

Bachelor’s Thesis (UAS)

Degree Program in Information Technology

2012

Rostislav Skudnov

BITCOIN CLIENTS

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree Programme in Information Technology

03.06.12 Pages: 32

Instructor: Raija Tuohi

Rostislav Skudnov

BITCOIN CLIENTS

Bitcoin is a new decentralized electronic currency which gained popularity in the last two years.
The usage of Bitcoin is facilitated by software commonly called Bitcoin clients. This thesis
provides an overview of Bitcoin and cryptography behind it, discusses different types of Bitcoin
clients and researches additional features implemented by them. It also analyzes further
enhancements that can be made to clients and the Bitcoin protocol.

Bitcoin clients are grouped into types and analyzed from a usability and security perspective.
Security is very important for Bitcoin clients as they are used to manipulate money, and poor
security leads to direct loss of money. Various threats are evaluated, including malware
infestations, theft of files, hostile takeover of servers and hardware failures. Security
implications of additional features and future enhancements are also assessed.

Various client types rely on significantly different security assumptions. While some clients are
immune to hostile takeover of servers, for other clients this results in theft of money. None of the
current clients is able to resist malware effectively. Additional features usually increase either
security or usability, though some features improve both.

The current choice of Bitcoin clients and their feature set is much richer than that one year ago.
New versions with more features are released very often. One of the future enhancements,
multi-signature transactions, significantly increases security as it protects the money even if a
client is totally compromised.

KEYWORDS:

Bitcoin, peer-to-peer, cryptography, digital signatures, ECDSA, deterministic generation, QR
codes

FOREWORD

I would like to thank all the teachers in Turku University of Applied Sciences for their hard work,
help and support. Particularly, I want to send by best regards to my supervisor Raija Tuohi
whose lectures on probability, statistics and cryptology inspired me to research these topics
further, and whose help in writing this thesis was invaluable.

It was a pleasure to discuss matters about Bitcoin on Bitcointalk forum and IRC channels. My
special thanks goes to Slush, ThomasV, jgarzik and etotheipi, who shared their knowledge and
experience with me and whose productivity is unimaginable!

04.06.2012 Turku

Rostislav Skudnov

CONTENTS

1 INTRODUCTION 1

2 CRYPTOGRAPHIC CONCEPTS 2

3 BITCOIN OVERVIEW 4

3.1 Electronic Cash before Bitcoin 4

3.2 Bitcoin basics 5

3.3 Bitcoin implementation details 10

4 CLIENT TYPES 12

4.1 Full clients 12

4.2 Headers-only clients 13

4.3 Signing-only clients 14

4.4 Thin clients 15

4.5 Mining clients 17

5 ADDITIONAL FEATURES 18

5.1 Deterministic wallets 18

5.2 Brainwallet 19

5.3 Wallet encryption 20

5.4 Watch-only wallets 21

5.5 Paper backups 22

5.6 QR codes 23

5.7 Bitcoin URI scheme 24

6 FUTURE ENHANCEMENTS 25

6.1 Multi-signature transactions 25

6.2 Scalability 28

7 CONCLUSION 29

REFERENCES 30

FIGURES

Figure 1. The Receipt is the Transaction [6] .. 5

Figure 2. Coin as a chain of digital signatures [1] .. 6

Figure 3. Double-spending .. 7

Figure 4. Chain of blocks [1] ... 9

Figure 5. Block chain diverges, black chain wins .. 9

Figure 6. Block #183301 of the Bitcoin block chain ... 11

Figure 7. Unconfirmed transaction in original Bitcoin client, version 0.5.0 13

Figure 8. Transaction creation in the Electrum client ... 15

Figure 9. Transaction creation in the Instawallet client .. 16

Figure 10. Seed and mnemonic code in Electrum ... 20

Figure 11. Setting a passphrase in the Satoshi client .. 21

Figure 12. Paper backup preview in the Armory Bitcoin client 23

Figure 13. 2-of-2 multi-signature transaction creation and spending 26

TABLES

Table 1. Block header structure .. 10

Table 2. Bitcoin client types and their features .. 18

ACRONYMS, ABBREVIATIONS AND SYMBOLS

API – Application Programming Interface

CPU – Central Processing Unit

DSA – Digital Signature Algorithm

ECC – Elliptic Curve Cryptography

ECDSA – Elliptic Curve Digital Signature Algorithm

DDoS – Distributed Denial of Service

GPU – Graphics Processing Unit

GUI – Graphical User Interface

QR code – Quick Response code

RSA – Rivest, Shamir, Adleman

UNIX – UNiplexed Information and Computing Service

UTC – Universal Coordinated Time

URI – Uniform Resource Identifier

URL – Uniform Resource Locator

1

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

1 Introduction

Until recently, most monetary systems in the world have relied on financial authorities

to issue and maintain money. E-commerce relies on those authorities or other financial

institutions to serve as trusted third parties when processing payments. Even though

this works relatively well in most situations, reliance on trusted parties incurs certain

drawbacks. Many financial institutions require users to disclose their identities.

Merchants suffer from chargebacks and are forced to raise prices and ask customers

for more personal information than normally needed for providing goods and services.

As a result, consumers are left with little privacy. Besides that, financial institutions may

“freeze” customers’ accounts or cause other inconvenience, since the customers

depend on them heavily.

In 2008, a decentralized electronic currency called Bitcoin was proposed by Satoshi

Nakamoto [1]. It became the first widely-adopted online currency that does not require

the use of financial institutions to conduct transactions. At the time of writing (May

2012), a few hundreds of companies and individuals listed on the Trade page of the

Bitcoin wiki [2] are accepting Bitcoin as a payment. In the last two years, the value of

Bitcoin rose from less than 1 US cent [3] in July 2010 to 30 US dollars in June 2011,

and gradually declined to 5 US dollars, where it remains now (May 2012) [4].

The use of Bitcoin is facilitated by software programs which are referred to as "Bitcoin

clients". The objectives of this thesis are to categorize Bitcoin clients by type, compare

them to each other and evaluate them from a usability and security point of view. Other

goals are to explore the additional features and future enhancements of Bitcoin clients.

Political, economical and legal issues that arise from the usage of Bitcoin are beyond

the scope of this thesis.

Chapter 2 explains some cryptographic concepts, which are necessary to understand

the Bitcoin protocol and the operation of Bitcoin clients. Chapter 3 provides an

overview of Bitcoin core concepts and the Bitcoin protocol. In Chapter 4, Bitcoin clients

are categorized by types and each type is discussed and evaluated. Chapter 5

discusses additional features that are implemented by Bitcoin clients. Chapter 6

explains enhancements to the Bitcoin protocol, which will be implemented in the future

versions of Bitcoin clients. The conclusion summarizes the history of the Bitcoin project

and the results of this research.

