

Olli Koskenranta

MANIPULATING 3D OBJECTS WITH GAZE AND HAND GESTURES

MANIPULATING 3D OBJECTS WITH GAZE AND HAND

GESTURES

Olli Koskenranta
Bachelor's thesis
April 2012
Information Technology and
Telecommunications
Oulu University of Applied Sciences

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology and Telecommunications,
Software Development

Author: Olli Koskenranta
Title of thesis: Manipulating 3D Objects with Gaze and Hand Gestures
Supervisor: Timo Vainio (OUAS), Jarkko Vatjus-Anttila (CIE)
Term and year when the thesis was submitted: Spring 2012
Pages + appendices: 31 + 2

Gesture-based interaction in consumer electronics is becoming more popular
these days, for example, when playing games with Microsoft Kinect, PlayStation
3 Move and Nintendo Wii. The objective of this thesis was to find out how to use
gaze and hand gestures for manipulating objects in a 3D space for the best
user experience possible.

This thesis was made at the University of Oulu, Center for Internet Excellence
and was a part of the research project “Chiru”. The goal was to research and
produce user interface techniques for handling 3D objects, and create a user
interface for testing and calibrating the gestures.

The physical tools used were a hand held accelerometer-gyroscope and a
camera for the gaze tracking. The work was done on Linux-based Ubuntu 11.04
and the gestures were implemented on an open source 3D platform RealXtend.

The main result was a customizable UI made in JavaScript for testing the
gestures and finding problems in their usability as well as solutions for
improvement.

Keywords: 3D, Gaze, Gesture, Manipulation, Object, Interface, Eye, Tracking,
RealXtend

3

CONTENTS

1 INTRODUCTION...7

2 DEVICES AND APPLICATIONS..8

2.1 Camera..8

2.2 Accelerometer-gyroscope...9

2.3 Laptop..9

2.4 Operating System..10

2.5 RealXtend..10

2.5.1 Entity-Components..10

2.5.2 Script support...11

2.5.3 RealXtend architecture..12

2.6 OGRE..12

2.7 Git..12

2.8 Redmine..12

3 REQUIREMENTS FOR INTERACTION..14

3.1 Object selection...14

3.1.1 Focusing on an object...14

3.1.2 Grabbing an object..14

3.1.3 Releasing an object...14

3.2 Object manipulation..15

3.2.1 Rotating an object..15

3.2.2 Moving an object...15

3.3 Camera handling...15

3.3.1 Rotating the camera..15

3.3.2 Moving the camera..15

4 IMPLEMENTATION OF THE INTERACTIONS...16

4.1 JavaScript..16

4.2 Gaze tracking and hand gestures...16

4.2.1 Gesture parameters...17

4.3 Object selection...18

4.3.1 Focusing on an object...19

4

4.3.2 Grabbing an object..19

4.3.3 Releasing an object...20

4.4 Object manipulation..20

4.4.1 Rotating an object..20

4.4.2 Moving an object...20

4.4.3 Changing manipulation mode..20

4.5 Camera handling...21

4.5.1 Rotating the camera..21

4.5.2 Moving the camera..21

5 TESTING..22

5.1 Test setup..22

5.2 Gaze..22

5.2.1 Accuracy problems and solutions..23

5.2.2 Turning the camera..23

5.2.3 Using glasses with gaze tracking..23

5.3 Hand gestures...24

5.3.1 Manipulating with gestures..24

5.3.2 Manipulation modes..24

5.3.3 Movement change...24

5.4 Comparison to using a touch screen with a user test...............................25

5.4.1 Manipulations with a touch screen..25

5.4.2 User test..26

5.4.3 User test results...26

6 CONCLUSION AND DISCUSSION...28

 REFERENCES..29

 APPENDICES..31

5

TERMS AND ABBREVIATIONS

3D Three-dimensional

UI User Interface

EC Entity-Component

LED Light Emitting Diode

C++ General purpose programming language

Qt Cross-platform application and UI framework

JavaScript Scripting language

Python Scripting language

QAction Class in Qt for abstract user interface action

Frustum Bottom part of a solid cone or pyramid formed by

cutting off the top

RealXtend Open source platform for 3D Internet

1 INTRODUCTION

Gesture-based interaction in consumer electronics is becoming more popular

these days, for example, in playing games with Microsoft Kinect, PlayStation 3

Move and Nintendo Wii. Microsoft Kinect uses a camera to track the movement

of the user whereas PlayStation 3 Move uses a camera and a hand held

controller to track the movement of the controller. Nintendo Wii uses only a

hand held controller. If implemented properly gestures are found to be intuitive

and natural interaction methods for controlling programs and devices with a low

learning curve (8). Once users learn how to use gestures to access different

services they have found them to be enjoyable (11).

