
 

Theoretical and practical Requirements 

Engineering 

 

Sebastian Lönnfors 

Degree Thesis 

Information Technology  

2012 



 

 

 

  

DEGREE THESIS 

Arcada  

 

Degree Programme:  Information Technology 

 

Identification number: 3667 

Author: Sebastian Lönnfors 

Title: Theoretical and practical Requirements Engineering 

 

Supervisor (Arcada): M.Sc. Magnus Westerlund 

 

Commissioned by: Elisa corporation 

 

Abstract:  

The objective of the thesis was to produce a software system design for Elisa Corporation 

that included a requirements list, requirement specification and an architectural design. 

The idea was to use the UML model for this purpose. The UML diagrams would later be 

used as a basis for agile system development. 

 

The main focus of this thesis is requirements engineering and architectural design. Re-

quirements engineering consists of two main processes: Requirements determination and 

requirements specification. In the requirements determination process the requirements 
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opment including generic phases and processes models are also presented on a general 

level. 
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1 INTRODUCTION 

This thesis focuses on the first steps of the system development process; Requirements 

determination, requirements specification and architectural design. Other phases are al-

so mentioned to get a good understanding of the whole system development process.  

 

The requirements determination phase is where the requirements are gathered and orga-

nized into proper groups, for example functional-, operational- performance- or delivery 

requirements. The outcome of the step is requirement documents were all the require-

ment statements are gathered.  

 

The requirement specification phase is the phase were requirement document is mod-

eled into use cases using the UML model. The use cases are discovered by the require-

ments in the requirements document and by discovering the actors and their role in the 

system. Discovery is done by asking questions about the system. The behavior of a sys-

tem is then illustrated in use case diagrams where after the behavior is documented in 

use case documents.  

 

The architectural design phase is the phase were basic structure of the system that iden-

tifies the key components and the communication between these components is de-

signed. An often used method is the multi-tier client-server architecture, were the net-

work load is distributed between groups of servers. The deployment diagram is the dia-

gram were the system architecture is illustrated which displays the execution architec-

ture and relationship between the nodes, devices and artifacts of the system.  

1.1 Background 

Elisa is a telecommunications and ICT service company. Elisa online and ICT services 

provide experiences and businesses with productivity. 

 



 

 

Elisa serves approximately 2.2 million consumers, companies and public administration 

organizations. As the market leader in mobile subscriptions, Elisa offer the most com-

prehensive and fast 3G network and 4G speeds in Finland. In 2011, Elisa's revenue was 

€1.53 billion and employed 3,750 people. Elisa offer international services in partner-

ship with Vodafone and Telenor. (Elisa Corporation, 2012) 

1.2 Objective  

In this thesis the goal was to produce a software system design for Elisa Corporation. 

The design includes a requirements list, requirement specification list including use cas-

es and a specification of the architecture of the hardware system. The purpose is to 

make a design using UML modeling concepts which later on could be used when the 

agile system development would start to increase the iterative cycles and thereby get the 

product delivered faster with little or no change.  

 

The questions answered in this thesis are: How are requirements determined? How are 

requirements specified? How is the architecture for a system designed?  

 

The thesis is divided into a theoretical and a practical part.  

1.3 Theoretical 

The theoretical part examines the theory of software system development from a system 

developer's point of view with the goal to know how to follow the right methods when 

designing the system. It includes system development approaches and system develop-

ment phases were it focuses on the requirement determination, requirement specifica-

tion and the architectural design phase. The design follows the UML model were use 

case diagrams and documentation is studied followed by the deployment diagram theo-

ry.  



 

 

1.4 Practical 

The practical part of the thesis consists of requirements determination, requirements 

specification and architectural design phases using the UML model. The requirements 

are determined were after they are documented. The documented requirements are 

turned into use case diagrams and documented as recommended by the UML model. 

The architectural hardware system is designed into the deployment diagram. The system 

development follows the iterative and incremental methods and changes are made to the 

system several times during the process.  

1.5 Limitations 

This thesis will focus on the first steps in system development process; Requirements 

determination, specification and architectural design. The other steps are covered in the 

theoretical part to get a good understanding of the complete process. The first steps cov-

er only the parts that the customer has requested to fulfill the requirements, the UML 

model with all the diagrams are for example not studied in this thesis.  