2

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

2 Cryptographic concepts

To understand the principles of Bitcoin, we also need to know certain cryptographic

concepts. Cryptography is the art and science of keeping messages confidential and

secure. In addition to that, cryptography is also able to provide authentication, integrity

and non-repudiation of messages. In this context, these words have the following

meanings:

 Authentication. It should be possible for the receiver of a message to ascertain

its origin; an intruder should not be able to masquerade as someone else.

 Integrity. It should be possible for the receiver of a message to verify that it has

not been modified in transit; an intruder should not be able to substitute a false

message for a legitimate one.

 Non-repudiation. A sender should not be able to falsely deny later that he sent a

message. [8]

Cryptography has multiple means of achieving the above-mentioned goals, and we

describe some of them that are needed to understand Bitcoin.

If two parties want to send messages securely, they may use encryption to hide the

actual contents of the messages (plaintext) and transform them to ciphertext, i. e., to

make them unreadable by anyone else. The receiving party can perform decryption to

recover the plaintext. Usually, the algorithms for encryption and decryption are well-

known, and only the encryption/decryption keys are maintained secret. If both parties

use the same key for encryption and decryption, they use a symmetric encryption

algorithm. Symmetric algorithms alone provide confidentiality, but to achieve the other

goals, we need other techniques, such as hash functions.

A hash function is a function, mathematical or otherwise, that takes a variable-
length input string (called a pre-image) and converts it to a fixed-length (generally
smaller) output string (called a hash value). [8]

A one-way hash function is a hash function that works in one direction: It is easy
to compute a hash value from pre-image, but it is hard to generate a pre-image
that hashes to a particular value. [8]

The output of a hash function is not dependent on input in any distinguishable way.

These properties give us the possibility to use hash functions to verify integrity of

messages: someone having the hash of a message can determine whether the

3

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

message is intact. This method is used, for example, in BitTorrent protocol: the .torrent

file has hashes of the pieces of data, and the data is checked to verify that it has the

same hashes after it is downloaded from the peers. If the hash of a downloaded piece

of data does not match the one in the .torrent file, such piece is rejected and later

downloaded from someone else [15]. As a result, peers are unable to send fake data

and force the downloader to accept it.

When a digital message provides authentication, integrity and non-repudiation

together, we say it has a digital signature, similar to a paper document with a

handwritten signature [8]. Although it is possible to create digital signatures by using

symmetric algorithms, hash functions and a trusted third party, as described in [8], this

solution is inefficient.

Public-key cryptography introduces an absolutely new way of thinking about

encryption, decryption and digital signing. In order to encrypt and decrypt messages,

we create two different keys, or a keypair: the public key and the private key.

It is computationally hard to deduce the private key from the public key. Anyone
with the public key can encrypt a message but not decrypt it. Only the person
with the private key can decrypt the message. [8]

If we give out our public key, anyone is able to send us messages encrypted with it,

and those messages could not be read by anyone else than us. Public-key

cryptography could also be used for digital signing: we can find the hash of the

message and encrypt it with the private key, thus forming a digital signature. If

someone who has the public key receives the message with the digital signature, it is

possible for him/her to verify both the authenticity and integrity of the message by

decrypting the signature with the public key and comparing the result to the hash of the

message. The signed message also has the property of non-repudiation, that is, the

sender is not able to falsely deny sending the message.

There are many public-key algorithms, and RSA algorithm is the most widely used.

There is also another family of public-key algorithms, known as Elliptic Curve

Cryptography (ECC). The discussion about algorithms themselves is beyond the scope

of this thesis.

4

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

3 Bitcoin overview

3.1 Electronic Cash before Bitcoin

Since the introduction of public-key cryptography, various proposals have been made

to make a monetary system based on it, such as David Chaum’s "Blind signatures for

untraceable payments" [5] and Ian Grigg's "Triple Entry Accounting" [6]. Chaum’s

paper suggests a system where payments are done anonymously and securely,

though a trusted third party is still needed. David Chaum also founded DigiCash BV,

the first company to provide a cryptographic digital currency. Even though DigiCash

became rather well-known in the payment industry in the 1990’s, the company went

bankrupt in 1998 [7]. In Ian Grigg's paper, when two willing parties transact, the payer

(Alice) creates a receipt, which includes the payer's and payee's (Bob) names, the

amount of money to be sent, and the digital signature of the whole receipt, made with

the payer's private key. This receipt, together with the current date and time, is signed

by issuer of the money (Ivan). This is illustrated in Figure 1. From this moment, as Ian

Grigg says, "The Receipt is the Transaction" [6], which means that we do not need to

keep a whole history of all transactions, but only the latest receipts. Ian Grigg claims

that this system was implemented for internal money in a company, and proved to be

more efficient than old-style accounting [6].

5

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

Figure 1. The Receipt is the Transaction [6]

The electronic currencies mentioned previously have the following common property:

they are centralized, that is, they rely on a trusted party, the issuer, which facilitates

and controls the transactions. In 2008, the first decentralized electronic currency called

Bitcoin was proposed by someone named Satoshi Nakomoto [1]. The real identity of

that person is not known.

3.2 Bitcoin basics

Bitcoin implements an accounting system similar to Ian Grigg's. We define an

electronic coin as a chain of digital signatures, as shown in Figure 2.

Each owner transfers the coin to the next by digitally signing a hash of the
previous transaction and the public key of the next owner and adding these to the
end of the coin. A payee can verify the signatures to verify the chain of
ownership. [1]

6

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

Figure 2. Coin as a chain of digital signatures [1]

In Ian Grigg's system, every transaction (receipt) is also signed by the trusted third

party (issuer), which verifies that the payer has enough money to send and that the

money being spent was not spent before (also known as double-spending). Bitcoin, on

the other hand, makes all transactions public, so that everybody is aware of all

transactions and is able to verify the chain of ownership and the non-existence of

double-spending attempts. This idea as a theoretical concept was first described in Wei

Dai's essay "B-money" [9].

Bitcoin relies on a peer-to-peer overlay network, built on top of the Internet, commonly

referred to as Bitcoin network. This peer-to-peer overlay network is a special kind of

network which differs a lot from how computer networks are usually constructed.

Peer-to-peer systems are distributed systems consisting of interconnected nodes
able to self-organize into network topologies with the purpose of sharing
resources such as content, CPU cycles, storage and bandwidth, capable of
adapting to failures and accommodating transient populations of nodes while
maintaining acceptable connectivity and performance, without requiring the
intermediation or support of a global centralized server or authority. [43]

Overlay network is “an application layer virtual or logical network in which end points

are addressable and that provides connectivity, routing, and messaging between end

points” [43]. Bitcoin network provides a communication channel to broadcast

transactions and send other information between users (nodes) which is described

later in this chapter.

7

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

As of May 2012, there are approximately 18000 nodes in the network even though the

number varies with time [10]. Typically, Bitcoin nodes connect to 10-100 other nodes

simultaneously.

