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1 Introduction

The history of emulation goes back to 1957. The term was introduced by IBM1 for
the IBM 709 computer being able to behave like the IBM 704 so that the older model
applications could be run on the new system. This was done by imitation.
So an emulator emulation, simulation, calibration

1.1 Motivation

What made me chose this project, radioactivity, dosimetry,..danger...

1.2 Goals

What is to be achieved withing this project...the focus lies on hardware software co-design,
fully functional GM-Tube emulator.....

1.3 Structure

first bla, then blub

1http://www.ibm.com
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2 Analysis

“Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.”Marie Curie

2.1 Requirements

The goal of this bachelor thesis is a fully functional Geiger-Mueller-Tube1 emulator.
Therefore a system consisting of hard- and software has to be created which on one hand
simulates events caused by radioactive decay and secondly is able to measure those events.
The emulator has to function like a real-life Geiger-Mueller-Tube. A small GUI2 driven
by via standard I/O3 devices should provide an easy possibility to configure the behavior
of the radiation generator and the GM-Tube. The programmable parameters include:

• seed for the radiation generator

• mean time of occurring events: 1µs ≤ mean time ≤ 10s

• detector dead-time: 5µs ≤ detDT ≤ 150µs

• and system dead time: sysDT = detDT + (3µs ≤ recoveryTime ≤ 50µs)

• System dead time will grow wider when a new particle hits the detector between
detDT and sysDT. Shortest pulse widening(pulseW) starts at 1/3rd of the detDT
when next particle hits the tube right after detDT and will grow linearly up to full
detDT.

Also the system has to be designed according to following conventions:

• Simplicity
The system should be designed as simple as possible and as complex as necessary.

• Expandability
The design of the system should be in a way that it allows further addition of
functions in a reasonable amount of time and effort.

• Portability
As far as possible the system should be designed in a way as hard- and software
independent as possible. I.e. the used FPGA4 should be exchangeable.

• Real-time
The GM-Tube emulator is to be created as a soft real-time system.

1in further documentation referred to as GM-Tube
2Generic User Interface
3Input/Output
4Fast Programmable Gate Array
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2.2 Radioactivity

2.1.1 Predefined test cases

For proving the system to work accordingly to its equivalent measurement device several
test scenarios are defined.

• Speed: Is the radiation generator able to create the events on demand?
With a minimal mean event time of 1µs it is mandatory that the generator produces
at least one events per µs.

• Scale: Does the scale of generator output fulfill the required interval spectrum?
The applied hardware provides a bit width of 32bits. The full range is to be used
and the events need to be in a random exponential distribution representing an
actual radiation source.

• Performance: Does the system show the correct number of output pulses?
With a predefined array of input for the occurring events it needs to be shown that
the system gives the correct number of output pulses at the correct times. Event
loss is not tolerated.

2.2 Radioactivity

Radioactivity is the common phrase for radioactive decay which describes the ambition of
unstable atomic nucleus to transform into a stable state by emitting ionizing5 particles and
radiation. An unstable nucleus is characterized by an uneven ratio of protons to neutrons
and it remains radioactive until the ratio is balanced. The decay happens spontaneous
and works exothermic6. The stable state can be reached by one simple decay or within a
sequence of reorganizations. During one decay multiple types of radiation are emitted.[2]

2.2.1 History

1896 Antoine Henri Becquerel discovered that it is possible to blacken photographic plates
with uranium salt. He showed that this new radiation (just one year after Wilhelm Conrad
Roentgen described the phenomenon of x-rays) is able, to pierce through opaque materials
and ionize air.
Two years later Marie Curie and her husband found three other naturally occurring ele-
ments, thorium and the two much stronger radioactive elements, radium and polonium.
Ernest Rutherford, 1899, made several penetration tests and separated two types of radia-
tion. Further tests within magnetic fields showed that the particles have different polarity
and that there was a third type of radiation which is not influenced my magnetism. He
named the radiation types Alpha-, Beta- and Gamma radiation.
In 1933 Iréne and Frédéric Joliot-Curie made the first successful attempt to create artificial
radioactive elements.[1]

2.2.2 Radiation types

During the process of radioactive decay six particle types are emitted. For simplicity I
will only refer to the three most common types α, β and γ in further documentation.

5with an energy ≥ 5eV
6after initial triggering the process runs without any further need for external energy input

3



2.2 Radioactivity

• α radiation: This decay produces one plus helium-4 nucleus which consists of two
protons ans two neutrons. the contained charge is positive due to the surplus of
protons. This type of radiation has the highest energy, but in consequence of the
mass the lowest penetration depth in materials. Another consequence of the rela-
tively large mass is the ambition to interact with other atoms and lose their energy,
so their forward motion is effectively stopped within a few centimeters of air.[4]

238
92 U → 234

90 Th + 4
22He2+ or simplified 238U → 234Th + α

• β radiation: There are two types of β decays.
β− decay, where an electron is emitted:

137
55 Cs → 137

56 Ba + e− + v̄e

β+ decay, where a positron7 is emitted:

22
11Na → 22

10Ne + e+ + ve

β− emission is the most common kind of radioactive decay.

• γ radiation describes a highly energetic electromagnetic radiation. The typical fre-
quency is about 1019 Hz with a wavelength of 10−12 meters and therefore energies
above 100keV.