The goal of this thesis was to examine gesture handling in object manipulations,

and implement a customizable user interface (UI) into an open source 3D

platform called RealXtend. This thesis was done as a part of the research

project "Chiru", which studies future UI techniques. Combining the gaze with

hand gestures was one of the research questions which lead to the topic of this

thesis. The UI was used to test and calibrate the gestures. The devices used in

the implementation were an accelerometer-gyroscope for the hand gestures, a

camera for tracking the gaze on the screen and a laptop. The work was done on

Ubuntu 11.04.

The required interactions were handling the camera for navigating in a 3D

scene, focusing on objects, grabbing them, manipulating their position and

rotation and releasing them after the manipulation. These interactions were

considered primitive, which, after a successful implementation, could be used

as the basis of building more complex user interfaces.

7

2 DEVICES AND APPLICATIONS

This chapter describes the devices, applications and programming languages

used in this thesis. The physical setup consisted of a camera, four infrared

LEDs (Light Emitting Diodes) for improving the lightning conditions for the

camera, a handheld sensor and a laptop. The camera and the LEDs were

integrated into the laptop. Figure 1 shows the laptop with the camera, the LEDs

and the program RealXtend running on it.

FIGURE 1. The camera (on the bottom) and the LEDs integrated

into the laptop with the program RealXtend running on it

2.1 Camera

The selected camera used for the gaze tracking was Imaging Source DMK

31AU03. Its video format is 1024x768 pixels with Y800 color format (3). The

Y800 color format is an 8-bit monochrome format where every pixel is

represented by one byte. Monochrome means the frames captured consist of

one color or shades of one color (2). The frame rate of the camera was 30

frames per second. These specifications were considered adequate to achieve

an accurate enough implementation for the gaze tracking in the start of the

project.

8

2.2 Accelerometer-gyroscope

The sensor used for the hand gestures was ATR-Promotions WAA-010. It is a

small wireless sensor with a 3-axis acceleration sensor, a 3-axis gyro sensor

and a 3-axis geomagnetic sensor. It contains a Bluetooth transmitter for sending

data (14). Only the acceleration and gyro sensor data was used in this thesis.

The geomagnetic sensor works as a compass and its functionality was not

needed. Figures 2 and 3 show the hand device and the way it is attached to the

hand.

FIGURE 2. Picture of the accelerometer-gyroscope and its

container

FIGURE 3. Picture of the accelometer-gyroscope in its container

attached to the hand

2.3 Laptop

The laptop used for running the setup was Hewlett-Packard EliteBook 2760p. It

has a 12.5” HD+ LED screen with 1366x786 resolution, Intel i5-2410M dual-

core processor, Intel HD Graphics 3000, a multi-touch screen and the option to

9

fold it into a tablet-like shape. The calculation power of the Core i5 processor

was considered sufficient for this project and the laptop resembled a tablet

device with a touch screen, which made it the most interesting device type for

the scope of the project Chiru, since the project focuses on mobile solutions in

its research.

2.4 Operating System

All the work and testing was done on Ubuntu 11.04. Ubuntu is an open source

Linux-based operating system (13). Its development tools and the portability of

RealXtend to Ubuntu was a good base for this project.

2.5 RealXtend

RealXtend is an open source 3D platform founded in Oulu, Finland. It has been

in development since 2007. RealXtend began as a collaboration between

several small companies aiming to develop a common technology base that

they can use in different application fields, such as virtual worlds, video games

and educational applications (1). RealXtend is programmed with C++/Qt.

2.5.1 Entity-Components

RealXtend is built entirely using the entity-component (EC) model. The entity-

component model is about creating components for (game) entities instead of

relying on a deep class hierarchy. Using deep class hierarchies, even simple

objects can contain a large amount of useless functionality, which can affect the

performance of a program in a negative manner. Instead of having these class

hierarchies, the entity-component model is about separating functionality into

individual components, which are independent on one another (4).

In the entity-component model, if one wants to create an entity, for example a

rock, one does not use a pre-created rock class, which inherits all the required

classes. Instead, one creates an entity and adds the required components for a

rock, such as EC_Placeable (entity has a position), EC_Mesh (entity has a

mesh for visual presentation) and EC_Rigid (entity has a solid body). Figure 4

shows example code of creating an entity with components. The EC_Script

10

component adds support for the use of scripts in the entity and, in this case, the

script reference is set to a JavaScript file "simpleavatar.js". The scripts can be

used for controlling the entity and adding more functionality to it. EC_Placeable

contains position data of the entity in the scene. EC_AnimationController allows

animations for the entity.