2 SYSTEM DEVELOPMENT THEORY 

System development includes the wide and complex processes were a new software 

product is developed. A product developed can also be a specific part for an existing 

system. The process is divided into phases and consists of the following main phases: 

(Sommerville, 2007:64) 

 Requirement determination and specification 

 Architectural design  

 Development 

 Testing, verification and validation  

 Maintenance  

 

 



 

 

2.1 Software security 

Software security is important to keep in mind during the system development process. 

It's common with software failures which appear during the maintenance phase which in 

most cases causes inconvenience but not serious damage. Some system failures can in 

some circumstances result in economic loss, physical damage, or even threat to human 

life. Because of these it's important for the system to be secure and by that to hold the 

following main features: (Sommerville, 2007: 44-49) 

 Availability, were services are delivered when requested. 

 Reliability, were services are delivered as specified. 

 Safety, were services are separated to avoid catastrophic failure. 

 Security, were the system is protected from accidental or deliberate intrusion. 

Also other properties are important for security; these include reparability, were the sys-

tem can be repaired in a short time when a failover situation occurs, maintainability, 

were the software can be modified to operate with new requirements, survivability, were 

the system continues to deliver service while a part of the system is disabled and error 

tolerance, were user input errors are avoided and tolerated.  

 

In system development it's important to know about the security problems. The most 

common security problems which exist in software are: Buffer overflows, were memory 

is allocated so that the system crashes which leads to loss of data or change in data 

which changes the behavior of the system. Unverified inputs, when unverified data acts 

on the behavior of the system. Unclear and vulnerable functions, when commands or 

functions which are not intended for the system may be used. Configuration problems, 

when configuration problems can make the system unstable. 

2.2 Development approach 

When a software system becomes larger and many people work together on the devel-

opment, in form of projects, it's even more important that every person involved work 

on the system using a specific method. The method describes how a specific problem is 

solved step by step and shows how to act at every single step. (Wiktorin, 2003:28) 



 

 

 

Depending on the system the software development methods varies from case to case. 

One approach to system development is the sequential and transformational structured 

method, were the development is assumed to go straight from the top to the bottom to 

deliver solutions that satisfies business functions. (Maciaszek, 2001:24)  

 

The waterfall approach which follows transformational structured method is displayed 

in Figure 1. 

 

 

Figure 1, Waterfall model (Wikipedia, 2012) 

 

Change during the software development process is in almost every case unavoidable. 

New technologies and business needs, often cause change in the system requirements 

(Sommerville, 2007:71). The material from the earlier phase can include errors or may 

be insufficient (Wiktorin, 2003:30). The need for change in design and implementation 

during the system development requires the process to be iterative. An example of the 

iterative development process is visualized in Figure 2 were the whole system develop-

ment process is divided into different iterative phases. 

 



 

 

 

Figure 2, Iterative process 

 

In software development it is possible to divide the software specification, design and 

implementation into different pieces were every piece represents a well separated in-

crement of the system. The increments are each developed individually. (Sommerville, 

2007:71)  

 

By dividing the system into increments it is possible to deliver the product in several 

versions. First the most critical pieces of the system are processed and after that the oth-

er parts are processed as extensions to the original system. The advantages with incre-

mental development are: (Witkorin, 2003:34-35) 

 The increments are controllable and easier to review. It's possible in an earlier 

stage to determine misunderstandings and errors.  

 The system can in an earlier stage be delivered in pieces to the customer to satis-

fy tight schedules.  

An example of the incremental system development is represented in Figure 3 were the 

input is divided into three different pieces of increments, each developed individually 

and finally gathered to one final system.  

 



 

 

 

Figure 3, Incremental process 

 

Another system development approach is the spiral model which follows the incremen-

tal and iterative design. In the spiral development model the design is following a spiral 

were all the system development phases are passed by several times. (Görling 2009:59-

60) 

2.3 Agile software development 

Agile software development methods are iterative and incremental and different from 

traditional software development methods because they focus on the adjustment to 

change and the delivery of high quality systems using a simple process. Agility is to 

thin down the traditional software development to a lightweight process so that chang-

ing architectural environments, changes in user environments and changes in project 

timetables can be adjusted to the new situation. (Dingsøyr, Dybå, Moe 2010:15-16) 

 

In agile software development, feedback is used and acquired in short loops to change 

the product to correspond to new needs so that a desirable product can be delivered to 

the customer. (Dingsøyr, Dybå, Moe 2010:15-16) 

 



 

 

Many different agile software development methods exists which all varies from each 

other, some examples of these are XP, Scrum and Kanban.  

