Tu Tran Le

GENERIS Work Order Management

Work Order Follow Ups Improvements

Helsinki Metropolia University of Applied Sciences
Bachelor of Engineering

Information Technology

Thesis

September 12, 2012

/" Helsinki

Metropolia

University of Applied Sciences

Abstract

Author(s) Tu Tran Le
Title GENERIS Work Order Management
Number of Pages 40 pages
Date 12 September 2012
Degree Bachelor of Engineering
Degree Programme Information Technology
Specialisation option Information System
Sakari Seppala, Team Manager, EDM Solutions
Instructor e T
Jaana Holvikivi, Principal Lecturer

This project was carried out for Process Vision Oy and the main goal was to find solutions
for improving the current Work Order Management (a part of GENERIS application). As
GENERIS is a standard information system for different energy markets, the current Work
Order platform needs a more effective management interface. The process of following up
with existing work orders needed to be improved, so that users could effectively manage
all work order data within the system. The new user interface should be productive, user-
friendly and it must follow a common design pattern.

Improvement ideas were collected based on existing requirements and analogue use
cases. It was necessary to implement a prototype for Work Order Follow Ups module
using the existing GENERIS Meter Asset Management platform. Since GENERIS is an
energy information system that is built on the Windows operating system, the new imple-
mentation was done using the Microsoft Foundation Class framework and the C++ pro-
gramming language. The prototype needed to be evaluated and tested against specific
use cases using a test database.

The result of the project was the implementation of new user interfaces which could in-
crease users’ productivity in basic use cases. This thesis also analysed the existing work-
flow definition object in GENERIS platform, which resembled the work order object. There
were certain limits which eliminated the possibility to develop new work order object based
on the workflow definition object. However, a suggestion for a new data model was also
described in this thesis.

Keywords GENERIS, MAM, user interface, design pattern, data model,
energy information system, C++ MFC, Oracle

Iniversity of Applied Sciences

Contents

1 Introduction

2 Theoretical Background

2.1

2.2
2.3
2.4

2.5
2.6

Energy Data Management System

2.1.1 Meter Asset Management (MAM) Platform

2.1.2 Work Order

Usability

User Interface Pattern

Object-Oriented Programming

2.4.1 Modular Software Design

2.4.2 Microsoft Foundation Class
Relational Database Management System
Data Model

3 GENERIS Work Order

3.1
3.2
3.3
3.4
3.5
3.6
3.7

GENERIS Platform

GENERIS Browser

GENERIS Work Order Object
GENERIS Work Order Follow Ups
Existing Workflow Definitions
Roll-Back Feature

Binary XML Data Model

4 Work Order Follow Ups Improvements

4.1
4.2
4.3
4.4

New View for Related Work Orders
Filtering Support for Summary Tab

Work Order Data Tab

Additional Information for Work Order Data

5 C++ Implementations

5.1
5.2

C++ MFC Windows Application Structure
User Interface Implementation

5.2.1 MFC List View Control

5.2.2 MFC Tab View Control

5.2.3 GENERIS Document

6 Discussion

© © 00 N O B~ b WO W

(=Y
o

11

11
12
15
17
18
21
21

23

23
26
27
29

31

31
32
32
33
35

37

University of Applied Sciences

7 Conclusion 38

References 39

Hedsinki

Metropolia

University of Applied Sciences

Abbreviations and Acronyms

CIS Customer Information System

EDMS Energy Data Management System
GENERIS General ENERgy Information System
GOF GENERIS Objects and Fields

IT Information Technology

MAM Meter Asset Management

MDM Meter Data Management

MFC Microsoft Foundation Class

OOP Object-Oriented Programming
RDBMS Relational Database Management System
SQL Structured Query Language

ul User Interface

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

1 Introduction

Process Vision Oy is an IT company specialized in information systems and applica-
tions for the energy business. The company provides solutions for measurement data
warehouses, which is a software product called GENERIS [1,1]. Process Vision Oy has
focused on developing versatile solutions for the deregulated energy market targeted
for distribution companies, energy retailers, balance coordinators and system opera-
tors. These solutions consist of wide measurement data warehouses, systems for bal-
ance settlement and balance management, data transmission functions and systems

for contract and portfolio management [2,1].

In this thesis, an internal development project for Process Vision Oy was described.
The main objective was to find improvement solutions for GENERIS Work Order Man-
agement, which is an integrated part of GENERIS Energy Data Management System.
As GENERIS is a standard system solution for the energy market, it runs various busi-
ness processes for different market parties. Each customer configuration has its own
work order definitions with different sets of data fields. Due to the large number of work
orders and their data fields, managing existing work orders effectively has become a
challenging task. Thus, it was necessary to improve the current Work Order Follow Ups
module, so that users could easily manage all existing work order data inside the
system. The improvements needed to be user-oriented and satisfy all technical re-
quirements of the GENERIS coding practice. The new user interface should also follow
the current design pattern of GENERIS Browser and be easy to learn by all general

users.

Moreover, the data model needed to be improved in such a way that it could support
user-defined fields and data exchange between different systems. The new data model
should be compatible with previously installed databases and the current function sys-
tem. Another alternative is to re-use the existing data model of the Workflow definition
object in the GENERIS platform. The possibilities of the new data model are analysed
and discussed in this thesis.

The main tasks of the project involved implementing a more effective user interface for
managing existing work orders and analysing different possibilities to improve the exist-
ing data model. The target of the study was a robust, version-controllable Work Order

Management with an improved Work Order Follow Ups module based on the existing

Meter Asset Management (MAM) platform. All of the improvements needed to be made
based on the analysis of the current system implementation and all analogue use

cases in the process.

2 Theoretical Background

2.1 Energy Data Management System

The Energy Data Management System (EDMS) is a system that provides data ware-
house solutions for energy markets. The system offers fundamental functionalities for
managing and manipulating energy-related information using data-storage devices. An
important role of EDMS is to integrate data from physical measurements into a time
series format. This format is used to record consecutive measurement readings during
a specific time interval. The information source may relate to different aspects of the
energy business. The data can be about metering devices, their physical properties
and reading measurements. The system can be used for different sectors of the energy
industry such as gas, electricity and district heating. It also provides a communication

channel between various market parties as well as customers. [3,1-2.]

An important requirement is that the system supports a daily routine in which a large
amount of data is processed hourly. EDMS modules are designed to perform the tasks
of network operators, balance coordinators and electricity retailers. Metering point-
related information such as the network owner, retailer, validity time is also managed
by the system. One important feature of a standard EDMS system is the support for
advanced data processing operations such as validating, updating, calculating, report-
ing, invoicing and data transferring between different systems. Moreover, it should be

possible to integrate existing data into other customer information systems (CIS). [3,3.]

2.1.1 Meter Asset Management (MAM) Platform

The Meter Asset Management (MAM) platform is an important part of GENERIS
Energy Data Management System. It provides versatile tools for managing various
aspects of meter-related data as well as data collection tasks for device assets. The
GENERIS MAM platform provides advanced solutions for a wide range of energy com-
panies, from a small local electricity company to a multinational network owner. Some
of the most significant features of MAM are about asset management and meter

reading task management [4,6].

The integrated modules of the platform consist of different utilities for managing energy

devices and their data contents, which can satisfy the most significant requirements of

an energy data warehouse. The main functions of the MAM platform involve managing
metering device details, device data, creating reports, installation and maintenance
tasks. As for the district heating and district cooling utility, the process of meter
calibration and testing can also be arranged using the system. Some of the basic pro-
cesses also involve customer-related services (such as registering a new customer and
the change of metering configuration or retailer). Moreover, MAM integrates with
scheduled remote data collection from an external data source such as a meter con-

centrator using the provided Application Programming Interface. [4.]