FIGURE 4. An example of JavaScript source code, which creates a new avatar

entity when a user connects to a server and attaches several components to it

(1)

2.5.2 Script support

RealXtend supports scripts created with JavaScript and Python. Using scripts

allow the developers to add functionality into a program without modifying the

core application source code. Recompiling the program is not needed when the

core source code is not modified, which allows the developers to quickly test

and change the scripts, if they are not working as intended. Also, if a user does

not want use a script, s/he can simply disable it before running the program.

JavaScript is one of the most common scripting languages for adding

functionality into programs in the game industry (6). This was the reason for

adding the JavaScript support in RealXtend. JavaScript was also used in this

thesis as a fast development and an implementation method.

11

function serverHandleUserConnected(connectionID, userconnection)
{
 var avatarEntity = scene.CreateEntity(scene.NextFreeId(),
 ["EC_Script", "EC_Placeable", "EC_AnimationController"]);
 avatarEntity.Name = "Avatar" + connectionID;
 avatarEntity.Description = userconnection.GetProperty("username");
 avatarEntity.script.ref = "simpleavatar.js";

 // Set random starting position for avatar
 var transform = avatarEntity.placeable.transform;
 transform.pos.x = (Math.random() - 0.5) * avatar_area_size + avatar_area_x;
 transform.pos.y = (Math.random() - 0.5) * avatar_area_size + avatar_area_y;
 transform.pos.z = avatar_area_z;
 avatarEntity.placeable.transform = transform;
}

2.5.3 RealXtend architecture

The architecture of RealXtend is based on a core, which is the kernel of the

program. Modules extend the functionality of the core without altering it. The

modules can be independent on other modules or they can have dependencies

on other modules or third party libraries. The modules can also be disabled if

their functionality is not needed.

2.6 OGRE

For rendering 3D scenes, RealXtend uses OGRE (Object-Oriented Graphics

Rendering Engine), which is an open source 3D graphics engine (7). OGRE is

implemented in RealXtend as an extension module, called

OgreRenderingModule, and some of its functionality is encapsulated in entity-

components, such as EC_Camera and EC_Mesh.

2.7 Git

Git was the version control program used in this project. Git is an open source

version control system for managing the repository of the files of a project (5).

2.8 Redmine

Redmine is a project management web application (12) and it was used in this

project. Relevant documents, files and templates were stored into Redmine. It

was also used to store instructions on how to use the other tools in the project.

The main purpose of Redmine was to issue tasks, also called tickets, to the

personnel in the project. The tickets contained the task description, deadlines

and other relevant information. The person, who the ticket was assigned to,

updated the task with notes and used hours. Figure 5 includes a picture of a

ticket in Redmine.

12

FIGURE 5. An example of a ticket in Redmine

13

3 REQUIREMENTS FOR INTERACTION

This chapter covers the required user interface interactions and their

explanations. These requirements cover the mechanisms for object selection,

manipulation and controlling the camera.

3.1 Object selection

Selecting an object from the virtual 3D space is the first step in object

manipulation. Selecting an object means that it is ready for an actual

manipulation. Once selected, the object has to be released to end the

manipulation.

3.1.1 Focusing on an object

A user has to know what object s/he is about to select. Providing a visual cue as

to which object is being focused on is considered a standard, such as a label or

a tool tip box that appears or changes color (2). The focusing was to be done

with the gaze tracking, i.e. the object which the user was looking at was

selected and then highlighted.

3.1.2 Grabbing an object

After focusing on the target object, the user needs to be able to grab it to start

the manipulation. The focusing and grabbing worked as a two phase validation

method to start the actual manipulation. This was predicted to be a good

method to prevent accidental manipulations. The grabbing was to be done with

a hand gesture.

3.1.3 Releasing an object

To end the manipulation, the user has to have a way to release an object.

Releasing was to be done with a hand gesture.

14

3.2 Object manipulation

After an object has been selected, the user has to be able to rotate and move it.

Rotating and moving was to be done with hand gestures.

3.2.1 Rotating an object

An object has to be rotated around the X- and Y-axes to cover all the possible

rotation positions. The Z-axis rotation was not part of the implementation,

because the implementation of the hand device only recognized two axes.