2.4 UML 

In system design different design models can be used to help to describe and visualize 

the system. A system development approach is the object oriented approach which fol-

lows the iterative and incremental process. The object oriented approach has got an ap-

proved standard known as UML (Unified Modeling language). It leads to better reusa-

bility of code and information, shorter development time, improved software quality 

and greater understandability. (Maciaszek, 2001:24-26) 

 

Object-oriented modeling languages started to increase in the later 1980s and became 

more complex at the same time as the applications grew larger. Modeling became im-

portant, providing the blueprint of the system and being a central part of all the activities 

that lead up to the deployment of good software. Every system may be described in a 

different way using different models; each model is thereby an abstraction of the sys-

tem. (Booch, Rumbaugh, and Jacobson, 1998:14-17) 

 

The Unified Modeling Language was created by the Object Management Group as a 

standard to provide a modeling language for object-oriented software engineering. The 

UML models provide the following features: (Booch, Rumbaugh, Jacobson. 1998:17) 

 Visualization, were the planned system is visually described. 

 Specification, were the structure or behavior of a system is described. 

 Template, were the template works as a guide for the system. 

 Document, were decisions are documented. 

In the UML model there are two main diagrams to provide graphical representation of a 

system. The diagrams contain symbols that represent the graphical elements in the UML 

model of system. The two main classes of diagrams are structure-and behavior dia-

grams. (Fakhroutdinov, 2010) 

 



 

 

The static structure of the system and its parts on different generalizations and imple-

mentation and relation between them are presented in structure diagrams. The dynamic 

behavior of the objects in a system, illustrated as a series of changes to the system over 

time is presented in behavior diagrams. The hierarchical categorization of the UML dia-

grams is presented in Figure 4. (Fakhroutdinov, 2010) 

 

 

Figure 4, UML Diagrams (Fakhroutdinov, 2010) 

2.5 Use case 

Use cases are categorized under behavior diagrams in the UML model. The behavior of 

a system is described in use case diagrams. During analysis of system requirements the 

use cases are captured by focusing on the behavior of the system. The behavior of the 

system can be used to specify how it is going to be implemented during design of the 

use case views. (Maciaszek, 2001:133-134) 



 

 

 

A use case can represent different things. It can represent functionality, including main 

flow of logic, variations (sub flows) and exceptional conditions (alternative flows), also 

externally visible functionality (not an internal function) can be represented. It can rep-

resent orthogonal functionality, were use cases can share objects during executions but 

the execution of each use case is independent of the others. It can also represent func-

tionality that brings an identifiable value to an actor and that value is achieved in a sin-

gle use case. The functionality can also be started by an actor, but once started the use 

case can work together with other actors. (Maciaszek, 2001:134-135) 

 

Use cases are discovered by analysis of the requirements, which are identified in the 

requirements document. Actors and their part in the system are also examined from the 

requirements. (Maciaszek, 2001:134-135)Functional requirements are used for discov-

ering use cases. Use cases can be identified from the analysis of tasks performed by ac-

tors. It's suggested to ask questions about actors for use case discovery, the questions 

can be of the type: (Maciaszek, 2001:134-135) 

 What are the main tasks performed by each actor? 

 Is an actor able to access or modify information in the system? 

 Can the system notify an actor about any changes in other systems? 

 Should an actor be informed about unexpected changes in the system? 

2.5.1 Use case diagram  

The use case diagrams describe the act that a system should achieve in association with 

other users of the system. A diagram assigns use cases to actors which is the principal 

visualization technique for a behavioral model of the system. A use case diagram exam-

ple is displayed in Figure 5. (Maciaszek, 2001:51) 

 



 

 

 

Figure 5, Use case example. 

 

Use cases represent the interaction and the actors involved. Actors are represented as 

stick figures and each class of interaction (use case) is represented as a named eclipse. 

The use cases together represent all the possible interactions in the system requirements. 

