivered in ten months.

Architectural requirements

The system architecture should be scalable.

4.2 Specification of requirements

When the requirements was determined and gathered into the requirements document,

the next phase in the process was to specify the requirements. The phase included the

modeling of determined requirements into specification requirements by using UML

and to define the required system services. This is done using the customer requirements

and constructing a specified list of the requirements to fulfill.

The use case approach is chosen from the UML model to provide the behavior specifi-

cation of the system. The use cases are determined by the analysis of the functional re-

quirements. The first step is to create use case diagrams and to document them. The use

cases would then in the later development phase specify the system behavior develop-

ment process.

4.2.1 Discovering use cases

To discover use cases the requirements document is used were the requirements are ar-

ranged into proper groups with keeping in consideration the use case approach already

in this stage. The actors involved in the system are also taken into consideration so that

the different groups of actors and their roles in the system are possible to identify.

Different user groups with different actor types were discovered. These actor groups

have different roles in the system. By examining the requirements it became clear that

there is a need to have the different user groups to restrict access to different functions

of the system. This would add security and provide the possibility to display infor-

mation in a way that was appropriate for the specific user group. Figure 17 is an exam-

ple of two different actors as different user groups with a login use case example.

Figure 17, Actors.

The next step is to discover the actual use cases from the requirements specification

document, questions to be asked to discover and to gather the use cases are:

 What task should the different groups of actors be able to perform?

 What information should the actors be able to view in the system?

 What information should the actors be able to modify in the system?

 What would be informed to the actor by the system?

By asking these questions the use cases started to get significance in the system and the

first illustrations of the use case diagram emerged. In Figure 18, an example of all the

use cases possible for the system is displayed.

Figure 18, Use case illustration.

In the first version there are so many different use cases that they had to be merged so

that the system would be understandable for a developer viewing it.

Later in the process there are changes made to the actor groups because of architectural

restrictions. This impacted all the use cases created so much that changes had to be

made.

4.2.2 Documenting use cases

In addition to the graphical representation of the use cases, the documentation is also

needed to give a detailed step by step description of the use case.

A short description of the requirements is written, after that the document is written it-

eratively step by step. In Figure 19 a login process example of the use case documenta-

tion is displayed.

Figure 19, Use case example.

4.3 Designing the architecture

The next phase in the process is to create a design of the system. The plan is to create

the solution for an existing hardware and software system of how the new system

should be implemented. The architectural design of the system identified the major

components of the system and the communication between the components.

The design of the system is done by the conditions of the software and hardware plat-

form on which the system is going to be implemented. The architectural design include

decisions about the solution strategies to resolve the client and server issues as well as

middleware to combine the client and the server components to the system.

The solution chosen for the system is the multi-tier architecture, were the distributed

client-server architecture is extended so that the presentation, application, processing

and the data management are logically separate nodes. The architecture also provided

the possibility to add additional servers to the system. The solution for the system archi-

tecture is decided to be used because of the need to reduce network traffic to a single

server. The example in Figure 20 shows the multi-tier client server architecture for the

example login system.

Figure 20, Multi-tier client-server architecture using the login example.

4.3.1 Deployment diagram

The system architecture is represented as a deployment diagram illustrating the execu-

tion architecture and relationship between the nodes, devices and artifacts of the sys-

tem. (Maciaszek, 2001:207) The connection relationship between the nodes represents

an association. (Fakhroutdinov, 2010)

Figure 21 displays the architecture for the login use case example. In the example the

actor uses an optional device were a Web browser using the HTTPS protocol retrieves

the login page from a server cluster device running the Linux operative system and

Apache Webb server software. The server cluster communicates using the TCP/IP pro-

tocol with the database cluster to retrieve login information about the user.

Figure 21, Deployment diagram using the login example.

By following the iterative and incremental system development the analysis models

were constantly added with technical details.

5 DISCUSSION

5.1 Further development

The system provides good opportunities to be developed further. Some functions were

excluded from the system due to a required integration with other systems. These inte-

grations could be done at a later stage so that the functionality they were providing

could be used by the system.

Some functionality was also excluded due to other systems which already were provid-

ing the same functionality to the underlying systems. It would be possible to integrate

almost all of the functionality to the same system to make the management easier for a

system administrator.

5.2 Conclusion

The development of the system went through many phases. In the beginning of the pro-

ject the objective of the system was a little bit fuzzy. After a few meetings the goal

started to get clearer when some of the functionality of the system was discovered and

when the main architecture of the system was planned. There were many changes made

to the system during the process. Almost every change made was an improvement in

functionality but also some functionality had to be removed because of integration to

other systems which had to be done at a later stage.

In the beginning of the process there was a challenge to find the right recourses and the

material which was needed to design the system. This also brought many changes later

which could have been avoided. In the end all the material necessary to complete the

first steps in the system development process was found and the requirements set by

Elisa Corporation fulfilled.

The outcome of the thesis was a requirement document, requirement specification and

deployment diagram which where all the material that Elisa Corporation required. The

material was created and handed over to Elisa as required.

By taking part in the project I now have a great understanding of different system de-

velopment processes and how to design a system using the UML model. I also now

have knowledge in agile system development methods and how a system is designed in

a large company. Besides system development, I also now have knowledge in producti-

fication.

REFERENCES

Booch, Grady; Rumbaugh, James & Jacobson, Ivar. 1998: The Unified Modeling Lan-

guage User Guide. Addison-Wesley. 512 p. ISBN 0-201-57168-4.

Dingsøyr, Torgeir; Dybå, Tore & Moe, Nils Brede. 2010: Agile Software Development:

Current Research and Future Directions. 1st ed. Springer. 240 p. ISBN 978-3-642-

12574-4

Elisa Corporation, 2012: On Elisa. [www] http://www.elisa.com/on-elisa/

Fakhroutdinov, Kirill 2010: The Unified Modeling Language (UML). Retreived

20.3.2012. [www] http://www.uml-diagrams.org/uml-24-diagrams.html

Görling, Stefan. 2009: Att arbeta med IT-projekt, Lund: Studentlitteratur AB, 308 p.

ISBN 978-91-44-05223-6

Maciaszek, Leszek A. 2001: Requirements Analysis and System Design: Developing

Information Systems with UML. Harlow: Addison-Wesley. 378 p. ISBN 0 201

70944 9

Sommerville, Ian. 2007: Software Engineering 8. 8 ed. Harlow: Pearson Education. 840

p. ISBN 10: 0-321-31379-8

Sparx Systems, 2012: UML 2 Tutorial. Retreived 10.3.2012. [www]

http://www.sparxsystems.com.au/resources/uml2_tutorial/

Wikipedia, 2012: Waterfall model. Retreived 21.3.2012. [www]

http://en.wikipedia.org/wiki/Waterfall_model

Wiktroin, Lars. 2003: Systemutveckling på 2000-talet, Sverige: Studentlitteratur AB,

276 p. ISBN 9789144031132.