3.2.2 Moving an object

Object has to be moved along the X- and Y-axes. This was to be done with

hand gestures. The Z-axis rotation was not part of the implementation, because

the implementation of the hand device only recognized two axes. The X- and Y-

axes were sufficient for testing the gestures' usability.

3.3 Camera handling

A camera is used to navigate in the 3D scene. For navigation, moving and

rotating the camera is required. This was to be done with both the gaze tracking

and hand gestures.

3.3.1 Rotating the camera

Rotating the camera means turning it without changing its actual position. This

was to be done using the gaze tracking.

3.3.2 Moving the camera

The camera has to be able to move forward, backward and sideways. This was

to be done with hand gestures.

15

4 IMPLEMENTATION OF THE INTERACTIONS

This chapter covers the implementation of the handling of the gestures. Sending

of the gaze and hand gesture data and their implementation was outside of the

scope of this thesis, and therefore their implementation is explained only briefly.

The scope of this thesis was to handle object manipulations with gestures

received from external peripherals.

4.1 JavaScript

RealXtend supports JavaScript for adding functionality into the program, and

the advantages of using a script are explained in section 3.2.2. Using

JavaScript was chosen for this implementation because it does not require

modifying of the core source code and because the functionality of the

manipulations was for specific use instead of general functionality.

4.2 Gaze tracking and hand gestures

The data flow between RealXtend, the gaze and the hand gesture device is

demonstrated in Figure 6.

FIGURE 6. Data flow of gaze and gesture input. The bottom row describes the

contents of the data in the corresponding arrows.

Both input methods used the same data flow. Their software opened and sent

data into a socket, which was parsed by a python script, which sent the parsed

information as QActions(10) to an entity in a RealXtend scene. The parameters

of the QAction included the execution type (server or client), the name of the

16

action and its parameters, the name of the scene and the name of the entity,

which the action was sent to. These actions were then caught in JavaScript and

their parameters were used to handle the required tasks.

4.2.1 Gesture parameters

The gaze input sent out the X- and Y-coordinates of the gaze on the screen.

The gesture input sent out two kinds of parameters: unique gesture types

(grasp, release, switch) and continuous information about the rotation of the

hand (pitch and roll) in values approximately between -90 and 90. Table 1

contains the available gestures and their uses.

TABLE 1. Gestures and their uses

Gesture Use Related parameters

Gaze (Eyes) Rotate the camera and move the

cursor to focus on objects.

XY-coordinates between 0,0

and the screen width, screen

height.

Pitch (Hand) Rotate or move the object forward

or backward. Move the camera

forward or backward.

Floating-point number

between -90 and 90.

Roll (Hand) Rotate or move the object left or

right. Strafe the camera left or

right.

Floating-point number

between -90 and 90.

Grasp gesture (Hand) Select the object, if no other

object is selected.

None

Release gesture (Hand) Release an object, if an object is

selected.

None

Switch gesture (Hand) If in manipulation mode, switch

the mode between rotation and

movement mode.

None

17

4.3 Object selection

The object selection consisted of three phases: focusing, grabbing and

releasing, and in the program code they were implemented as a simple state

machine. Figure 7 demonstrates the states. See Appendix 1 for the JavaScript

function for the conditions for allowing to select an entity.

FIGURE 7. State machine of the object manipulation program

The default state (State 1) handled the camera manipulation algorithms

(camera was movable and turnable) and the object selection algorithm. If the

conditions for selecting an object were met and a grasp gesture was detected,

the state would change to State 2.

State 2 handled the object manipulation algorithm for rotation. If a switch

gesture was detected, the state would change to State 3. State 3 handled the

object manipulation algorithm for movement and the algorithm for rotating the

camera. The switch gesture would change the state back to State 2. Going back

to State 1 from either of State 2 or State 3 was done with a release gesture.

Going straight to State 3 (moving the object) was not allowed, because it might

had caused an accidental movement of the object without the user realizing

what was happening. Rotating an object by accident was not as major of a

manipulation as movement to cause a big difference in the state of the object.

18

4.3.1 Focusing on an object

Focusing was done using the gaze parameters. RealXtend has implemented

two methods from OGRE for selecting entities in a 3D scene: Raycast and

FrustumQuery. Raycast means shooting a ray from the camera through the

viewport to the given coordinates on the screen (x, y), and it returns an entity if

it hits one. FrustumQuery works in a similar fashion, but instead of a ray it

shoots a customsized rectangle and returns a list of the hit entities. A depiction

of a raycast is shown in Figure 8.

