

Tu Tra

GEN

Work O

Helsinki M

Bachelor

Informatio

Thesis

Septembe

n Le

ERIS

Order Fo

Metropolia U

of Engineer

on Technolo

er 12, 2012

Work

ollow Up

University of

ring

ogy

k Orde

ps Impro

f Applied Sc

er Man

ovement

ciences

nagem

ts

ment

Author(s)
Title

Number o
Date

Degree

Degree Pr

Specialisa

Instructor

This proje
for improv
GENERIS
Order plat
with existi
all work o
friendly an

Improvem
cases. It w
using the
energy inf
mentation
gramming
use cases

The result
crease us
flow defini
were certa
on the wo
described

Keywords

f Pages

rogramme

ation option

ect was carr
ving the cu
S is a standa
tform needs
ing work or
rder data w

nd it must fo

ment ideas w
was necess
existing GE

formation sy
 was done

g language.
s using a tes

t of the pro
ers’ produc
ition object
ain limits wh
orkflow defin

in this thes

Tu Tr
GENE

40 pa
12 Se

Bach

Inform

Inform

Saka
Jaana

ried out for
rrent Work
ard informa
s a more eff
rders neede
within the sy
ollow a com

were collec
sary to imp
ENERIS M
ystem that
 using the
 The proto
st database

oject was th
ctivity in bas
in GENER

hich elimina
nition objec
sis.

GE
en

ran Le
ERIS Work

ages
eptember 20

elor of Engi

mation Tech

mation Syst

ri Seppälä,
a Holvikivi,

Process Vis
Order Man

ation system
ffective man
ed to be im
ystem. The

mmon design

cted based
plement a p

Meter Asset
is built on
Microsoft F

otype neede
e.

he impleme
sic use cas
IS platform

ated the pos
ct. However

ENERIS, M
nergy inform

Order Man

012

ineering

hnology

tem

Team Man
Principal Le

sion Oy and
nagement (
m for differe
nagement in
proved, so
new user i

n pattern.

d on existi
prototype fo
t Managem
the Window
Foundation
ed to be ev

entation of
es. This the
, which res
ssibility to d
r, a sugges

AM, user in
mation syste

nagement

ager, EDM
ecturer

d the main
(a part of G
ent energy m
nterface. Th
that users

interface sh

ng requirem
or Work Ord
ment platfor
ws operatin

Class fram
valuated an

new user i
esis also an
embled the

develop new
stion for a n

nterface, de
em, C++ MF

Solutions

goal was to
GENERIS a
markets, the
he process
could effec

hould be pro

ments and
der Follow
rm. Since G
g system, t

mework and
nd tested a

nterfaces w
nalysed the
e work orde
w work orde
new data m

esign patter
FC, Oracle

Abstract

o find soluti
application).
e current W
of following

ctively man
oductive, us

analogue
w Ups mod
GENERIS is
the new im
d the C++ p
against spec

which could
 existing wo
r object. Th

er object ba
model was a

rn, data mo

t

ons
 As

Work
g up
age
ser-

use
dule
s an
ple-
pro-
cific

d in-
ork-
here
sed
also

del,

Contents

1 Introd

2 Theor

2.1

2.2

2.3

2.4

2.5

2.6

3 GENE

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4 Work

4.1

4.2

4.3

4.4

5 C++ Im

5.1

5.2

6 Discus

s

uction

retical Back

Energy Dat

2.1.1 Met

2.1.2 Wo

Usability

User Interfa

Object-Orie

2.4.1 Mod

2.4.2 Mic

Relational D

Data Mode

ERIS Work

GENERIS P

GENERIS B

GENERIS W

GENERIS W

Existing Wo

Roll-Back F

Binary XML

Order Follo

New View f

Filtering Su

Work Orde

Additional I

mplementat

C++ MFC W

User Interfa

5.2.1 MFC

5.2.2 MFC

5.2.3 GE

ssion

kground

ta Managem

ter Asset M

rk Order

ace Pattern

ented Progr

dular Softw

crosoft Foun

Database M

l

Order

Platform

Browser

Work Order

Work Order

orkflow Def

Feature

L Data Mod

ow Ups Imp

for Related

upport for S

r Data Tab

nformation

tions

Windows Ap

ace Implem

C List View

C Tab View

NERIS Doc

ment System

anagement

ramming

are Design

ndation Clas

Managemen

r Object

r Follow Up

finitions

el

rovements

Work Orde

ummary Ta

for Work O

pplication S

mentation

w Control

w Control

cument

m

t (MAM) Pla

ss

nt System

s

ers

ab

Order Data

Structure

atform

1

3

3

3

4

4

5

7

8

9

9

10

11

11

12

15

17

18

21

21

23

23

26

27

29

31

31

32

32

33

35

37

7 Concl

Reference

usion

es

38

39

Abbreviations and Acronyms

CIS Customer Information System

EDMS Energy Data Management System

GENERIS General ENERgy Information System

GOF GENERIS Objects and Fields

IT Information Technology

MAM Meter Asset Management

MDM Meter Data Management

MFC Microsoft Foundation Class

OOP Object-Oriented Programming

RDBMS Relational Database Management System

SQL Structured Query Language

UI User Interface

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

1

1 Introduction

Process Vision Oy is an IT company specialized in information systems and applica-

tions for the energy business. The company provides solutions for measurement data

warehouses, which is a software product called GENERIS [1,1]. Process Vision Oy has

focused on developing versatile solutions for the deregulated energy market targeted

for distribution companies, energy retailers, balance coordinators and system opera-

tors. These solutions consist of wide measurement data warehouses, systems for bal-

ance settlement and balance management, data transmission functions and systems

for contract and portfolio management [2,1].

In this thesis, an internal development project for Process Vision Oy was described.

The main objective was to find improvement solutions for GENERIS Work Order Man-

agement, which is an integrated part of GENERIS Energy Data Management System.

As GENERIS is a standard system solution for the energy market, it runs various busi-

ness processes for different market parties. Each customer configuration has its own

work order definitions with different sets of data fields. Due to the large number of work

orders and their data fields, managing existing work orders effectively has become a

challenging task. Thus, it was necessary to improve the current Work Order Follow Ups

module, so that users could easily manage all existing work order data inside the

system. The improvements needed to be user-oriented and satisfy all technical re-

quirements of the GENERIS coding practice. The new user interface should also follow

the current design pattern of GENERIS Browser and be easy to learn by all general

users.

Moreover, the data model needed to be improved in such a way that it could support

user-defined fields and data exchange between different systems. The new data model

should be compatible with previously installed databases and the current function sys-

tem. Another alternative is to re-use the existing data model of the Workflow definition

object in the GENERIS platform. The possibilities of the new data model are analysed

and discussed in this thesis.

The main tasks of the project involved implementing a more effective user interface for

managing existing work orders and analysing different possibilities to improve the exist-

ing data model. The target of the study was a robust, version-controllable Work Order

Management with an improved Work Order Follow Ups module based on the existing

2

Meter Asset Management (MAM) platform. All of the improvements needed to be made

based on the analysis of the current system implementation and all analogue use

cases in the process.

3

2 Theoretical Background

2.1 Energy Data Management System

The Energy Data Management System (EDMS) is a system that provides data ware-

house solutions for energy markets. The system offers fundamental functionalities for

managing and manipulating energy-related information using data-storage devices. An

important role of EDMS is to integrate data from physical measurements into a time

series format. This format is used to record consecutive measurement readings during

a specific time interval. The information source may relate to different aspects of the

energy business. The data can be about metering devices, their physical properties

and reading measurements. The system can be used for different sectors of the energy

industry such as gas, electricity and district heating. It also provides a communication

channel between various market parties as well as customers. [3,1-2.]