2.2.3 Radioactivity as a natural phenomenon

Radioactivity is omnipresent. The earth is exposed to cosmic radiation, natural radiation
from elements like Potassium emit radiation. The natural element Uranium is used as an
energy source in nuclear plants and even a positioning device like Radar, which is a high
frequency application, generates radiation.
Usually the radioactive decay runs under predictable circumstances and without endan-
gering life. It follows certain probability theorems like the Poisson distribution. There are
also methods to control the emission of radioactivity which are used to operate a nuclear
power plant in a safe way.
The great danger of radioactivity lies in the uncontrolled chain reaction a so called critical
mass8 of radioactive material is capable of. This leads to an abrupt discharge of radioac-
tivity and huge amount of kinetic energy is set free. In the moment of a so called nuclear
fission a huge amount of alpha, beta and gamma rays are emitted, which poses a serious
threat to the environment.

2.2.4 Radiation detection and measurement[3]

First of all: Ionizing radiation emitted by radioactive decay is a danger to all organic life.
Therefore methods are needed to measure the amount of radiation in an environment to
take actions to prevent organisms from harm, a fact which the scientists who discovered
radioactivity in the first place were not aware of.

7positive charged electron
8the smallest amount of fissile material needed for a sustained nuclear chain reaction
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2.2 Radioactivity

2.2.5 Danger of radioactivity

The radiation dose a living being can be exposed to without being injured, varies between
species and even for humans the tolerated dose depends on individual genes. The human
cell structure is based on H2O and ionizing radiation is able to modify or even destroy
this structure. The hazardousness of the three radiation types depends on how they inter-
fere with the body. Alpha particles as mentioned only have a range of a few centimeters
and even skin can prevent it from penetrating. But if it gets directly into the organism
through inhaling radioactive dust even a few milligrams can be fatal. Beta and Gamma
rays have a much higher penetration potential but are not that dangerous in small doses.

(a) Ionizing radiation hazard
symbol

(b) The radiation symbol

Figure 2.1: International warning signs

Most common direct results of a radiation overdose contain diseases like leukemia and
many more types of cancer. Also the genes can be modified. If that is the case a repro-
duction cycle may develop certain diseases and/or deformations.

2.2.6 Units

The rate of decay of a radioactive isotope is given by the fundamental law of radioactive
decay

dN

dt
|decay = −λN

where N is the number of radioactive nuclei and λ is defined as th decay constant. The
Unit is curie Ci, defined as 3.7× 1010 disintegrations per second, which equates to the
activity of exact one gram of pure 226Ra. Today the used unit is Becquerel

1Bq = 2.703× 10−11Ci

The second directly measurable value is the emitted energy in eV. It is defined as the
kinetic energy gained by an electron by its acceleration through a potential difference of
1 volt. The SI unit is the joule. More convenient when dealing with radiation energies is
the sub multiple femtojoule (fJ).

1fJ = 6.241× 103eV

5



2.2 Radioactivity

2.2.7 Measurement

To measure radiation of any kind a particle must undergo an interaction with an elec-
tromagnetic field. The energy of an idealized single particle is considered instantaneous
due to the time of appearance being so short. So in most detectors a certain amount of
interactions is needed to trigger an event which is followed by an electric discharge. This
is described by the formula ∫ tc

0

i(t)dt = Q

where tc represents the charge collection time, i(t)dt the charge over time and Q the total
amount of charge generated in one specific interaction.
In reality many quanta of radiation interact over a period of time(Figure 2.2). At this
point it is important to mention that the arrival of a radiation quanta as well as the time
intervals between successive current pulses are randomly distributed.

Figure 2.2: typical radiation distribution[3]

Operation Modes

Depending on the purpose of the detector there are three different operation modes: Cur-
rent, Mean Square Voltage(MSV) and Pulse Mode. Due to this thesis mainly deals with
the GM-Tube which acts in current or more often in pulse mode I will not describe MSV
in detail. MSV is used in a mixed radiation environments where all kinds of radioactivity
are present.
In current mode it is assumed that the response time of the detector is constant. So the
recorded signal from a series of events will be a time-dependent current given by

I(t) = 1/T

∫ t

t−T
i(t′)dt′

The longer the integration time T the less the statistical fluctuations of the signal will be.
But on the other hand the response to rapid changes in the rate or nature of the radiation
interactions will slow down. As a result of these conclusions the average current is given
by following equation

I0 = rQ = r
E

w
q

where

r = event rate
Q = Eq/w = charge produced for each event
E = average energy deposited per event
w = average energy required to produce a unit charge pair(e.g., electron-ion pair)
q = 1.6 ×10−19C

6



2.2 Radioactivity

Current mode is used in many detectors when the event rates are high.
Pulse mode on the other hand is standard operation in the field of radiation spectroscopy9

where every radiation quanta is counted and the amount of energy of a single quanta
is analyzed. Most applications for event counting operate in pulse mode because due
to the internal design the amplitude of the signal pulse is directly proportional to the
corresponding charge generated within the detector. The resulting simple expression

Vmax =
Q

C

leads to the conclusion that every pulse is a direct result of a single event within the
detector.

Dead Time

Almost all detector systems need a minimum amount of time between two pulses in order
to fetch them as two separate events. This gap is needed by the process and/or the elec-
tronic within the measurement device. It is usually called dead time because the detector
is not able to recognize events during this period.
Though there is no possibility of counting events during dead time the system may re-
spond to it anyhow. If a detector is paralyzable it will show longer output pulses when
events occur during dead time, which leads to one permanent pulse when the rate of
events is equal or higher than the dead time. Non paralyzable systems will simply ignore
non countable events.(Figure) No matter how the system responds to high event rates it

Figure 2.3: illustration of the two dead time behaviors[3]

is necessary to correct the output of the system. Therefore it is mandatory to know the
dead time τ . A part of it may be the response time of an electronic circuit which is simple
to calculate but most often it is not known and dependent on the operating conditions.
In this case τ will be calculated by the two-source method. The method uses the fact,
that the counting loss is non linear. So observing the counting rate from two sources indi-
vidually and in combination results in a counting discrepancy which allows it to calculate
the dead time.