FIGURE 8. A depiction of a single raycast. Red line is the cast ray.

Picture modified from (9)

FrustumQuery was chosen for the implementation because the gaze

coordinates were not as precise as using a mouse would have been. A red

rectangle was drawn on the viewport for the user to see where the gaze was,

and it acted as a cursor. The color of the cursor changed depending on the

current state of the object manipulation. When the gaze hit an object, it drew the

bounding box on the object to show the user which object was being focused

on.

4.3.2 Grabbing an object

Grabbing of an object was done with a hand gesture. If an object was being

focused on and the user made a quick forward rotation with the hand, an object

would be grabbed and ready for manipulation. The cursor (the rectangle to

show the gaze) would turn green when an object was grabbed.

19

4.3.3 Releasing an object

Releasing an object was done with doing a shake-like move with the hand. In

other words, it required to rotate one's hand left and right very fast.

4.4 Object manipulation

Once the object is grabbed, the manipulation is possible. The start of the

manipulation was indicated to the user with the color of the cursor. The color of

the cursor turned green (manipulation has started) from red (not manipulating

anything).

4.4.1 Rotating an object

Rotating the object was done in two ways. One way was rotating the object in

the direct relation to the angle of the hand. This limited the possible positions

the object could be rotated into, because of the limitations of the hand. Hence,

this method was found inadequate. Another way was using a toggled rotation. In

other words, the object started rotating in the direction the hand was rotated,

and the speed of the rotation depended on the steepness of the angle of the

hand.

4.4.2 Moving an object

Moving the object was a separate mode from rotating the object. The rotation

and movement could not happen simultaneously because of the limited number

of available gestures. This was probably also more convenient for the user,

because only one action was meant to be handled simultaneously. The object

would move left and right and forward and backward along the world axes

depending on the rotation of the hand.

4.4.3 Changing manipulation mode

The changing between the rotation and the movement modes was done with a

switch gesture. The switch gesture was the same gesture as the grab gesture,

since the grab gesture was available for use after the object was grabbed.

20

 Camera rotation area

4.5 Camera handling

When no object was selected, the camera was movable. The camera

movement was locked during the rotation of an object to prevent the object from

getting lost from the view of the user. When an object was being moved, the

camera was turnable to allow the object to be moved to a position outside the

view.

4.5.1 Rotating the camera

The camera was rotated when the gaze entered on the edges of the screen.

The size of the edge was an adjustable variable in the JavaScript. The speed of

the rotation depended on how near the edge was from the gaze. When gazed

on the very edge of the screen, the speed of the rotation would be at the

maximum, and slower when the gaze was closer to the center. 25% of the size

of the screen from each edge of the screen was used as the area to cause the

camera to start rotating. Hence, the area size was independent on the used

display resolution and was tied more tightly to the physical dimensions, which

are, in the end, more relevant for the gaze tracking. A depiction of the use of the

screen can be seen in Figure 9.

FIGURE 9. A depiction of the use of the screen for turning the

camera

4.5.2 Moving the camera

The camera was moved forward and backward by rotating the hand forward

and backward. When the hand was rotated left and right, the camera would

strafe left and right accordingly.

21

Dead zone

5 TESTING

This chapter covers the testing done with the UI and the changes made to the

UI if a change was needed. A user test was also done to compare the gaze and

hand gestures to the use of a touch screen.

5.1 Test setup

The test setup can be seen in Figure 10. The camera is attached to the bottom

of the laptop. There are four infrared LEDs near each corner of the laptop for

improving the lightning conditions for the camera. In this case, the hand gesture

device is attached to the right hand of the user. The hand device could be used

with either hand.

FIGURE 10. Test setup

5.2 Gaze

The initial testing of the gaze was done by one person to see how the first

implementation worked.

22

5.2.1 Accuracy problems and solutions

The gaze coordinates were sent 30 times per second. The camera was not able

to predict the gaze coordinates very accurately, and therefore the cursor

movement was not very stable. This was caused by the lack of precision on the

camera, the algorithm which calculated the coordinates and the disturbances

caused by moving the head, since the camera was attached on the laptop and

not on the head of the user.

To improve the performance, a setting was added to adjust the amount of

points, which the UI would use to calculate the average coordinates of the gaze.

Increasing the amount of points for calculating the coordinates improved the

performance and caused the cursor to become more stable, which made the

focusing on the objects easier. The downside was that it also caused the

reaction time to the gaze increase. See Appendix 2 for the JavaScript function

for handling the received gaze coordinates.