An important requirement is that the system supports a daily routine in which a large

amount of data is processed hourly. EDMS modules are designed to perform the tasks

of network operators, balance coordinators and electricity retailers. Metering point-

related information such as the network owner, retailer, validity time is also managed

by the system. One important feature of a standard EDMS system is the support for

advanced data processing operations such as validating, updating, calculating, report-

ing, invoicing and data transferring between different systems. Moreover, it should be

possible to integrate existing data into other customer information systems (CIS). [3,3.]

2.1.1 Meter Asset Management (MAM) Platform

The Meter Asset Management (MAM) platform is an important part of GENERIS

Energy Data Management System. It provides versatile tools for managing various

aspects of meter-related data as well as data collection tasks for device assets. The

GENERIS MAM platform provides advanced solutions for a wide range of energy com-

panies, from a small local electricity company to a multinational network owner. Some

of the most significant features of MAM are about asset management and meter

reading task management [4,6].

The integrated modules of the platform consist of different utilities for managing energy

devices and their data contents, which can satisfy the most significant requirements of

4

an energy data warehouse. The main functions of the MAM platform involve managing

metering device details, device data, creating reports, installation and maintenance

tasks. As for the district heating and district cooling utility, the process of meter

calibration and testing can also be arranged using the system. Some of the basic pro-

cesses also involve customer-related services (such as registering a new customer and

the change of metering configuration or retailer). Moreover, MAM integrates with

scheduled remote data collection from an external data source such as a meter con-

centrator using the provided Application Programming Interface. [4.]

2.1.2 Work Order

Work order is an abstract unit of work requested by customers or a company’s staff.

Work orders usually take place at the customer side, which is equivalent to a service

order in which the location, date and nature of the work are recorded [5,6]. In the

energy market, there are many work order types which are related to different aspects

of the meter asset management. Typically, the targets of work order involve individual

or a site of multiple metering points and meter devices. By creating a new work

order, energy companies can conduct various tasks on their meter assets, including

meter change, meter readings gathering and estimation, meter configuration, mainte-

nance, connection and disconnection. Work orders data is stored in a database and

can be exported to different formats (paper, PDA or structured text file…). [5,8-10.]

GENERIS Work Order is the object type that is used to represent work order inside

GENERIS MAM platform. It is used to create new on-site tasks relating to metering

assets. Generally, the site where a work order is carried out is a metering point of a

network operator. This involves installation, uninstallation, changing and maintenance

of meter devices. The manual process of gathering the readings from meter devices

can also be requested using a work order item. In brief, GENERIS Work Order object

can be considered an interface for handling work order electronically. It can be

exported to paper/electronic format as well as take input data from users and save it

into the system. [5,12.]

2.2 Usability

In software engineering, the term usability refers to the ease of using or learning how to

use an application from the user’s point of view. Basically, software is also an object

5

that requires human interaction. For instance, the user interacts with a Windows appli-

cation by using its graphical user interface. Thus it is important to design the user inter-

face using a generalized usability philosophy, which makes the software easier to

learn. Good usability itself is the best practice to take a complex computer system into

daily use. It concerns effectiveness, efficiency and satisfaction when the user accesses

certain functions of the system in order to achieve specific goals. [6,4.]

The effectiveness of the system is defined by the extent to which the user’s intended

purposes can be fulfilled with accuracy and good performance. Meanwhile the term

efficiency reflects the rate of speed at which users can complete specific tasks. If the

users can achieve their targets faster and with less effort, the system is considered to

have better efficiency. Efficiency also needs to be consistent across different parts of

the system. Finally, user satisfaction is measured based on a user’s attitude and per-

ceived acceptability towards the system. It is the key factor that is used to evaluate the

usability of a system. [6,7.]

Software with good usability is considered to be user-friendly and provide users with

higher quality experience. In order to achieve good software usability, developers do

not develop the software solely based on the oriented technology but with the intended

users in mind. In other words, the interface is designed based on the user workflow, so

that they can get the task done in the easiest manner. This method makes it possible to

identify the needed functionalities as well as prevent any design flaw that might have

occurred when the product is taken into production. [6,9.]

2.3 User Interface Pattern

In principle, a pattern is a common systematical feature that improves the habituation

of the subject. It can be the user interface of a software application or the outlook of a

product. The ultimate target of a pattern is to help users to understand the object more

easily and have better experience when using it. Thus it makes the process more ef-

fective and usable. [7,3.]

The User interface (UI) pattern can be considered a concrete principle to build the user

interface design from the ground up. It is a fundamental element and needs to be con-

sistent across different environments on which the applications operate. However, the

pattern only sets the standard for user interface. It plays the role of a basic guideline for

6

designers to make the application interface self-consistent. Depending on the applica-

tion context, the user interface design may differ from the design pattern, for example,

to satisfy a special user’s need or due to a technical requirement. [7,17.]

As a software project grows both in size and complexity, it starts to integrate more and

more functionalities and user interfaces in the same application. For instance, a Win-

dows application is typically a composite of different user interface toolkits. The user

interface is built from a handful of simple controls (such as text fields, labels, images

and buttons). Users might encounter different graphical interfaces in the same software

application. This is the reason why the user interface pattern needs to be taken into

consideration. In general, it is the structural and behavioural user interface that im-

proves the habitual familiarity of end-users. A consistent design pattern helps users

understand and adapt to the interface more easily within the same application domain.

[7,31.]

A pattern can be built based on researching practical user experience. At first, the re-

searcher needs to recognize the target user groups. Since each user group has a

unique way of perceiving their surroundings, there is no single pattern which can satisfy

the needs of all user groups. A design pattern may be compatible with certain users but

not everyone. The ultimate goal of designing interface patterns is to identify the most

common behaviour patterns. The researchers need to find out what is generally true

and accepted by most users. In order to achieve this target, it is necessary to learn

about different users and then remove the odds from the common pattern. Specifically,

it is necessary to learn about the following topics from users’ points of view:

 Why would users use the design? (their goals)

 What do users do with the design? (their tasks)

 How do users describe the design? (their language)

 How familiar are users with the design? (their skills) [7,17.]

It is important to establish reality grounding by focusing the learning process only on

potential users. The learning method can be based on direct observation of on-site

users or by conducting case studies and conducting surveys. All of the above methods

are regarded as data collecting methods. Another approach would be to design a pat-

tern based on an imaginary subject which would capture the most important aspects of

all users in the target user groups. [7,7.]

7

2.4 Object-Oriented Programming

Object-Oriented Programming (OOP) is a concept used in the process of software de-

velopment. The basic principle is to organize the application into classes and make the

code reusable. In the older procedural programming method, the source code consists

of a series of instructions that take place one after another. The developers use logical

expression to determine the condition in which a procedure takes place and when the

program ends. The same code can be considered to be a unique solution for certain

problems only. Thus it is difficult to reuse the same code in different projects. Also in

order to solve a large problem, it is necessary to break it into several smaller pieces

and work on each of them separately as a single problem. This process needs to be

repeated until each problem can be solved directly without further analysis. [8,6.]

However, this is not the case for the OOP approach. The basic concept used in OOP is

the object, which contains both data variables and procedures. The analysis of a prob-

lem is basically a process of designing all needed objects. The result is a collection of

objects with independent data state and methods. All objects can be allowed to interact

with each other. This concept brings programming closer to problem solving in real life,

which basically consists of many interactive objects. [8,11.]

The principles of OOP involve the use of classes, objects, inheritance and polymor-

phism. The class acts as an abstract definition for building up object instances. The

class may contain data members (or variables) and functions. The processing of an

application is based on invoking different sets of functions inside classes and objects.