Bitcoin's unique feature is the method for accepting/denying transactions and agreeing

on a single history of transactions by the network. Due to propagation delays and

connectivity issues, it is impossible to make everyone aware of all transactions at all

times, and this can be abused by double-spending the money. Someone could spend

the same money twice before the first transaction propagates far enough, so there

must be a way to determine which transaction is valid. Figure 3 demonstrates how one

coin, which belonged to Owner 1, can be spent to Owner 2 and Owner 3 at the same

time.

Figure 3. Double-spending

One obvious solution is to make those transactions that most people agree with valid.

On the Internet people are represented by the software applications they are running

and their respective IP addresses. If the validity of a transaction were determined by

the majority of nodes, i. e. the majority of IP addresses, the system could be cheated

by someone able to allocate many IPs. That is why Bitcoin uses a different way of

8

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

determining transaction validity. This technology is called proof-of-work and was

originally suggested in Adam Back's Hashcash [11] as a measure to prevent email

spam.

We provide a brief explanation of the principle of proof-of-work. For many cryptographic

hash functions, the number of attempts to find an input whose hash begins with a

certain substring can be probabilistically estimated, since the most efficient way to

search for such an input is to brute-force by trying consecutive inputs [11]. An input that

produces a hash with a certain leading substring is also called "partial hash collision",

and the process of finding suitable input is called mining [12]. For example, if we need

a certain 32-bit long leading substring in the binary representation of the hash, the

expected number of inputs that we need to try is 232, which is more than 4 billion. In

Bitcoin, finding partial hash collisions serves as a proof that a certain amount of

computation has been performed, this is why it is called proof-of-work.

Proof-of-work is used in Bitcoin for two purposes: the first is that proof-of-work is a

means of “voting” about transaction history, where the more work one performs, the

more voting power one has. The second purpose is the creation of money. Wei Dai

writes:

Anyone can create money by broadcasting the solution to a previously unsolved
computational problem. The only conditions are that it must be easy to determine
how much computing effort it took to solve the problem and the solution must
otherwise have no value, either practical or intellectual. [9]

Finding partial hash collisions exactly fits this definition: it is easy to determine how

much computing effort it took to find a given collision, and the collision does not have

any other value. In Bitcoin, when a partial hash collision is found, it serves as a “vote”

for certain transactions to be included in the history and provides a reward for the miner

(participant engaged in Bitcoin mining).

Another important concept of Bitcoin is that every proof-of-work is based on some

previous proof-of-work. This is implemented by including the hash from the previous

proof-of-work into the input of the current proof-of-work, thus forming a chain, as shown

in Figure 4. Input data for computing proof-of-work is combined into blocks, and all

blocks together form a block chain.

9

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

Figure 4. Chain of blocks [1]

As each block includes the hash of some previous block, we say that each block is built

on top of some previous block and extends it. The “voting” happens when miners

choose the block they wish to extend. Choosing a certain block implies agreement with

all transactions in that block and all previous blocks relative to that block. If a group of

miners works on a different block than others, the block chain may diverge, resulting in

two or more competing sub-chains. The chain in which more computing power is

invested will eventually become longer, and other Bitcoin nodes will prefer the longest

sub-chain, discarding all other sub-chains [1]. As a result, the block chain includes only

those transactions that the majority of processing power agrees with. In Figure 5, an

example of chain divergence is shown, but the black chain is the longest and is

preferred by Bitcoin nodes.

Figure 5. Block chain diverges, black chain wins

The block chain should not be confused with the coins themselves, which are chains of

digital signatures. The block chain interconnects blocks, whereas chains of digital

signatures interconnect transactions.

If a node follows the above rules, we consider it to be honest. An important condition

which must be held for successful operation of Bitcoin network is that honest nodes

10

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

altogether always have more processing power than any attacker, and no attacker (or

cooperating group of attackers) is able outperform all honest nodes together. While this

condition is held, an honest block chain will always be longer than any of the attackers’

chains, and will be preferred by other Bitcoin nodes [1].

3.3 Bitcoin implementation details

Though describing all implementation details of Bitcoin is beyond the scope of this

thesis, some details should be examined to understand the features of Bitcoin clients.

Every block consists of a block header and the actual content, i. e. transactions. The

block header contains the following information:

Table 1. Block header structure

Field Version Previous hash Merkle root Timestamp Bits Nonce

Bytes 4 32 32 4 4 4

Version is the same in all blocks

Previous hash – hash of the previous block header

Merkle root – hash which verifies the integrity of transactions in the block. The

procedure for calculating Merkle root is explained later in this chapter.

Timestamp – time when block was generated, as a UNIX timestamp (number of

seconds passed since 01.01.1970 00:00:00 UTC)

Bits – compact representation of the target, which designates the difficulty required for

proof-of-work (1)

Nonce – value to be changed when mining in order to find partial hash collision.

Instead of storing transactions themselves in the block header, only the Merkle root is

put there, which is the root hash of the Merkle tree computed from all the transactions

to be included in the block. Merkle tree is generated by the following procedure. First,

hashes of transactions are calculated. Then, these hashes are put pair wise and

hashed again, producing a new, smaller set of hashes. This step is repeated multiple

times until only one hash remains. Finally, this hash, which is called root hash, or

Merkle root, is put into the block header. The exact procedure for calculating the Merkle

tree can be found in the source code of Bitcoin clients [13]. As a result, every block

11

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

header has a fixed size of 80 bytes, and a possibility exists to verify transactions

without having the full block chain, but only the headers. This process, known as

"Simplified Payment Verification", is explained later, in the discussion about "headers-

only clients".

Figure 6 illustrates the structure of the actual block #183301 of the Bitcoin block chain.

Only five transactions are shown for simplicity, though the actual number of

transactions is 432. Tx1 to Tx5 are transactions, H1 to H5 are hashes of transactions,

Hash12, Hash34, Hash55 and Hash1234 are hashes of previous hashes. The previous

block hash starts with 13 zeros in hexadecimal representation, which means 52 zeros

in binary representation. Finding this proof-of-work requires 252 attempts on average.

Figure 6. Block #183301 of the Bitcoin block chain

The transaction structure in Bitcoin is more sophisticated than that described in Section

3.1. Since it is impractical to transfer individual monetary units ("coins") separately,

Bitcoin provides a way to split and merge "coins" in transactions. Each transaction has

"inputs" and "outputs", where each output identifies the address of the receiver of coins

and the amount received by him/her, and each input provides a reference to an earlier

output that is being spent and a digital signature of the payer with the corresponding

12

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

public key. An address in Bitcoin is a hash of the address owner’s public key. When

verifying a transaction, the actual public key found in the input is hashed and compared

to the address specified in the referenced earlier output. There are also "generation

transactions", which give a reward to someone who finds a block, and these

transactions have empty input. The digital signature algorithm used to sign transactions

is ECDSA (Elliptic Curve Digital Signature Algorithm), which has several advantages

over more widely used RSA/DSA: much smaller key size and faster computation while

the security factor is the same [14].