The average of 30 points was found to be rather accurate, and since the

camera sent 30 points per second, it caused the gaze to lag behind a maximum

of one second. This was not a problem when focusing on the objects but it

made turning the camera more difficult as the camera kept on turning even if

the user switched his gaze to the center of the screen.

To solve the camera rotation problem, a change was made. The turning of the

camera was done with the current coordinates but leaving the focusing to be

done with the average coordinates.

5.2.2 Turning the camera

The display area for turning the camera (25% of the screen size from each edge

of the screen) was found to work well and no complaints were received.

5.2.3 Using glasses with gaze tracking

If a person was using glasses, it interfered with the camera tracking the eye.

The gaze tracking was found to be unusable if a person was using glasses. This

23

was caused by the reflection of the glasses, which resulted in the algorithm to

miscalculate the correct eye positions.

5.3 Hand gestures

The first implementation of the hand gestures was tested by two persons.

5.3.1 Manipulating with gestures

The first implementation of the manipulations consisted of using three steps for

adjusting the speed of movement and rotation. This implementation proved to

be insufficient for accurate manipulations. The manipulation algorithms were

changed to use a stepless manipulation to rotate and move the objects using

the angle of the hand with a multiplier as the default speed of the movement or

the rotation. Figure 11 shows the JavaScript calculation code of the

manipulation speed, and it was found to be reasonable.

FIGURE 11. JavaScript code for calculating the speed of the

manipulation

5.3.2 Manipulation modes

An addition to the cursor color was made to show the manipulation mode. When

the mode was changed to the movement, the cursor turned from green to

purple and vice versa. Figure 12 shows the different colors of the cursor.

FIGURE 12. The cursor of the gaze and its different colors

5.3.3 Movement change

A change to the working of movement was needed. Moving the object originally

along the world axes made it difficult to control the objects in a natural way.

24

movement_speed = Math.pow((roll_angle/100),7)

Thus, the movement was changed from using the world axes to the local axes

of the camera.

5.4 Comparison to using a touch screen with a user test

The possibility to use the touch screen to perform the same manipulations as

with the gaze and hand gestures was needed as a comparison for the user

tests.

5.4.1 Manipulations with a touch screen

A finger replaced the gaze and hand gestures when using a touch screen.

Grabbing and releasing an object was done with a tap and hold gesture.

Switching the manipulation mode was done with a double tap. Moving the

camera was done with a swipe to the wanted direction. Moving the finger to the

wanted direction in the rotation and movement modes caused the object to

move and rotate into that direction. Table 2 shows the used events, their uses

and their related parameters.

TABLE 2. Touch events and their uses

Touch

event

Use Related parameters

Move Move the cursor or adjust the rotation or

the position of an object.

XY-coordinates between 0,0 and the

screen width, screen height.

Release Stop moving the camera, unless sweep

was detected.

None

Tap and

hold

Grab or release an object. XY-coordinates between 0,0 and the

screen width, screen height.

Double

tap

Switch the manipulation mode from

rotation to movement and vice versa.

None

Swipe Start moving the camera in the swipe

direction.

Direction

25

5.4.2 User test

The user test consisted of one scene with six dice-objects and a goal area. The

camera was stationary, because it was noticed that if the camera was movable,

it made it difficult to perform the manipulations because the camera movement

gestures got mixed with the manipulation gestures. The goal for the test was to

move the six dices into the goal area and rotate them into the positions which

displayed their values from one to six. Figure 13 shows an overall view of the

test scene.

FIGURE 13. The test scene with six dice objects. The goal area can be seen on

the right side of the screen

5.4.3 User test results

Nine users participated in the test. The gaze was found to be the most

interesting interaction method, even though the accuracy of tracking the eye

coordinates was not perfect. Overall, using the gaze and hand gestures was

more interesting than using the touch screen, even if the manipulations

generally proved to be more difficult with them instead of using the touch

screen. None of the users had previous experience of the gaze tracking, but

26

some had used Nintendo Wii or Microsoft Kinect. Most users had used touch

screen based devices before.

Generally, even though the UI and the performance of the gaze tracking and

hand gestures were suboptimal, the users thought that they would be interested

in using a similar system in controlling different programs, if the user experience

was improved.

27

6 CONCLUSION AND DISCUSSION

The main objective was to create an UI for the gaze tracking and hand

gestures. This was done mainly with JavaScript in the RealXtend environment.

The available hand gestures were rotating the hand left, right, forward and

backward. The unique gestures used were grasp, switch and release gesture.