9A technique used in physical and analytical chemistry for the identification of substances through
the spectrum emitted from or absorbed by them
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2.3 Geiger-Mueller-Tube

2.3 Geiger-Mueller-Tube

The GM-Tube or GM-Counter is one of the oldest radiation detector types in existence.
It was developed by Geiger and Mueller in 1928 and due to the simplicity, low cost and
ease of operation it is still the most common tool of radiation measurement.

Figure 2.4: schematic of a GM-tube

2.3.1 Operating Mode(simplified)

The GM-Tube is a gas-filled detector based on ionization within an electric field. The
primary modes of interaction involve ionization and excitation of gas molecules along the
track of a radioactive particle within the gas chamber. Simplified one can imagine the
process as a chain reaction where a radioactive particle passes the gas chamber and on
its way transfers energy to the gas molecule(s) so that they become excited10 and on the
other hand create ion pairs by freeing electrons which lead to further excitement and
ionization. Because of the polarity of the electrons(negative) and ions(positive) which
move to the electrodes a current emerges. So a single particle can be source of a series of
avalanches within the tube.
The energy set free by one avalanche is influenced by the electric field within the gas
chamber; the higher the field energy the higher the multiplication initiated by a single
event. When a certain level of ionization is reached the discharge is initiated. This usually
takes about one microsecond. The discharge stops when the concentration of positive ions
reaches a critical state in which they change the polarity of the electric field. This critical
concentration is almost constant and depends on the strength of the electric field. As
a conclusion the pulse amplitude is fix which makes any interpretation of a coherence
between the energy of the radioactive quantum that created the pulse and the amplitude
impossible. So the GM-Tube can only be an event counting device. This stands in direct
contrast to the fact that the GM-Tube is operated in pulse mode.
The fill gas of the chamber is usually a noble gas11 like helium or argon. Although it is
possible to detect Alpha and Beta radiation with it the GM-Tube is most often used to
measure Gamma rays. Its application amongst other things lies in radiation dosimetry12.

10reaching an energy level higher than ground level
11a non molecular occurring gas with almost no chemical reactivity
12Method for measuring a radiation dose over time

8



2.3 Geiger-Mueller-Tube

2.3.2 Schematic

The schematic assembly of a GM-Tube is shown in Figure 2.5.

Figure 2.5: a standard GM-Counter

2.3.3 Dead Time Behavior

For creating an emulator the main focus lies on the dead time behavior of the detector,
because the behavior is responsible for the system flow design.
As mentioned in subsection 2.3.1 the tube needs a time to recover after a successful
discharge. The dead time consists of two constants. First, the time the tube needs to
be able to produce a new charge at all, which is given by the idleness of the ions, has
to pass. Within this time no further particle or gamma ray will be recognized. After a
certain amount of ions returned from the cathode the tube is ready to produce a new
discharge that will lead to an output pulse. This pulse will have a lower amplitude than
a full discharge but will lead to an extension of the pulse that is still high from the last
discharge. Only when the electric field is fully recovered a new pulse will be generated.
The regular dead time of a GM-Tube lies between 50-100µs, the resolving time however
depends on what amplitude the counting circuit interprets as a full discharge(Figure 2.6).
This leads to the conclusion that the GM-Tube is paralyzable.

Figure 2.6: dead time behavior of a GM-Tube

9



2.4 Embedded Development

2.3.4 Counting Efficiency

Because a single ion pair formed within the tube can trigger a full Geiger discharge,
the counting efficiency for particles passing through the tube window is 100%. However
because of the window’s thickness alpha particles may be absorbed. On the other hand
beta rays can be measured if the window thickness is not a significant fraction of the
electron range.
It is also possible to measure gamma radiation. Therefore the interaction has to take
place close enough to the inner surface of the tube so that the secondarily created electron
reaches the fill gas and can so produce ions. This circumstance can be drastically improved
by choosing the right tube material. If for example Bismuth is used in a combination with
a fill gas like Xenon or Krypton the efficiency for low-energy gamma rays gets close to
100%.

2.4 Embedded Development

Due to the fact that the specialization topic of my studies is embedded systems and this
project manifests the possibilities and difficulties of embedded development in this section
I will describe some ideas behind the concept.

2.4.1 Embedded Systems

An embedded system is a combination of hard- and software designed to perform up to
a few dedicated functions. The components are build into a technical context, like e.g. a
health monitor, a mobile phone or ABS13 system in a car, in most cases invisible to the
end user. On the other hand a common personal computer due to its general purpose, is
not called embedded.
In embedded systems the hardware resources are very limited and customized to answer
the specified purpose. Front end user interaction may be handled by a custom I/O device
(heart-rate monitor, volt-meter etc.) or via a serial port connected to standard hardware.
Often the embedded system performs as a part of a distributed system that works without
any user interaction like most driving assistant systems in a car.

2.4.2 Embedded Programming

As a response to the dedicated functions almost all embedded systems have a custom
made operating system they run on, in many cases it is just a super loop14. The kernel, if
present, only implements the very basic functions like memory management or interrupt
handling.
So it is obvious that the programming language for such a system must operate very close
to the hardware. Examples for languages that fulfill this requirement are Assembler,
C/C++ and Pascal. The program instructions written for embedded systems are referred
to as firmware, and are stored in read-only memory or Flash memory chips.