(Sommerville, 2007:155) 

 

Specification of use cases includes graphical presentation of actors, use cases and four 

different relationships. The association relationship establishes the communication path 

between an actor and a use case. The include relationship is an included use case that is 

necessary to complete the use case that activates it. The extend relationship extends a 

behavior of a use case by activating another use case at specific extension points. The 

use case generalization relationship can exist between two use cases or two actors that 

have commonalities in behavior, structure, and purpose. (Maciaszek, 2001:135-136) 

 

Figure 6 illustrates the essential elements needed in use case notation. 

 



 

 

 

Figure 6, Major elements of the use case diagram (Fakhroutdinov, 2010) 

 

2.5.2 Use case documentation 

Graphical use case representation is only one part of the complete use case model. Each 

use case in the diagram has to be further described in a flow of events document. 

(Maciaszek, 2001:52) 

 

The use case document describes the systems functionality when an actor triggers a use 

case. The structure of the document can vary, however it is recommended to contain 

some features. The structure should include a short description of the use case followed 

by participating actors and preconditions to be able start the use case. The use case doc-

ument should also include a description of different types of events. These events are 

main course of events, sub course of events, alternative courses and post conditions. 

(Maciaszek, 2001:52-53) 



 

 

 

An example of the use case document structure is displayed in Figure 7.  

 

Figure 7, Use case document. 

 

Normally use cases changes several times during the development process. The first 

stage is to specify a short description of the requirements, after that the document is 

written iteratively step by step. The document is completed at the end of the require-

ment specification stage. At the end of the system development process the document 

will be used to create user documentation of the implemented system.  

2.6 Architectural design 

The architectural design is the design were the basic structure of the system that identi-

fies the key components and the communication between these components is designed. 

Different architectural models can be used to design the architecture of the system.  

 

The client - server architecture model presented in Figure 8 is used when designing sys-

tem architecture. The model describes the relationship between programs in an applica-

tion were the server offers service to one or more clients. 



 

 

 

 

Figure 8, Client - Server architecture. 

 

In a client - server architecture, a client browser displays the web pages delivered by the 

web server. The clients use HTTP to get web pages from the server. The web page can 

be scripted or it can include executable modules or objects. Scripted pages and applets 

can be downloaded and run within the browser. Additional functionality can be provid-

ed by objects such as ActiveX controls. (Sommerville, 2007:274) 

 

The deployment design of the system must take security problems into consideration. 

Secure transfer and encryption methods and authentication methods ad further deploy-

ment demands to the system. The detailed design also consists of planning the network 

loads and backups.  

 

The application server is often used when distributed objects are involved in the imple-

mentation. In many solutions the application server and web server is the same node.  

The database server is used to store data, providing scalable storage and multiuser ac-

cess.   

 

An expanded model of the client-server architecture is the three-tier client-server archi-

tecture which is presented in Figure 9. The architecture is used were the presentation, 

application, processing and the data management are logically separate processes which 

execute on different processors. (Sommerville, 2007:273-274) 



 

 

 

Figure 9, Three-tier Client-Server architecture. 

 

In some systems it is appropriate to extend the three-tier server architecture model to a 

multi-tier alternative were additional servers are added to the system shown in Figure 

10. This is done to distribute workload across multiple servers for load balancing to re-

duce network traffic to a single server. The architecture is normally divided into four 

different groups of nodes: (Sommerville, 2007:273-274) 

 Client with browser 

 Web server 

 Application server 

 Database server 

 

Figure 10, Multi-tier architecture. 



 

 

2.6.1 Deployment diagram  

In UML, system architecture is represented as deployment diagrams, which illustrate 

the execution architecture of the system. This includes nodes, either hardware or soft-

ware execution environments, as well as the middleware connecting them. (Maciaszek, 

2001:207) 

 

The computational resource on which artifacts can be deployed for implementation is 

called a node and is graphically represented as a 3 dimensional cube as shown in Figure 

11. The node has a memory and some computational capabilities. (Fakhroutdinov, 

2010) 

 

Figure 11, Node. 

 

The software component (artifact) is a part of the implementation or a software system 

and is graphically represented as a class rectangle often with the keyword «artifact» as 

illustrated in Figure 12. (Fakhroutdinov, 2010) UML defines different types of artifacts 

which optionally can be displayed as an icon in the upper right corner. The artifact can 

be an executable, library, table, file, document, report and prototype.  

 



 

 

 

Figure 12, Artifact. 