2.1.2 Work Order

Work order is an abstract unit of work requested by customers or a company’s staff.
Work orders usually take place at the customer side, which is equivalent to a service
order in which the location, date and nature of the work are recorded [5,6]. In the
energy market, there are many work order types which are related to different aspects
of the meter asset management. Typically, the targets of work order involve individual
or a site of multiple metering points and meter devices. By creating a new work
order, energy companies can conduct various tasks on their meter assets, including
meter change, meter readings gathering and estimation, meter configuration, mainte-
nance, connection and disconnection. Work orders data is stored in a database and

can be exported to different formats (paper, PDA or structured text file...). [5,8-10.]

GENERIS Work Order is the object type that is used to represent work order inside
GENERIS MAM platform. It is used to create new on-site tasks relating to metering
assets. Generally, the site where a work order is carried out is a metering point of a
network operator. This involves installation, uninstallation, changing and maintenance
of meter devices. The manual process of gathering the readings from meter devices
can also be requested using a work order item. In brief, GENERIS Work Order object
can be considered an interface for handling work order electronically. It can be
exported to paper/electronic format as well as take input data from users and save it
into the system. [5,12.]

2.2 Usability

In software engineering, the term usability refers to the ease of using or learning how to

use an application from the user’s point of view. Basically, software is also an object

that requires human interaction. For instance, the user interacts with a Windows appli-
cation by using its graphical user interface. Thus it is important to design the user inter-
face using a generalized usability philosophy, which makes the software easier to
learn. Good usability itself is the best practice to take a complex computer system into
daily use. It concerns effectiveness, efficiency and satisfaction when the user accesses

certain functions of the system in order to achieve specific goals. [6,4.]

The effectiveness of the system is defined by the extent to which the user’s intended
purposes can be fulfilled with accuracy and good performance. Meanwhile the term
efficiency reflects the rate of speed at which users can complete specific tasks. If the
users can achieve their targets faster and with less effort, the system is considered to
have better efficiency. Efficiency also needs to be consistent across different parts of
the system. Finally, user satisfaction is measured based on a user’s attitude and per-
ceived acceptability towards the system. It is the key factor that is used to evaluate the

usability of a system. [6,7.]

Software with good usability is considered to be user-friendly and provide users with
higher quality experience. In order to achieve good software usability, developers do
not develop the software solely based on the oriented technology but with the intended
users in mind. In other words, the interface is designed based on the user workflow, so
that they can get the task done in the easiest manner. This method makes it possible to
identify the needed functionalities as well as prevent any design flaw that might have

occurred when the product is taken into production. [6,9.]

2.3 User Interface Pattern

In principle, a pattern is a common systematical feature that improves the habituation
of the subject. It can be the user interface of a software application or the outlook of a
product. The ultimate target of a pattern is to help users to understand the object more
easily and have better experience when using it. Thus it makes the process more ef-

fective and usable. [7,3.]

The User interface (Ul) pattern can be considered a concrete principle to build the user
interface design from the ground up. It is a fundamental element and needs to be con-
sistent across different environments on which the applications operate. However, the

pattern only sets the standard for user interface. It plays the role of a basic guideline for

designers to make the application interface self-consistent. Depending on the applica-
tion context, the user interface design may differ from the design pattern, for example,

to satisfy a special user’s need or due to a technical requirement. [7,17.]

As a software project grows both in size and complexity, it starts to integrate more and
more functionalities and user interfaces in the same application. For instance, a Win-
dows application is typically a composite of different user interface toolkits. The user
interface is built from a handful of simple controls (such as text fields, labels, images
and buttons). Users might encounter different graphical interfaces in the same software
application. This is the reason why the user interface pattern needs to be taken into
consideration. In general, it is the structural and behavioural user interface that im-
proves the habitual familiarity of end-users. A consistent design pattern helps users
understand and adapt to the interface more easily within the same application domain.
[7,31.]

A pattern can be built based on researching practical user experience. At first, the re-
searcher needs to recognize the target user groups. Since each user group has a
unique way of perceiving their surroundings, there is no single pattern which can satisfy
the needs of all user groups. A design pattern may be compatible with certain users but
not everyone. The ultimate goal of designing interface patterns is to identify the most
common behaviour patterns. The researchers need to find out what is generally true
and accepted by most users. In order to achieve this target, it is necessary to learn
about different users and then remove the odds from the common pattern. Specifically,
it is necessary to learn about the following topics from users’ points of view:

o Why would users use the design? (their goals)

e What do users do with the design? (their tasks)

o How do users describe the design? (their language)

o How familiar are users with the design? (their skills) [7,17.]

It is important to establish reality grounding by focusing the learning process only on
potential users. The learning method can be based on direct observation of on-site
users or by conducting case studies and conducting surveys. All of the above methods
are regarded as data collecting methods. Another approach would be to design a pat-
tern based on an imaginary subject which would capture the most important aspects of

all users in the target user groups. [7,7.]

2.4 Object-Oriented Programming

Object-Oriented Programming (OOP) is a concept used in the process of software de-
velopment. The basic principle is to organize the application into classes and make the
code reusable. In the older procedural programming method, the source code consists
of a series of instructions that take place one after another. The developers use logical
expression to determine the condition in which a procedure takes place and when the
program ends. The same code can be considered to be a unique solution for certain
problems only. Thus it is difficult to reuse the same code in different projects. Also in
order to solve a large problem, it is necessary to break it into several smaller pieces
and work on each of them separately as a single problem. This process needs to be

repeated until each problem can be solved directly without further analysis. [8,6.]

However, this is not the case for the OOP approach. The basic concept used in OOP is
the object, which contains both data variables and procedures. The analysis of a prob-
lem is basically a process of designing all needed objects. The result is a collection of
objects with independent data state and methods. All objects can be allowed to interact
with each other. This concept brings programming closer to problem solving in real life,

which basically consists of many interactive objects. [8,11.]

The principles of OOP involve the use of classes, objects, inheritance and polymor-
phism. The class acts as an abstract definition for building up object instances. The
class may contain data members (or variables) and functions. The processing of an
application is based on invoking different sets of functions inside classes and objects.
Moreover, each class can be re-used and extended through the use of inheritance and
polymorphism. These two concepts provide reusability and extensibility for an applica-
tion. Inheritance is the process of creating a new class based on an existing class. The
sub-class can inherit all data members and methods from the base class (except for
those that are specifically not to be inherited). Since different problems may have simi-
lar objects, this approach makes it possible for developers to reuse the code and re-
duce the effort in implementing the solution. It is also easier to maintain the application
code since modifying an object can have the same effect on different solutions for dif-
ferent problems. [8,11-13.]

The term polymorphism refers to a unique feature in OOP where a class can have mul-

tiple method definitions with the same name and different signatures (return type or

parameter list). In other words, the same method will behave differently depending on
the context. This concept brings OOP a step further toward solving programming re-

quirements just like in the real-world counterparts. [8,13.]

2.4.1 Modular Software Design

Large software systems are more complex to develop and maintain than smaller sys-
tems. They tend to be difficult to modify or extend even though the needed change is
simple and applies to only a small part of the application. As the software system grows
both in size and complexity, it takes much more time for developers to identify a specif-
ic block of code and its effect on other portions of the whole system. A single change
may require modifying also other parts of the system. In the worst case, the loop re-
peats endlessly. The design starts to degrade because the requirement changes in
such a way that the initial design was not able to handle it. This results in a system that
is impossible to maintain. The requirements are the most volatile in the software life
cycle. Thus, it is necessary to decide on an agile approach for the initial system design.
[9,2-7.]