4 Client types

4.1 Full clients

Full clients are the ones which implement the full Bitcoin protocol and hold a full copy of

the block chain. This includes discovering and communicating with other nodes,

sending and receiving transactions and blocks, saving all valid blocks locally, verifying

all transactions received and broadcasting all legitimate transactions. In addition to

those, full Bitcoin clients also provide services for the user. These services are: storing

one's transaction history, private keys for the "wallet" and providing a Graphical User

Interface (GUI), command-line interface or an Application Programming Interface (API)

for viewing current balance, transaction history and initiating new transactions.

Some examples of full Bitcoin clients are: Original Bitcoin client [16], Armory [36],

Libbitcoin [37].

We will look more closely at the operation of the Original Bitcoin client, also known as

the Satoshi client. When Bitcoin was initially created, it was the only software that could

be used for dealing with Bitcoin, hence the name. The Satoshi client keeps the block

chain, nodes’ addresses and the wallet file in the client’s data folder. The wallet file

contains the wallet owner's transaction history, address book and private keys, so it

must be kept securely to prevent stealing of Bitcoins. Starting from version 0.4.0 the

Satoshi client has wallet encryption feature, which is discussed further in Section 5.3.

Since the early days of Bitcoin, and until version 0.3.22, the original client had mining

capability [17], which was removed because specialized mining clients are much more

efficient. Mining is further discussed in Section 4.5. Figure 7 shows the interface of the

13

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

Satoshi client. The overview screen has information about the current balance and

most recent transactions. A transaction is said to be unconfirmed if it was sent but not

included in a block yet.

Figure 7. Unconfirmed transaction in original Bitcoin client, version 0.5.0

Using a full Bitcoin client has some drawbacks. One of them is excessive network and

file system usage: a full client has to have a full copy of the block chain locally, which

occupies 2 gigabytes as of May 2012 and which will only grow in the future. Full clients

have to be aware of all transactions, so they receive and send transactions and blocks

all the time and consume network bandwidth. On the other hand, operating a full client

makes the Bitcoin network stronger and more difficult to attack.

4.2 Headers-only clients

For some users it may be difficult to store block chain data on their devices, for

example, on mobile phones. Fortunately for such users, there are headers-only clients

which don’t require that much storage space. BitcoinJ software library [18] and clients

based on it (e. g. Multibit [38]) do not download and store the full block chain but only

the block headers, which occupy only 14 megabytes as of May 2012 and could be kept

in memory even on mobile devices [18]. BitcoinJ downloads full blocks only sometimes,

14

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

when it expects incoming transactions and when it searches the block chain for keys

that are in the wallet. Even though headers-only clients are not able to verify

transactions against the full block chain, they are not less secure than full clients if

some of these precautions are taken:

 Waiting for multiple blocks (usually 6) before considering the payment complete

 Receiving a copy of the transaction in question from a node trusted to be

running a full Bitcoin client

 Receiving the transaction in question from multiple nodes [19]

BitcoinJ author Mike Hearn suggests a procedure for proving inclusion of a transaction

in a block without having to download the whole block, but only the transaction itself

and the corresponding Merkle branch [19]. Having this information is enough to verify

that the transaction was included in a particular block. This procedure is known as

Simplified Payment Verification and was also described in the original Bitcoin paper [1].

Using this procedure can save a lot of bandwidth and provide even greater security, but

unfortunately, it has not been implemented in either BitcoinJ or any of the full clients.

4.3 Signing-only clients

The name of signing-only clients means that they only sign transactions, but do not

deal with block chain or even block headers. Instead, these clients request data about

certain transactions from the server. If a transaction happens in the Bitcoin network that

involves one of the connected clients’ wallets, the server may also push such

information to a particular client that is interested in it. Signing-only clients send out

only their own transactions. Consequently, the overhead of running such a client is

much lower than that of full or headers-only clients, as the file system is used only for

our own keys and transactions, and we only send and receive transactions that

concern us.

Signing-only clients do not require much storage, network bandwidth and computing

power, and therefore can be implemented in various ways: as a desktop application

(Electrum [20]), mobile application (BitcoinSpinner [21]) or as a Web application

(BlockChain.info [22]). In Web-based signing-only clients, cryptographic features are

implemented in JavaScript and are executed in the Web browser, so the private keys of

the wallet are never sent to servers unencrypted.

15

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

A certain level of trust is required in the server we are connecting to, because the

server will know all our transaction history, and it is possible for the server operators to

send us false transactions and trick us into thinking that we have more or less money

than we actually do. This kind of attack is not dangerous and is not profitable for the

server operators, because it is not possible for them to trick us into signing transactions

against our will. In addition, this attack can be mitigated by connecting to multiple

servers or to our own server, which can be set up with open-source software [20, 23].

Figure 8 demonstrates the process of sending Bitcoins with the Electrum client. The

only required information is the “Pay to” (payee’s Bitcoin address) and the “Amount”.

The transaction fee is calculated automatically.

Figure 8. Transaction creation in the Electrum client

4.4 Thin clients

Thin Bitcoin clients (also called eWallets or browser-based wallets) are the ones which

do not hold private keys and do not sign transactions themselves. Instead, they send

commands to a remote server to perform these operations. The remote server acts in a

16

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

similar way to a bank, providing financial services to customers. The most important

advantage of thin clients over other types of clients is that the user does not have to

worry about backing up private keys and keeping them safe at the same time, as these

operations are performed on server-side on behalf of thin clients. Another benefit is that

thin clients are the easiest to set up: one only needs to visit a Web page of the eWallet

and set up an account in one minute.

Some examples of thin Bitcoin clients are: MyBitcoin [24], Instawallet [25], MtGox

wallet [26].

Instawallet does not even require registration: when visiting the page for the first time, a

new account is created automatically [25]. Figure 9 is a screenshot of Instawallet’s

transaction creation dialogue, which is very simple and straightforward.

Figure 9. Transaction creation in the Instawallet client

The high usability of thin Bitcoin clients does not come without a price. Ultimate trust is

required in the eWallet provider, since it not only knows the users’ transaction history,

but also has control over the users’ money. There is no obvious way to ensure that the

provider has the amount shown as the balance is backed by actual Bitcoins stored in

reserve. Finally, the provider can become a victim of loss or theft of Bitcoins, or of a

malicious takeover, which can result in a loss of customers’ funds.

17

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

On July 29, 2011 MyBitcoin, the most popular eWallet provider at the time became

inaccessible. After a week, it was announced that MyBitcoin was hacked and a half of

the customers’ funds were stolen by unknown persons [24]. This unfortunate event

proves that one needs to choose wallet providers carefully or, preferably, not use thin

clients at all.

In my opinion, thin Bitcoin clients do not have any advantage over existing banking

infrastructure, where money is managed by trusted third parties. The main idea of

Bitcoin is not to rely on them, but thin clients turn this idea down.