13anti-lock braking system
14one big endless loop construct that handles the tasks of a software
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2.4 Embedded Development

2.4.3 Hardware Software Codesign

In every embedded system the trade-off between hard- and software is substantially for
designing a solution for a specific task. There are two well known major approaches
how to build a system from scratch. First method used is top-down, starting at high
abstraction layers and digging into the deeps of the single execution of a command. It
basically starts at defining what hardware would be appropriate and implementing a
software for that hardware. The exact opposite of this is bottom-up design where the
software defines what hardware to use. In earlier embedded systems design the system-
control was designed before the data paths were defined. But all these methods lead to
unreliable code and long development times.
Codesign15 takes a different approach, where the system is seen as a synthesis of hardware
and software, not as two parts who are somehow put together. Therefore the development
of hard- and soft ware has to run in parallel. While looking at what needs to be done one
decides in whether a function is simple enough to to it in hardware which is always faster
than software or by implementing it with software were more sophisticated mechanisms
are available. So the interfaces between hard and software can be defined and development
runs without fewer iterations and more reliable code.[6]

2.4.4 Real-time Systems

Definition:

”A type of system in which the correctness of the system not only depends on
the logical results of a computation but also on the time in which the results
are produced.”

Usually, in a RT16 system at least a part of the tasks has a certain urgency to them. The
system has to react to events and/or generate such in a predefined time. Therefore the
designer must have control of the scheduling within the system, to make sure it the tasks
are deterministic.
There are two different kinds of RT tasks:

• Hard RT where the task must meet its deadline. Otherwise it will cause unaccept-
able damage or a fatal error to the system or its operation environment.

• Soft RT where meeting the deadline is desirable but not mandatory. Even if the
deadline is not met the system can keep operating[7]

This analysis shows that the GM-Tube emulator as well as the real Gm-Tube is a soft RT
applications although malfunction poses an indirect threat to the user.

15cooperative design of hard- and software
16Real-Time
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2.5 Algorithms

2.5 Algorithms

In this project certain algorithms are needed to create the required events. These algo-
rithms have to provide random numbers which are reproducible.

2.5.1 Pseudo Random Number Generators

A uniform pseudo random number generator(PRNG) provides the user with a series of
numbers starting with a given seed and running through its whole spectrum of numbers
by appearing to output those numbers in a random fashion. The numbers are evanly
distributed and the series repeats after the generator went through its width, usually given
in bits. The algorithms include the most common linear congruential generator(LCG) and
linear feedback shift registers(LFSR) as well as the complexer algorithms like Mersenne
twister.
The LCG is often implemented in the so called rand() function as a package within the
programming language C. The operation is very simple and described by

Xn+1 = (aXn + c) mod m

, where X0 is the seed, a the multiplier, c the increment and m the modulus. The LFSR
on the other hand is explained within its name. A seed value is shifted several times
in different directions with defined offsets. The Mersenne twister algorithm invented by
Makoto Matsumoto and Takuji Nishimura basically twists the values from a LFSR in a
complex process.
The LCG is the weakest algorithm of the three mentioned because it fails at several tests
for randomness, whereas the LFSR with well chosen shift steps is the fastest and the most
random of the simple generators.[8]

2.5.2 Exponential Distribution

Unlike the output of the PRNGs radioactive events are exponentially distributed. The
radiation quanta follows the Poisson distribution

P (X = k) =
λk

k!
e−λ (k = 0, 1, 2, ...;λ > 0)

and the occurrence of the events the regular exponential distribution function

F (x) =

{
0 if x < 0

1− e−λx if x ≥ 0

The fastest known method to generate exponentially distributed random numbers from a
uniform distribution is the Ziggurat algorithm introduced by George Marsaglia.[10]
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2.5 Algorithms

(a) The Poisson distribu-
tion

(b) The e−λx distribution

Figure 2.7: International warning signs

2.5.3 The Ziggurat Algorithm

blabla
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2.6 Basic conditions

2.6 Basic conditions

At Turku University of Applied Sciences one of the specialization topics for students is
Embedded Software. The department has its own laboratory and workshop. The mayor
system for advanced embedded development is the XILINX R©Virtex-II Pro Development
Board. It consists of a XC2VP30 FPGA17, 256MB DDR SDRAM and various I/O ports.

Figure 2.8: The XUP Virtex-II Pro Development board

This board offers the opportunity to gain a wide range of knowledge and experience.
Amongst others it is used in an Embedded Linux course as well as in thesis projects.
The computer for developing the hard- and software for this thesis is a Fujitsu-Siemens
E8010D with a 1.8GHz processor and 2GB of RAM.
For measurement the lab offers a wide range of oscilloscopes.

17fast programmable gate array
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3 Design

“Design is not just what it looks like and feels like. Design is how it works.”
Steve Jobs

This chapter describes components needed and how they are working together. Detailed
implementation is described in chapter 4.

3.1 Architecture

The system contains the random number generator(RNG), a buffer for the generated
events, the base and emulation hardware and a user interface. The interaction between
the components is shown in Figure 3.1. Due to the relative simplicity of the system it is

User Interface

Random Number
Generator

FiFo
Buffer

GM-Tube

Base system

Figure 3.1: The GM-Tube Emulation Architecture

now possible to divide it into two main parts, software and hardware.
As to the fact that the specification demands the GUI to use standard I/O functionality
the keyboard is the input device of choice. Its character based inputs as well as the output
to the screen will be handled by software. The RNG itself would be faster to design in
hardware but the complexity added by the need for an exponential distribution leads to
a software module.
As one requirement the base system has to be hardware. Due to the need for speed the
GM-Tube will also be implemented as a hardware module.
The FiFo1 buffer needs special attention as to it is the connector between the RNG and
the GM-Tube.
The following sections will take a closer look to the design of the five modules and the
actual data and control flow between them.

1First-in-First-out
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3.2 Hardware design

3.2 Hardware design

As shown in figure 2.8 the used hardware offers a huge amount of, but only a few modules
are actually needed for the design of the emulator.