Moreover, each class can be re-used and extended through the use of inheritance and

polymorphism. These two concepts provide reusability and extensibility for an applica-

tion. Inheritance is the process of creating a new class based on an existing class. The

sub-class can inherit all data members and methods from the base class (except for

those that are specifically not to be inherited). Since different problems may have simi-

lar objects, this approach makes it possible for developers to reuse the code and re-

duce the effort in implementing the solution. It is also easier to maintain the application

code since modifying an object can have the same effect on different solutions for dif-

ferent problems. [8,11-13.]

The term polymorphism refers to a unique feature in OOP where a class can have mul-

tiple method definitions with the same name and different signatures (return type or

8

parameter list). In other words, the same method will behave differently depending on

the context. This concept brings OOP a step further toward solving programming re-

quirements just like in the real-world counterparts. [8,13.]

2.4.1 Modular Software Design

Large software systems are more complex to develop and maintain than smaller sys-

tems. They tend to be difficult to modify or extend even though the needed change is

simple and applies to only a small part of the application. As the software system grows

both in size and complexity, it takes much more time for developers to identify a specif-

ic block of code and its effect on other portions of the whole system. A single change

may require modifying also other parts of the system. In the worst case, the loop re-

peats endlessly. The design starts to degrade because the requirement changes in

such a way that the initial design was not able to handle it. This results in a system that

is impossible to maintain. The requirements are the most volatile in the software life

cycle. Thus, it is necessary to decide on an agile approach for the initial system design.

[9,2-7.]

The concept of modular software design involves designing a large application system

consisting of multiple smaller software modules. Each module has its own function and

should not have too many dependencies on other modules. By organizing an applica-

tion into smaller independent modules, a change that comes to a module will not have

any effect on other modules, thus unexpected break would not be likely to occur inside

the whole system. This design makes software developing become a process of ex-

tending application instead of modifying the same existing code base. [9,8-11.]

In modular software design, higher-level modules should not depend on lower-level

modules. In other words, abstractions should not depend on detailed implementations

and detailed implementations should always be derived from abstractions. All software

modules can communicate using a generic interface definition. This approach makes

the software system more sophisticated, easier to maintain and more extensible. It

keeps the design of the system simple, clean and effective, no matter how much ex-

tensions have been added to the software system. Thus reusability, extensibility and

maintainability are important factors which can be achieved by using this design ap-

proach. [9,10.]

9

2.4.2 Microsoft Foundation Class

The Microsoft Foundation Class (MFC) is an extension of C++ which includes a set of

library that provides wrappers for the Microsoft Windows Application Programming In-

terface (API) in C++ classes. The purpose of this library is to simplify the task of de-

signing and developing the Windows application. The tasks of creating and managing

application windows can be done through MFC classes and thus, eliminate the need

for calling Windows API directly. MFC was equipped with a set of macros and dynamic

classes that can be used to handle Windows messaging mechanism, exception and

serialization. [10,7-8.]

2.5 Relational Database Management System

Database represents the persistent data inside storage devices such as local hard

drives. The organization of the data inside the device is managed by a database man-

agement system. Basically this management system is an application that handles the

file abstraction layer. It provides other applications and services with an interface for

defining and manipulating data. The format of stored data can simply be text or binary

data such as image, sound and application data. [11,7.]

The Relational Database Management System (RDBMS) is a concept of representing

data in the database system. Data is organized as a set of formally described two-

dimensional tables. The table contains columns which represent different fields for a

data record (data row). The role of a relational table is to represent an object entity.

Each table can have its own attributes, data fields, constraints and connections to other

tables. The data amongst different tables may have a relationship with each other.

There is a wide range of special objects inside the database which enforce certain data

constraints to be valid. Some of them involve the concepts of key, check and con-

straint. Each RDBMS has its own language for querying data. The Structured Query

Language (SQL) is the most common language that is used by many database sys-

tems available today. [11,8-13.]

The process of designing a relational database structure starts with modelling the data

as entities or objects. It is also called as data modelling process. Each data entity and

its relationship can be expressed as a database table, whereas the list of columns is

generated based on the attributes (or data fields). The role of modelling is to represent

the nature

real nature

are severa

ship mode

As the har

has increa

software d

natives av

Server, M

uses Orac

2.6 Data

The Data

resources

model pla

tem.

Figure 1. R

Figure 1 il

tabase sy

elements

data mode

Real-

inform

e of data gr

e of informa

al types of m

el and objec

rdware has

ased signifi

developmen

vailable on

ySQL, IBM

cle Databas

a Model

model is a

 according

ays the role

Role of data m

llustrates th

ystem. The

based on th

el can also

-world

mation

raphically a

ation and th

modelling d

ct-oriented m

become m

cantly, the

nt nowaday

the market.

DB2, Postg

se for its dat

method for

to a specif

of data rep

model in info

he role of da

data mode

he scope of

be conside

nd formally

he needs fo

data, some o

model. [11,2

much faster a

relational d

s. Currently

. Some of t

greSQL and

ta storage a

r describing

ic set of sys

presentation

rmation stora

ata model i

l acts as a

f various bu

red a repres

Requireme

definition

Data Mod

y. It gives th

or processi

of which are

20.]

and the nee

database h

y, there are

the most co

d Oracle. S

and manipu

g and storin

stem requir

n for inform

age

n the proce

blueprint fo

usiness proc

sentation of

ent

n

el

he develope

ng data in

e relational

ed for effect

as become

 a large nu

ommon nam

Specifically,

lation opera

g informatio

rements. In

mation requi

ess of storin

or recording

cesses [12,

f the data s

D

er a better

a specific a

model, ent

tive data m

e a popular

mber of RD

mes are Mic

the GENER

ations.

on inside da

other word

irements in

ng informati

g the conte

,5]. In other

tructure.

Database

system

10

view of the

area. There

tity relation-

anagement

concept in

DBMS alter-

crosoft SQL

RIS system

ata storage

ds, the data

side a sys-

ion into da-

ents of data

r words, the

0

e

e

-

t

n

-

L

m

e

a

-

-

a

e

11

3 GENERIS Work Order

3.1 GENERIS Platform

GENERIS stands for General ENERgy Information System, which is an information

system platform that provides solutions for a wide range of parties and business pro-

cesses in the energy sector. The main elements of GENERIS consist of binary files and

an instance of the relational database (provided by Oracle RDBMS). Typically, users

will interact with the system using a main application named GENERIS Browser and all

user data will be stored inside the database. GENERIS is the platform for developing

different modules targeted at different aspects of a multi-utility energy information sys-

tem. Each module has its own set of Windows binary image and database installs. De-

pending on the licenses installed for the system, the corresponding modules will be

installed together with GENERIS.

The current development of GENERIS has provided a possibility for managing balance

settlement, billing, contract, portfolio, meter data, meter asset and data validation. Each

GENERIS module handles certain parts of the data management system and owns

specific sets of GENERIS objects and fields. There are two main modules in GENERIS

which are responsible for Meter-related data management:

 Meter Data Management (MDM): The system has been developed for a multi-

utility environment to centrally manage all commodities and other types of

measurements including power quality and weather conditions. It is in produc-

tion use for the management of main and sub-metering information of electrici-

ty, gas, district heating/cooling, water and solar power. The MDM system han-

dles a large volume of data simultaneously through a highly-optimized process-

es and effective calculations, which results in a stable and high-performance

system. Moreover, the system also provides flexible and advanced search tools

which satisfy the need of the smart metering business. [13,2.]

 Meter Asset Management (MAM): The module consists of various tools for

managing metering devices. It covers the whole life-cycle of each metering de-

vice starting from purchase, storage, installation, maintenance and retirement.

Meter reading data can also be collected using traditional methods such as re-

12

cording data on papers [4.12]. Moreover, the MAM platform offers follow-up and

reporting tools for metering-related tasks.