4.5 Mining clients

Bitcoin mining clients, or simply miners, are specialized clients that are not used to

send or receive Bitcoins; their only usage is mining. Initially, the only mining client was

the original Bitcoin client, which implemented mining on CPU. As more people started

to know about Bitcoin and became involved in mining, at the end of 2010 the difficulty

of finding blocks rose to such levels that it would take 1 year on average to generate a

block and get the 50 bitcoins reward if mining is done on a single computer with the

original client [28]. This was due to the fact that specialized mining clients were created

to perform mining on graphics card’s GPU, and these clients turned out to be 100 times

more efficient than the original Bitcoin client, which still used CPU mining [27]. As a

result, the built-in mining capability of the original client became obsolete and was

removed in June 2011 [17]. GPU still remains to be the most popular mining hardware

[27], and it can be used not only for mining, but also for playing games and using other

software applications that require a lot of computational resources.

Some examples of Bitcoin mining clients that implement GPU mining are: Phoenix [39],

CGMiner [40].

Even with a GPU, it took a few days on average to generate a block and get a reward.

If someone was unlucky, he would not get a reward for weeks, because the rewards

were too volatile. On 27th of November, 2010 forum member Slush suggested pooled

mining (initially it was called cooperative mining) to combine the power of multiple

miners to work on the same block [28]. Instead of getting a large reward once in a long

time, miners started to get smaller rewards more frequently. Pooled mining became

very popular and now accounts for more than a half of all Bitcoin mining [29].

Table 2 summarizes all client types and their features.

18

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

Table 2. Bitcoin client types and their features

5 Additional features

5.1 Deterministic wallets

Some Bitcoin clients, including the Satoshi client and Multibit, generate cryptographic

keys randomly. After initialization, the Satoshi client generates the wallet file with 100

keypairs in it [30], which correspond to 100 Bitcoin addresses. Since it is encouraged to

use a different address for every payment, 100 addresses will be used up quickly. If

that happens, the Satoshi client generates new keys when necessary. This way of

operation makes backing up the wallet difficult: to ensure that all keys are safe, we

need to do the backup after every transaction. If such backup is not done, a loss of the

original wallet will result in a loss of Bitcoins belonging to the newly-generated address.

The Satoshi client does not have any built-in backup functionality, and implementing

frequent and secure backups is not an easy task for those not involved in IT.

Fortunately, deterministic wallets provide a solution to this problem.

Some of the Bitcoin clients, for example, Electrum and Armory, generate keypairs and,

consequently, addresses deterministically. Deterministic generation means that any

19

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

number of cryptographic keys is generated from a relatively small seed. A known

deterministic algorithm produces a keypair from two arguments: seed and a sequence

number. If the same seed and number are later supplied to that algorithm, it will always

produce the same keypair [31]. As a result, when using a client with a deterministic

wallet, we only need to backup the seed, and it has to be done only once. If we have to

restore the wallet later, we will supply the seed to the client, and the client will restore

all keys from the seed and the history of transactions from the block chain [20].

5.2 Brainwallet

The concept of brainwallet is closely related to deterministic wallets. At the current level

of computing technology, randomly-generated numbers of 128 bits “can guarantee

uniqueness across space and time” [32]. After generating a random number of 128 bits

we can be sure that no one else in the universe is able to generate the same number

independently. This number can be used as a seed for a deterministic wallet. At the

same time, we can also convert this number to a human-readable form and memorize

it. 128 bits can be represented as 128 zeros and ones, or as 32 hexadecimal

characters, or as 24 characters in Base64 encoding [33]. However, the most efficient

way of memorizing a random number is to convert it to a mnemonic code. We choose a

list of common English words and agree that each word represents a certain sequence

of bits. By using this method, a 128 bit number can be represented by 12 English

words, which are easy to memorize. Figure 10 shows an example seed and the

corresponding mnemonic code in Electrum client.

20

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

Figure 10. Seed and mnemonic code in Electrum

Someone may put some money to a deterministic wallet, remember the seed and

remove the original wallet from the hard drive. After these actions have been

performed, it is not possible to recover the keys and the money in any way other than

to generate the keys from the seed. As the seed does not exist on any physical media,

the information on how to access the money is now in the person’s mind (brain) and

nowhere else. This is why this wallet becomes a brainwallet.

5.3 Wallet encryption

The threat of malicious software is very prominent nowadays, and any computer can

be compromised by viruses, Trojan horses and other types of malware. After Bitcoin

became more valuable, cybercriminals created malware that steals the wallet.dat file,

which holds the private keys for the Satoshi client [34]. Possession of this file enables

the attacker to steal all Bitcoins from the addresses in the wallet. If the wallet file is

backed up to some location which later becomes accessible by an attacker, it is also

possible for him to steal the money.

To mitigate these threats, original Bitcoin client developers introduced wallet encryption

in version 0.4.0 [35]. Other clients implemented a similar feature. Users may choose a

passphrase, which encrypts the private keys in the wallet, and unencrypted private

keys are never written to disk. Figure 11 shows the interface for setting a passphrase in

the Satoshi client. If an attacker gains access to an encrypted wallet, it is not possible

for them to steal any money from it, assuming the passphrase is not compromised. On

21

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

the other hand, it is still possible for malware to steal the money, if the malware runs on

the same computer and under the same privileges as the Bitcoin client itself.

Figure 11. Setting a passphrase in the Satoshi client

5.4 Watch-only wallets

For merchants, both online and offline, who accept payments from the public, it may be

dangerous to keep the wallet with the private keys on a computer that is exposed to the

public, such as an Internet server or a computer in a shop. Such computers can

become targets of cybercriminals and, if they succeed in infecting these computers with

malware, the merchants may have their funds stolen. Publicly exposed computers are

more vulnerable to malware infestations than other machines which are not publicly

known. Fortunately for merchants, the Bitcoin protocol provides a possibility to accept

and track payments without having access to private keys.

The Armory client [36], the Electrum client [31] and some Web-based services such as

BitcoinMonitor [41] provide watch-only wallets. These wallets have neither private keys

nor any information, such as a seed, on how to obtain them. Instead, watch-only

wallets have only the public keys and the corresponding Bitcoin addresses. This

information is enough to watch the block chain for transactions involving given

addresses, but not enough to initiate transactions with them. Consequently, if an

attacker gains access to a computer running a watch-only wallet, they will not be able

to steal any money. The only useful information an attacker will learn is that certain

addresses belong to the same person.

Watch-only wallets can be either randomly-generated or deterministic. The

implementation of randomly-generated watch-only wallets is relatively straightforward:

the block chain is watched for given addresses. The drawback here is that we need to

22

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

either store a large reserve of public keys or send new public keys when they are

needed.

