

Mikko Pietola

TECHNICAL EXCELLENCE IN AGILE SOFTWARE PROJECTS

TECHNICAL EXCELLENCE IN AGILE SOFTWARE PROJECTS

Mikko Pietola
Master’s Thesis
2012
Degree Programme in Information
Technology
Oulu University of Applied Sciences

ABSTRACT

OULU UNIVERSITY OF APPLIED SCIENCES ABSTRACT

Degree programme Thesis Number of pages
Degree Programme in Information Technology Master’s Thesis 68
___ _________________________ ________________
Line Date

Master of Engineering 25.11.2012
___ ___

Commissioned by Author

- Mikko Pietola
___ ___

Thesis title

Technical Excellence in Agile Software Projects
__

Keywords

Agile Software Development, Code reviews, Refactoring, Software Design

Principles, Software Design Patters, Software Design Violations
__

The software industry has evolved over the past decades and it has become

one of the most important industries of our time. Competition in the software

industry environment is tight. The winners are often first on the market, their

products deliver the requisite quality and functionality to their customers and

they are able to adapt to business and technological changes rapidly. This

means the leaders provide high quality software more quickly.

The agile software development methods were introduced in the last decade to

revolutionize software development. The benefits of agility are promoted to be

faster time to market, better responsiveness to changing customer requirements

and higher software quality. However, the agile methods are mainly focusing on

processes, they do not prescribe the technical aspects of software engineering

for producing high quality software. The organizations which utilize agile

software development processes should emphasize and encourage their

personnel to develop individual skills related to practices, principles and patterns

of agile software development, because often these skills are not taught at

universities. This Master’s thesis is a literature study to give an introduction to

agile software processes, the properties of technical excellence in agile projects

and an introduction to software design principles and patterns which are needed

in modern software projects to build high quality software.

3

TABLE OF CONTENTS

ABSTRACT ... 2

TABLE OF CONTENTS .. 3

1 INTRODUCTION ... 5

2 AGILE SOFTWARE PROCESS MODELS... 6

2.1 Scrum .. 8

2.2 Extreme Programming... 10

2.3 Software Craftsmanship .. 13

3 AGILE TECHNICAL EXCELLENCE .. 15

3.1 Test-Driven Development .. 15

3.2 Code Reviews ... 17

3.3 Definition of Done .. 20

3.4 Iterative Development ... 22

3.5 Refactoring .. 26

3.6 Testing... 30

4 SOFTWARE DESIGN .. 35

4.1 Elements of Good Software Design .. 35

4.2 The Open-Closed Principle ... 38

4.3 The Liskov Substitution Principle ... 42

4.4 The Dependency Inversion Principle ... 44

4.5 The Single Responsibility Principle ... 45

4.6 The Interface Segregation Principle .. 45

4.7 The Least Knowledge Principle ... 46

4.8 The Don’t Repeat Yourself Principle ... 49

4.9 Object-Oriented Design Patterns ... 49

5 SOFTWARE DESIGN VIOLATIONS ... 54

5.1 The Bloaters .. 54

5.2 The Change Preventers .. 57

5.3 The Couplers ... 58

5.4 The Dispensables .. 59

4

5.5 The Object-Oriented Abusers .. 61

6 DISCUSSION ... 63

7 CONCLUSION ... 66

8 REFERENCES .. 67

5

1 INTRODUCTION

Agile software development is a group of light-weight software development

methodologies based on iterative and incremental development, where

requirements and solutions evolve through collaboration between self-

organizing cross-functional teams. Agile development has made its way into the

software mainstream in the past years and agile process models have been

touted as the methodologies of choice for continuous sustained software

delivery.

Even today, over a decade after Agile Manifesto was born, many software

development projects are having poor track of record in terms of budget, quality

and schedule. Agile itself alone is not a silver-bullet that resolves these

problems. The development projects may fail, even when they are managed

with agile methods. A root cause for failing projects may be the development

team itself; if the team members do not know the technical disciplines and

practices required by agile methods then they cannot apply them in practice.

Recently, while adapting agile methods, a great deal of efforts are put on

software development processes improvement, while forgetting that the people

involved in the software development deserve more attention.

The objective of this Master’s thesis is to study literature to give an introduction

to agile software processes, the properties of technical excellence in agile

projects and an introduction to software design principles and patterns which

are needed in modern software engineering projects to build high quality

software.

6

2 AGILE SOFTWARE PROCESS MODELS

In the past, many software companies have been concerned about the variety in

development time and quality of their software products. The companies built

their software products using heavyweight micromanaged waterfall approaches,

which included many models, frameworks, patterns and techniques that were

supposed to help engineers to produce better software. For most projects the

formal approaches introduced only overhead and bureaucracy waste. Hence,

the software product development typically took so long to build that their formal

requirements had changed long before the systems were delivered.

Lightweight software development methods started to evolve during the mid-

1990s as a reaction against formal heavyweight approaches. These methods

carried different names and activities, but they all aimed to address the same

problem: creating reliable high quality software more quickly, while eliminating

unnecessary waste and unproductive overhead. (1, p. 20; 2, p. 8.)

These development methods are:

 Scrum, Ken Schwaber, Jeff Sutherland, 1995

 Dynamic System Development Method (DSDM), Dane Faulkner, 1995

 Crystal, Alistair Cockburn, 1997

 Feature Driven Development (FDD), Peter Code, Jeff DeLuca, 1999

 Extreme Programming (XP), Kent Beck, Eric Gamma, 1999

 Pragmatic Programming, Andrew Hunt, David Thomas,1999

 Kanban, David J. Anderson, 2010

7

In 2001, many of the agile experts got together and collaborated to understand

and agree upon the common philosophies that underlie their various methods.

The result of this collaboration became the Agile Manifesto:

We are uncovering better ways of developing software by doing it and

helping other to do it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items

on the left more. (3, p. 1.)

Agile recognizes that people are unique individuals instead of replaceable

resources and their highest value is in their communication and interaction.

Agile requires small teams in which different roles form cross-functional units.

These teams are then required to self-organize, meaning that no method or

process is imposed to them. The team is trusted to get the work done in ways

that they think are the best, assuming they know how to do that. The team is

accountable to deliver their results. (1, pp. 22-24; 2, pp. 9-10.)

Agile understands that the best products are created when the customers are

directly involved with the teams creating them. A backlog of features is

constantly maintained and reprioritized by collaborating with the customer.

These features are described in concise format, and more in-depth exploration

and documentation starts once the team selects them for implementation. After

the implementation is ready, the usefulness of features is immediately verified

by the customer. (1, pp. 22-24; 2, pp. 9-13.)

In agile projects software is produced in short time frames, in time boxes or

“sprints”, and delivered in many incremental releases, where each release is a

potentially shippable product. This enables business owners to take control over

8

timing by moving release dates, depending on what features they want to make

available in certain releases. Frequent product releases are meant to invite

feedback from the customer and to provide new and updated features to the

customer as soon as the need is detected. (1, pp. 22-24; 2, pp. 9-13.)

2.1 Scrum

Scrum is a lightweight agile project management method based on small,

empowered, self-organizing teams, complete visibility and rapid adaptation.