 

A device represents a physical computational resource with processing capability and is 

presented as a 3-dimensional view of a cube as a node explained with keyword device, 

as displayed in Figure 13.  On the device artifacts can be deployed. (Fakhroutdinov, 

2010) 

 

Figure 13, Device. 

 

The deployment diagram illustrates the dependency relationship between the nodes, de-

vices and artifacts. The connection relationship represents an association between the 

nodes as shown in Figure 14. (Fakhroutdinov, 2010) 

 

 

Figure 14, Communication path. (Fakhroutdinov, 2010) 



 

 

 

A complete example of the deployment diagram is presented in figure 15.  

 

 

Figure 15, Deployment diagram example. (Fakhroutdinov, 2010) 

 

3 DEVELOPMENT PROCESS 

The system development activities vary depending on the method used. Some methods 

focuses on the practices of software development and others focus on management of 

the software product while some provide full coverage over the development lifecycle. 

Another variation between the processes is how much work is spent on the different 

phases.  

 

The system development process can further be divided into the phases displayed in 

Figure 16. (Maciaszek, 2001:15-16) 

 



 

 

 

Figure 16, System development process 

 

3.1 Requirements determination phase 

Requirement determination is the first phase of the system development lifecycle. The 

purpose of requirement determination phase is to provide a describing definition of 

functional and other requirements that the customer expect to hold in the implemented 

and deployed system. The requirements define the expected services of the system and 

the rules that the services have to follow. (Maciaszek, 2001:80) 

 

Requirements can consist of different types of requirements, which are: Functional re-

quirements, external interfaces, functional relationship, operational requirements, quali-

ty for user experience, business requirements, performance requirements, security re-

quirements, design requirements, competence of target group and delivery time and 

costs. (Wiktorin, 2003:40) 

 

In this phase the requirements should be gathered, negotiated, analyzed and determined 

with the customer by a business or system analyst. (Maciaszek, 2001:80) The iterative 

software specification process includes four main activities. These activities are re-

quirement discovery, requirement classification and organization, requirement prioriti-

zation and negotiation, and requirement documentation. 

 



 

 

The techniques used for discovering requirements are interviews with the customers and 

other valid recourses, observations of business needs and activities, questionnaires, 

study of documents, forms and software systems. (Maciaszek, 2001:81) The require-

ments should be the best combination between manual and automatic operations. The 

fully or partly automated operations are the ones which should be gathered as require-

ments. (Wiktorin, 2003:40)  

 

The idea to automate something usually done manually is a strategic decision that is af-

fected by economical or resource savings considerations or then it's something that 

could be made just more effective or with more precision.  

 

The requirements are organized into appropriate groups (Sommerville, 2007:148). The 

service statements can be grouped into those which define the scope of the system, the 

necessary business functions and the required data structures (Maciaszek, 2001:80). 

 

The requirements are prioritized and conflicting requirements are found. Identification 

of restrictions on the system is included in the process. It also includes activities such as 

estimating the impact of change on other requirements and on the rest of the system. 

(Maciaszek, 2001:81) Errors at this stage leads to problems in later phases. (Sommer-

ville, 2007:75) 

 

The requirement document is the outcome of the requirements determination phase. The 

main body of the document consists of gathered requirements statements. The service 

statements can be divided into function requirements and data requirements. 

(Maciaszek, 2001:80)  (Maciaszek, 2001:98) 

3.2 Requirements specification phase 

Definition of services which are required from the system takes place in the require-

ments specification phase. The determined requirements in the earlier phase are mod-

eled into specification requirements by using particular methods (such as UML). 

(Maciaszek, 2001:17)  

 



 

 

The requirement specification phase produces three different categories of models; state 

models, behavior models and state change models. Behavior specification models can 

be used to provide an operational view of the system.  (Maciaszek, 2001:106) The most 

important method to use for behavior specification is use case diagrams. (Maciaszek, 

2001:17) 

 

Use cases identify the individual interactions between the actor and the system and rep-

resent a function often performed by an actor. They can be documented by text or linked 

to UML diagrams that develop the scenario in more detail. (Sommerville, 2007:155)  

Requirements need to be traced to use cases in the specification document (Maciaszek, 

2001:134). The use case driven approach relies on the completeness and correctness of 

the use case to determine the classes. (Maciaszek, 2001:110-111) 

 

Use case modeling is iterative and incremental. If user requirements change during the 

development process then the change is first made in the requirements document and 

then in the use case model. Changes to the use cases are then traced down to the other 

models. (Maciaszek, 2001:134) The outcome of the requirement specification phase is a 

list of all the requirements that should be fulfilled. (Maciaszek, 2001:17) 

3.3 Architectural design phase 

The architectural design phase is the phase where the system design begins either by 

planning a new system or by using an existing system. The phase includes specification 

of the hardware and software that the system is going to be implemented on. 