Though each module is designed for specific processes in the energy sector, they can

be connected together using the GENERIS Objects and Fields (GOF) system. This

system plays the role of an abstract data access layer inside the GENERIS platform. It

provides a dynamic way of describing data without specifying the database access

details inside the source code. This design offers a flexible structure for organizing data

in the form of objects and fields, which simplify the process of searching, accessing

and manipulating data in the database.

The GENERIS platform also integrates the access control system through built-in secu-

rity policies. Each module may have its own security policy, which defines the permis-

sions for GENERIS users. The permissions are enforced for general reading, writing of

GENERIS objects as well as workflow definitions in specific processes.

3.2 GENERIS Browser

The GENERIS Browser is the main entry-point application for all basic GENERIS end-

users. The browser was developed for the Windows operating system and has the lay-

out of Multiple Document Interface (MDI), where users can open multiple child windows

under the main application window. The user interface design is quite straight-forward

and provides users with direct access to different sections. It contains a main naviga-

tion menu, a toolbar, a main browser area, which consists of a tree view control and a

list view control. The main screen layout of GENERIS Browser is illustrated in figure 2.

Figure 2. M

As illustra

different p

based on

more than

node for t

the Tree V

list view s

last modif

user’s pre

an object

can be in

filter applie

Figure 3. F

Figure 3 il

date. The

Main screen o

ated in figur

parts of the

the installe

n one folde

heir own pu

View, the lis

hows the o

fied date). T

eference. Us

row. Moreo

text, numbe

es.

Filtering of ob

llustrates a

 text-based

of GENERIS

re 2, the Tr

 system. T

ed applicatio

r node, and

urposes. In

st of objects

bject detail

The list of

sers can vie

over, users

er or date-t

bjects inside

simple use

d filter also

 Browser

ree View co

he top-leve

on modules

d below eac

most cases

s will be upd

(which is b

detail colum

ew the deta

can also ap

ime format,

list view cont

e of the filte

accepts wi

ontrol on the

el folder hie

s inside the

ch node us

s, wheneve

dated to the

by default, th

mn can be

ails of the ob

pply a filter

 depending

trol

r based on

ildcard cha

e left allow

erarchy of t

system. Ea

sers are allo

er users sele

e list view co

he object na

 customize

bject by sim

on the list

g on the col

the object

racters suc

s users to

he tree is c

ach module

owed to cre

ect a folder

ontrol on the

ame, last m

ed accordi

mply double-

view contro

umn data to

name and i

ch as the a

13

navigate to

constructed

e may have

eate a sub-

r node from

e right. The

modifier and

ng to each

-clicking on

ol. The filter

o which the

its modified

sterisk and

3

o

d

e

-

m

e

d

h

n

r

e

d

d

question m

popup win

In principl

cally a C+

same type

application

sible to cr

view work

on user-sp

Figure 4. A

Figure 4 i

users sele

the view w

In some c

of objects

panel dep

ibility for t

pattern in

the GENE

instead of

mark chara

ndow will ap

e, each tre

++ class), t

e. The list

n modules d

reate an ob

ks using the

pecific sear

An object view

llustrates th

ect the obje

will be fetche

ases, when

, the list vie

pends on the

the user int

order to sa

ERIS Work O

f a list of GE

acter. When

ppear and a

e node (fol

thus the lis

of object ty

during the G

bject view in

e same prin

ch criteria.

w in the GEN

he appeara

ect view, the

ed into the

n users sele

ew will be r

e implemen

terface desi

atisfy the sy

Order Follo

ENERIS obj

n users wa

allow users t

der) repres

st of objects

ypes is con

GENERIS i

nstead of a

ciple as a d

NERIS Brows

nce of an o

e list of obje

list view co

ect a folder f

eplaced by

ntation of the

ign and allo

ystem requ

w Ups mod

ects.

ant to filter

to select the

sents a spe

s will only

nstructed ba

nstallation p

subfolder i

database vi

ser

object view

ects matchin

ntrol.

from the Tr

a generic

e specific m

ows develo

uirements. F

dule, which

based on

e desired da

cific object

contain item

ased on th

process. Mo

nside the tr

ew. It acts

in the tree

ng the sear

ee View, in

panel sectio

module. This

pers to reje

Figure 5 illu

is represen

the modifi

ate and tim

type (whic

ms that be

e binaries

oreover, it i

ree view. A

as a filtered

view hierar

rch criteria s

stead of sh

on. The con

s design pro

ect the gen

ustrates the

nted by a pa

14

ied date, a

e.

h is techni-

long to the

of licensed

is also pos-

A GENERIS

d list based

rchy. When

specified in

owing a list

ntent of the

ovides flex-

eral design

e content of

anel control

4

a

-

e

d

-

S

d

n

n

t

e

-

n

f

l

Figure 5. C

According

RIS Brow

objects. T

side the s

quickly vie

ever this

covered in

3.3 GEN

Work orde

order dep

MAM plat

industry. S

meter read

nection an

Work orde

work orde

and mete

ing point).

Content of the

g to figure 5

ser will pr

This module

system base

ew the cont

module ca

n section 4 o

NERIS Wor

ers are crea

pends on th

form suppo

Some of the

ding, meter

nd disconne

er objects ca

er object als

ering device

e Work Orde

5, when use

esent a c

e allows use

ed on some

tent of a wo

an still be

of this thesi

k Order Obj

ated to req

he operation

orts all nece

e most com

r change, m

ection.

an be creat

so has conn

es (since wo

er Follow Ups

ers select th

custom-imp

ers to easily

e key criteri

ork order wit

 improved

is.

ject

uest operat

n that need

essary wo

mmon work

meter random

ted under a

nections to

ork order is

s module

he Work Ord

lemented

y manage t

a. It also pr

thout the ne

 to enhanc

tions on me

ds to be ca

orkflow type

order type

m test, met

sub-folder

other obje

s often creat

der Follow

interface i

the list of ex

rovides use

eed to open

ce user exp

eter device

arried out. T

es that a

s are main

er configura

named Wo

ct types su

ted for a me

Ups node,

nstead of a

xisting work

ers with a p

n a new win

perience, wh

s. The type

The current

re used in

tenance, m

ation, instal

ork Orders. B

ch as mete

eter device

15

the GENE-

a list of the

k orders in-

ossibility to

ndow. How-

hich will be

e of a work

t GENERIS

the energy

manual area

llation, con-

Basically, a

ering points

at a meter-

5

-

e

-

o

-

e

k

S

y

a

-

a

s

-

16

Figure 6. Life cycle of a work order object

Figure 6 shows a simple lifecycle of a work order object. At first, users can create a

new work order object using a wizard. It is necessary to specify all details related to the

work order, such as work order type, work order code and description. A work order

type may have different sub-types (in the case that there is more than one way of car-

rying out the selected work order, and the sub-types can also be used for different ex-

ternal systems). For example, in the case of creating a new work order for changing a

meter device, there are sub-types which specify the format of the work order (either

using paper or an electronic PDA device). Each work order type will require a different

set of work order data fields, though all work order types will have a certain number of

data fields in common. Depending on the work order type, users might need to specify

related object definitions, which are usually metering points or meter devices. If a work

order is related to multiple meter devices or metering points, the work order is consid-

ered to have more than one task associated with it. It is also possible to attach files to a

work order if needed.

The work order object is stored in the database management system. However in order

to issue an on-site work order, it is necessary to export the work order object into a

specific output format (paper or an electronic document to be used on PDA). This is

why each work order needs to have a data template. The data template might be an

XSL file (eXtensible Stylesheet Language) or an Excel template. This configuration is

very flexible since all customers can have their own data template and design for all

exported work orders.