• FPGA
the main processing unit

• SDRAM
the random access memory for holding variables and tables needed for generating
random numbers in an exponential distribution

• Compact Flash Slot
for the memory card that holds the FPGA configuration the system boots from

• RS232 Port
used as a UART2 interface to interact with the user interface

• LEDs
to visualize the output pulses and make them measurable at the same time

These Modules are interconnected within the base system.

3.2.1 Base system

The base system forms the hardware platform for the GM-Tube. It holds the architecture
for all standard components provided by the FPGA board.
All the single components are interconnected through a system bus driven by a clock
signal.

3.2.2 The GM-Tube Emulator

The design focus lies on the GM-Tube Emulator. Therefor figure 3.2 shows it’s data in-
and outputs. For reasons of better understanding the base system, in which the emulator
is implemented, is not displayed.

GM-Tube

GUI
on/off
detector dead time
system dead time

FiFo
random numbers

INPUT

pulse sequence

OUTPUT

Figure 3.2: Gm-Tube I/O

2universal asynchronous receiver/transmitter
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3.3 Data Flow

3.2.3 The FiFo

Due to the required performance the FiFo is designed as a part of the GM-Tube, which
makes it hardware. From software side the RNG will write its output to a hardware
address by using the principle of memory mapped I/O. The GM-Tube module will therefor
provide a library with a simple in-line command.

3.3 Data Flow

The data flow of the system is shown without mentioning the base system because it just
adds another layer to the GM-Tube that does not provide any mandatory information.

GUI

random seed

mean intervall

detector dead time

system dead time

User

Random
Number

Generator

GM-Tube
Emulator

random number

output pulse
config bits

Figure 3.3: DFD of the top level system
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3.3 Data Flow

3.3.1 Internal Data Flow of the GM-Tube

When designing the tube behavior it seemed convenient to enhance the functionality in
a way that not only the regular system output pulse is shown but also the event pulse
as well as the detector pulse. So it is possible to directly see and measure the difference
between the number of generated radioactive events, the detector behavior and the actual
Geiger count. This decision leads to the DFD shown in figure 3.4.

GM-Tube
emulation

detector
pulse

counter

event
 pulse

counter

system
pulse

counter

sysDT

detDT

eventTime
event pulse

detector pulse

system pulse

detector dead time
system dead time
config bits
random number

Figure 3.4: DFD of the Emulator

3.3.2 Internal Data Flow of the RNG

The RNG function is split up in three main parts.

• Setting up the tables needed for the Ziggurat algorithm

• Generation of evenly distributed random numbers

• Conversion of of the evenly distributed numbers to exponential distribution3 and
fitting them to the mean intervall

event
creation

seed
mean intervall

create
tables

create
random
number

exponen-
tialize

Random
number

predef. constants

seed

ziggurat tables

fit to
intervall

spectrum
mean intervall

random number random
number

Figure 3.5: DFD of the Random Number Generator

3referred to as exponentialize
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3.4 Control Flow

3.4 Control Flow

For a simpler illustration the control flow only contains the abstraction layer depth needed
from the respective modules. Therefore the sequential and parallel executions are shown
in figure 3.6 NOT READY YET

Control

GUI

RNG

GM-Tube
emulation

event
pulse
counter

detector
pulse
counter system

pulse
counter

Figure 3.6: Control Flow Diagram of the system

19



3.5 Software design

3.4.1 Concurrency

3.5 Software design

The design of the software components is done

3.5.1 Base System Kernel

The main system, on which the GUI and the RNG are running will be a preconfigured
kernel provided by XILINX. It includes general I/O features like UART and the LED
control, memory management and interrupt control routines. Part of the core are also
a possibility to use floating point arithmetic and mathematical functions needed for the
RNG.

3.5.2 User Interface

The GUI design is rudimentary. When the system starts the user has to enter the config-
uration values step by step. If the user does not want to configure the system manually
default values are taken for dead times, the seed and the mean interval. After starting
the system, it continues operation unless it is interrupted by any character sent.

3.5.3 Random Number Generation

Due to the existence of various implementations of random number generators and mech-
anisms no new design is needed. The exponential derivate of numbers will be created after
George Marsaglias paper ”The Ziggurat Method for Generating Random Variables“. A
detailed description of the algorithm can be found in Appendix A.
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4 Implementation and Testing

“If your experiment needs statistics,
you ought to have done a better experiment.”Ernest Rutherford

For implementation the approach of continuous integration1 was chosen. That allowed
tests needed in the early phase to see if the performance requirements are met by the
chosen algorithms. Without proceeding in short iterations the risk of failure for the
project would have been inevitable due to the complex cooperation of hard- and software.
The following sections describe what development environment was used and how the
codesign ideas were applied for a harmonic interaction between hardware and software.

4.1 Development Environment

The design of the system was created with Prosa2.
For developing the hardware layout of the base system and integrating the GM-Tube
emulator the XILINX Platform Studio and the EDK3 were used. The GM-Tube Emulator
was built and tested separately with the ISE4.
The programming development was done with Eclipse5. Due to the fact that only one
developer was involved and the iterations were taken in small steps no version control or
bug tracking software was needed.

4.2 Programming Languages

As a result of the complexity and at the same time hardware closeness the chosen pro-
gramming language for the RNG was native C. The hardware description language used
was VHDL6, because it is the XILINX standard, which does not offer implementation of
Verilog7 modules.

4.3 Building the Hardware

The hardware implementation is divided into the base system and the GM-Tube emula-
tor. Former is a straight forward process mostly default by the EDK and therefore the
implementation detail is kept on a reasonable level. On the other hand the GM-Tube as
the main focus of this documentation will be described down to the lowest layer.