The concept of modular software design involves designing a large application system
consisting of multiple smaller software modules. Each module has its own function and
should not have too many dependencies on other modules. By organizing an applica-
tion into smaller independent modules, a change that comes to a module will not have
any effect on other modules, thus unexpected break would not be likely to occur inside
the whole system. This design makes software developing become a process of ex-

tending application instead of modifying the same existing code base. [9,8-11.]

In modular software design, higher-level modules should not depend on lower-level
modules. In other words, abstractions should not depend on detailed implementations
and detailed implementations should always be derived from abstractions. All software
modules can communicate using a generic interface definition. This approach makes
the software system more sophisticated, easier to maintain and more extensible. It
keeps the design of the system simple, clean and effective, no matter how much ex-
tensions have been added to the software system. Thus reusability, extensibility and
maintainability are important factors which can be achieved by using this design ap-
proach. [9,10.]

2.4.2 Microsoft Foundation Class

The Microsoft Foundation Class (MFC) is an extension of C++ which includes a set of
library that provides wrappers for the Microsoft Windows Application Programming In-
terface (API) in C++ classes. The purpose of this library is to simplify the task of de-
signing and developing the Windows application. The tasks of creating and managing
application windows can be done through MFC classes and thus, eliminate the need
for calling Windows API directly. MFC was equipped with a set of macros and dynamic
classes that can be used to handle Windows messaging mechanism, exception and

serialization. [10,7-8.]

2.5 Relational Database Management System

Database represents the persistent data inside storage devices such as local hard
drives. The organization of the data inside the device is managed by a database man-
agement system. Basically this management system is an application that handles the
file abstraction layer. It provides other applications and services with an interface for
defining and manipulating data. The format of stored data can simply be text or binary

data such as image, sound and application data. [11,7.]

The Relational Database Management System (RDBMS) is a concept of representing
data in the database system. Data is organized as a set of formally described two-
dimensional tables. The table contains columns which represent different fields for a
data record (data row). The role of a relational table is to represent an object entity.
Each table can have its own attributes, data fields, constraints and connections to other
tables. The data amongst different tables may have a relationship with each other.
There is a wide range of special objects inside the database which enforce certain data
constraints to be valid. Some of them involve the concepts of key, check and con-
straint. Each RDBMS has its own language for querying data. The Structured Query
Language (SQL) is the most common language that is used by many database sys-

tems available today. [11,8-13.]

The process of designing a relational database structure starts with modelling the data
as entities or objects. It is also called as data modelling process. Each data entity and
its relationship can be expressed as a database table, whereas the list of columns is

generated based on the attributes (or data fields). The role of modelling is to represent

10

the nature of data graphically and formally. It gives the developer a better view of the
real nature of information and the needs for processing data in a specific area. There
are several types of modelling data, some of which are relational model, entity relation-
ship model and object-oriented model. [11,20.]

As the hardware has become much faster and the need for effective data management
has increased significantly, the relational database has become a popular concept in
software development nowadays. Currently, there are a large number of RDBMS alter-
natives available on the market. Some of the most common names are Microsoft SQL
Server, MySQL, IBM DB2, PostgreSQL and Oracle. Specifically, the GENERIS system

uses Oracle Database for its data storage and manipulation operations.

2.6 Data Model

The Data model is a method for describing and storing information inside data storage
resources according to a specific set of system requirements. In other words, the data
model plays the role of data representation for information requirements inside a sys-

tem.

Real-world

information Lo e e p

‘ Data Model :

Figure 1. Role of data model in information storage

Database

system

Figure 1 illustrates the role of data model in the process of storing information into da-
tabase system. The data model acts as a blueprint for recording the contents of data
elements based on the scope of various business processes [12,5]. In other words, the

data model can also be considered a representation of the data structure.

11

3 GENERIS Work Order

3.1 GENERIS Platform

GENERIS stands for General ENERgy Information System, which is an information
system platform that provides solutions for a wide range of parties and business pro-
cesses in the energy sector. The main elements of GENERIS consist of binary files and
an instance of the relational database (provided by Oracle RDBMS). Typically, users
will interact with the system using a main application named GENERIS Browser and all
user data will be stored inside the database. GENERIS is the platform for developing
different modules targeted at different aspects of a multi-utility energy information sys-
tem. Each module has its own set of Windows binary image and database installs. De-
pending on the licenses installed for the system, the corresponding modules will be
installed together with GENERIS.

The current development of GENERIS has provided a possibility for managing balance
settlement, billing, contract, portfolio, meter data, meter asset and data validation. Each
GENERIS module handles certain parts of the data management system and owns
specific sets of GENERIS objects and fields. There are two main modules in GENERIS

which are responsible for Meter-related data management:

o Meter Data Management (MDM): The system has been developed for a multi-
utility environment to centrally manage all commodities and other types of
measurements including power quality and weather conditions. It is in produc-
tion use for the management of main and sub-metering information of electrici-
ty, gas, district heating/cooling, water and solar power. The MDM system han-
dles a large volume of data simultaneously through a highly-optimized process-
es and effective calculations, which results in a stable and high-performance
system. Moreover, the system also provides flexible and advanced search tools

which satisfy the need of the smart metering business. [13,2.]

o Meter Asset Management (MAM): The module consists of various tools for
managing metering devices. It covers the whole life-cycle of each metering de-
vice starting from purchase, storage, installation, maintenance and retirement.

Meter reading data can also be collected using traditional methods such as re-

12

cording data on papers [4.12]. Moreover, the MAM platform offers follow-up and

reporting tools for metering-related tasks.

Though each module is designed for specific processes in the energy sector, they can
be connected together using the GENERIS Objects and Fields (GOF) system. This
system plays the role of an abstract data access layer inside the GENERIS platform. It
provides a dynamic way of describing data without specifying the database access
details inside the source code. This design offers a flexible structure for organizing data
in the form of objects and fields, which simplify the process of searching, accessing

and manipulating data in the database.

The GENERIS platform also integrates the access control system through built-in secu-
rity policies. Each module may have its own security policy, which defines the permis-
sions for GENERIS users. The permissions are enforced for general reading, writing of

GENERIS objects as well as workflow definitions in specific processes.

3.2 GENERIS Browser

The GENERIS Browser is the main entry-point application for all basic GENERIS end-
users. The browser was developed for the Windows operating system and has the lay-
out of Multiple Document Interface (MDI), where users can open multiple child windows
under the main application window. The user interface design is quite straight-forward
and provides users with direct access to different sections. It contains a main naviga-
tion menu, a toolbar, a main browser area, which consists of a tree view control and a

list view control. The main screen layout of GENERIS Browser is illustrated in figure 2.

[« System Edit System Manager Business Processes Bookmarks Administrator View Window Hélp —T&]x]
D Yol &7 «=» @ Q&
=-[J) Work Order Management » || Directory name Modifier Modified at
=3 Work Orders
(3 District Heating Q7 A01060 DOM1ADMIN 15.11.2011 14:24
QaPv QPGEK_METEFLINETALLATJUNHWU DOMIADMIN - 2811.2011 11:01
[Work Order Follow Ups
Objects
TreeView Control ListView Control
- ||2 objects Count Fetch |

Figure 2. Main screen of GENERIS Browser

As illustrated in figure 2, the Tree View control on the left allows users to navigate to
different parts of the system. The top-level folder hierarchy of the tree is constructed
based on the installed application modules inside the system. Each module may have
more than one folder node, and below each node users are allowed to create a sub-
node for their own purposes. In most cases, whenever users select a folder node from
the Tree View, the list of objects will be updated to the list view control on the right. The
list view shows the object detail (which is by default, the object name, last modifier and
last modified date). The list of detail column can be customized according to each
user’s preference. Users can view the details of the object by simply double-clicking on
an object row. Moreover, users can also apply a filter on the list view control. The filter

can be in text, number or date-time format, depending on the column data to which the

filter applies.
Name Modifer Modified at -
2 NAME" DOM1* | Filter Row
JPE_NAME1 DOM1ADMIN 24.11.2010 03.06

@ JPE_NAME2 DOM1ADMIN 24.11.201003.06

@ JPE_NAME3 DOM1ADMIN 24.11.2010 03.08

@ JPE_NAME4 DOM1ADMIN 2411.2010 03.06

@ JPE_NAMES DOM1ADMIN 2411.20100%.06

@ JPE_NAMES DOMIADMIN 24.11.2010 03.06

Figure 3. Filtering of objects inside list view control

Figure 3 illustrates a simple use of the filter based on the object name and its modified

date. The text-based filter also accepts wildcard characters such as the asterisk and

14

question mark character. When users want to filter based on the modified date, a

popup window will appear and allow users to select the desired date and time.