Scrum contains a set of methods and predefined roles. The management of a

scrum-based process is tactically intensive, prescriptive and role-based. The

main roles in scrum are: product owner, scrum master and development team.

The product owner is responsible for representing the interests of customers

and other key stakeholders on the team. The product owner does this by

managing the product backlog, which is a prioritized list of requirements and

other work to be done by the development team. The scrum master is

responsible for helping development team to achieve its goals, for teaching

scrum to everyone on the team, and for implementing scrum practices and

rules. The scrum master is also responsible for resolving any impediments that

development team has. The development team is responsible for implementing

the functionality. The team members, including developers, testers and all other

related personnel, are required to fully implement and deliver the functionality.

The team is self-organizing, self-managing, and cross-functional. (2, pp. 41-43.)

9

FIGURE 1. Scrum process overview (2, p. 47)

The key practices of a scrum process (Figure 1) includes the following; Cross-

functional and collocated teams of eight or fewer team members develop

software in sprints. The sprints are fixed length iterations, whose length is

usually 2-4 weeks. Each sprint should deliver incremental, tested functionality of

value to the customer. The product backlog is the source for a sprint planning

meeting. Once the content of the sprint is committed in the sprint planning

meeting, no additional functionality can be added, expect by the development

team. This means that the work within the sprint is fixed. The scrum master

mentors and steers the self-organizing and self-managing development team

during the sprint. All work in the sprint is carried through sprint backlog, which

includes requirements to be delivered, defects to be fixed as well as other

infrastructure and design activities to be done. A daily 15-minute stand-up

meeting, daily scrum, is held by the development team and is the primary

communication method. A sprint review meeting is held at the end of each

sprint, where the development team demonstrates new functionality for the

10

product owner and customers. A sprint retrospective meeting is held after each

sprint, where the development team is asked two questions; what went well

during the sprint and what should be improved for the next sprint. The main

purpose of the sprint retrospective meeting is to improve the overall

development process. (2, pp. 44-47.)

2.2 Extreme Programming

Extreme programming (XP) is a software development methodology invented by

Kent Beck and it is a collection of practices, principles and values. XP shares

the values espoused by the Agile Manifesto and it echoes scrum process

methodology. Nowadays the principles and values are not widely adopted, while

the practices are commonly used. The main purpose of XP is to organize people

so that they produce higher quality software more productively.

FIGURE 2. XP process model (2, p. 39)

The XP process model is shown in Figure 2. XP defines a set of practices that

are common and applied to each project using the method. The key

characteristics of the XP practices include the following (2, pp. 34-38; 4, p. 1.):

11

 Whole Team. In order to deliver software reliable in small releases, the

software has to be defined, implemented and tested frequently.

Therefore, the XP team consists of developers, quality assurance, project

managers, business analysts and any other stakeholders whose skills

are needed to be present in the team to deliver software. The team works

together in a common and open workspace to maximize collaboration

and communication. The workspace is informative; the stories under

implementation are pinned to story boards (or story walls) for all to see.

The story statuses and responsible developers are updated at least daily,

thus everyone from the developers to the managers can assess the

iteration status simply walking through the team area.

 Planning Game. Prior to each iteration features are broken into small

stories. The stories are the unit of the functionality in XP. The stories are

flexible and they can be modified during implementation or re-prioritized

for a later time. The stories and architectural spikes are the main input of

the release planning. The developers estimate the (cost of) stories in

iteration planning and stories are then chosen to iteration by the

stakeholders based on their estimated cost and business value. The sum

of the selected stories work effort estimates cannot exceed the sum of

estimates completed in the previous iteration.

 Acceptance Tests. The stories and features are defined by automated

tests written by business analysts and quality assurance. When a story or

feature passes the acceptance test suite, the story is said to be done.

 Small Releases. Software systems are released to production (or

preproduction) very often. The minimum release cycle can be once per

iteration and the maximum cycle is usually in quarterly cycles.

 Continuous Integration. In XP, the whole system is built and all changes

are integrated and tested several times each day (or at least daily in the

worst case). Usually, a build is triggered by a commit to version control.

Developers must keep the system in a continuously deployable state.

This means that build (or test) breaks are not allowed, i.e. the code must

12

compile and link and all the previously passing tests must pass after

every commit.

 Collective Ownership. The code and all other work artifacts are owned by

the team instead of individuals. Any team member can work and change

any artifact at any time.

 Coding Standard. The code and all other work artifacts look as if they

were written by the team. Each team member follows the team standard

for format and appearance for artifacts.

 Metaphor. The names within code and other work artifacts are chosen to

be evocative of the system being developed.

 Sustainable Pace. Working beyond 40 hours a week is considered to be

nonproductive, because XP is intensive. Tired people are unproductive,

thus the overtime must be carefully controlled and limited.

 Pair Programming. Code and other artifacts are produced by pairs

working together on one machine. One member of the pair is responsible

for the task (and keyboard) at hand while the role of the other member is

to observe and help. Pair programming provides immediate feedback and

peer review of the code.

 Test Driven Development. Developers are not allowed to write the

production code before they have written a failing unit/automation test.

The test first paradigm has three advantages:

1. The developers have to understand the functionality of the test,

which forces to understand the actual story (requirement) before

implementing it.

2. The test automation is built-in; the team will never have to catch

up later on the test automation.

3. The quality is assured because all code is tested code.

 Refactoring. XP teams invest a little in design every day. Code and other

artifacts are continuously reviewed by pair programming and kept as

clean as possible.

13

 Simple design. The system is always left with the simplest design that

supports its current functionality, i.e. the simplest thing that could possibly

work.

2.3 Software Craftsmanship

Although the Agile software development approach and processes have been

adopted over the past years, still many software development projects are

having a poor track of record in terms of schedule, budget and quality. The Agile

Manifesto neither explicitly recognizes that all people who are involved in a

development project have to be skilled, disciplined, smart and attentive, nor

explicitly defines the technical practices to be used by a development team.

In other words, thinking and talking Agile does not make projects to succeed.

Agile is great when the development team is great, and to have a great team,

each individual must admit that they should actively change their attitudes and

behaviors to improve their engineering skills in order to achieve better results.

(1, pp. 196-197.)

The Software Craftsmanship is an approach which emphasizes the software

development skills of the software engineers themselves. This is formed in the

Manifesto for Software Craftsmanship:

As aspiring Software Craftsmen we are raising the bar of professional

software development by practicing it and helping other learn the craft.

Through this work we have come to value:

 Not only working software, but also well-crafted software

 Not only responding to change, but also steadily adding value

 Not only individuals and interactions, but also a community of

professionals

 Not only customer collaboration, but also productive partnership

14

That is, in pursuit of the items on the left we have found the items on the

right to be indispensable. (5, p. 1.)

The manifesto for Software Craftsmanship is said to both challenge and extend

the original Agile Manifesto. It promotes the values of well-crafted and clean

software which is produced by craftsmen software developers. The pragmatic

methodology is described by Hunt et all [6] and it relates closely to software

craftsmanship values. Hunt lists the following characteristics for pragmatic

programmers:

 Early adopter/fast adapter

 Inquisitive

 Critical thinker

 Realistic

 Jack of all trades

Pragmatic programmers have an instinct for technologies, techniques and

environments and they want to try new things out, hence their confidence is

based on experience. They do not accept things as given without getting the

facts first and they want to understand the nature of the underlying problems to

be able to realistically evaluate how difficult things are before giving any

promises. Most importantly, they care about their craft as there is no point in

developing software unless doing it well. (6, pp. 28-29.)