1Integrate and build the system many times a day, every time a task is completed.[12]
2http://www.prosa.fi/
3http://www.xilinx.com/ise/embedded design prod/platform studio.htm
4http://www.xilinx.com/ise/logic design prod/foundation.htm
5http://www.eclipse.org
6(VHSIC (Very High Speed Integrated Circuits) Hardware Description Language)
7http://en.wikipedia.org/wiki/Verilog
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4.3 Building the Hardware

4.3.1 The Base System

The base system architecture was created with the Base System Builder(BSB) of the
EDK tool chain. Although it is possible to design the whole system completely from
scratch the provided wizard was used because otherwise this part would have consumed
too much project time.
The generated system is shown in the following block diagram.

ppc405

Multi Port Memory ControllerSDRAM

System Reset

JTAG Controller

BRAMC
BRAM

GPIO
LEDs

UART
RS232

INTC
INT0

Clock

GM
Tube

slaves of pbl0
plb0

ppc reset bus

ppc jtag cntlr

Figure 4.1: Block Diagram of the Base System
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4.3 Building the Hardware

First the choice of the processor architecture was made. The FPGA offers two
PowerPC cores and up to eight MicroBlaze CPUs, but the project only uses one Pow-
erPC(ppc405) core. The processor clock runs with 300MHz, the maximum for the avail-
able hardware. It was also necessary to enable the instruction and data cache units of the
ppc405 because performance measurement with a disabled cache showed that the emula-
tor would not be realizable without. Finally the on-board JTAG controller was added as
the debug interface for the CPU.
In the next step, the I/O interfaces were configured.

• RS232 UART: The serial interface uses UART standard 16550 for the highest avail-
able speed. The design includes the use of an interrupt so that the UART could
halt the running emulator.

• 4bit LEDs: The LEDs use the Xilinx Platform Studio(XPS) GPIO8.

• INTC: An XPS interrupt controller is included to handle the interrupts produced
by the UART controller.

The system needed at least one memory controller to hold data and instructions. This
requirement is handled by an XPS BRAM9. Due to the fact that the Ziggurat algorithm
needs to store tables of 256 32bit values and works with memory intense logarithm func-
tions the 64k of maximum BRAM were not enough. To be on the safe side the full 256MB
SDRAM external memory are included. Both memory controllers are connected with to
processor cache for optimal performance.
All devices but the JTAG interface and the system reset controller communicate via the
processor local bus(plb0) which is also driven by a 100MHz bus clock.

4.3.2 The GM-Tube Emulator

As shown in figure 4.1 the GM-Tube emulator has to be connected as a slave to the plb0
like all other I/O devices. Therefore a standard peripheral was built with the EDK. The
XPS generated a framework for the custom peripheral ’GM-Tube‘ which allows it to use
the clock and reset signals as well as the data connection to the system bus.
The chosen design gave the requirements for the interfaces to be added.

1. The Write FiFo

- called write because from user’s view values are written to it, although the
peripheral reads from it

- with a size of 1024 × 32bit to buffer the values from the comparably slow RNG

- including additional signals that hold the information about the buffer status
(empty, full)

2. Four 32bit Registers

- the enable register for the possibility to start and stop the GM-Tube emulation

- respectively one register for holding the detector & one for the system dead
time

- one register for holding the widening time for the output pulse

8general purpose I/O
9Block RAM
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4.3 Building the Hardware

After generating the hull of the GM-Tube the ISE was used to customize the IP10 and
add the actual functionality. This is explained in next three subsections which finally lead
to the implementation shown in figure 4.2.

BRAM/SDRAM

ppc405

GUI RNG

slv_reg0 enable

slv_reg1 detDT

slv_reg2 sysDT

slv_reg3 pulseW

FiFo

GM-Tube Core

on/off

detDT_ctr

sysDT_ctr

pWidening

evt_ctr

L
o
g
i
c

plb0

Figure 4.2: The GM-Tube IP in the System

The GM-Tube Framework

The GM-Tube framework is mostly generated by the EDK, but for forwarding the signals
from the GM-Tube core additional ports were assigned and connected. Every signal(event,
detector & system) will be connected to different LED port. This is why these signals
need to have own ports in the framework too. The extra port declarations are

-- ADD USER PORTS BELOW THIS LINE ------------------
event_pulse : out std_logic;
detector_pulse: out std_logic;
system_pulse : out std_logic;
-- ADD USER PORTS ABOVE THIS LINE ------------------

and these are assigned within the port mapping for the User Logic.

-- MAP USER PORTS BELOW THIS LINE ------------------
event_pulse => event_pulse,
detector_pulse => detector_pulse,
system_pulse => system_pulse,
-- MAP USER PORTS ABOVE THIS LINE ------------------

Altogether those build the interfaces that are connected to the LEDs (see paragraph
4.3.3). For a better overview the ports in all three logics(framework, user & core) have
the same names.
Although the ports are usually interconnected through signals, they were left away for
reasons of simplicity.

The User Logic

The user logic is the connector for the GM-Tube core instance, the FiFo and the registers.
Within this module two sections have to be altered.

10integrated peripheral
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4.3 Building the Hardware

1. User Logic Ports and Port Map
The same three ports as mentioned in paragraph 4.3.2 are created and connected
to their equivalents.

2. ”Architecture IMP11 of the user logic“
All the ports of the GM-Tube core are declared and assigned in the port map.

• The clk and reset ports are mapped to the system’s equivalents.

• Slave registers zero to three are connected to enable, detDT & sysDT as well
as pulseW ports.

• The data load, data required and the data acknowledge are mapped to the
FiFo’s ports and signals.

For detailed implementation(VHDL code) of the user logic please refer to appendix B.