After work orders have been stored in the database, users can view, edit, export and

monitor the state of the work orders. Each work order object might contain more than

one work tasks, and each task has its own assigner, deadline, comments and multiple

states. A work order task status is represented by its state property. Users can also

attach optional files to a work task (for external meta-data). Whenever there is a need

for collecting inputs for work orders (either by using automatic data import or manual

data input

managem

change at

old meter.

installed to

dation erro

required to

3.4 GEN

As the am

order beco

Follow Up

can be fou

Figure 7. G

Figure 7 s

GENERIS

rent work

based on

orders tha

employee

orders tha

t), the data

ment system

t a certain m

. Then the o

o a meterin

ors, such as

o take manu

NERIS Wor

mount of dat

omes a cha

ps to keep

und as a su

GENERIS Wo

shows the l

S installation

order situa

the most us

at need spe

). When us

at are curren

a is validate

m (GENERIS

metering po

old meter w

ng point from

s invalid da

ual actions.

k Order Fol

ta grows bo

allenging ta

track of ex

bfolder und

ork Order Fo

ocation of G

n. In this ca

ation inside

seful use ca

ecial attentio

ers navigat

ntly created

ed and sav

S EDMS). F

int, the end

will be move

m the stora

ata values, d

.

low Ups

oth in size a

ask. Thus it

xisting work

der Work Or

ollow Ups Su

GENERIS W

ase, the Su

e their GEN

ases from th

on (work o

te to Work o

d in the data

ved into the

For example

d readings w

ed to storag

age with s

data incons

and quantit

is necessa

k orders. GE

rder Manag

mmary

Work Order

ummary tab

NERIS Inst

he user’s po

rders which

order tab, th

abase, as ill

e system u

e, when the

will be valida

ge and the

tart reading

sistency, use

y, following

ary to use G

ENERIS W

ement in G

r Follow Up

b gives user

allation. Th

oint of view

h are late o

hey will get

ustrated in

using the m

ere is a nee

ated and sa

e new me

gs. In the c

ers will be n

g up with ex

GENERIS W

Work Order F

ENERIS Br

ps module i

rs an overv

he filtering

. It focuses

or not assig

t the details

figure 8.

17

master data

ed for meter

aved for the

ter will be

case of vali-

notified and

xisting work

Work Order

Follow Ups

rowser.

n a sample

view of cur-

criteria are

on all work

gned to any

s of all work

7

a

r

e

e

-

d

k

r

s

e

-

e

k

y

k

Figure 8. T

Figure 8

Work orde

with a list

can specif

low up wit

3.5 Exis

The work

that is nam

application

ration whic

process w

ter can be

unique ide

Users can

flow defini

done. The

which acts

can mana

using a wo

The tab view

illustrates t

er tab in Wo

of all work

fy to view o

th the recen

sting Workflo

order is an

med as wor

n. Instead o

ch is in the

which consis

e simply a te

entification c

n create mu

ition can de

e Workflow

s as a follow

age the sta

orkflow grou

of GENERIS

he behavio

ork Order F

k order task

only the late

nt activities o

ow Definitio

 object type

rkflow defin

of having sp

form of par

sts of multip

ext or even

code).

ltiple instan

efine multipl

Manageme

w-up panel

tus of all in

up object.

S Work Orde

our of GEN

Follow Ups.

ks together

est state. T

of the work

ons

e which has

ition. This o

pecific data

rameters. A

ple phases

n a GENER

nces based

e applicatio

ent platform

 for specific

nstances cr

r Follow Ups

NERIS Brow

 The list vie

with all of

his view is

orders.

s similar pro

object type

fields, a wo

A workflow d

and can co

IS object ty

on the sam

on services,

m also offe

c workflow

reated from

s

wser when

ew control w

their states

helpful in c

operties to a

belongs to

orkflow has

definition ob

ontain param

ype (which

me workflow

 where the

rs a workflo

definitions.

m specific w

users navig

will then be

s up to pre

case users w

an existing

the GENER

a more gen

bject represe

meters. Eac

is identified

 definition.

actual task

ow group o

In other wo

workflow de

18

gate to the

e populated

sent, users

want to fol-

object type

RIS System

neric decla-

ents a work

ch parame-

d by its own

Each work-

ks are being

object type,

ords, users

efinitions by

8

e

d

s

-

e

m

-

k

-

n

-

g

,

s

y

19

Figure 9. Similarity between GENERIS Workflow Management and Work Order Management

Figure 9 illustrates the similarity between Workflow Management and Work Order

Management. In fact, the workflow definition can be considered as the abstraction of

work order type. Thus a workflow definition can be instantiated as a work order object.

Provided that workflow definition can accept parameters of different data types, it is

possible to create work order data as workflow parameters. In this case, the metering

device, metering point or owner party can be considered an object parameter of the

workflow definition. Moreover, the workflow group object also offers the same function-

ality as the existing Work Order Follow Ups. It opens a new possibility to develop the

current Work Order Management based on the existing Workflow Management in

GENERIS. This can significantly reduce the complexity of the system and decrease the

number of code lines by reusing the existing codebase.

However, there are certain limitations with Workflow Management that prevented this

possibility from coming into practice. First of all, workflows are more suitable for larger

processes such as contract managements. A workflow sub-process will be more suita-

ble for the whole process of a work order. Moreover, the current workflow management

does not have the interface for exporting/importing data into the existing workflow in-

stances. Since work order is not a static object and it requires data exchange in a bidi-

rectional m

Users nee

port new d

only be us

flow. More

with a wid

tion is not

Figure 10.

Figure 10

current im

view contr

effective in

ing or filte

bility to sp

definition p

manner, thi

ed to export

data into the

sed as a wo

eover, a Wo

de range of

flexible eno

Configuratio

illustrates

mplementatio

rol, which s

n the case

ering availab

pecify the c

parameter.

s problem n

t work orde

e existing w

ork order o

ork Order p

custom dat

ough to han

n for workflo

a sample c

on, the list

hows a par

that the pa

ble in this li

custom state

naturally be

er data to a

work order o

bject unless

platform wil

ta fields. Th

ndle that req

ow definition

configuratio

of paramet

ameter in a

arameter list

st view con

e for a work

ecomes the

custom for

object. In ot

s its interfa

l be installe

he current W

quirement e

parameters

on for workf

ters is repre

a single row

t view conta

ntrol). It is a

k task and

e biggest ob

rmat and the

her words,

ce has sup

ed on differ

Workflow Ma

either.

flow definiti

esented by

w. This user

ains many

also necess

security po

bstacle in th

en in some

workflow in

pport for ext

ent custom

anagement

on parame

a two-dime

interface de

rows (there

sary to have

olicy for eac

20

he process.

e cases, im-

nstance can

ternal data-

er systems

 Configura-

ters. In the

ensional list

esign is not

e is no sort-

e the possi-

ch workflow

0

.

-

n

-

s

-

e

t

t

-

-

w

21

3.6 Roll-Back Feature

GENERIS Work Order is a robust platform which can handle all basic use cases in the

energy market. It also supports the validation task for meter readings from the metering

point. However, the current system does not allow users to undo the changes that were

made to work order data. The process of reverting data into its original state due to

human errors requires several manual steps, in the case of input errors, misspelling or

data inaccuracy.

It is necessary for the Work Order platform to provide support for the roll-back feature.

It can be used to restore system data to its previous state in the case of data errors.

Moreover, it needs to enforce data integrity requirements during the whole process. In

some cases, a roll-back can cause the existing data to invalidate itself. Thus, the roll-

back operation should ensure that the data is valid before and after the process is

completed. For instance, when the target work order is already too old, the rolled-back

data state may overlap the new data in the system.