In principle, each tree node (folder) represents a specific object type (which is techni-
cally a C++ class), thus the list of objects will only contain items that belong to the
same type. The list of object types is constructed based on the binaries of licensed
application modules during the GENERIS installation process. Moreover, it is also pos-
sible to create an object view instead of a subfolder inside the tree view. A GENERIS
view works using the same principle as a database view. It acts as a filtered list based

on user-specific search criteria.

D {@B &7 « @ Qd [
=-[5) Metering Points » | Name Modified Modified by | MP name | MP code I
G View for Objects that re missing some nfo RIS
@ EL_4084 23.01.200916:27.05 THEUSER EL_4084 EL_4084
4 m »
~ |1objects |Fi—ch

Figure 4. An object view in the GENERIS Browser

Figure 4 illustrates the appearance of an object view in the tree view hierarchy. When
users select the object view, the list of objects matching the search criteria specified in

the view will be fetched into the list view control.

In some cases, when users select a folder from the Tree View, instead of showing a list
of objects, the list view will be replaced by a generic panel section. The content of the
panel depends on the implementation of the specific module. This design provides flex-
ibility for the user interface design and allows developers to reject the general design
pattern in order to satisfy the system requirements. Figure 5 illustrates the content of
the GENERIS Work Order Follow Ups module, which is represented by a panel control
instead of a list of GENERIS obijects.

15

D @B &7 «~ @ Q&

=) Work Order Management # | Summary .Wcrt orders
¥-J Work Orders
| Work Order Follow Ups Summaty
Summary

+ EI New work orders for allocations [16)
+ [E] allocated work orders (0]

+ Closed (1)

+ [E] Alams (0)

[Refiesh | |l

Figure 5. Content of the Work Order Follow Ups module

According to figure 5, when users select the Work Order Follow Ups node, the GENE-
RIS Browser will present a custom-implemented interface instead of a list of the
objects. This module allows users to easily manage the list of existing work orders in-
side the system based on some key criteria. It also provides users with a possibility to
quickly view the content of a work order without the need to open a new window. How-
ever this module can still be improved to enhance user experience, which will be

covered in section 4 of this thesis.

3.3 GENERIS Work Order Object

Work orders are created to request operations on meter devices. The type of a work
order depends on the operation that needs to be carried out. The current GENERIS
MAM platform supports all necessary workflow types that are used in the energy
industry. Some of the most common work order types are maintenance, manual area
meter reading, meter change, meter random test, meter configuration, installation, con-

nection and disconnection.

Work order objects can be created under a sub-folder named Work Orders. Basically, a
work order object also has connections to other object types such as metering points
and metering devices (since work order is often created for a meter device at a meter-

ing point).

16

Create a new work order Assign the Export the Carry out
work order work order on-site tasks

p
Use a wizard J [Use a pre-defined template J

Figure 6. Life cycle of a work order object

Figure 6 shows a simple lifecycle of a work order object. At first, users can create a
new work order object using a wizard. It is necessary to specify all details related to the
work order, such as work order type, work order code and description. A work order
type may have different sub-types (in the case that there is more than one way of car-
rying out the selected work order, and the sub-types can also be used for different ex-
ternal systems). For example, in the case of creating a new work order for changing a
meter device, there are sub-types which specify the format of the work order (either
using paper or an electronic PDA device). Each work order type will require a different
set of work order data fields, though all work order types will have a certain number of
data fields in common. Depending on the work order type, users might need to specify
related object definitions, which are usually metering points or meter devices. If a work
order is related to multiple meter devices or metering points, the work order is consid-
ered to have more than one task associated with it. It is also possible to attach files to a

work order if needed.

The work order object is stored in the database management system. However in order
to issue an on-site work order, it is necessary to export the work order object into a
specific output format (paper or an electronic document to be used on PDA). This is
why each work order needs to have a data template. The data template might be an
XSL file (eXtensible Stylesheet Language) or an Excel template. This configuration is
very flexible since all customers can have their own data template and design for all

exported work orders.

After work orders have been stored in the database, users can view, edit, export and
monitor the state of the work orders. Each work order object might contain more than
one work tasks, and each task has its own assigner, deadline, comments and multiple
states. A work order task status is represented by its state property. Users can also
attach optional files to a work task (for external meta-data). Whenever there is a need
for collecting inputs for work orders (either by using automatic data import or manual

17

data input), the data is validated and saved into the system using the master data
management system (GENERIS EDMS). For example, when there is a need for meter
change at a certain metering point, the end readings will be validated and saved for the
old meter. Then the old meter will be moved to storage and the new meter will be
installed to a metering point from the storage with start readings. In the case of vali-
dation errors, such as invalid data values, data inconsistency, users will be notified and

required to take manual actions.

3.4 GENERIS Work Order Follow Ups

As the amount of data grows both in size and quantity, following up with existing work
order becomes a challenging task. Thus it is necessary to use GENERIS Work Order

Follow Ups to keep track of existing work orders. GENERIS Work Order Follow Ups

can be found as a subfolder under Work Order Management in GENERIS Browser.

D B &7 «~» ®» Q&

=) Work Order Management + | Summary | Work orders
[Work Orders
[District Heating Summary
!:':J E¥ Summary
@] :
] - Mew work orders for allocations (16

Total of not allocated (16)
Mew work orders created today (0]
- B Allocated work orders (0)
@ Deadine today (0]
Deadine bythe end of this week [0
Deadiine by the end of this month (0)
+ B Closed (1)
+ B Alams (0)

4 [»

| Refresh |

Figure 7. GENERIS Work Order Follow Ups Summary

Figure 7 shows the location of GENERIS Work Order Follow Ups module in a sample
GENERIS installation. In this case, the Summary tab gives users an overview of cur-
rent work order situation inside their GENERIS Installation. The filtering criteria are
based on the most useful use cases from the user’s point of view. It focuses on all work
orders that need special attention (work orders which are late or not assigned to any
employee). When users navigate to Work order tab, they will get the details of all work

orders that are currently created in the database, as illustrated in figure 8.

18

D x@ @7 «+ & Q&

i =-(J Work Order Management * || Summary | Work orders
|) Work Orders
| [District Heating ‘Work orders
0 v ‘work order | ‘Work order name | Work order description | Type Sub-type Tast =
o
All All
18 18 Mamntenance, other ID_1
18 18 Maintenance, other ID_2
18 18 Maintenance. other ID_38
2 al WVenly measuement accuracy ID_1
27 27 Manual area meter reading Husky ID_1
28 28 Meter random test D1
30 30 Meter random test Io_1
ke 33 Meter change Flextronic format 1D_1
3 33 Meter change Flextronic format 1D_1
M 34 Meter channe Panes fremat ni1v
< m »
- 21 rows / 50000 [max count) Show latest state | Refresh
4 ’

Figure 8. The tab view of GENERIS Work Order Follow Ups

Figure 8 illustrates the behaviour of GENERIS Browser when users navigate to the
Work order tab in Work Order Follow Ups. The list view control will then be populated
with a list of all work order tasks together with all of their states up to present, users
can specify to view only the latest state. This view is helpful in case users want to fol-

low up with the recent activities of the work orders.