The required manipulations were selecting, deselecting, rotating and moving the

objects and the camera with the gaze and hand gestures. All the required

manipulations were successfully implemented.

The difficulties in the implementation were related to the inaccuracy of the gaze

coordinates and the limited amount of available hand gestures. Increasing the

accuracy for the gaze and the amount of the hand gestures would bring more

variation possibilities in the implementation.

The user tests showed that the users were interested in new ways of interaction

methods, especially using the gaze, and this field is promising for future studies.

Working on this thesis taught me valuable information on different user

interaction methods and their future possibilities. On the technical side, using

scripts to implement new functionality to a program was a new area for me and

it gave me experience on the benefits of the script support on programs.

Working on a 3D environment was also a new experience for me and getting

familiar with the functionality of a 3D scene was also useful, because 3D

programs are becoming more popular.

The JavaScript file for the gaze and hand gesture manipulations can be found in

the repository of Chiru at the following URL:

https://github.com/Chiru/naali/blob/tundra2/bin/jsmodules/startup/gazetracking.js

28

REFERENCES

1. Alatalo T. An Entity-Component Model for Extensible Virtual Worlds.

Internet Computing, IEEE 2011 sept.-oct.;15(5):30.

2. Definition of monochrome at Merriam-Webster dictionary. Available at:

http://www.merriam-webster.com/dictionary/monochrome/. Date of data

acquisition 27. April 2012

3. DMK 31AU03. Available at:

http://www.theimagingsource.com/en_US/products/cameras/usb-ccd-

mono/dmk31au03/. Date of data acquisition 27. April 2012

4. Entity-Components. Available at:

http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/. Date

of data acquisition 27. April 2012

5. Git. Available at http://git-scm.com/. Date of data acquisition 27. April

2012

6. How to Make a Video Game from Scratch. Available a

http://www.wikihow.com/Make-a-Video-Game-from-Scratch/. Date of data

acquisition 27. April 2012

7. Junker, G. Pro OGRE 3D Programming (Expert's Voice in Open Source).

the United States of America: Apress; 2006.

8. Lee, S. C. – Bohao Li – Starner, T. AirTouch: Synchronizing In-air Hand

Gesture and On-body Tactile Feedback to Augment Mobile Gesture

Interaction. In Anonymous Wearable Computers (ISWC), 2011 15th

Annual International Symposium on. (). , 2011, 3-10.

9. Picture of a depiction of the viewport. Available at

http://i.msdn.microsoft.com/dynimg/IC123215.jpg/. Date of data

acquisition 27. April

10. QAction. Available at http://qt-project.org/doc/qt-4.8/qaction.html. Date of

data acquisition 27. April 2012

29

11. Rahman, A. M. – Hossain, M. A. – Parra, J. – El Saddik, A. Motion-path

based gesture interaction with smart home services. In Anonymous

Proceedings of the 17th ACM international conference on Multimedia.

(Beijing, China,). ACM, New York, NY, USA, 2009, 761-764.

12. Redmine. Available at http://www.redmine.org/. Date of data acquisition

27. April 2012

13. Ubuntu. Available at: http://www.ubuntu.com/. Date of data acquisition

27. April 2012

14. WAA-010. Available at: http://www.atr-p.com/sensor10.html/. Date of

data acquisition 27. April 2012

30

APPENDICES

Appendix 1 Entity selection in JavaScript

Appendix 2 Handling Gaze Coordinates in JavaScript

31

ENTITY SELECTION IN JAVASCRIPT APPENDIX 1

function EntitySelection()
{
 //Get the camera entity
 var cameraEnt = scene.GetEntityByName("FreeLookCamera");
 if (!cameraEnt)
 return;
 var camera_position = cameraEnt.placeable.transform.pos;
 //Do a FrustumQuery to the gaze coordinates
 var closest_entity = scene.ogre.FrustumQuery(gaze_x - rect_size, gaze_y - rect_size,
gaze_x + rect_size, gaze_y + rect_size, camera_position);

 if (closest_entity)
 {
 if (closest_entity.GetComponent("EC_Placeable"))
 {
 //Check whether a new entity is being focused on
 if (closest_entity != last_raycast_entity && last_raycast_entity)
 {
 var placeable = last_raycast_entity.placeable;
 placeable.drawDebug = false;
 last_raycast_entity.placeable = placeable;
 }
 //Display the bounding box for the entity being focused on
 last_raycast_entity = closest_entity;
 var placeable = last_raycast_entity.placeable;
 placeable.drawDebug = true;
 last_raycast_entity.placeable = placeable;
 if (use_statusbutton)
 statusbutton.text = "Gazing at: " + last_raycast_entity.Name();
 }
 }
 else
 {
 //If no entity is detected on the gaze coordinates remove the bounding box
 if (last_raycast_entity)
 {
 var placeable = last_raycast_entity.placeable;
 placeable.drawDebug = false;
 last_raycast_entity.placeable = placeable;
 }
 }
}