15

3 AGILE TECHNICAL EXCELLENCE

Technical excellence in agile is achieved through Test-Driven Development

(TDD), code reviews, Definition-of-Done (DoD), iterative development and

refactoring together with a fully tested code. The software architecture is not

defined up-front; instead it is allowed to emerge while developing a product.

Daily builds, continuous integration and automated testing tools are in a

supporting role when developing and delivering successfully high quality

products. (1, pp. 22-23; 2, pp. 158-159.)

3.1 Test-Driven Development

Test-Driven Development is a software design approach where unit tests are

written before the production code. TDD turns traditional software development

around as it enforces software developers to write automated unit tests. TDD

also requires developers to think through the requirements and code design

before starting the implementation of production code. Hence, it is said to be an

agile requirements’ and agile design technique. TDD software development

approach requires discipline because developers may find it easy to “slip”

directly to writing of the production code without first writing a new test. The

slippage can be avoided by Definition-of-Done which requires unit tests to be in

place and by pair programming where pairs help each other to stay on track. (2,

pp. 158-159.)

TDD workflow can be divided into three main states are (Figure 3):

 Writing an automated unit test.

 Running the test(s).

 Implementation of production code.

16

The division of writing a unit test and production code is described by the three

laws of TDD (7, pp. 122-123; 8, p.1.):

1. Production code may not be written until a failing unit test is written

2. Unit test may not be written more than is sufficient to fail, and compiling is

not failing

3. Production code may not be written more than is sufficient to pass the

currently failing test

This means that implementation starts by writing an automated unit test together

with enough production code implemented to make the test fail. Once the test is

in place, the production code is implemented and improved step by step to pass

the test. Once the tests pass, the next step is to start over for next unit / module.

17

FIGURE 3. TDD workflow

3.2 Code Reviews

Code review is a process where software developers review each other’s code

to find out programming errors from the source code and to ensure that the

source code meets the agreed quality criteria before committing the changes to

the version control system. Code review is a method to find errors as early as

possible in the development phase, to prevent error leakage to QA and to

18

product release. The most commonly used light-weight review types are (9, p. 2;

10, pp. 23-38.):

 Peer review

 Pair programming

 Email pass-around review

 Code inspection

These review types are used as to identify bugs from the source code,

encourage collaboration between the developers and improve the skills of the

developers by learning from peers. A code review workflow is shown in Figure

4.

FIGURE 4. Code review workflow

19

The roles in the code review are Reviewer and Reviewee. The Reviewer is the

developer who reviews the code and is responsible for checking the code and

identifying possible problems. The Reviewer should ensure that the code under

review conform the points described in the agreed Review and Definition of

Done Checklists. This usually includes at least the following (10, pp. 5-6.):

 Coding standard

 Conformance to design

 Code clarity and maintainability

 Coding errors

If the problems are identified, they must be pointed out to the Reviewee to get

them fixed. The Reviewer is not responsible for providing solutions for the

issues found. Once the identified issues are fixed, a new review is held to

ensure that defects are actually fixed. (9, pp. 28-30; 10, pp. 5-6.)

The Reviewee is the developer who wrote the code. This person is responsible

to walk through the changed code. This means usually introducing the changed

code together with explanation what the code is responsible for. If possible, new

functionality should be demonstrated. Finally, the Reviewee is responsible that

the code under inspection fulfills the points defined in Definition of Done

checklist. (9, pp. 28-30; 10, pp. 5-6.)

More heavy-weight inspection processes also exist. An example is Fagan

inspection where the inspection concentrates to several artifacts ranging from

the requirement documentation, test plan, architectural design to code. The

Fagan inspection process has multiple phases; planning, overview meeting,

preparation, inspection meeting, rework and follow-up verification. Because of

this, these are not usually used as part of agile processes because of their high-

formality and high-cost. (10, p. 8.)

20

3.3 Definition of Done

The Definition of Done (DoD) is an agreement between the product owner and

the team about what “done” means. The DoD is an important collection of

valuable deliverables required to produce software. The collection of

deliverables is measurable units of work to be done to complete a certain work

package (user story, sprint or release). When DoD is defined, agreed and

followed, it can be used to ensure that a work is really done. The main high level

purpose of DoD is to ensure that the agile development project is delivering real

value to the customer; in other words ensure the product is potentially

shippable. The Definition of Done can be divided into three main categories for

integrity and completeness (11, pp. 170-171; 12, p.1.):

1. User Story (or feature) DoD

 Production level code

o Code meets coding conventions as defined in the project

code style guide

 Code review

o Peer-to-peer code review held or code is produced with

pair-programming

 Unit testing

o Unit tests are implemented for all new functionality

o Unit tests are integrated to the test automation system

o Unit tests are in green (all tests pass)

 Acceptance testing

o Acceptance tests cover all new functionality

o All acceptance criteria of the user story are met

 Static code analysis (e.g. Lint)

o No high warnings

o All warnings are analyzed

 Code integrates against the latest target environment

o No compiler errors nor warnings

21

o Integration tests of affected areas are conducted and

passed

 Code is committed into version control system

 Documentation is updated

 User story is ready to be demonstrated in sprint review meeting

2. Sprint DoD

 All User Stories accepted for Sprint are done and they all meet the

User Story DoD

 All new code is integrated into the latest product baseline to form a

sprint release build

o The agreed development freeze date has been met

o Integration testing has been done

o Regression testing has been done

 Non-functional testing is done

o Branch coverage is measured to be over 70%

o Function coverage is measured to be 100%

o Code cyclomatic (conditional) complexity is measured and

meets the agreed limits

o No memory nor resource leaks

o Memory consumption is measured and meets the agreed

limits

o Performance items are measured and meet the agreed

limits

o Applicable reliability items are measured and meet the

agreed limits

 No critical (or higher priority) errors exists in the error backlog

 Sprint release note exists

3. Release DoD

 All User Stories accepted for Release are done and they all meet

the User Story DoD

22

 Release functional and non-functional testing is done

 No critical (or release blocking) errors exists in the error backlog

 Product is ready for release deployment

o Formal release date defined

o Deployment documentation exists

o Release documentation exists

3.4 Iterative Development

The basic idea in agile methods is to develop software in small repeated cycles

(sprints) and in small portions (user stories). Iteration allows the team to create

a working, tested and value-delivered code in a short time box. In addition,

iteration allows the development team to take advantage of what was learned

during the development of the previous iteration. Learning comes from both the

development and the use of the system. (2, pp. 123-124.)

All iterations have the same pattern, which gives the heartbeat of

manufacturing-like routine to agile development. An iteration consists of three

phases; Iteration planning, Development and Delivery as shown in Figure 5.