3.7 Binary XML Data Model

As of the current system, user fields are specified inside the source code and needs

database scripts for making updates. This process is time-consuming and thus ineffec-

tive in the product cycle. Moreover, the management of license and version updates

will become complex as the number of versions increase and the size of the database

starts to grow.

One possible approach is to design a new data model which is based on the binary

XML (eXtensible Markup Language). In general, the binary XML format creates smaller

XML documents by omitting the common full-text syntax structure and representing

data using a certain binary data format. The result is a document which is faster to

parse but impossible to read by ordinary text editors. By making use of binary data, the

size of an XML document is greatly reduced at a price of non-readable text for end-

users [15]. Thus, it is suitable for performance purposes. It is well supported in many

database systems and can also be used for importing/exporting purposes. Another

advantage of the binary XML is that it can also replace the traditional means of updat-

ing the database using SQL scripts. By migrating into XML, different user fields from

customer setups can also be put under version control. Moreover, an XML document

22

can be easily validated against document schema and it is very flexible due to the pos-

sibility of XSL transformation [16,13]. Thus, the task of importing/exporting da-

ta/configurations becomes much more simplified and effective.

However, it is also important that the migration process needs to be backward compat-

ible. This is to make sure that new implementations will not corrupt existing user data

or requires a complicated migration process. Thus a new data interface should be im-

plemented in such a way that it can support not only the new data model but also the

old database system. The existing hard-coded user fields need to be revised according

to the new data model using database updates.

23

4 Work Order Follow Ups Improvements

4.1 New View for Related Work Orders

Currently, each Work Order object is presented in Work Order Follow Ups as an inde-

pendent unit. However this is not the real case in practice, since different work order

types may have certain connections with each other. Provided that there are multiple

work orders for the same metering point (or meter device), users might need to view all

work orders grouped by a metering point or meter device. For instance, when users

view event-based reading work orders for moving/supplier change, they might want to

view other work orders that belong to the same metering points, such as work orders

related to a meter change operation. This can help users to arrange the on-site tasks in

a more effective manner, for example, if there are two work orders about meter reading

and meter change which relate to the same metering point, they should be carried out

at the same time.

One possible solution is to allow users to select some specific work orders from the

Work order tab. Then they can navigate to a new tab and the list of all related metering

points will be shown on the screen.

Figure 11.

Figure 11

orders. Th

time from

rows for tw

related to

tering poin

The new vie

illustrates

his feature

the Work o

wo work or

two differen

nt work ord

w for work o

the new wo

requires the

orders tab. I

rders with c

nt metering

ders, the list

rders belong

orkflow for

e possibility

n this case,

code AO102

 points). Th

t of all work

ging to the sa

users when

y to select m

, from the W

24 and AO

hen by navig

k orders re

ame metering

n they wan

multiple wo

Work orders

1030 (these

gating to th

lated to the

g point

t to view re

ork orders a

s tab, users

e two work

he new tab n

e same met

24

elated work

at the same

select data

orders are

named Me-

tering point

4

k

e

a

e

-

t

25

will be shown on the screen. This workflow can also be modified to become even more

flexible, as illustrated in figure 12.

Figure 12. User workflows for viewing related work orders

Figure 12 illustrates another approach for the same purpose with even greater flexibil-

ity. Instead of showing only related work orders which belong to the same metering

point, users can also view related work orders based on the selected work order data.

For example, users can view all other work orders for the same meter device or

metering point. The user interface should have a new combo box which contains a list

of available data fields for the work order. By selecting the corresponding field name

from the combo box, GENERIS Browser will load the list of work orders which are re-

lated to the selected work orders by that field. The list of the related fields can be popu-

lated from the GOF system instead of specifying list items directly in the C++ code.

Whenever users select another item in the combo box, the content of the list view will

be updated accordingly. The combo box can be placed directly inside the existing tab

and all related work orders will be grouped together by using unique background col-

ours for each data row. It is also possible to place the combo box inside the new tab,

so that the new list view would only contain the work orders that the users are interest-

ed in.

4.2 Filte

Currently,

defined se

orders wh

Open Wo
Follow

Figure 13.

Figure 13

Work Ord

ering Suppo

the view o

earch condi

ich pass the

ork Order
w‐Up

Current impl

 shows the

er Follow U

ort for Summ

f Summary

tions. By do

e filter cond

Nav
”Summ

Select desire

ementation o

e current gr

Ups module

mary Tab

y tab in the

ouble-clickin

dition will be

igate to
mary” tab

d filter criteri

of Summary

raphical us

e. This desi

Work Orde

ng on the d

e shown to u

on

List of

tab in Work

er interface

gn comes w

r Follow Up

esired filter

users.

matching wo
is shown

Order Follow

e of the Su

with certain

ps module l

r name, the

ork orders

w Ups

ummary tab

n limitations

26

ists all pre-

list of work

b inside the

s as it does

6

-

k

e

s

not provid

does not

another fil

condition f

ers naviga

control wi

same as

previous s

4.3 Wor

The curre

detailed w

order from

same view

Open Wo
Follow

de users wi

provide sup

lter conditio

from the pr

ate away. T

th another

in the Wor

state, so tha

rk Order Da

ent impleme

work order

m the list v

w. The exist

rk Order
w‐Up

Se

th a flexible

pport for filt

on, they ne

revious scre

This workflo

list view w

k orders ta

at users will

ata Tab

entation of

data direct

iew. It is n

ting workflow

Naviga
”Work ord

elect interested

e navigatio

tering or so

ed to click

een, as the

ow can be

with the abil

ab. Moreove

 not need to

Work Orde

ly. Users n

ot possible

w can be im

ate to
ders” tab

d work orders

n mechanis

orting. In th

on the Clo

screen view

improved b

lity to sort/f

er, the list o

o expand th

er Follow U

need to dou

e to browse

mproved acc

Nav
”Work ord

sm. The re

he case tha

ose button a

w state is n

by replacing

filter the da

of condition

he tree struc

ps does no

uble-click o

e multiple w

cording to f

W

vigate to
ders data” tab

esulting wor

at users wa

and then re

not persiste

g the curre

ata rows, w

ns should r

cture all ove

ot allow use

on the inter

work order

figure 14.

Work order dat

Selec
w

27

rk order list

ant to apply

e-select the

d when us-

ent list view

which is the

revert to its

er again.

ers to view

ested work

data in the

ta is shown

ct interested
work order

7

t

y

e

-

w

e

s

w

k

e

Figure 14.

Figure 14

work orde

orders tab

can view t

ed work o

step (or th

available w

to be fetch

New workflo

 illustrates

ers. At first,

b. Then by s

the data of

orders. In th

hey simply n

work orders

hed). When

ow for viewing

a new wor

users sele

simply navi

selected wo

he case that

navigate di

s inside the

n users sele

g multiple wo

rkflow whic

ect work ord

igating to a

ork orders.

t users did

rectly to the

e system (th

ect a work o

ork order dat

h allows us

ders from th

new tab, n

The top-mo

not select a

e new tab),

here is a lim

order from t

ta

sers to view

he list view

named as W

ost list view

any work or

this list wil

mit on the n

this list, all

w the data

w control i

Work order

w control lists

rder from th

l be popula

number of w

data belong

28

of multiple

n the Work

data, users

s all select-

he previous

ated with all

work orders

ging to that

8

e

k

s

-

s

l

s

t

work orde

allows ext

new sectio

cluding ex

4.4 Add

The curre

not allow

umns will

of column

setups. Th

list of colu

to the curr

GENERIS

ed.

Open Work
Follow‐

Figure 15.