3.5 Existing Workflow Definitions

The work order is an object type which has similar properties to an existing object type
that is named as workflow definition. This object type belongs to the GENERIS System
application. Instead of having specific data fields, a workflow has a more generic decla-
ration which is in the form of parameters. A workflow definition object represents a work
process which consists of multiple phases and can contain parameters. Each parame-
ter can be simply a text or even a GENERIS object type (which is identified by its own

unique identification code).

Users can create multiple instances based on the same workflow definition. Each work-
flow definition can define multiple application services, where the actual tasks are being
done. The Workflow Management platform also offers a workflow group object type,
which acts as a follow-up panel for specific workflow definitions. In other words, users
can manage the status of all instances created from specific workflow definitions by

using a workflow group object.

19

System Application MAM Application
Workflow Work Order
*----0
Workflow Definition Work Order Type
“(\rParameters /\ ;Work Order Data /
“C\Workﬂow Instances / \;Work Order Object /
‘(;Workﬂow Phase Definition /\ ;Work Task /
“(\Status / \ State /
(Summary 3 { Summary)
(_All Workflow Instances 3 { Work Orders)
Workflow Group Work Order Follow-Up
&----0

Figure 9. Similarity between GENERIS Workflow Management and Work Order Management

Figure 9 illustrates the similarity between Workflow Management and Work Order
Management. In fact, the workflow definition can be considered as the abstraction of
work order type. Thus a workflow definition can be instantiated as a work order object.
Provided that workflow definition can accept parameters of different data types, it is
possible to create work order data as workflow parameters. In this case, the metering
device, metering point or owner party can be considered an object parameter of the
workflow definition. Moreover, the workflow group object also offers the same function-
ality as the existing Work Order Follow Ups. It opens a new possibility to develop the
current Work Order Management based on the existing Workflow Management in
GENERIS. This can significantly reduce the complexity of the system and decrease the

number of code lines by reusing the existing codebase.

However, there are certain limitations with Workflow Management that prevented this
possibility from coming into practice. First of all, workflows are more suitable for larger
processes such as contract managements. A workflow sub-process will be more suita-
ble for the whole process of a work order. Moreover, the current workflow management
does not have the interface for exporting/importing data into the existing workflow in-

stances. Since work order is not a static object and it requires data exchange in a bidi-

20

rectional manner, this problem naturally becomes the biggest obstacle in the process.
Users need to export work order data to a custom format and then in some cases, im-
port new data into the existing work order object. In other words, workflow instance can
only be used as a work order object unless its interface has support for external data-
flow. Moreover, a Work Order platform will be installed on different customer systems
with a wide range of custom data fields. The current Workflow Management Configura-

tion is not flexible enough to handle that requirement either.

ﬁ Properties | Parameters | Workflow Instances |

Workflow parameters
| Name Type Direction | Default value | Link fro =
{ab] meterChangePriniFile Stiing Output
[ab] meterChangeFreeT ext Stiing Input
_a_lj fugeChangePrintFile Stiing Output
[ab] fuseChangeFreeText String Input
-] Meter reading
& calendar Obiject reference Input
E] serviceConnection Object reference Input =
[42) workOrderType Number input 1
[ab] printFormat Stiing Input
[42) workOrderSubType Number Input
(& deadine Absolute time Input
(& validityStart Absolute time Input
{42\ pioduct Nuinber iniput ¥
4 m]
Cose | [Edt :
4 m 3

Figure 10. Configuration for workflow definition parameters

Figure 10 illustrates a sample configuration for workflow definition parameters. In the
current implementation, the list of parameters is represented by a two-dimensional list
view control, which shows a parameter in a single row. This user interface design is not
effective in the case that the parameter list view contains many rows (there is no sort-
ing or filtering available in this list view control). It is also necessary to have the possi-
bility to specify the custom state for a work task and security policy for each workflow

definition parameter.

21

3.6 Roll-Back Feature

GENERIS Work Order is a robust platform which can handle all basic use cases in the
energy market. It also supports the validation task for meter readings from the metering
point. However, the current system does not allow users to undo the changes that were
made to work order data. The process of reverting data into its original state due to
human errors requires several manual steps, in the case of input errors, misspelling or

data inaccuracy.

It is necessary for the Work Order platform to provide support for the roll-back feature.
It can be used to restore system data to its previous state in the case of data errors.
Moreover, it needs to enforce data integrity requirements during the whole process. In
some cases, a roll-back can cause the existing data to invalidate itself. Thus, the roll-
back operation should ensure that the data is valid before and after the process is
completed. For instance, when the target work order is already too old, the rolled-back

data state may overlap the new data in the system.

3.7 Binary XML Data Model

As of the current system, user fields are specified inside the source code and needs
database scripts for making updates. This process is time-consuming and thus ineffec-
tive in the product cycle. Moreover, the management of license and version updates
will become complex as the number of versions increase and the size of the database

starts to grow.

One possible approach is to design a new data model which is based on the binary
XML (eXtensible Markup Language). In general, the binary XML format creates smaller
XML documents by omitting the common full-text syntax structure and representing
data using a certain binary data format. The result is a document which is faster to
parse but impossible to read by ordinary text editors. By making use of binary data, the
size of an XML document is greatly reduced at a price of non-readable text for end-
users [15]. Thus, it is suitable for performance purposes. It is well supported in many
database systems and can also be used for importing/exporting purposes. Another
advantage of the binary XML is that it can also replace the traditional means of updat-
ing the database using SQL scripts. By migrating into XML, different user fields from

customer setups can also be put under version control. Moreover, an XML document

22

can be easily validated against document schema and it is very flexible due to the pos-
sibility of XSL transformation [16,13]. Thus, the task of importing/exporting da-

ta/configurations becomes much more simplified and effective.

However, it is also important that the migration process needs to be backward compat-
ible. This is to make sure that new implementations will not corrupt existing user data
or requires a complicated migration process. Thus a new data interface should be im-
plemented in such a way that it can support not only the new data model but also the
old database system. The existing hard-coded user fields need to be revised according

to the new data model using database updates.

23

4 Work Order Follow Ups Improvements

4.1 New View for Related Work Orders

Currently, each Work Order object is presented in Work Order Follow Ups as an inde-
pendent unit. However this is not the real case in practice, since different work order
types may have certain connections with each other. Provided that there are multiple
work orders for the same metering point (or meter device), users might need to view all
work orders grouped by a metering point or meter device. For instance, when users
view event-based reading work orders for moving/supplier change, they might want to
view other work orders that belong to the same metering points, such as work orders
related to a meter change operation. This can help users to arrange the on-site tasks in
a more effective manner, for example, if there are two work orders about meter reading
and meter change which relate to the same metering point, they should be carried out

at the same time.

One possible solution is to allow users to select some specific work orders from the
Work order tab. Then they can navigate to a new tab and the list of all related metering

points will be shown on the screen.