The digital signature algorithm used in Bitcoin, the Elliptic Curve Digital Signature

Algorithm, provides a possibility to generate an infinite number of public keys

deterministically from a master public key, which in turn is derived from the seed [42].

Merchants can use the following procedure. First, a seed is generated and stored on a

private, secure computer. A master public key is derived from the seed and copied to

the public-facing computer. The Bitcoin client on the public-facing computer uses the

master public key to generate new addresses when they are needed. After an address

is given to a customer for making a payment, the block chain is watched for

transactions involving this address. If the public-facing computer is compromised, no

money will be stolen because no private keys can be derived from the master public

key [42].

5.5 Paper backups

There may be reasons to make a backup copy of a Bitcoin wallet not on digital media,

but on plain paper instead. Some Bitcoin users prefer to keep their long-term savings

on paper to ensure greater security. If the Bitcoin client uses a deterministic wallet, the

seed can be printed on paper and put into a safe place. The Armory client [36] is the

only one that has paper backup functionality built-in. Figure 12 shows an example

paper backup made with the Armory client. The QR code is provided for convenience

to avoid having to type letters manually when restoring the wallet from a backup. The

Electrum client doesn’t have a built-in printing feature, but its wallet could also be easily

backed up on paper by printing the seed manually.

23

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

Figure 12. Paper backup preview in the Armory Bitcoin client

Backing up wallets with randomly-generated keys is more complicated. Such wallets

may have hundreds of keypairs which would occupy multiple pages. Restoring from

such a backup would be a long and tedious process. One of the solutions to backing up

non-deterministic wallets is to transfer the money to be backed up to one address and

print out the corresponding private key. Another approach is to transfer the money to a

deterministic wallet and perform the backup as described earlier.

5.6 QR codes

There are other uses of papers with QR codes in Bitcoin than backups. Papers with

printed QR codes of Bitcoin addresses can be used to accept payments. A poster with

a Bitcoin address and some text encouraging donations can be put on a wall in a public

24

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

place to raise funds. BitcoinSpinner [21] has the ability to scan QR codes with the

phone’s built-in camera and, if the scanned code is a Bitcoin address, send money to it.

A paper with a private key printed on it can be used as a means of payment by itself.

The person receiving the payment can scan the code, sign a transaction by using the

scanned private key and transfer the money to his/her own wallet.

Merchants can show a Bitcoin address as a QR code on a screen to accept payments

from customers at the point of sale. In this setup, a watch-only wallet described in

Section 5.4 is very useful as it allows confirming the receipt of the money immediately

after it is sent while keeping these Bitcoins inaccessible by anyone at the point of sale.

5.7 Bitcoin URI scheme

When using a Web browser, we open new pages and download files by clicking on

links. Every link on the Web has a URI in it, which tells the browser how to access

certain content [46]. Links greatly simplify Web browsing, as entering URIs manually

takes much longer time than clicking. To simplify Bitcoin payments and to avoid having

to type addresses and amounts manually, the Bitcoin URI scheme was introduced.

As World Wide Web creator Tim Berners-Lee suggested, a URI consists of a scheme

and a path, which are separated by a colon. A path describes the resource itself, and a

scheme denotes the namespace for that resource [46]. There are many URI schemes

nowadays, and the most popular one is HTTP, which is used to access Web pages. In

the recent years, links with the MAGNET URI scheme became a popular way to

identify resources in BitTorrent network by their hash [47]. In a similar way, the Bitcoin

URI scheme is used to identify addresses and (optional) amounts to be paid. If a

merchant requests a customer to pay 1 Bitcoin, the URI may look similar to the

following:

bitcoin:1LVa9TTgzdNv98JNGWF3v8WsdK2XwmG3io?amount=1X8

Several Bitcoin clients, including Electrum [31] and Armory [36] support Bitcoin URIs

and fill in the money sending form with the data from the URI when the link is clicked

on. Mobile clients, such as BitcoinSpinner [21], can recognize Bitcoin URIs in QR

codes and help the user to avoid typing the address and amount manually.

25

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

6 Future enhancements

6.1 Multi-signature transactions

After the introduction of wallet encryption and watch-only wallets, security of Bitcoin

clients improved dramatically, but still remains to be a valid concern. During 2011 and

the first half of 2012, there have been several large-scale security breaches and heists

whose victims were mining pools, Bitcoin exchanges and their customers [48, 49, 50].

The reasons for these unfortunate events were not only negligence and disregard of

security practices, but also inherent weaknesses in the current Bitcoin protocol.

These weaknesses stem from the fact that the possession of the private key for a

certain address gives ultimate control over all money belonging to that address, and

the private key is always needed for signing transactions. To improve security, we may

try to implement some multi-factor authentication procedure, as was done by

BlockChain.info wallet service: Web-based Bitcoin client requests you to confirm

transactions on a mobile phone [22]. Even though this procedure may improve security,

in the very end, the benefits of any multi-factor authentication procedure are lost when

one of the parties receives the private key to perform signing. If this party is

compromised, all security is lost.

The solution to overcome these problems is to use multi-signature transactions. These

transactions require multiple signatures to be completed instead of one. We may think

of a multi-signature transaction as of a transaction that has more than one recipient

address, and several signatures are needed to spend this money further. Gavin

Andresen, the main developer of Bitcoin, proposed two new types of transactions: 2-of-

2 and 2-of-3 [51]. In a 2-of-2 transaction, money is sent to 2 addresses, and signatures

from owners of both addresses are needed to spend this money. In a 2-of-3

transaction, money is sent to 3 addresses, and signatures from any 2 of them are

enough to spend this money. The actual implementation is more sophisticated and is

described in [52]. To initiate a multi-signature transaction, money is sent to an address

which is a hash of 2 or 3 public keys of receiving parties. This address is recorded in

the output part of the transaction. To spend this transaction later, 2 signatures must be

supplied in the input part of the next transaction. Figure 13 illustrates the process of

creating and spending a 2-of-2 transaction. Owner 1 sends a transaction to the 2nd

Owner’s multi-signature address, which is generated from the public keys of the 2nd

26

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

Owner’s home computer and mobile phone. Later Owner 2 spends this transaction to

Owner 3 by signing the hash with two private keys: the home computer’s private key

and the mobile phone’s private key.

Figure 13. 2-of-2 multi-signature transaction creation and spending

The process of constructing multi-signature transactions is more complex than for

normal transactions and involves negotiation between several parties. The exact

procedures are not defined as of May 2012. In a 2-of-2 transaction, receiving parties

need to collaborate to construct the receiving address. One of the possible procedures

may include exchanging public keys first, creating the receiving address independently

and verifying that the same address was created. When sending this address to the

payer, both receiving parties need to be sure that the same address was sent.