FIGURE 5. Iteration process model

23

Each iteration starts with iteration planning. The primary goal of the iteration

planning is to define and accept a reasonable scope for the iteration. The

development team is called for an iteration planning meeting where the team

reviews the prioritized product backlog items and then selects the items (user

stories) for the current iteration (sprint) by priority order. The development team

defines and estimates the list of engineering tasks necessary to deliver the

increment of work and then estimates the needed work amount to complete the

tasks. The result of iteration planning is the iteration plan on which the

development team commits. The plan contains following items (2, p. 127; 11,

pp. 155-156.):

 An iteration backlog which contains a list of stories to work on iteration.

 An iteration theme which describes what the iteration is intended to

accomplish.

 Estimated tasks for stories. Each task has a responsible developer.

 Documentation of the plan is available on visible place, usually a

task/story board on development team’s room/area.

The iteration execution, the Development phase, starts when the team has

agreed and committed to the iteration plan. Each developer follows the same

process through the iteration by repeating the development steps until there is

no more work left in iteration backlog. The development phase steps include (2,

pp. 129-130.):

 Take responsibility

 Develop

 Deliver

 Declare story completion

The status of development phase is usually visualized on a sprint story (or task)

board as shown in Figure 6. A story board contains all the accepted stories (and

the tasks which are needed to be accomplished to deliver the story) for the

iteration. A story board is often divided into the following columns: Not started,

24

In progress, Impeded, Ready for Review, Ready for QA and Complete. The

stories are moving column by column from the left side of the board to the right

as the stories progress. Different tasks, such as user story, bug fix, QA, etc.,

have usually a dedicated post-it note color to make the recognizing of different

tasks on the board easy. To promote and visualize the responsibility, the

developer attaches his/hers own photo on top of the task. The project

management can follow the iteration status easily by assessing the story board.

FIGURE 6. A sprint story board

Taking responsibility means that a developer without a task chooses the highest

priority task from a not-started column as a task to work with. Usually, new tasks

are selected on a daily standup meeting. The developers who already had a

task in progress share the implementation status to other team members and

move the task card accordingly on the board (it either stays in progress or

moves to one of the left side columns).

When a developer has a task in progress, s/he works to resolve the task by:

 Elaborating requirements

 Designing software

25

 Implementing unit tests and production code

 Integrating the code into a build system

The elaborating requirements and software design are problem solving phases

where the requirements are analyzed and the software architecture is designed

and validated to form a software solution for requirements. The characteristics

of good software design are described in Chapter 4. On the other hand,

developers are often required to work with the existing software and to build

new requirements into the existing modules. To work efficiently with the existing

code, the developers must know how to refactor the code. Refactoring is

discussed in more detail in Section 3.5, while the design principle violations

(also known as code smells), which are surface indications for a refactoring

need, are described in Chapter 6.

The implementation phase starts when the software design is approved and

thought to be good enough to solve the problem in question. The

implementation follows the TDD workflow as shown in Figure 3. Software

redesign may occur after the first (prototype) version of the implemented

solution is reviewed.

All of the above activities are usually repeated multiple times for each task in a

story until the story implementation is ready and the quality assurance has

verified the implemented behavior to match the story acceptance criteria. When

the implemented solution is verified, then the backlog item is declared as

complete.

The iteration outcome is assessed at the end of the sprint in a sprint review

meeting where the team demonstrates the working software to stakeholders,

usually the product owners, customers, and, if possible, to the end users. This

allows the team to get feedback and guidance as early as possible to make the

system as valuable as possible. The feedback is based on the following:

 Presentation of each completed story

 Feedback from stakeholders based on presentation

26

 Story acceptance based on acceptance criteria and definition of done

The unaccepted stories are reworked in the next iteration and the unfinished

stories are put back to the release backlog.

3.5 Refactoring

As a software system evolves, it usually requires re-evaluation of the earlier

decisions and rework of the portions of the existing code. Rewriting, reworking

or re-architecting of the existing code is known as refactoring. Refactoring is a

disciplined way to improve the quality of the software system properties, such as

design, reliability, extensibility, modularity, reusability, maintainability, and

efficiency. Refactoring does not usually target the whole software rewrite.

Instead, it aims to a series of small structural modifications, supported by unit

tests to make the code easier to change, and to minimize the chances of

introducing bugs. A change is a refactoring only if it does not change the

software system’s observable behavior. (13, pp. 53-57; 14, pp. 3-8.)

When a developer writes a new code, the code is usually written with a decent

quality. However, one of the problems is that the developers believe their

primary goal is to get the program code “working”, and when this state is

reached, the developer moves on to the next task. The developer did not care to

finish his/her implementation by doing successive refinements to support the

maintenance / development work carried out by other developers in the future. A

well-structured code is easier to understand and it communicates its purpose

better. (7, pp. 200-201; 13, p. 56.)

Another problem is that the code quality degrades over time as shown in Figure

7. It is said that the code starts to rot as it is changed due to fixing a bug, adding

a feature, or optimizing the system’s performance or resource usage. The

change may be done in a rush to support the short-term goals or the change

may be done without a full comprehension of the design of the code. This

causes the code to lose its structure and the original design fades away change

by change. After a certain amount of time, every change takes more effort and

27

time, causing the overall productivity to decrease and the organization to fall

behind its competition. Regular refactoring improves the design, readability and

quality of software. This improves the development team’s responsiveness to

change, in other words refactoring improves the speed of the software

development (Figure 8). (7, p. 14; 11, pp. 343-345.)

FIGURE 7. Code base quality decreases over the time (11, p. 344)

FIGURE 8. Refactoring improves code base quality (11, p. 345)

The Broken Windows Theory and the Boy Scouts rule are two metaphors which

are related to refactoring. These metaphors guide the developers to keep the

code base constantly clean with refactorings. The Boy Scouts rule is stated as:

“Leave the campground cleaner than you found it.” (7, p. 14)

This means that if all developers would check-in their code somewhat cleaner

compared to it when it was checked out, then the code quality could not

decrease, instead it steadily increases as the technical debt is settled in small

payments. In practice this means that whenever a component is changed, the

28

neighboring code of the change point is evaluated and improved as shown in

Figure 9. (11, p. 346.)

FIGURE 9. Cleaning the neighborhood of the change point

The concept of problems getting worse over time was popularized through the

broken windows theory:

“The signs of disorderly and petty criminal behavior are triggering

more disorderly and criminal behavior, thus causing the behavior to

spread. By addressing all the little ways in which people make a

mess of their environment, and cleaning things up frequently, it is

believed that more serious crimes can be prevented.” (6, pp. 4-5.)

This means that people tend to adapt their behavior to the environment that they

live in. People also copy norms and behaviors from each other. Hence, bad

designs, wrong decisions or poor code should not be left unrepaired, or

otherwise an impression that nobody cares about the code quality is given and

any kind of changes (hacks) can be committed into the code base. Hence,

broken windows accelerate the decrease of the software quality.

The refactoring process consists of three main stages: identification, refactoring

and assessment. The refactoring should not be an activity that is separately

scheduled; instead it should be done constantly in small steps. The most natural

time for refactoring is when a new feature is implemented, a bug is fixed, or a

29

code is reviewed. The developers of the affected code must be notified to

communicate the up-coming refactoring because it might affect their plans. (13,

pp. 58-59; 14, pp. 3-5.)