(Maciaszek, 2001:18) 

 

The architectural design is the first stage in the actual design process and is an important 

link between the design and the requirements processes. The architectural design pro-

cess is about establishing a basic structural framework that identifies the major compo-

nents of a system and the communication between these components. The architecture 

defines the performance, robustness and maintainability of a system. (Sommerville, 

2007:242)  

 



 

 

The design may thereby depend on non-functional system requirements such as perfor-

mance, security, safety, availability and maintainability. (Sommerville, 2007:242-243) 

The design of the system is done by the conditions of the software and hardware plat-

form on which the system is going to be implemented. In iterative and incremental sys-

tem development the analysis models are constantly added with technical details. Once 

the technical details include hardware and software considerations then it becomes a 

design model. (Maciaszek, 2001:196) 

 

The description of system modules is called an architectural design. The architectural 

design includes decisions about the solution strategies for the client and for the server 

components of the system. Detailed design is the description of the internal mechanism 

of each module (use case). In this phase complete algorithms and data structures for 

each module is designed.  

 

The architectural design consists of choosing a solution strategy and the modularization 

of the system. The solution strategy needs to resolve the client and server issues as well 

as any middleware needed to combine the client and the server.  

The client server architecture is a computing process were the client makes requests to 

the server process which services the client request. The client can access any number 

of servers in a system called distributed system.  

 

Strategies of software reuse are defined in UML. The class, component or solution idea 

can be reused. The solution idea can be reused by using analysis and design patterns. It 

is used when objects or some specific parts represent good development practices and 

has been shown to work well in a number of situations. (Maciaszek, 2001:201-203) 

3.4 Detailed design phase 

In this phase detailed algorithms and data structures are developed for each module 

which were designed in the earlier architectural design phase. (Maciaszek, 2001:18-19) 

The design provides a detailed specification for each component, describing interfaces 

and functions provided by each component. This detailed design will serve as the basis 

for the development phase.  



 

 

3.5 Development phase 

This phase is also known as the implementation phase and describes the actual devel-

opment of the software system. The system is often developed in different increments 

were the system is divided into different modules., This is so that the system can for ex-

ample be released in different revisions, with the most important functionality for the 

system implemented in the first version. Finally the different modules are integrated 

with each other. (Maciaszek, 2001:19-20) 

3.6 Testing phase 

Testing occurs continuously, but more effort is done at the end of the process. The pur-

pose with testing is to find problems in the program so early in the system development 

process as possible.  

 

Tests can be divided into two main groups, the manual tests and the automatically per-

formed tests. An example of automatic testing is so called smoke testing were the tests 

are performed when the versioning takes place.  Manual tests which are designed, ana-

lyzed, documented and maintained manually can be automated after they are created.  

 

There are different types of tests, these are: Test of specification, were the specification 

is tested. Exploratory testing, were the tests are planned at the same time as they are ac-

complished. Unit tests were automatic code testing guarantee a consistent behavior. 

Stress testing, were the system is tested to complete its task without overloading. Ac-

ceptance testing, were the system is checked if it meets the customer's needs. Static 

code testing, were unused functions and loops are found. Domain testing, were different 

values are tested and were the output is verified. Usability testing, were it's tested how 

difficult it is for a common user to use the system. 

 



 

 

3.7 Maintenance phase 

The final phase is when the solution and system is handed over to the customer and 

maintenance of the system begins and continues until the software reaches the end of 

the lifecycle. (Maciaszek, 2001:20) The product is often developed in increments and 

features are thereby added later in new versions of the system.  