The GM-Tube Core

The core module holds the actual GM-Tube emulation. As shown in the design(3.4) the
GM-Tube contains different simultaneous operations. Depending on the current state
The system can be divided into two main instruction sets, event/ detector/system pulse
creation and down counting. The diagram shown in figure 4.3 represents the process flow
of one single clock cycle.
The GM-Tube core is implemented as a combination of down counters and comparators.
After the system is enabled the first value is read from the FiFo to initialize the event
counter which represents the generated radiation event interval. Every clock cycle, the
value is decremented by one. This decrement represents the duration of 10ns and marks
the system pulse resolution. If the detector dead time is zero when a new event occurs
the detector and the system pulse are high. At the same time the dead time counters for
both are reset and a new value from the FiFo is requested. In the next clock cycle, the
acknowledge bit will be set by the FiFo and the new value will be loaded into the event
counter.
In most cycles the event counter is unequal to zero and so the event and detector pulse
are down. If the system dead time is up the system pulse will also be switched of. Every
regular counting cycle the current widening for the system pulse is calculated.
When revisiting the requirements it is noticeable that the the events may occur with a
mean time of 1µs which compared to the system clock is very short. Is that the case the
danger of buffer under run is very high so it is necessary that the user keeps track of the
FiFo fill level. If the FiFo runs empty unexpected things might happen.

11Implementation
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4.3 Building the Hardware

evt_ctr=evt_ctr-1;
req_pulse=0;
evt_pulse=0;
det_pulse=0;

detDT_ctr>0 ?

detDT_ctr-=1;

run

reset = 1? clear all counters &
set all outputs to 0

clk=1&
clk'event&
enable=1?

evt_ctr=0 ?

sysDT_ctr>0 ?

sysDT_ctr-=1;

sys_pulse=0;

req_pulse=1;evt_pulse=1;
ack=1 ? detDT_ctr=0 ?

sysDT_ctr=0 ?
det_pulse=1;
sys_pulse=1;
detDT_ctr=detDT;

evt_ctr=data_load;

sysDT_ctr=sysDT;

sysDT_ctr = sys_DT + pWidening

detDT-detDT_ctr>
pWidening ?

pWidening=pulseW;pWidening=detDT-detDT_ctr;

detDT_ctr-=1;
sysDT_ctr-=1;
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yes

yes

yes
yes

yes

yes yes
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Figure 4.3: Instruction Flow of the GM-Tube Emulator
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4.3 Building the Hardware

4.3.3 Synthesizing the Hardware

After the custom IP was implemented and the stand-alone synthesis had worked it was
added as a new IP(figure 4.4) to the base system.

GM-Tube

GM-Tube
Core

User Logic

Registers

event
pulse

detector
pulse

system
pulse

fifo
signals

FiFo

Figure 4.4: The GM-Tube IP

Therefore the configuration of the base system had to be updated/altered at four points.

1. Assembly
- connection to the plb0 system bus

2. Port Configuration
- creation of one external port for each pulse

3. Address Configuration
- assigning the address space with the auto assign function

4. GPIO Pin Mapping(system.ucf)
- manually assigning the new external ports to the LEDs

Connection for the event pulse

Net geiger_counter_event_pulse_pin LOC = AC4;
Net geiger_counter_event_pulse_pin IOSTANDARD = LVTTL;
Net geiger_counter_event_pulse_pin SLEW = SLOW;
Net geiger_counter_event_pulse_pin DRIVE = 12;

After this step the hardware was tested.
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4.4 Testing the hardware

4.4 Testing the hardware

This section describes the hardware test for the interplay between the FiFo, the registers
and the GM-Tube core module within the base system.

4.4.1 Test Arrangement

For proving that the internal mechanism responds correctly to a given set of values a
simple test case was created. A minimal test program, uploaded via JTAG, filled the
FiFo with a set of

a) equal numbers [100000,100000,100000,...],

b) decreasing numbers [100000,999000,998000,...,0],

c) a combination of a & b,

configured the dead times and pulse widening and enabled the GM-Tube. After checking
manually(via UART to console), that the registers are written correctly and the FiFo fill
level and elements are as supposed the collection of data was taken with the following
hardware arrangement.

Oscilloscope

Ch1

Pulse
Output

Notebook

USB

Ch2 Ch3

XILINX Board

JTAG

ppc405

LED2 LED1 LED0

UART

RS232

Figure 4.5: Hardware Test Arrangement

4.4.2 Test Results

After more that fifty test series with varying dead time and pulse widening configurations
the hardware was declared as ”fully functional and without flaws“. The pulses were gen-
erated like supposed and the asynchronous communication with the FiFo(Timing details
in paragraph 4.7) did not lead to any lost values/events.
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4.5 Building the software

4.5 Building the software

Compared to the hardware design and implementation process the software could be
implemented in a fairly simple manner. The following subsections describe which software
packages and libraries were used and how the application was realized.

4.5.1 The Kernel

The XPS basically offers four different kernel possibilities.

• standalone: a minimal kernel offering basic functionality without including threads

• xilkernel : also a XILINX base kernel, but including more functionality like software
timers or threads

• VxWorks : a real-time operating system made and sold by Wind River Systems12

• selfmade: the possibility to create an own kernel from scratch

Due to the fact that the university had no license for the VxWorks libraries and there
was not enough time to build an own kernel the two remaining suitable possibilities were
standalone and xilkernel. When the software implementation started this choice led to
the xilkernel because the decision about multi threading could not be made yet.

4.5.2 The GUI

The GUI consists of printf and scanf commands offered by the standard C library stdio.h.
The values are written into the registers with the help of the automatically by the GM-
Tube synthesis generated macros13.