The three main stages of the refactoring process are divided into the following

activities:

 Identify change point, i.e. method, interface or class

 Determine refactoring

 Guarantee that applied refactoring preserves behavior

 Apply the refactoring

 Assess the effect of refactoring

 Maintain the consistency between refactored code and other software

artifacts such as tests, documentation, etc.

In the identification stage the software modules that need refactoring are

identified, and appropriate refactoring(s) are determined. The identification can

be based on the updated target architecture design, architecture violations, or

code smells. (14, pp. 18-20; 15, pp. 41-53.)

In the refactoring phase the selected refactoring is implemented. Unit tests are

used to guarantee that the refactoring preserves the software module’s original

behavior.

Finally, the updated design and implementation should be assessed to evaluate

the refactoring result; how the non-functional quality is improved in terms of

size, complexity, coupling, cohesion, mobility and extensibility. The functional

quality is tested with regression and performance tests.

If the identified change point does not contain tests, then the following activities

should be done before refactoring the code:

 Find test points from the change point

 Break dependencies

30

 Write tests

This is called the legacy code change algorithm. Its purpose is to bring more of

the system under test every time the system is changed to eventually bring the

most of the system into the test-covered code. (14, pp. 18-20.)

The following principles should be followed when applying refactoring (15, pp.

66-68.):

 Do not try to add new functionality and refactor at the same time.

 Refactoring is applied on a working code which is already covered with

unit tests. Unit tests are used to verify that refactoring preserves external

behavior and to tell if refactoring has broken anything. Unit tests should

be run as often as possible during refactoring process.

 Refactoring often involves making many localized changes that result in a

larger-scale change. To avoid prolonged debugging sessions, take short

deliberate steps instead of trying to do everything at once.

3.6 Testing

In traditional software development projects, the software system-level testing

and system integration testing were activities done at the end of the project,

when the requirements and coding processes were complete. This meant that

large quantities of untested code were handed over to the testing organization

to determine whether the code actually worked. Usually, the testing resulted in

many hidden defects found in the code. This caused unpredictable amount of

re-work for the development organization, and resulted to the “fix – re-deliver –

re-test” cycles which in turn ultimately delayed the product release.

In an agile software development project the development teams are cross-

functional. This means that there are no boundaries between the development

and testing organizations, hence the testing should be a concurrent and integral

part of the software development process. The main agile testing principles are

as follows (2, pp. 102-109; 11, pp. 29-33.):

31

 All developed code is tested code (and there is no other kind). The

development team does not get credit for delivering functionality that has

been implemented but not tested, in other words the definition-of-done is

not fulfilled.

 All tests are written within the iteration boundaries, and they are written

by the developers, testers and the product owner, i.e. writing tests is a

team effort.

 The manual testing work is minimized by introducing test automation.

Test automation is the rule, not the exception.

 Defects are found only once. This means that once a human tester finds

a bug, a test automation case is written which will check the particular

case in the future.

In principle, agile promotes that all developed code is tested code. Achieving a

fully tested code is a challenge for the agile teams. This forces the development

team to think through how the code will be tested. The agility forces the

development team to design inherently testable systems.

There are several major types of the software testing that can be performed

during a development project. Usually the following four testing strategies are

selected as the primary layers in an agile software development project: unit-,

acceptance-, component-, system- and performance testing.

A unit test is a code that exercises the individual units of the production code. A

unit is the smallest testable part of the application, usually a method, an

interface or an entire class. Unit testing is low-level testing; developers have full

access to the internals of the tested unit, and the unit’s external dependencies

are removed by introducing mock objects, method stubs and fakes. Unit testing

is the foundation for all other forms of testing; if the individual software parts,

methods or classes, do not work individually then they will not probably work

well together in the system. The goal of the unit testing is to prove that the

individual parts are correct by defining a strict, written contract the piece of the

32

code must satisfy. The unit tests themselves are not parts of the system under

the test and therefore do not affect the test results.

A comprehensive unit test set for the software system gives the following

benefits in terms of quality and productivity for the development project (2, pp.

156-159; 11, pp. 72-74.):

 The unit tests are automated tests which are integrated to continuous

integration build. This means that the errors are found early and time is

saved from the manual testing and the testers can concentrate more on

the system level testing.

 The unit tests simplify the integration and integration testing because the

individual software parts are tested before the integration.

 The unit tests can be used to measure the static and dynamic properties

of the source code. The function and branch coverage are static data

which can be collected when the unit tests are run. If the unit tests are

deployed to the real environment, for example to a mobile device, then a

dynamic analysis is also possible. This means that the unit tests can be

used to reveal for example memory or resource leaks or to measure the

performance characteristics of a unit. The static and dynamic analysis

results help the developers to understand how a unit behaves under

certain conditions.

 The unit tests give more confidence to the developers to change code.

Adding new features or refactoring the existing code is easier and faster

because possible regression can be seen immediately when the unit

tests are run.

 The unit tests provide documentation of the source code. Each unit test

specifies observable behavior of a certain method, interface or class.

Hence, the developers can get the basic understanding of the code unit

by studying the test case.

33

In the agile, acceptance testing (or functional testing) refers to the testing

performed by anyone who has the ability to evaluate the new code that has

been implemented during the iteration against its requirements. Usually, the

testing is done either by the test team, product owner or customer. Each

acceptance test represents some expected result from the system. The product

owner or the customer is responsible for verifying the correctness of the

acceptance test. This ensures that the implemented functionality is bug-free and

the overall system meets the requirements set by the customer. (2, pp. 160-161;

11, p. 51.)

The acceptance testing is also called “black box” testing because the tests run

at a level above the code and the software system behavior is evaluated by its

interaction with the user. Therefore, there are multiple ways of executing the

tests; manual testing, database-driven testing and automated testing.

Automated test methods are often tightly coupled to the implementation details

and this results in high maintenance cost of the test automation. Because of

this, the acceptance testing is often done manually by the quality assurance

personnel or by the customer. (2, pp. 160-161.)

The software components and subsystems are integrated in the system testing

phase and the system is deployed into the staging environment (or a production

like environment). The goal of the system testing is to prove that all components

work well with each other. The software system behavior is verified with end-to-

end testing which consists of automated component test suites and basic

functional tests. The test results are analyzed and the results are saved as

reference for future regression tests. (2, pp. 162-164.)

The system testing phase is often used to test other characteristics of the

system. This usually includes at least performance testing, stress testing and

recovery testing. The performance testing is done to find out possible

bottlenecks in the system and to verify that the system meets its performance

requirements under real-world conditions. The performance tests should also

include resource consumption tests, i.e. the tests should measure how much the

34

system consumes memory, disk space, network and other processing resources

under certain circumstances. Once the system testing has been completed

under ideal conditions, the system should be stressed to understand when the

system breaks and how it recovers (application crash, application slows down,

or in worst case operating system crash) from an exceptional state. The

performance test results form a basis for the future performance regression

tests. (2, pp. 162-164.)