 

4 PRACTICAL SYSTEM DEVELOPMENT 

The goal of this thesis is to follow the first phases of the software development process, 

which are: 

 Requirements determination 

 Requirements specification 

 Architectural design 

By following these steps the goal is to fulfill the requirements of this thesis and provide 

Elisa Corporation with a documentation of all possible requirements and from the doc-

umentation create a requirement specification using the use case approach. The use cas-

es would include documentation and should follow the UML modeling system to visu-

alize the use case diagrams. Elisa Corporation also requires a documentation of the ar-

chitecture of the hardware system. The architecture is required to be documented and 

visually presented using the UML deployment diagram.  

 

The purpose is to make a design with the acquired models which later on can be used 

when the agile system development would start. By doing this the iterative cycles would 

be more effective and thereby get the product delivered faster with so little change as 

possible.  

 

The method used for system development in this work is an implementation of the wa-

terfall approach, the iterative approach and the incremental approach. The UML model 

is used to support the visualization, specification and documentation of the system.  



 

 

4.1 Determination of requirements 

Determination of the requirements is the first phase of the system development lifecy-

cle. The project started by getting the members together for a meeting to set the guide-

lines for the system.  

 

Observations of business needs in an earlier phase had proven that the market had a 

clear need of a system that could deliver all the requirements which was to be discov-

ered. Discussions are carried out with the project group members, system administra-

tors, system developers and others to discover all the requirements for the system.  

 

 The project group decides that the following requirements should be determined: 

 Functional requirements 

 Operational requirements 

 Security requirements 

 Performance requirements 

 Delivery time requirements 

 Architectural requirements 

The requirements are prioritized so that the most critical and important functions have 

the highest priority and additional functions have a lower priority so that they could be 

added into a later version of the system.  

 

The functional requirements includes management of different user levels, listing of op-

tions in the system and reports for example of changes made to the system. Operational 

requirements include maintainability and reliability. Performance requirements include 

availability for dependency. Architectural requirements include the system architecture 

requirements which affected on the architecture of the system. 

 

Then the requirements are organized into groups by the functionality that they are 

providing. The restrictions on the system are also identified and considered through by 

the project group. The restrictions are made on the system because of the underlying 



 

 

architecture.  Also functional restrictions are identified which would provide unneces-

sary features that could be used for purposes that would not be intended for the system.  

Finally all the requirements are documented into the requirement specification docu-

ment. 

 

The requirement determination phase follows the iterative and incremental model and 

there are some changes made during the process. Several meetings occurred were the 

requirements are viewed and determined. The changes made during this phase are addi-

tions to the original requirements. Some additions acquired change in the later require-

ment specification.  

 

Determined requirements from a login example are displayed bellow.  

 

Functional requirements 

The user must be able to login. 

The user must be able to logout. 

The user should be authenticated. 

The user login information should be verified. 

 

Operational requirements 

The system should be able to be used from anywhere. 

The system should be able to be used at any time. 

 

Security requirements 

The system should follow security regulations. 

 

Performance requirements 

The system should be able to perform with 500 simultaneous users.  

 

Delivery time requirements 

The system should be delivered in ten months. 

 

Architectural requirements 



 

 

The system architecture should be scalable.  

 

 

4.2 Specification of requirements 

When the requirements was determined and gathered into the requirements document, 

the next phase in the process was to specify the requirements. The phase included the 

modeling of determined requirements into specification requirements by using UML 

and to define the required system services. This is done using the customer requirements 

and constructing a specified list of the requirements to fulfill.  

 

The use case approach is chosen from the UML model to provide the behavior specifi-

cation of the system. The use cases are determined by the analysis of the functional re-

quirements. The first step is to create use case diagrams and to document them. The use 

cases would then in the later development phase specify the system behavior develop-

ment process.  

4.2.1 Discovering use cases  

To discover use cases the requirements document is used were the requirements are ar-

ranged into proper groups with keeping in consideration the use case approach already 

in this stage. The actors involved in the system are also taken into consideration so that 

the different groups of actors and their roles in the system are possible to identify.  

 

Different user groups with different actor types were discovered. These actor groups 

have different roles in the system. By examining the requirements it became clear that 

there is a need to have the different user groups to restrict access to different functions 

of the system. This would add security and provide the possibility to display infor-

mation in a way that was appropriate for the specific user group. Figure 17 is an exam-

ple of two different actors as different user groups with a login use case example.  

 



 

 

 

Figure 17, Actors. 

 

The next step is to discover the actual use cases from the requirements specification 

document, questions to be asked to discover and to gather the use cases are: 

 What task should the different groups of actors be able to perform? 