32

HANDLING GAZE COORDINATES IN JAVASCRIPT APPENDIX 2

function GazeCoordinates(x, y)
{
 if (!scene)
 return;
 if (gaze_counter < amount_of_points) //Wait until the table for points is populated
 {
 gaze_points_x.unshift(parseInt(x));
 gaze_points_y.unshift(parseInt(y));
 gaze_counter += 1;
 }
 else
 {
 //Start calculating the average position from the points
 //Add new coordinates to the beginning of the table
 gaze_points_x.unshift(parseInt(x));
 gaze_points_y.unshift(parseInt(y));
 //Remove the oldest coordinates from the table
 gaze_points_x.pop();
 gaze_points_y.pop();
 //Calculate the sum of the coordinates
 for (index = 0; index < amount_of_points; index++)
 {
 gaze_sum_x += gaze_points_x[index];
 gaze_sum_y += gaze_points_y[index];
 }
 //Calculate the average of the coordinates
 gaze_average_x = gaze_sum_x / amount_of_points;
 gaze_average_y = gaze_sum_y / amount_of_points;
 //Reset values of the sum
 gaze_sum_x = 0;
 gaze_sum_y = 0;
 //Set gaze coordinates to the average values
 gaze_x = gaze_average_x;
 gaze_y = gaze_average_y;
 }

 //Calculate the delta of the gaze coordinates from the center of the screen.
 //The delta is used for calculating camera rotation.
 //Notice that the first coordinates for the rotation are used and not the average.
 delta_center_x = (screen_width / 2) - gaze_points_x[0];
 delta_center_y = (screen_height / 2) - gaze_points_y[0];
 //Move the cursor to match the gaze coordinates
 if (gaze_x > screen_width)
 proxy.x = screen_width - rect_size;
 else if (gaze_x < 0)
 proxy.x = 0;
 else
 proxy.x = gaze_x - rect_size;

 if (gaze_y > screen_height)
 proxy.y = screen_height - rect_size;
 else if (gaze_y < 0)
 proxy_y = 0;
 else
 proxy.y = gaze_y - rect_size;

 proxy2.x = gaze_x - 10;
 proxy2.y = gaze_y - 10;
}

33

	1 INTRODUCTION
	2 Devices and applications
	2.1 Camera
	2.2 Accelerometer-gyroscope
	2.3 Laptop
	2.4 Operating System
	2.5 RealXtend
	2.5.1 Entity-Components
	2.5.2 Script support
	2.5.3 RealXtend architecture

	2.6 OGRE
	2.7 Git
	2.8 Redmine

	3 REQUIREMENTS FOR INTERACTION
	3.1 Object selection
	3.1.1 Focusing on an object
	3.1.2 Grabbing an object
	3.1.3 Releasing an object

	3.2 Object manipulation
	3.2.1 Rotating an object
	3.2.2 Moving an object

	3.3 Camera handling
	3.3.1 Rotating the camera
	3.3.2 Moving the camera

	4 Implementation OF THE INTERACTIONS
	4.1 JavaScript
	4.2 Gaze tracking and hand gestures
	4.2.1 Gesture parameters

	4.3 Object selection
	4.3.1 Focusing on an object
	4.3.2 Grabbing an object
	4.3.3 Releasing an object

	4.4 Object manipulation
	4.4.1 Rotating an object
	4.4.2 Moving an object
	4.4.3 Changing manipulation mode

	4.5 Camera handling
	4.5.1 Rotating the camera
	4.5.2 Moving the camera

	5 Testing
	5.1 Test setup
	5.2 Gaze
	5.2.1 Accuracy problems and solutions
	5.2.2 Turning the camera
	5.2.3 Using glasses with gaze tracking

	5.3 Hand gestures
	5.3.1 Manipulating with gestures
	5.3.2 Manipulation modes
	5.3.3 Movement change

	5.4 Comparison to using a touch screen with a user test
	5.4.1 Manipulations with a touch screen
	5.4.2 User test
	5.4.3 User test results

	6 CONCLUSION AND DISCUSSION
	references
	aPPENDIces