35

4 SOFTWARE DESIGN

In agile projects, software design and architecture are allowed to emerge and

evolve as the project proceeds. Instead of investing months in building either

detailed software architectural models or prototypes, the agile team focus on

delivering early, value-added stories into integrated baseline. Early delivery

makes possible to test the requirements and architectural assumptions. This

drives a risk out by proving or disproving the assumptions of design and

architectural assumptions. If the solution does not work, the team refactors, re-

designs and re-implements until the solution is acceptable. In other words, every

developer in the development team is responsible for the software design and

architecture; hence, every software developer must know and understand the

characteristics of the software design principles, and properties of the good

software design.

4.1 Elements of Good Software Design

The desirable characteristics of good software design include the following

properties (16, pp. 63-64):

 Loose coupling

 High cohesion

 Extensibility

 Portability

The degree how much a class depends on other classes is called coupling.

Loose coupling can be achieved by separating the design into modules, or into

classes in the object-oriented systems. An indication of tight coupling is a

shared data and/or procedures between the modules. The loosely coupled

modules are connected by their interfaces and any data they both need must be

passed through an interface. The loosely coupled modules does not expose

their internal behavior to outside of the interface, instead they only share their

36

interface. The Bridge design pattern is an example which is used to decouple its

abstraction (interface) from its implementation. (16, p. 64.)

In the loosely coupled modules the changes are localized because the modules

are small and self-contained and the components have well-defined

responsibilities. The loosely coupled modules promote for the reuse of the

software; the existing components are easier to reconfigure and reuse in a new

environment. Loose coupling also has other benefits; it isolates the diseased

software modules from the healthy modules. If a module is broken, it is less

likely to spread the symptoms around the rest of the system, which reduces the

system fragility. Furthermore, loose coupling makes it easier to design and run

tests on a module as the dependencies on other modules are not impeding

testing. (16, p. 64.)

High cohesion means object independency. Cohesion within a module is the

degree to which a module is self-contained with regards both the data it holds

and the operations that act on the data. This means that a highly cohesive class

has all the data it needs defined within the class as the member variables and

all the operations (methods) which are allowed to modify the data are defined

within the class as well. Any object instantiated from a highly cohesive class is

very independent, the object communicates with other objects through its

published interface. High cohesion improves the software readability, increases

the mobility and reusability while it keeps the complexity at a manageable level.

(16, p. 64.)

Incremental and evolutionary process models require software extensibility, in

other words the software is never “ready”. This means that customers are

asking for new features release after release. The extensibility measures how

easily new features can be implemented into the existing modules. When

modules are simple and loosely coupled, new features are easy to implement.

Modules should be designed so that the new features can be implemented by

adding a new code, rather than by changing the old code which is already

37

working. Abstraction and polymorphism are the primary mechanism for the

extensibility. (16, p. 64.)

Portability means the usability of the existing software modules in different

computer environments or platforms. The main problems related to portability

are related to operating systems, hardware architectures and user interfaces.

The pre-requirement for portability is the generalized abstraction between the

application logic and system interfaces. Portable software reduces the overall

development costs if the software is to be deployed on multiple platforms. (16,

p. 64.)

On the other hand, developers should also understand the characteristics of bad

designs, so that they can critically evaluate the existing designs and code and to

know how to avoid the properties of bad designs. The characteristics of bad

designs properties are (15, p. 104; 17, p. 2.):

 Rigidity

 Fragility

 Immobility

 Viscosity

Rigidity is the tendency for software to be difficult to change. Even a simplest

change causes many unexpected subsequent changes in dependent software

modules. Software rigidity reduces the development team’s velocity and the

ability to respond to new requirements, because the team cannot make reliable

work effort estimations for the required change. Hence, rigidity affects the

project management; when the software is difficult to change, the managers do

not allow the team to implement any non-critical changes and ultimately the

management may refuse to allow any changes in the software. (15, pp. 104-

105; 17, p. 2.)

Fragility closely relates to rigidity and it is the tendency of the software to break

in unexpected modules every time it is changed. Many times there is no

relationship between the change point and breakage point. Fragile software is

38

difficult to maintain because every fix makes it worse and increases the

probability of breakage. A fragile software system apparently decreases the

development team’s credibility and reliability; the customers and managers

suspect that the development team has lost control of their software. (15, p.

105; 17, p. 2.)

Immobility is the tendency for software to be difficult to reuse. The development

team may discover that their software system already contains a needed

module, but it cannot be reused because it is highly coupled with the

surrounding software modules. An immobile software system is susceptible for

code duplication. (15, p. 105; 17, p. 3.)

Viscosity is the tendency of the software to have multiple ways how a required

change can be implemented into it. Some of the ways preserve the system

design while others are considered as hacks. If the design preserving methods

are more difficult to implement than hacks, then the viscosity of design is high,

meaning that the development team can easily do the wrong decisions while it is

more difficult to do the right one. (15, p. 105; 17, p. 3.)

Object Oriented Design (OOD) defines the principles and Design Patterns

techniques which help the developers to build orthogonal and clean software

systems. These principles and patterns are used to increase cohesion,

decrease coupling, separate concerns and increase the modularity of a software

system (6, pp. 34-37.). The primary design principles are described in the

following sections in more detail.

4.2 The Open-Closed Principle

The definition of the open-closed principle (OCP) is:

“Software entities (classes, modules, functions, etc.)

should be open for extension but closed for modification”.

(18, p.1)

39

The software modules which are OCP conformant have the following two

primary attributes (18, pp.1-2.):

 They are “open for extension”; the behavior of a module can be extended

so that the module can behave in new and different ways as the

requirements of the application change.

 They are “closed for modification”; the existing source code of the module

is inviolate.

This means that the software modules should be written so that their behavior

can be extended, without changing the source code of the module. New

features should be added to the software system by adding a new code, rather

than by changing the old code which is already working.

Abstraction and polymorphism are the primary mechanisms behind the open-

closed principle. The abstractions are abstract base classes and the possible

behaviors are presented as derivate classes. This makes it possible for a

software module to manipulate an abstraction. Thus, the module is closed for

modification because it depends upon the abstraction that is fixed. The behavior

of the module can be extended with new derivates of the abstraction. (16, p.

117; 18, pp. 9-13.)

The example shown in Figure 10 violates the OCP principle because it uses the

run time type identification (RTTI) to detect the shape type. If a new derivate

type of Shape, for example Triangle, is added to the system, then the

function calculateArea has to be modified to support the triangle area

calculation.

40

FIGURE 10. Solution violates OCP principle

Figure 11 shows an OCP conformant solution. It uses polymorphism and

abstraction to make the system open for extension, while keeping the

calculateArea intact even if a new Shape derivates are added to the system.

41

FIGURE 11. OCP conformant solution

42

4.3 The Liskov Substitution Principle

The definition of the Liskov substitution principle (LSP) is:

“Subtypes must be substitutable of their base types”. (19, p. 2)

This means that the functions that use pointers or references to the base

classes must be able to use objects of the derived classes without knowing it.

(19, p. 2)

It is assumed that function F accepts as its argument a reference to base class

B. If function F misbehaves when a derivate D of B is passed into it, then D

violates the Liskov substitution principle and D is fragile in the presence of F. If

function F is modified to behave properly with D by using the run time type

information (RTTI), then F violates OCP because it has to know all possible

derivates of B and must be modified every time when a new derivate of B is

created (16, pp. 124-125; 19, pp. 2-7.)