Figure 15

view contr

er will be sh

tended ope

ons into the

xporting and

itional Infor

nt list view

users to de

be populate

ns might no

he list view

umns (data f

rent work o

S Objects an

k Order
‐Up

Custom data

illustrates a

rol, users h

hown in the

rations on m

e view whic

d modifying

rmation for W

for Work or

ecide on wh

ed based on

ot prove to

w control ca

fields). The

rder. This c

nd Fields sy

Nav
(which conta

Rig
a

a fields from

a sample us

have the po

e same scr

multiple wo

h allows a w

multiple wo

Work Order

rder listing t

hich data co

n the comm

be useful f

n be enhan

 data sourc

configuration

ystem. This

vigate to the int
ains list view con

ht‐click on list v
and select data c

related objec

se case for

ossibility to

reen (in the

ork orders. F

wide range

ork orders).

r Data

that is used

olumns are

mon Work o

for all work

nced by add

ce may com

n can be im

s also allows

erested tab
ntrol for work ord

iew control
columns

cts

the new fun

o specify th

e Data sect

For example

of batch jo

d by Work O

visible. By

rder data fie

order type

ding the po

me from all o

mplemented

s user-defin

ders)

nction. By r

he list of vis

tion). This d

e, it is poss

obs to be ex

Order Follow

y default the

elds. Howev

es and in a

ossibility to

objects that

 based on t

ned fields to

Details of wor
related object

right-clicking

sible colum

29

design also

sible to add

xecuted (in-

w Ups does

e list of col-

ver, this list

ll customer

specify the

are related

the existing

o be includ-

rk order and
ts are shown

g on the list

ns. For ex-

9

o

d

-

s

-

t

r

e

d

g

-

t

-

30

ample, instead of viewing only Work order details, users can also view the information

regarding the related metering points or metering devices.

31

5 C++ Implementations

5.1 C++ MFC Windows Application Structure

One fundamental design of a MFC Windows Application is based on Document / View

model. This concept divides an application into two different classes: a document and a

view class. As simple as it sounds, the document class defines the application data (or

the document itself), whereas the view class is used solely for the presentation of the

application. Specifically, the document class contains the data structures, algorithms

and specifies the application processing mechanisms. The view class displays the

graphical user interface to users. It is responsible for painting the main form as well as

handling all message mappings in Windows. In other words, it receives users’ interac-

tions at the front end and then takes appropriate actions.

The class for document and view object should be derived from CDocument and

CView class respectively. The document and view interact with each other by using

pointers. The document object stores a pointer variable which points to its associated

view object and vice versa. Each view object has a member field which is a pointer that

points to the document object. Whenever there is a change in the document data, the

document will then notify all of its views to repaint their client area by calling a method

named UpdateAllViews() [14,90].

Figure 16. Document/View model

32

Figure 16 illustrates the relationship between the document and view object in the

Document/View model. The view object can be a subclass inheriting from CView and

document object can inherit from CDocument. They both have a pointer to the other

object as a data member, which makes it possible to exchange data between the view

and the document. The update will occur in the case that a user-generated or custom

event occurs.

All interactions between users and a Windows application, such as a mouse click and

window movement, are built based on the message system. Whenever an action oc-

curs, a message will be created and sent to the appropriate class for processing. Each

message has its own handle and is connected to a specific method. Windows applica-

tion keeps track of the corresponding method for processing each message type using

the message map. In order to map a message type to an existing method, it is neces-

sary to make a macro call which takes the message handler and the function refer-

ence:

ON_MESSAGE (MESSAGE_HANDLER, FUNCTION_REFERENCE)

There are different handlers for different types of messages. The developers just need

to map all those messages that they are interested in. The remaining unmapped mes-

sages will be handled by the framework itself.

5.2 User Interface Implementation

5.2.1 MFC List View Control

The implementation of a list view control involves creating a panel display which con-

sists of a two-dimensional table with or without borders. The list view control may have

different display styles. Each item can be simply a named icon or a detailed data grid.

In the detailed view mode, the items are represented as a collection of data rows. Each

data row has a set of data fields which is represented as columns. The intersection of a

list view row and its column is called a table cell. The content of each table cell is a

string of text. However it is also possible to add interactive contents to the list view,

such as images, checkboxes and colored rows. Data and columns inside a list view

control can also be formatted depending on custom implementations.

33

In an MFC application, the list view control is encapsulated using the CListView class.

This class seamlessly integrates the list control with the fundamental Document/View

architecture. The list view control can display its contents in different ways:

 Icon view: Each item is represented as an icon with a text label underneath.

This is the only view where users can drag and drop the items to any location

inside the list view area.

 List view: Each item is represented inside a data row with only one column. The

row may contain an icon and text.

 Report view: This is similar to the List view style; however it also supports addi-

tional columns to the right. Each item is a composition of multiple sub-items,

which are created by the application. Each column is implemented by an inte-

grated header control using a class named CHeaderCtrl. [17.]

The CListView class also uses messaging to handle users’ interactions. It provides a

set of functions for manipulating the list view contents, such as retrieving and editing

list view items. There is no built-in support for enhanced functionalities such as sorting

and filtering. However, by implementing custom methods for different message types, it

is possible to create an advanced version of the list view control by extending the

CListView class.

5.2.2 MFC Tab View Control

MFC provides support for integrating a tabbed view into an application using the Doc-

ument/View model. In order to implement a tab page inside an MFC application, devel-

opers simply need to derive a class from the CTabView class and then add a new view

as a new tab. The new view needs to be derived from the CView class and the tab con-

trols will display the view as a new tab. [18.]

Figure 17 illustrates a sample class diagram for a TabView control inside an MFC ap-

plication. An arrow line demonstrates an inheritance relationship. The beginning of the

line is the base class and the arrow points at inheriting class.

34

Figure 17. TabView control class hierarchy

According to figure 17, WOFUTabView is a subclass inheriting from CTabView. This

class represents the tabbed view of Work Order Follow Ups. It uses three objects

which are created from the ScrollFormView class. In this case, ScrollFormView is a

subclass inheriting from the CView class. The purpose of the ScrollFormView is to pro-

vide a view with scrolling functionalities.

In order to add a new view, it is necessary to use a method which is inherited from the

CTabView class which is named as AddView. The signature of the function is illustrat-

ed in listing 1.

int AddView(
 CRuntimeClass* pViewClass,
 const CString& strViewLabel,
 int iIndex=-1,
 CCreateContext* pContext=NULL
);

Listing 1. Signature of AddView function.

According to listing 1, it is necessary to specify only the first two parameters since the

remaining parameters already have default values. The first parameter is the pointer to

the runtime class of the tab view, which is derived from the CView class. The second

one is a string which represents the title of the tab. By default, the new tab will be in-

serted into the end of the tab groups. In the case of inserting a tab into a different posi-

35

tion, the third parameter is used solely for that reason. It takes an integer number which

represents the zero-based position of the new tab view.

5.2.3 GENERIS Document

The new functionalities mentioned section 4 should be implemented using the Docu-

ment/View model. The view is created based on the existing MFC classes and extend-

ed controls in the GENERIS Core module. The document object is basically based on

the CDocument class. Each document will be created based on the existing document

from GENERIS Browser. It has multiple inheritance layers, which include the data ac-

cess layer and data handling logic. The document also contains data state which is

used whenever users switch between different tabs. All controls inside a view share the

same document as the tab view. For example, when users select some work orders

from the list view control, the list of selected items will be stored inside the document. It

is necessary to map that event to a function which handles the data storing operation,

as illustrated in listing 2.