 What information should the actors be able to view in the system? 

 What information should the actors be able to modify in the system? 

 What would be informed to the actor by the system? 

By asking these questions the use cases started to get significance in the system and the 

first illustrations of the use case diagram emerged. In Figure 18, an example of all the 

use cases possible for the system is displayed.  

 

 

 



 

 

 

Figure 18, Use case illustration. 

 

In the first version there are so many different use cases that they had to be merged so 

that the system would be understandable for a developer viewing it.  

 

Later in the process there are changes made to the actor groups because of architectural 

restrictions. This impacted all the use cases created so much that changes had to be 

made. 

4.2.2 Documenting use cases 

In addition to the graphical representation of the use cases, the documentation is also 

needed to give a detailed step by step description of the use case.  

 



 

 

A short description of the requirements is written, after that the document is written it-

eratively step by step. In Figure 19 a login process example of the use case documenta-

tion is displayed.  

 

 

Figure 19, Use case example. 

 

 

4.3 Designing the architecture 

The next phase in the process is to create a design of the system. The plan is to create 

the solution for an existing hardware and software system of how the new system 

should be implemented. The architectural design of the system identified the major 

components of the system and the communication between the components. 



 

 

 

The design of the system is done by the conditions of the software and hardware plat-

form on which the system is going to be implemented. The architectural design include 

decisions about the solution strategies to resolve the client and server issues as well as 

middleware to combine the client and the server components to the system. 

 

The solution chosen for the system is the multi-tier architecture, were the distributed 

client-server architecture is extended so that the presentation, application, processing 

and the data management are logically separate nodes. The architecture also provided 

the possibility to add additional servers to the system. The solution for the system archi-

tecture is decided to be used because of the need to reduce network traffic to a single 

server. The example in Figure 20 shows the multi-tier client server architecture for the 

example login system.  

 

 

 

Figure 20, Multi-tier client-server architecture using the login example. 

 



 

 

4.3.1 Deployment diagram  

The system architecture is represented as a deployment diagram illustrating the execu-

tion architecture and relationship between the nodes, devices and artifacts of the sys-

tem.  (Maciaszek, 2001:207) The connection relationship between the nodes represents 

an association. (Fakhroutdinov, 2010) 

 

Figure 21 displays the architecture for the login use case example. In the example the 

actor uses an optional device were a Web browser using the HTTPS protocol retrieves 

the login page from a server cluster device running the Linux operative system and 

Apache Webb server software. The server cluster communicates using the TCP/IP pro-

tocol with the database cluster to retrieve login information about the user.  

 

 



 

 

 

Figure 21, Deployment diagram using the login example. 

 

By following the iterative and incremental system development the analysis models 

were constantly added with technical details.  

 



 

 

5 DISCUSSION 

5.1 Further development 

The system provides good opportunities to be developed further. Some functions were 

excluded from the system due to a required integration with other systems. These inte-

grations could be done at a later stage so that the functionality they were providing 

could be used by the system.  

 

Some functionality was also excluded due to other systems which already were provid-

ing the same functionality to the underlying systems. It would be possible to integrate 

almost all of the functionality to the same system to make the management easier for a 

system administrator.  

5.2 Conclusion 

The development of the system went through many phases. In the beginning of the pro-

ject the objective of the system was a little bit fuzzy. After a few meetings the goal 

started to get clearer when some of the functionality of the system was discovered and 

when the main architecture of the system was planned. There were many changes made 

to the system during the process. Almost every change made was an improvement in 

functionality but also some functionality had to be removed because of integration to 

other systems which had to be done at a later stage. 

 

In the beginning of the process there was a challenge to find the right recourses and the 

material which was needed to design the system. This also brought many changes later 

which could have been avoided. In the end all the material necessary to complete the 

first steps in the system development process was found and the requirements set by 

Elisa Corporation fulfilled. 

 

The outcome of the thesis was a requirement document, requirement specification and 

deployment diagram which where all the material that Elisa Corporation required. The 

material was created and handed over to Elisa as required.  



 

 

 

By taking part in the project I now have a great understanding of different system de-

velopment processes and how to design a system using the UML model. I also now 

have knowledge in agile system development methods and how a system is designed in 

a large company. Besides system development, I also now have knowledge in producti-

fication.  
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