LSP violation is often demonstrated with Square is-a Rectangle problem,

where the inheritance design is made wrong on purpose. Figure 12 shows a

design which violates the Liskov substitution principle. The example function

setDefaultDimensions() accepts as its argument a reference to the base

class Rectangle. If an instance of Rectangle is passed in, then the function

behaves as expected. If an instance of Square is passed in instead, then the

function misbehaves as the assertion fails. The reason is that the design of the

class Square violates the Liskov substitution principle by overriding the virtual

functions Rectangle::setWidth()and Rectangle::setHeight() (lines

29-30 and 35-36) and then the overriding behavior in the class Square forces

the base class Rectangle to hold the mathematical width and height for

square (i.e. width and height must always be kept the same for a square) which

in turns causes the function setDefaultDimensions()to misbehave in the

presence of Square.

43

FIGURE 12. LSP violation

44

The LSP violations increase the software system fragility. There are no

mechanical (i.e. by compiler) ways to completely avoid and detect LSP

violations. Whether a class is LSP conformant depends upon the clients that it

has and upon their expectations.

4.4 The Dependency Inversion Principle

The dependency inversion principle (DIP) is defined as

“High-level modules should not depend on low-level modules. Both

should depend on abstractions. Abstractions should not depend upon

details. Details should depend upon abstractions”. (20, p. 6)

The open-closed principle defines the goal of object-oriented architecture and

the dependency inversion principle states the mechanism how software entities

can be closed for modification while being open for extension. The dependency

inversion is the strategy to design software modules so that they depend upon

interfaces, abstract functions and classes, instead of concrete functions and

classes. (16, p. 131; 20, pp. 6-7.)

Traversing relationships between the objects directly can lead to a combinatorial

explosion of the dependency relationships. The symptoms are shown for

example in the following ways: A software module is difficult or even impossible

to get under unit test harness. Simple changes to one module propagate

through unrelated modules in the system. The development team is afraid of

changing code because they do not know what parts of the system are affected.

(20, pp. 6-12.)

The principle of least knowledge, also known as Law of Demeter, is a design

guideline which attempts to minimize the coupling between the modules. The

principle states that any method of an object should call only methods belonging

to it, any parameters that were passed into the method, any object it created, or

any object it directly holds. (6, pp. 140-141.)

45

4.5 The Single Responsibility Principle

The single responsibility principle (SRP) is defined as:

“There should never be more than one reason for a class to change”.

(21, p. 1)

If there is more than one motive for changing a class, then the class has more

than one responsibility.

Every large software system contains a large amount of logic and complexity.

The primary goal in managing such complexity is to organize it in a well-formed

way. The system should be composed of many small classes instead of large

ones. Each small class encapsulates a single responsibility and collaborates,

according to the Law of Demeter, with a few others to achieve the desired

system behavior. (21, pp. 1-4.)

The software modules that are SRP conformant are usually highly-cohesive and

loosely-coupled, meaning that readability, mobility and reusability are increased,

while the complexity is kept at a manageable level.

4.6 The Interface Segregation Principle

The definition of the interface segregation principle (ISP) is:

“Clients should not be forced to depend upon interfaces/methods that

they do not use”. (22, p. 5)

ISP states that many client specific interfaces are better than one general

purpose interface. If clients are forced to depend upon interfaces they do not

use, then the clients are subject to changes to those interfaces. This results in

an inadvertent coupling between all clients. In the worst case, a change in the

interface has a great impact on the dependent clients and may force

recompilation and redeployment of a large part of the system. (22, pp. 1-5.)

46

ISP does not recommend that every class that uses a service has its own

special interface class that the service must inherit from. Instead, the clients

should be categorized by their type, and interfaces for each type should be

created.

Delegation (object form) and multiple inheritance (class form) are the patterns

how fat interfaces can be segregated into abstract base classes that break the

unwanted coupling between clients. The software modules that are ISP

conformant are more portable, hence ISP reduces the software immobility. (22,

pp. 5-7.)

4.7 The Least Knowledge Principle

The least knowledge principle (LKP), also known as Law of Demeter, is defined

as:

“Talk only to your immediate friends”. (7, pp. 97-98)

LKP states that coupling between modules should be minimized. If n objects all

know about each other, then a change to only one object can result in the other

n – 1 objects needing changes. LKP states that classes should collaborate

indirectly with as few other classes as possible. In other words, eliminating

unnecessary interactions between the modules protects everyone. On the other

hand, it is impossible to implement software in which the objects are not

somehow connected and collaborating. (6, pp. 140-142.)

When an object is asked for a particular service, the service should be

performed on behalf of the object, not by delegating the service request on third-

party object. Figure 13 shows a LKP violation on line 54 where a service request

is delegated. The method Display::showTemperature is unnecessarily

coupled to three classes – Sensor, SensorData and OilData. This style of

coding increases dramatically the coupling between the classes. A change to

any of the above three classes may affect the Display::showTemperature

method and cause a need to change it. Thus the

Display::showTemperature method also violates the open-closed principle.

47

FIGURE 13. LKP violation

Figure 14 shows a refactored version of the Display::showTemperature

method. The method is renamed to Display::print and it now requires

exactly the data it needs, and it does not have to care how OilData is acquired

at the upper level of the call hierarchy.

FIGURE 14. LKP violation removed

48

Figure 15 shows an example of the Law of Demeter for functions. The law

states that any method of an object should call only methods (6, p. 141):

1. Belonging to object itself (Sensor::getOilData())

2. Of object(s) that were passed into a method as a parameter

(display.print(oilData))

3. Of object(s) that it encapsulates (m_impl->getOildData())

4. Of object(s) that it holds directly (as local variable)

(converter.convert(oilData))

FIGURE 15. Law of Demeter for functions

LKP compliant design makes the code more adaptable and robust because it

reduces the coupling between the modules. LKP reduces the size of the

49

response set in the calling class and hence it helps to create a more

maintainable code.

4.8 The Don’t Repeat Yourself Principle

The definition of don’t repeat yourself principle (DRY) is:

“Every piece of knowledge must have a single, unambiguous,

authoritative presentation within a system”. (6, p. 27)

The guideline of the DRY principle is to minimize the duplication within a system

and to foster an environment where it is easier to find and reuse existing

artifacts. DRY applies to all artifacts; code, unit tests, specifications,

requirements, processes, etc. DRY requires that each piece of information and

each behavior is expressed only once in a single place. This means that the

design should be created in a way that requirements are implemented in one

logical place. When a requirement changes, there is only one place to look at

and implement the required change. A design conforming to the DRY principle

is more reliable and hence easier to understand and maintain. (6, pp. 26-27; 7,

pp. 289-290.)

4.9 Object-Oriented Design Patterns

The design patterns are high-level descriptions, templates and well-known

solutions to common software engineering design problems that occur in object-

oriented software design. Design patterns are not finished designs which can be

applied directly into the program code. Instead, they show the relationships and

interactions between the objects to solve a certain problem to help the

developers to adapt the well-known solution into the design of their application.

The reasons why design patterns should be used are (23, pp. 12-15; 24, pp. 80-

86.):

 Make a decision whether the design is right and not just one that works.