4.5.3 The RNG

The algorithm for the random number generator is copied from the Ziggurat algorithm
paper mentioned in the analysis. Additional the values are converted to unsigned long
and depending on the mean interval multiplied by a power of ten.
The standard C math library provided the required functions.

4.5.4 Measurement

During the implementation of the software it was necessary to take a closer look at the
RNG performance. The formulated mean time requirement made it mandatory that the
RNG is able to produce at least one random number within 1µs.
Therefore a simple test routine was written(pseudo code).

main_routine{
endless_loop{

enable LED;
loop(1 million){generate random number;}
disable LED;

}
}

12http://www.windriver.com/
13in-line commands
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4.6 Testing the software

The time of the LED pulse was measured similar to figure 4.5. The time it takes to run
through the loop once are approximately 30ns and the time to enable/disable an LED is
about 300ns. Resulting from multiple test runs with different seeds the time to generate
one number lies slightly under 1µs which showed that the requirements were met. The
compiler optimization level was set to three, except for the loop time measurement, a
fact that did not matter because the assembler code review of that section showed no
difference for either optimization level.
Different test runs with one thread for the GUI and one for the RNG showed that due
to unpredictable timings the GUI had to be implemented with the use of interrupts.
Although the used xilkernel produces more overhead than the standalone version, no
performance difference could be measured and the kernel choice made in subsection 4.5.1
was not changed.

4.6 Testing the software

The test arrangement for the software test is similar to figure 4.5. Only this time the kernel
plus the GUI and the RNG are on a compact flash(CF) card and the jtag connection is
not used.
The software was tested with ten different seed and mean interval values and the generated
random numbers fulfilled the requirements. The GUI also worked smoothly and did not
disturb the timing of the RNG.
Anyhow two things are to be mentioned:

• The seed value must be different from zero because of the SHR; a shifted zero will
always be zero.

• The gap between the measured timings of the RNG and the Ziggurat paper in
appendix B are a result of the slow floating point emulation on the FPGA.
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4.7 Synthesizing and Testing Hard- and Software

4.7 Synthesizing and Testing Hard- and Software

The final software was created by compiling the xilkernel, RNG, GUI and the libraries
for the GM-Tube IP. The resulting application was put onto the CF card and the system
started.
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Figure 4.6: System Test Arrangement

After running multiple combinations of the previous tests, the three main questions from
the analysis were revisited.

• Speed: Is the radiation generator able to create the events on demand?
2�The RNG is able to create at least on event per µs, which is the smallest mean
interval time

• Scale: Does the scale of generator output fulfill the required interval spectrum?
2�The hardware allows an interval spectrum between 10ns and 10s. The outcome
of this is that this spectrum covers the required mean interval times but due to the
limited width of 32bit no events larger than 10s are possible.

• Performance: Does the system show the correct number of output pulses?
2�The number of event/detector/system pulses is correct.
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5 Conclusion

“However beautiful the strategy, you should occasionally look at the results.”
Winston Churchill

To begin with this chapter the requirements are revisited and the test results interpreted,
followed by two sections covering some of the problems and solutions during the project
and finally future possibilities are shown.

5.1 Results

All results refer to requirements which are met completely.

5.1.1 Accuracy

The accuracy of the system is mostly dependent on the hardware. The largest possible
integer value of the system defines the biggest number the RNG can output.
The self-created GM-Tube IP has a maximum error of 20ns caused by the asynchronous
FiFo request, which according to the maximum resolution of 10ns is absolutely tolerable.

5.1.2 Performance

With the used hardware it is not possible to create a faster or more reliable system. The
soft real-time requirements are fully met.

5.1.3 Usability

The system is completely controllable via the user interface. The fact that with RS232,
keyboard and console only standard I/O devices were used mets the requirements. Be-
cause the possible event scale and the extra pulse outputs the system offers excellent
services for experimenting with different configurations for the GM-Tube behavior.

5.1.4 Stability

The system is stable as long as the FiFo does not run empty, an event that did not occur
during the tests and is very unlikely to happen.

5.1.5 Portability

The portability of the soft and hardware is optimal due to the use of standard C for the
software. The GM-Tube hardware on the other hand is written in VHDL and uses no
specific processor options, a fact that makes even the FPGA exchangeable.
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5.2 Occurred Problems and Solutions

5.2 Occurred Problems and Solutions

During the project especially the hardware creating held many challenges.
The XILINX software surprises with more than a few features the programmer has to
deal with and which are not part of the main functionality. As one of many it forces the
user to use a certain mechanism for the VHDL process: The reset condition in the main
process must not be written with an elsif statement. This feature leads to a synthesizing
error which sometimes appears when building the hardware within the ISE and sometimes
when embedding the hardware in the EDK.
For finding the right solutions the XILINX forum1 the best contact point.

5.3 Future Possibilities

The use of the Ziggurat algorithm offers the possibility, not only to use the radiation gen-
erator for events but because of the decreasing density of the numbers also as a generator
for the energy of those events. With this addition and another kind of radiation detector
on the hardware side emulation of a spectral analyzer could be realized.
The GM-Tube IP itself could be expanded by a configurable counting mechanism which
allows the user to see the counts per time interval. Also a dosimeter operation mode is
thinkable.

5.4 Resume

All requirements for the emulator were met. The hardware functionality is expendable
and the project builds a good basis for further development. As one of the first hardware
software co design projects on the XILINX board it holds good potential for the Turku
University of Applied Sciences.
Personally the project was very challenging due to the fact that before I never gotten
closer to hardware than with Assembler. It was a very good experience and I am looking
forward to deepen my experience in embedded design.

1http://forums.xilinx.com/xlnx/
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Statement of Independence

Herewith I declare
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Appendix A

here the ziggurat code
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Appendix B

here the gm-tube core vhdl code
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