// Create new Document class deriving from CDocument
class WOFUDocument : public CDocument
{
public:
 WOFUDocument () {}
 virtual HINSTANCE ResourceHandle();
 void SetSelectedWO(bool _state);
 WorkOderObject& GetSelectedWOAt(int _Position);
 CArray<WorkOderObject> & GetAllSelectedWO();

private:
 CArray<WorkOderObject> m_SelectedWOArray;
};

// Create custom list view control class deriving from CListView
class WOFUListViewControl : public CListView
{
public:
 WOFUListViewControl ();
 virtual ~ WOFUListViewControl (){}

private:
 void OnItemChanged(int _iRow);

protected:
 CDocument * pDocument;

};

36

// Implement member function of custom list view class
void WOFUListViewControl::OnItemChanged (int _iRow)
{
 if (_iRow < 1 || !GetItemState(_iRow, LVNI_SELECTED))
 return; // Skip non-datarow

 WOFUDocument* pDoc = dynamic_cast<WOFUDocument*>(pDocument);

 if (pDoc) // If using WOFollowUpDoc type
 {
 // Data storage operations
 }
}

BEGIN_MESSAGE_MAP(viewObjectName,CView)

ON_NOTIFY(LVN_ITEMCHANGED,IDC_LV,OnItemChanged)

END_MESSAGE_MAP()

Listing 2. Message mapping for list view control event.

Listing 2 demonstrates a sample definition of sub-classes which inherit from the CDoc-

ument and CView class. This is needed for implementing the Document/View model

and message mapping operation. The code block makes a call to the message han-

dling macro which has the declaration as: BEGIN_MESSAGE_MAP(viewObjectName,

CView). This macro is used to start the message mapping process for all user interac-

tions that occur in viewObjectName, which is an object created from CView class. The

next macro call defines the event type, target list view control and the method to be

executed whenever the event occurs. pDocument is a pointer inside the list view con-

trol which points to the document object used in the model. In this example, the docu-

ment class is a derived class from the CDocument class, and thus it is necessary to

cast the document pointer to the derived type. The casting operation is quite necessary

in software applications which make use of abstraction and dynamic linking. In this

case, the document can also be used whenever a database operation needs to be

done on existing data. It contains a pointer to the database handler that is created

when users first start GENERIS Browser. Since the document object will be created at

the platform level, thus the module itself does not need to reinitialize the object.

37

6 Discussion

The main goal of the project was to improve the existing work order data model and the

GENERIS Work Order Follow Ups user interface. The testing prototypes satisfy all de-

sign requirements. They are capable of responding to user input and display all neces-

sary data fields at runtime. Taking the targeted users into account, the user interface

has been designed so that it can greatly enhance the productivity of an energy infor-

mation system. During the development of the system, different sets of solutions for the

same problem were taken into consideration; however the selected solutions proved to

be the most effective and could deliver the best user experience. The new design min-

imized the number of mouse clicks and users could get the tasks done using the least

required transition steps. The outcome of the project has been evaluated to fulfil the

requirements and function properly under the designed environment.

However, GENERIS Work Order Follow Ups can be furthered developed by adding full

support for GENERIS Objects and Fields. The current implementation still relies on

SQL queries to the existing database view, which limits the capability of the application

to query data from other sources such as related objects and their data fields. This fea-

ture can be implemented based on the existing GENERIS platform using its built-in

functions for querying GENERIS Objects.

The process of applying the design pattern could also be improved further by conduct-

ing the study based on user interviews and customer surveys. This method can collect

real-world statistics of customer satisfaction. This would require a thorough planning

process and careful preparation of the questionnaire materials. It would be more effec-

tive to improve the design where it is needed most based on collected feedback data.

The solution of using binary XML for the data model would simplify the version control

process and increase the application flexibility. However, structural changes to the ex-

isting implementation and new data interfaces need to be created in order to accept the

new format of bidirectional data stream. The user interface also needs to be re-

designed, so that it can reflect the data workflow as well as new functionalities in an

effective and systematic manner.

38

7 Conclusion

Design patterns help to improve general user experience. The new solutions for GEN-

ERIS Work Order Follow Ups will make the system more usable and effective. By min-

imizing the number of steps that users need to go through to get a task done, the new

implementation has removed redundant steps from the process. This means that the

user workflow will become more logical and effective. However, the most important

benefit is that users can now have access to even more functionalities from a large

multi-utility energy information system. In this thesis, the existing user interface’s de-

sign patterns were studied and based on that, new improvement ideas were developed

and evaluated.

The ultimate goals of the project were to achieve better software quality, reduce system

complexity, increase efficiency and simplify the installation process. The user interface

is a vital part of a software application, since all user interactions are done through the

user interface. A good user interface will decrease the training cost, user error rates,

support enquiries and at the same time increase productivity. Moreover, by using a

highly customizable and effective data model, the MAM work order can become a more

dynamic solution for deploying customer-oriented systems. This design eliminates the

gap between common configuration and customer-specific setups. It also integrates

seamlessly with the current GENERIS platform, which reduces the effort for installation,

maintenance and version updates, thus reducing cost. Moreover, the binary XML is a

widely-used format which is supported by different relational database systems.

The result of the project was an improved graphical user interface which can help users

handle all analogue use cases effectively in their custom setups. The user interface

plays an important role and contributes greatly to the effectiveness of system configu-

rations. All background knowledge about usability, data structure, database modelling

and programming languages played a vital role in achieving this objective.

39

References

1 Kauppalehti Uutiset. Process Vision: Seinäjoki Energia, the first new electronic

services eGeneris Solution [serial online]. Helsinki, Finland; 24 November 2010.

URL: http://www.kauppalehti.fi/5/i/yritykset/lehdisto/hellink/

tiedote.jsp?oid=20101101/12906056340950. Accessed 20 September 2011.

2 Baube F. GENERIS Meter Asset Management User Guide. Helsinki: Process Vi-

sion Oy; 2011.

3 Kallio P. GENERIS Energy Solutions. Helsinki: Process Vision Oy; 2002.

4 Einamo J. GENERIS MAM Meter Asset Management: Process Vision Oy; 2008.

5 Surhone L, Tennoe M. Work Order. Saarbrücken: VDM AG & Co. Kg; 2010.

6 Tullis T, Albert B. Measuring the User Experience: Collecting, Analyzing, and Pre-

senting Usability Metrics. Burlington MA: Morgan Kaufmann; 2008.

7 Tidwell J. Designing Interfaces. Patterns for Effective Interaction Design. Sebasto-

pol CA: O’Reilly Media Inc.; 2011.

8 Farrell J. Object-Oriented Programming Using C++. Boston MA: Course Technolo-

gy; 2009.

9 Martin R, Martin M. Agile Software Development: Principles, patterns and practices

in C#. New Jersey USA: Pearson Education; 2007.

10 Swanke J. Visual C++ MFC Programming by Example. Berkeley CA: CMP Books;

1999.

11 Ritchie C. Relational Database Principles. London UK: Thomson Learning; 2002.

12 Ponniah P. Data modeling fundamentals: a practical guide for IT professionals.

USA: John Wiley & Sons; 2007.

13 Jokinen A. GENERIS Meter Data Management. Helsinki: Process Vision Oy; 2012.

40

14 Björnander S. Microsoft Visual C++ Windows Applications by Example. Birming-

ham UK: Packt Publishing; 2008.

15 Surhone L, Tennoe M, Henssonow S. Binary XML. Saarbrücken: VDM AG & Co.

Kg; 2010.

16 Melton J, Buxton S. Querying XML: XQuery, XPath, and SQL/XML in context. San

Francisco CA: Elsevier Inc.; 2006.

17 CListCtrl Class. Microsoft Corporation [online].

URL: http://msdn.microsoft.com/en-us/library/hfshke78(v=vs.90).aspx.

Accessed 19 December 2011.

18 CTabView Class. Microsoft Corporation [online].

URL: http://msdn.microsoft.com/en-us/library/bb983705(v=vs.90).aspx.

Accessed 19 December 2011.