The security of Bitcoin wallets can be greatly improved with the use of 2-of-2

transactions. We may store one of the private keys on a computer and another one on

a mobile phone. After public keys have been exchanged between the computer and the

wallet, we may generate the common receiving address and send money there from a

normal wallet. From this moment, if we want to spend the money on the common

address, we need signatures from both the computer and the phone. If either the

computer or the phone is compromised by an attacker, the money will not be stolen. At

the same time, if either the computer or the phone is lost and we do not have the

27

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

backup of the data, the money on the common address will be lost. But, fortunately,

this drawback can be overcome with 2-of-3 transactions.

A third-party service can be used to hold the third private key in a 2-of-3 transaction. In

normal circumstances, we may use the same computer and phone, since 2 signatures

are enough to spend the transaction. If one of the devices breaks, we may ask the

third-party service to sign our transaction. It should be noted that for better security,

any authentication credentials for the third-party service should not be entered on

either the computer or the phone, as they may become compromised together with an

additional private key. Instead, they should be entered on a completely different device.

This procedure ensures both security and availability of Bitcoins in case of a failure.

Another application for 2-of-3 transaction is three-party escrow. If the Buyer purchases

certain goods from the Seller, they may choose the Arbiter, trusted by both the Buyer

and the Seller to resolve disputes. Before the shipping of goods, a 2-of-3 transaction is

initiated. The Buyer sends money to the common address constructed from the public

keys of the Buyer, the Seller and the Arbiter. If the purchase runs smoothly and the

Buyer is satisfied, he/she gives the signature to the Seller, who adds his/her own

signature and gets the money. If the Buyer is not satisfied, the Arbiter has to decide

whether the Seller fulfilled the conditions of the purchase. Depending on the Arbiter’s

decision, he/she gives his/her signature to either the Buyer or the Seller.

Multi-signature transactions also have certain drawbacks: they require sophisticated

protocols to be created and occupy a few times more space in the block chain than

normal transactions. Deterministic wallets are not usable for multi-signature

transactions when third parties are involved where we do not have control over their

wallet seeds. In these cases, we need to save copies of public keys involved in those

transactions after they happen. This deprives deterministic wallets of their advantages

over randomly-generated ones.

At the time of writing (May 2012) multi-signature transactions have only been

implemented in the original Bitcoin client, and only in its command-line interface [54].

Even though some proposals for negotiating multi-signature transactions exist [53], a

lot of work needs to be done to ensure compatibility and correct operation of the

protocol.

28

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

6.2 Scalability

At the current (May 2012) level of 20 000 transactions in Bitcoin network per day [56], a

normal desktop computer is powerful enough to be a full Bitcoin node and to do all

activities associated with it. If the popularity of Bitcoin grows further and the number of

transactions per day increases, at some point normal home computers will not cope

with increased load. A well-known security researcher Dan Kaminsky criticised Bitcoin

for lack of scalability [55]. To make Bitcoin more scalable, several optimizations have

been proposed.

The author of the BitcoinJ client Mike Hearn suggests using the Simplified Payment

Verification procedure, which allows clients to perform verification of transactions

without having a full copy of the block chain [19]. Implementing this procedure may

significantly decrease the amount of disk space required for full clients to operate.

Another way to improve storage efficiency is to remove all transactions that are already

spent from the block chain. It has been calculated that doing so reduces the size of the

block chain by 71 percent [57].

29

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

7 Conclusion

Even though Dan Kaminsky characterized Bitcoin as “a really strange use of

cryptography” [55], it serves its purpose quite well. Creating an account is as easy as

installing a software application. Sending and receiving payments is simple and does

not require submitting any documents anywhere. The Bitcoin network is very reliable

and as of June 2012 has had only one major disruption since its inception in 2009.

The growth rate of the Bitcoin ecosystem and the underlying technology is tremendous.

Bitcoin was first described in 2008 and started operating in 2009. During 2010, GPU

mining clients were being developed, and miners gradually switched from CPU mining

to GPU mining. In the late 2010, pooled mining was introduced and quickly became the

dominant form of mining. After Bitcoin was featured in mass media in 2011, the Bitcoin

community and the price of Bitcoins started growing even faster. Unfortunately, the

sudden growth of Bitcoin’s popularity led to a series of robberies and data leaks, which

severely impacted the public’s trust in Bitcoin and the price of it. One of the reasons for

these events was a lack of security features in Bitcoin clients: in the beginning of 2011

wallet encryption and watch-only wallets did not exist. However, a lot of talented

software developers joined the Bitcoin community in 2011. As a result, most of the

features described in Chapter 5 were introduced, designed and implemented during

2011. Some technologies, such as proof-of-work and deterministic generation of public

keys, were used on a large scale for the first time in Bitcoin clients.

Usability and user-friendliness of Bitcoin is improved with deterministic wallets, QR

codes and Bitcoin URIs. Wallet encryption, watch-only wallets and paper backups

enhance security of Bitcoin clients. Brainwallets boost both usability and security.

These features together brought Bitcoin user experience much closer to that of existing

payment systems.

Bitcoin is still in its infancy, and its impact on the world’s economics is negligible. We

expect both the economics and the technology behind Bitcoin to evolve and expand.

Multi-signature transactions, when they are implemented, will provide a vast array of

innovative usages of this currency. Since Bitcoin ecosystem develops so fast, it is

impossible to predict what will happen to it in the next year. We are looking forward to

seeing new ideas and developments.

30

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

REFERENCES

[1] Nakamoto, S. 2008. Bitcoin: A peer-to-peer electronic cash system. Consulted 01.05.2012
http://bitcoin.org/bitcoin.pdf

[2] Bitcoin wiki. Trade. 2012. Consulted 01.05.2012 https://en.bitcoin.it/wiki/Trade

[3] Bitcoin forum. 2010. Consulted 01.05.2012 https://bitcointalk.org/index.php?topic=224.0

[4] Bitcoin charts. 2012. Consulted 01.05.2012 http://bitcoincharts.com/markets/

[5] Chaum, D. 1982. Blind signatures for untraceable payments. Consulted 01.05.2012
http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982
.PDF

[6] Grigg, I. 2005. Triple Entry Accounting. Consulted 01.05.2012
http://iang.org/papers/triple_entry.html

[7] NEXT. 1999. How DigiCash Blew Everything. Consulted 01.05.2012
http://cryptome.org/jya/digicrash.htm

[8] Schneier, B. 1996. Applied Cryptography, Second Edition. USA: John Wiley & Sons, Inc.