Open Work Order Navigate to Navigate to List of work orders for The same
Follow-Up ”"Work orders” tab the new tab metering point is shown

|

[Select desired work orders]

. Work orders l Metering point work orders | Work orders data

24

1 3
Work orders U u
Work order |kaotdernarre|Melahgpohtcode |Wotkordudmctbﬁm|Type Subtr ~
All All
AD1024 A01024 058720177399 Meter change Paper
AD1024 AD1024 058720175999 Meter change Papu
AD1024 AD1024 058720179939 Meter change
AD1024 AD1024 058720166999 —m
AD1030 AD1030 LIA_TEST || Meterinstallaton | |}
AD1031 AD1031 LJA_TEST Meter change Pape) =
AD1032 A01032 LJ&_TEST Meter change Paper
AD1033 A01033 LJ&_TEST Meter change Paper
AD1034 AD1034 LJA_TEST Meter change Pape
AD1035 AD1035 LJA_TEST2 Meter installation
AD1036 AD1036 LJA_MEG_ESTIMATION Meter installation
AD1037 AD1037 010240018333 teter change Papei
AD1038 A01038 230030900987 Manual area meter reading Paper ™
< | (] | 2
76 tows /50000 (max count) [¥] Show latest state
Summary l Work orders .M.ﬂtﬁﬂg F'"-’i'.'lt work orders | Work orders data‘
Metering point work orders
Metering point code Work order Work order name | Type | Work order description
All
058720166939 A01022 AD1022 Meter change
058720166999 A01024 AD1024 Meter change
058720166939 AD1018 AD1018 Meter change
LJA_TEST AD1031 AD1031 Meter change
LJ&_TEST 401032 401032 Meter change
LJA_TEST A01033 AD1033 Meter change
LJ&_TEST 401034 AD1034 Meter change
LJA_TEST 401030 401030 Meter installation
4 | 1 »
8 rows / 50000 [max count) (V] Show latest state

Figure 11. The new view for work orders belonging to the same metering point

Figure 11 illustrates the new workflow for users when they want to view related work

orders. This feature requires the possibility to select multiple work orders at the same

time from the Work orders tab. In this case, from the Work orders tab, users select data

rows for two work orders with code A01024 and AO1030 (these two work orders are

related to two different metering points). Then by navigating to the new tab named Me-

tering point work orders, the list of all work orders related to the same metering point

25

will be shown on the screen. This workflow can also be modified to become even more

flexible, as illustrated in figure 12.

Open Work Order Navigate to Navigate to Select relationship
Follow-Up ”"Work orders” tab the new tab criterion

A
X List of related work orders is
Select desired work orders shown
Open Work Order Navigate to List of related work orders is
Follow-Up "Work orders” tab shown

[Select desired work orders]

[Select relationship criterion]

Figure 12. User workflows for viewing related work orders

Figure 12 illustrates another approach for the same purpose with even greater flexibil-
ity. Instead of showing only related work orders which belong to the same metering
point, users can also view related work orders based on the selected work order data.
For example, users can view all other work orders for the same meter device or
metering point. The user interface should have a new combo box which contains a list
of available data fields for the work order. By selecting the corresponding field name
from the combo box, GENERIS Browser will load the list of work orders which are re-
lated to the selected work orders by that field. The list of the related fields can be popu-
lated from the GOF system instead of specifying list items directly in the C++ code.
Whenever users select another item in the combo box, the content of the list view will
be updated accordingly. The combo box can be placed directly inside the existing tab
and all related work orders will be grouped together by using unique background col-
ours for each data row. It is also possible to place the combo box inside the new tab,
so that the new list view would only contain the work orders that the users are interest-

edin.

26

4.2 Filtering Support for Summary Tab

Currently, the view of Summary tab in the Work Order Follow Ups module lists all pre-

defined search conditions. By double-clicking on the desired filter name, the list of work

orders which pass the filter condition will be shown to users.

Open Work Order Navigate to List of matching work orders
Follow-Up ”"Summary” tab is shown
[Select desired filter criterion]
Summary
Summary 2

- New work orders for allocations (16)

Mouse Double-ciick
New work orders created today (0) '

- [E Allocated work orders (0)
Deadiine today (0)
Deadiine by the end of this week (0)
Deadiine by the end of this month (0)

o

+ [E] Closed (1)
+[E] Alams (0) 2
< m 1 &
A 4

Work orders
Code Type Sub-type Metering point c... | Meter code Reading reason »
+ Q7 AD1014 Meter change Paper format (A
+ Q7 A01013 Meter remove
+ Q7 AD1015 Meter remove | 8
+ Q7 201055 Manual area met.. Paper (%
+ Q7 AD1057 Manual area met... Paper
+ Q7 AD1056 Manual area met... Paper
+ Q7 AD1058 Meter installation
+ Q7 A0100 Manual area met... Paper
+ Q7 AD1008 Manual area met... Paper
+ Q7 AD1018 Meter change Pape format
+ QP AD1068 Meter change Paper format -
4 !_ m | 3

Figure 13. Current implementation of Summary tab in Work Order Follow Ups

Figure 13 shows the current graphical user interface of the Summary tab inside the

Work Order Follow Ups module. This design comes with certain limitations as it does

27

not provide users with a flexible navigation mechanism. The resulting work order list
does not provide support for filtering or sorting. In the case that users want to apply
another filter condition, they need to click on the Close button and then re-select the
condition from the previous screen, as the screen view state is not persisted when us-
ers navigate away. This workflow can be improved by replacing the current list view
control with another list view with the ability to sort/filter the data rows, which is the
same as in the Work orders tab. Moreover, the list of conditions should revert to its

previous state, so that users will not need to expand the tree structure all over again.
4.3 Work Order Data Tab

The current implementation of Work Order Follow Ups does not allow users to view
detailed work order data directly. Users need to double-click on the interested work
order from the list view. It is not possible to browse multiple work order data in the

same view. The existing workflow can be improved according to figure 14.

Open Work Order Navigate to Navigate to Select interested
Follow-Up "Work orders” tab "Work orders data” tab work order

[Select interested work orders J [Work order data is shown

Summary Work orders [Metering point work orders | Work orders data |

(O
Work orders
Work order ‘Work order name ‘Work order description Type -
aot00t Jaotoot | |Manualsreameterreadng |
A01002 a01002 | [Meterchange |
AD1003 e ISCU AD 23233 Meterchange |
AD1006 401006 | [Manuslareameterieading |
201007 (w0107 | [Mewchage |
AD1013 AD1013 Meter remove
AD1014 A01014 Meter change -
|T [T] |
76 tows /50000 (max count) [7] Show latest state

28

Summary | Work orders | Metering point work orders | Work orders data

Work Order
Work order Work order name Work order description | Type | Sul
Al All|
AD1001 A01001 [| Manual seametereading | Pal
AD1002 AD1002 Meter change Pa
AD1003 A01003 ISCU A0 23233 Meter change Pa
AD1006 A01006 Selected work orders Manual area meter reading Pa
AD1007 AD1007 from previous step Meter change Pa
=] 1l | [nd
Data
Meter code Metering point ... | Metering poi... | Reading Reading date Reading hig... | Readinglow... '
007051520 061780060304 5833.000 1947.000
007051520 061780060304 3462.000 1401.000
< | m »
State
Task Done State | Stalus | Done by Assigned to Deadiine
. Al Al '
ID_1 21.08.2011 11:02 Initial printre... Not allocated FSOADMIN
< | m »
File
Task | File
5 rows / 50000 (max count) ("] Show latest state Refresh

Figure 14. New workflow for viewing multiple work order data

Figure 14 illustrates a new workflow which allows users to view the data of multiple
work orders. At first, users select work orders from the list view control in the Work
orders tab. Then by simply navigating to a new tab, named as Work order data, users
can view the data of selected work orders. The top-most list view control lists all select-
ed work orders. In the case that users did not select any work order from the previous
step (or they simply navigate directly to the new tab), this list will be populated with all
available work orders inside the system (there is a limit on the number of work orders

to be fetched). When users select a work order from this list, all data belonging to that

29

work order will be shown in the same screen (in the Data section). This design also
allows extended operations on multiple work orders. For example, it is possible to add
new sections into the view which allows a wide range of batch jobs to be executed (in-

cluding exporting and modifying multiple work orders).

4.4 Additional Information for Work Order Data

The current list view for Work order listing that is used by Work Order Follow Ups does
not allow users to decide on which data columns are visible. By default the list of col-
umns will be populated based on the common Work order data fields. However, this list
of columns might not prove to be useful for all work order types and in all customer
setups. The list view control can be enhanced by adding the possibility to specify the
list of columns (data fields). The data source may come from all objects that are related
to the current work order. This configuration can be implemented based on the existing
GENERIS Objects and Fields system. This also allows user-defined fields to be includ-
ed.

Open Work Order Navigate to the interested tab Details of work order and
Follow-Up (which contains list view control for work orders) related objects are shown

Right-click on list view control
and select data columns

Work orders
Work order Work order name Work order description Type ~
e 1 -
TST105 Options » Test Nyinslallation Meter installation
;gﬂ gg Open Object in New Window zesl Em‘a!}a@" Connection diameter "
. TS _ in
o T ool e
;gﬂ :: I Work order name Location code ‘:
1ST116 B3 Auto Column Size F& |[F Description Measurement code |,
gﬂ :2 Options IV Type Measurement type -:
rr . . L
T6T11R Export > Task Metering point code | v

< Meteting configuralion

Objects Related... »

Figure 15. Custom data fields from related objects

Figure 15 illustrates a sample use case for the new function. By right-clicking on the list

view control, users have the possibility to specify the list of visible columns. For ex-

30

ample, instead of viewing only Work order details, users can also view the information

regarding the related metering points or metering devices.

31

5 C++ Implementations
5.1 C++ MFC Windows Application Structure

One fundamental design of a MFC Windows Application is based on Document / View
model. This concept divides an application into two different classes: a document and a
view class. As simple as it sounds, the document class defines the application data (or
the document itself), whereas the view class is used solely for the presentation of the
application. Specifically, the document class contains the data structures, algorithms
and specifies the application processing mechanisms. The view class displays the
graphical user interface to users. It is responsible for painting the main form as well as
handling all message mappings in Windows. In other words, it receives users’ interac-

tions at the front end and then takes appropriate actions.

The class for document and view object should be derived from CDocument and
CView class respectively. The document and view interact with each other by using
pointers. The document object stores a pointer variable which points to its associated
view object and vice versa. Each view object has a member field which is a pointer that
points to the document object. Whenever there is a change in the document data, the
document will then notify all of its views to repaint their client area by calling a method
named UpdateAllViews() [14,90].

Get Document Data

| }

View Object Document Object

pDocument pView

CView —> — CDocument

Data

Update View

Figure 16. Document/View model

32

Figure 16 illustrates the relationship between the document and view object in the
Document/View model. The view object can be a subclass inheriting from CView and
document object can inherit from CDocument. They both have a pointer to the other
object as a data member, which makes it possible to exchange data between the view
and the document. The update will occur in the case that a user-generated or custom

event occurs.

All interactions between users and a Windows application, such as a mouse click and
window movement, are built based on the message system. Whenever an action oc-
curs, a message will be created and sent to the appropriate class for processing. Each
message has its own handle and is connected to a specific method. Windows applica-
tion keeps track of the corresponding method for processing each message type using
the message map. In order to map a message type to an existing method, it is neces-
sary to make a macro call which takes the message handler and the function refer-

ence:

ON_MESSAGE (MESSAGE_HANDLER, FUNCTION_REFERENCE)

There are different handlers for different types of messages. The developers just need
to map all those messages that they are interested in. The remaining unmapped mes-

sages will be handled by the framework itself.

5.2 User Interface Implementation

5.2.1 MFC List View Control

The implementation of a list view control involves creating a panel display which con-
sists of a two-dimensional table with or without borders. The list view control may have
different display styles. Each item can be simply a named icon or a detailed data grid.
In the detailed view mode, the items are represented as a collection of data rows. Each
data row has a set of data fields which is represented as columns. The intersection of a
list view row and its column is called a table cell. The content of each table cell is a
string of text. However it is also possible to add interactive contents to the list view,
such as images, checkboxes and colored rows. Data and columns inside a list view

control can also be formatted depending on custom implementations.

33

In an MFC application, the list view control is encapsulated using the CListView class.
This class seamlessly integrates the list control with the fundamental Document/View

architecture. The list view control can display its contents in different ways:

e Icon view: Each item is represented as an icon with a text label underneath.
This is the only view where users can drag and drop the items to any location

inside the list view area.

e List view: Each item is represented inside a data row with only one column. The

row may contain an icon and text.

e Report view: This is similar to the List view style; however it also supports addi-
tional columns to the right. Each item is a composition of multiple sub-items,
which are created by the application. Each column is implemented by an inte-

grated header control using a class named CHeaderCtrl. [17.]

The ClListView class also uses messaging to handle users’ interactions. It provides a
set of functions for manipulating the list view contents, such as retrieving and editing
list view items. There is no built-in support for enhanced functionalities such as sorting
and filtering. However, by implementing custom methods for different message types, it
is possible to create an advanced version of the list view control by extending the

CListView class.

5.2.2 MFC Tab View Control

MFC provides support for integrating a tabbed view into an application using the Doc-
ument/View model. In order to implement a tab page inside an MFC application, devel-
opers simply need to derive a class from the CTabView class and then add a new view
as a new tab. The new view needs to be derived from the CView class and the tab con-

trols will display the view as a new tab. [18.]

Figure 17 illustrates a sample class diagram for a TabView control inside an MFC ap-
plication. An arrow line demonstrates an inheritance relationship. The beginning of the

line is the base class and the arrow points at inheriting class.

34

CTabView
l R
WOFUTabView
ScrollFormView ScrollFormView ScrollFormView
A A
. T 24

|

CView

Figure 17. TabView control class hierarchy

According to figure 17, WOFUTabView is a subclass inheriting from CTabView. This
class represents the tabbed view of Work Order Follow Ups. It uses three objects
which are created from the ScrollFormView class. In this case, ScrollFormView is a
subclass inheriting from the CView class. The purpose of the ScrollFormView is to pro-

vide a view with scrolling functionalities.

In order to add a new view, it is necessary to use a method which is inherited from the
CTabView class which is named as AddView. The signature of the function is illustrat-

ed in listing 1.

int AddView(
CRuntimeClass* pViewClass,
const CString& strViewLabel,
int 1lndex=-1,
CCreateContext* pContext=NULL
)

Listing 1. Signature of AddView function.

According to listing 1, it is necessary to specify only the first two parameters since the
remaining parameters already have default values. The first parameter is the pointer to
the runtime class of the tab view, which is derived from the CView class. The second
one is a string which represents the title of the tab. By default, the new tab will be in-

serted into the end of the tab groups. In the case of inserting a tab into a different posi-

35

tion, the third parameter is used solely for that reason. It takes an integer number which

represents the zero-based position of the new tab view.

5.2.3 GENERIS Document

The new functionalities mentioned section 4 should be implemented using the Docu-
ment/View model. The view is created based on the existing MFC classes and extend-
ed controls in the GENERIS Core module. The document object is basically based on
the CDocument class. Each document will be created based on the existing document
from GENERIS Browser. It has multiple inheritance layers, which include the data ac-
cess layer and data handling logic. The document also contains data state which is
used whenever users switch between different tabs. All controls inside a view share the
same document as the tab view. For example, when users select some work orders
from the list view control, the list of selected items will be stored inside the document. It
is necessary to map that event to a function which handles the data storing operation,

as illustrated in listing 2.