[9] Dai, W. 1998. B-money. Consulted 01.05.2012 http://www.weidai.com/bmoney.txt

[10] RowIT. 2012. Bitcoin Peer to Peer Network Status. Consulted 01.05.2012
http://bitcoinstatus.rowit.co.uk/

[11] Back, A. 2002. Hashcash - A Denial of Service Counter-Measure. Consulted 01.05.2012
http://www.hashcash.org/papers/hashcash.pdf

[12] Bitcoin wiki. 2012. Mining. Consulted 01.05.2012 https://en.bitcoin.it/wiki/Mining

[13] BitcoinJ. Source code. 2012. Consulted 01.05.2012
https://code.google.com/p/bitcoinj/source/browse/core/src/main/java/com/google/bitcoin/core/Bl
ock.java#584

[14] Standards for Efficient Cryptography. 2000. Recommended Elliptic Curve Domain
Parameters. Consulted 01.05.2012 http://www.secg.org/collateral/sec2_final.pdf

[15] Cohen, B. 2008. The BitTorrent Protocol Specification. Consulted 01.06.2012
http://www.bittorrent.org/beps/bep_0003.html

[16] Original Bitcoin client. 2012. Consulted 01.06.2012 https://github.com/bitcoin/bitcoin

[17] Bitcoin version 0.3.22. 2011. Consulted 01.06.2012
http://bitcoin.org/releases/2011/06/05/v0.3.22.html

[18] BitcoinJ. 2012. Consulted 01.06.2012 https://code.google.com/p/bitcoinj/

[19] BitcoinJ. 2012. Security model. Consulted 01.06.2012
https://code.google.com/p/bitcoinj/wiki/SecurityModel

[20] Electrum client. 2012. Consulted 01.06.2012 http://ecdsa.org/electrum/

31

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

[21] BitcoinSpinner client. 2012. Consulted 01.06.2012
https://code.google.com/p/bitcoinspinner/

[22] BlockChain.info Wallet. 2012. Consulted 01.06.2012 https://blockchain.info/wallet/

[23] Bitcoin Client API. 2012. Consulted 01.06.2012 https://code.google.com/p/bccapi/

[24] Bitcoin wiki. 2012. MyBitcoin. Consulted 01.06.2012 https://en.bitcoin.it/wiki/MyBitcoin

[25] Instawallet. 2012. Consulted 01.06.2012
https://www.instawallet.org/w/_cmgZpXGT6iE9oh_tX0hhg

[26] MgGox wallet. 2012. Consulted 01.06.2012 https://mtgox.com/

[27] Bitcoin wiki. 2012. Mining hardware comparison. Consulted 04.06.2012
https://en.bitcoin.it/wiki/Mining_hardware_comparison

[28] Bitcoin forum. 2010. Cooperative mining. Consulted 04.06.2012
https://bitcointalk.org/index.php?topic=1976.0

[29] BlockChain.info. 2012. Hashrate distribution. Consulted 04.06.2012
http://blockchain.info/pools

[30] Bitcoin forum. 2012. Key pool feature for safer wallet backup. Consulted 04.06.2012
https://bitcointalk.org/index.php?topic=1414.0

[31] Electrum client. 2012. Source code. Consulted 04.06.2012
https://gitorious.org/electrum/electrum/blobs/master/lib/wallet.py

[32] IETF. 2005. A Universally Unique IDentifier (UUID) URN Namespace. Consulted
04.06.2012 https://www.ietf.org/rfc/rfc4122.txt

[33] IETF. 2006. The Base16, Base32, and Base64 Data Encodings Consulted 04.06.2012
https://tools.ietf.org/html/rfc4648

[34] F-secure. 2011. Pickpocket Targets Wallets at Bitcoin Forum. Consulted 04.06.2012
https://www.f-secure.com/weblog/archives/00002187.html

[35] Bitcoin version 0.4.0. 2011. Consulted 04.06.2012
http://bitcoin.org/releases/2011/09/23/v0.4.0.html

[36] Armory Bitcoin client. 2012. Consulted 04.06.2012 http://bitcoinarmory.com/

[37] Libbitcoin. 2012. Consulted 04.06.2012 https://gitorious.org/libbitcoin/libbitcoin/

[38] Multibit Bitcoin client. 2012. Consulted 04.06.2012 http://multibit.org/

[39] Bitcoin forum. 2011. Phoenix miner. Consulted 04.06.2012
https://bitcointalk.org/index.php?topic=6458.0

[40] Bitcoin forum. 2011. CGMiner. Consulted 04.06.2012
https://bitcointalk.org/index.php?topic=28402.0

[41] BitcoinMonitor. 2012. Consulted 05.06.2012 http://www.bitcoinmonitor.net/

[42] Bitcoin forum. 2011. Deterministic wallets. Consulted 05.06.2012
https://bitcointalk.org/index.php?topic=19137.0

[43] Shen, X.; Yu, H.; Buford, J.; Akon, M. 2010. Handbook of peer-to-peer networking. USA:
Springer Science + Business Media

32

TURKU UNIVERSITY OF APPLIED SCIENCE, BACHELOR’S THESIS | Rostislav Skudnov

[44] Bitcoin wiki. 2012. Block chain. Consulted 05.06.2012 https://en.bitcoin.it/wiki/Block_chain

[45] Bitcoin wiki. 2012. URI scheme. Consulted 05.06.2012
https://en.bitcoin.it/wiki/URI_Scheme

[46] Berners-Lee, T. 1994. Universal Resource Identifiers in WWW. IETF. Consulted 06.06.2012
https://tools.ietf.org/html/rfc1630

[47] Hazel, G.; Norberg, A. 2008. Extension for Peers to Send Metadata Files. Consulted
06.06.2012 http://bittorrent.org/beps/bep_0009.html

[48] Bitcoin forum. 2011. “bitcoin7.com 'hacked'. Database and wallets 'stolen'” Consulted
06.06.2012 https://bitcointalk.org/index.php?topic=46982.0

[49] Bitcoinmedia. 2012. Compromised Linode & coins stolen from slush, faucet and others.
Consulted 06.06.2012 http://bitcoinmedia.com/compromised-linode-coins-stolen-from-slush-
faucet-and-others/

[50] The Bitcoin Trader. 2012. Developing: Bitcoinica "Hacked" - Potentially 18,000 BTC
($90,000 USD) Stolen. Consulted 06.06.2012
http://www.thebitcointrader.com/2012/05/developing-bitcoinica-hacked.html

[51] Andresen, G. 2011. M-of-N Standard Transactions. Consulted 06.06.2012
https://en.bitcoin.it/wiki/BIP_0011

[52] Andresen, G. 2012. Pay to script hash. Consulted 06.06.2012
https://en.bitcoin.it/wiki/BIP_0016

[53] Reiner, A. 2011. Multi-Sig Transaction Distribution. Consulted 06.06.2012
https://en.bitcoin.it/wiki/BIP_0010

[54] Bitcoin version 0.6.1. 2012. Consulted 06.06.2012
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.0/

[55] Kaminsky, D. 2011. Some thoughts on Bitcoin. Consulted 06.06.2012
http://www.slideshare.net/dakami/bitcoin-8776098

[56] Blockchain.info. 2012. Number of transactions per day. Consulted 06.06.2012
http://blockchain.info/charts/n-transactions

[57] Bitcoin forum. 2011. Script calculates 71% freeable transactions. Consulted 06.06.2012
https://bitcointalk.org/index.php?topic=9461