// Create new Document class deriving from CDocument
class WOFUDocument : public CDocument

{
public:
WOFUDocument () {}
virtual HINSTANCE ResourceHandle();
void SetSelectedWO(bool _state);
WorkOderObject& GetSelectedWOAt(int _Position);
CArray<WorkOderObject> & GetAllSelectedWO();
private:
CArray<wWorkOderObject> m_SelectedWOArray;
};

// Create custom list view control class deriving from CListView
class WOFUListViewControl : public CListView

{
public:

WOFUListViewControl ();

virtual ~ WOFUListViewControl Q{}
private:

void OnltemChanged(int _iRow);
protected:

CDocument * pDocument;

36

// Implement member function of custom list view class
void WOFUListViewControl::OnltemChanged (int _iRow)

{
if (_iRow < 1 || !GetltemState(iRow, LVNI_SELECTED))

return; // SKip non-datarow
WOFUDocument* pDoc = dynamic_cast<WOFUDocument*>(pDocument) ;
if (pDoc) // 1T using WOFollowUpDoc type

// Data storage operations

}

BEGIN_MESSAGE_MAP(viewObjectName,CView)
ON_NOTIFY(LVN_ITEMCHANGED, IDC_LV,OnltemChanged)

END_MESSAGE_MAP()

Listing 2. Message mapping for list view control event.

Listing 2 demonstrates a sample definition of sub-classes which inherit from the CDoc-
ument and CView class. This is needed for implementing the Document/View model
and message mapping operation. The code block makes a call to the message han-
dling macro which has the declaration as: BEGIN_MESSAGE_MAP(viewObjectName,
CView). This macro is used to start the message mapping process for all user interac-
tions that occur in viewObjectName, which is an object created from CView class. The
next macro call defines the event type, target list view control and the method to be
executed whenever the event occurs. pDocument is a pointer inside the list view con-
trol which points to the document object used in the model. In this example, the docu-
ment class is a derived class from the CDocument class, and thus it is necessary to
cast the document pointer to the derived type. The casting operation is quite necessary
in software applications which make use of abstraction and dynamic linking. In this
case, the document can also be used whenever a database operation needs to be
done on existing data. It contains a pointer to the database handler that is created
when users first start GENERIS Browser. Since the document object will be created at

the platform level, thus the module itself does not need to reinitialize the object.

37

6 Discussion

The main goal of the project was to improve the existing work order data model and the
GENERIS Work Order Follow Ups user interface. The testing prototypes satisfy all de-
sign requirements. They are capable of responding to user input and display all neces-
sary data fields at runtime. Taking the targeted users into account, the user interface
has been designed so that it can greatly enhance the productivity of an energy infor-
mation system. During the development of the system, different sets of solutions for the
same problem were taken into consideration; however the selected solutions proved to
be the most effective and could deliver the best user experience. The new design min-
imized the number of mouse clicks and users could get the tasks done using the least
required transition steps. The outcome of the project has been evaluated to fulfil the

requirements and function properly under the designed environment.

However, GENERIS Work Order Follow Ups can be furthered developed by adding full
support for GENERIS Objects and Fields. The current implementation still relies on
SQL queries to the existing database view, which limits the capability of the application
to query data from other sources such as related objects and their data fields. This fea-
ture can be implemented based on the existing GENERIS platform using its built-in

functions for querying GENERIS Obijects.

The process of applying the design pattern could also be improved further by conduct-
ing the study based on user interviews and customer surveys. This method can collect
real-world statistics of customer satisfaction. This would require a thorough planning
process and careful preparation of the questionnaire materials. It would be more effec-

tive to improve the design where it is needed most based on collected feedback data.

The solution of using binary XML for the data model would simplify the version control
process and increase the application flexibility. However, structural changes to the ex-
isting implementation and new data interfaces need to be created in order to accept the
new format of bidirectional data stream. The user interface also needs to be re-
designed, so that it can reflect the data workflow as well as new functionalities in an

effective and systematic manner.

38

7 Conclusion

Design patterns help to improve general user experience. The new solutions for GEN-
ERIS Work Order Follow Ups will make the system more usable and effective. By min-
imizing the number of steps that users need to go through to get a task done, the new
implementation has removed redundant steps from the process. This means that the
user workflow will become more logical and effective. However, the most important
benefit is that users can now have access to even more functionalities from a large
multi-utility energy information system. In this thesis, the existing user interface’s de-
sign patterns were studied and based on that, new improvement ideas were developed

and evaluated.

The ultimate goals of the project were to achieve better software quality, reduce system
complexity, increase efficiency and simplify the installation process. The user interface
is a vital part of a software application, since all user interactions are done through the
user interface. A good user interface will decrease the training cost, user error rates,
support enquiries and at the same time increase productivity. Moreover, by using a
highly customizable and effective data model, the MAM work order can become a more
dynamic solution for deploying customer-oriented systems. This design eliminates the
gap between common configuration and customer-specific setups. It also integrates
seamlessly with the current GENERIS platform, which reduces the effort for installation,
maintenance and version updates, thus reducing cost. Moreover, the binary XML is a

widely-used format which is supported by different relational database systems.

The result of the project was an improved graphical user interface which can help users
handle all analogue use cases effectively in their custom setups. The user interface
plays an important role and contributes greatly to the effectiveness of system configu-
rations. All background knowledge about usability, data structure, database modelling

and programming languages played a vital role in achieving this objective.

39

References

10

11

12

13

Kauppalehti Uutiset. Process Vision: Seinajoki Energia, the first new electronic
services eGeneris Solution [serial online]. Helsinki, Finland; 24 November 2010.
URL: http://www.kauppalehti.fi/5/i/yritykset/lehdisto/hellink/
tiedote.jsp?0id=20101101/12906056340950. Accessed 20 September 2011.

Baube F. GENERIS Meter Asset Management User Guide. Helsinki: Process Vi-
sion Oy; 2011.

Kallio P. GENERIS Energy Solutions. Helsinki: Process Vision Oy; 2002.

Einamo J. GENERIS MAM Meter Asset Management: Process Vision Oy; 2008.

Surhone L, Tennoe M. Work Order. Saarbriicken: VDM AG & Co. Kg; 2010.

Tullis T, Albert B. Measuring the User Experience: Collecting, Analyzing, and Pre-

senting Usability Metrics. Burlington MA: Morgan Kaufmann; 2008.

Tidwell J. Designing Interfaces. Patterns for Effective Interaction Design. Sebasto-
pol CA: O'Reilly Media Inc.; 2011.

Farrell J. Object-Oriented Programming Using C++. Boston MA: Course Technolo-
gy; 2009.

Martin R, Martin M. Agile Software Development: Principles, patterns and practices
in C#. New Jersey USA: Pearson Education; 2007.

Swanke J. Visual C++ MFC Programming by Example. Berkeley CA: CMP Books;
1999.

Ritchie C. Relational Database Principles. London UK: Thomson Learning; 2002.

Ponniah P. Data modeling fundamentals: a practical guide for IT professionals.
USA: John Wiley & Sons; 2007.

Jokinen A. GENERIS Meter Data Management. Helsinki: Process Vision Oy; 2012.

14

15

16

17

18

40

Bjornander S. Microsoft Visual C++ Windows Applications by Example. Birming-
ham UK: Packt Publishing; 2008.

Surhone L, Tennoe M, Henssonow S. Binary XML. Saarbricken: VDM AG & Co.
Kg; 2010.

Melton J, Buxton S. Querying XML: XQuery, XPath, and SQL/XML in context. San

Francisco CA: Elsevier Inc.; 2006.

ClListCtrl Class. Microsoft Corporation [online].
URL: http://msdn.microsoft.com/en-us/library/hfshke78(v=vs.90).aspx.
Accessed 19 December 2011.

CTabView Class. Microsoft Corporation [online].
URL: http://msdn.microsoft.com/en-us/library/bb983705(v=vs.90).aspx.
Accessed 19 December 2011.