 Shift the level of thinking to a higher perspective

50

 Reuse existing, high-quality solutions to commonly recurring problems to

improve the code quality.

 Adopt improved design alternatives, even if the design patterns are not

explicitly used.

 Improve communication within the team by using common terminology

and a common viewpoint of the problem.

 Improve individual and team learning.

A comprehensive collection of the object-oriented design patterns can be found

in the book Gang of Four (Gamma et. all) [23]. The book collects and

documents the most common design patterns and uses the following categories

and concepts to group them:

 Creational patterns (delegation)

 Structural patterns (aggregation)

 Behavioral patterns (consultation)

The creational patterns are used to deal with the mechanisms of the object

creation, i.e. they abstract the object instantiation process. They aim to separate

a system from how its objects are created, composed and represented to

increase the system’s flexibility to control its object creation. The creational

patterns are further categorized into class and object creational patterns. The

object creational pattern delegates a part of its object creation to another object,

while the class creational pattern defers its object creation to its subclasses. The

well-known creational patterns are (23, p. 94.):

 Singleton pattern ensures that a class has only one instance and

provides a global point of access to it. The singleton instance is shared

between all of the clients of the class.

 Prototype pattern creates new instances of the class by cloning a

prototypical instance. The prototypical instance specifies the kind of

object to be created.

51

 Builder pattern enables to use the same construction process to create

different kind of objects. It separates the construction of a complex object

from its presentation.

 Factory Method pattern allows a class to defer instantiation to its

subclasses. It defines an interface for creating an object, but subclasses

are responsible to decide which class to instantiate.

 Abstract Factory pattern provides an interface for creating objects without

specifying their concrete classes.

The structural patterns are used to ease the software design by identifying a

simple way to realize the relationships between the software entities, i.e. they

are concerned with how classes are composed to form larger structures. The

creational patterns are also further categorized into class and object structural

patterns. The structural class patterns use inheritance to compose interfaces or

implementations to form functionality, while the structural object patterns

describe ways to compose objects to realize a new functionality. The object

composition is more flexible than a static class composition as the object

composition can be changed in run-time. Some of the useful creational patterns

are (23, p. 155.):

 Adapter pattern is used to convert the interface of a class into another

interface the clients expect, i.e. Adapter provides its own interface to the

clients while it internally uses the original interface. Hence, Adapter

allows the classes to work together that could not otherwise because of

the incompatible interfaces.

 Bridge pattern is used to decouple an abstraction from its implementation

so that the two can vary independently. The Bridge uses encapsulation,

aggregation and possibly inheritance to separate the responsibilities into

different classes.

 Decorator pattern is used to attach additional properties to an existing

object dynamically in run-time, i.e. Decorator can be used to extend

(decorate) the existing objects with the functionality of a certain object.

52

The Decorators provide a flexible alternative to subclassing for extending

the functionality.

 Facade pattern is used to provide a unified interface to a set of interfaces

in a subsystem, i.e. Facade provides a simplified higher-level interface

that makes the sub-system easier to use for its clients by reducing

dependencies and making the interface easier to understand.

 Proxy pattern is used to provide a surrogate or placeholder for another

object to control access to it, i.e. Proxy provides a class functioning as

interface to something else. The proxy usually provides an interface

access to an object whose creation and initialization is expensive or the

object is otherwise impossible to duplicate.

The behavioral patterns are used to describe communication and

responsibilities between objects and classes, i.e. these patterns characterize the

control flow that is difficult to follow in run-time. The behavioral patterns are also

divided into class and object patterns. The class patterns use inheritance to

distribute behavior between the classes, while the object patterns use the object

composition instead of inheritance. The creational patterns let the developers to

concentrate on how the objects are interconnected. This helps the developers to

manage coupling between the modules. Some of the behavioral patterns

include (23, p. 249.):

 Iterator pattern is used to access the elements of an aggregate object,

such as a list, without exposing its internal representation, i.e. Iterator

provides a way to take the responsibility of access and traversal out of

the aggregate object. It defines an interface to access the elements of the

aggregate object and behavior how the elements are traversed.

 Observer pattern is used to define a one-to-many relationship between

the objects by registering to observe an event/state of a subject. When

the subject changes, all its dependents are notified.

53

 State pattern is used to allow an object to alter its behavior dynamically in

run-time when its internal state changes, i.e. the object internally appear

to change its (state) class.

 Template method pattern is used to define the skeleton of an operation

which defers a part of the operation behavior to subclasses, hence

template methods make it possible to redefine a certain part of an

algorithm without changing the algorithm’s structure.

 Visitor pattern is used to present an operation to be performed on the

elements of the object structure. The visitor allows defining a new

operation without changing the classes of the elements on which it

operates.

54

5 SOFTWARE DESIGN VIOLATIONS

The term code smell was originally coined by Beck and Fowler [13] and it is a

widely used term in agile software projects. A code smell is a surface indication

of software design principle violation and it usually corresponds to a deeper

problem in a software system. From a software developer’s viewpoint, the code

smells are general descriptions of a bad code. Code smells can be used as

heuristics to identify a bad code and help in the decision making whether

refactoring is needed to certain parts of a software system. Beck and Fowler

[13] provide a list of refactorings which can be used to cleanup design

violations.

The following sections outline the most common design violations based on

taxonomy of five groups. The taxonomy helps to better understand the design

violations leading to bad code. Furthermore, the taxonomy helps to recognize

the relationships between the violations.

5.1 The Bloaters

The Bloater design violations are shown in Figure 16 (25, p. 408). These smells

are an indication of a code that has become so large that working with it is

inefficient. These smells increase over the time when the code is changed.

FIGURE 16. The Bloater design violations

Data Clumps refers to the tendency of using duplicated member variables in

multiple classes, for instance three integers for RGB color, or duplicated

55

parameters in multiple methods. Data clumps can be avoided by encapsulating

data into classes. This simplifies the method signatures and groups the behavior

data represents, i.e. class Color in case of RGB data clumps. (13, p. 81.)

FIGURE 17. Data clumps in classes Circle and Rectangle

FIGURE 18. Data clumps encapsulated into class

Long Method, as its name states, refers to long methods which should be

avoided because long routines are difficult to understand and maintain. To avoid

long methods, developers should decompose the methods more aggressively. A

heuristic that can be followed to decompose methods is: if a code comment is

needed to explain the code behavior or purpose, then a new method with a

descriptive name should be written instead of the comment. Short well-named

56

methods should be favored because their behavior is easier to understand. (13,

pp. 76-77.)

Large Class design violation indicates a class which is trying to do too much. A

large class often shows up either with too many member variables in a class or

with too much code in a class. When a class is too large, it also has a tendency

to code duplication. (13, p. 78.)

The existence of Primitive Obsession in a code indicates that there are no small

classes for small entities (e.g. for telephone number). Instead, the data and

functionality is wrongly added to some other class which vainly increases the

size of the other class. Primitive obsession is actually a symptom that causes

more design violations to occur. (13, pp. 81-82.)

Long Parameter Lists design violation is a tendency of methods to have multiple

parameters. Long parameter lists should be avoided because multiple

parameters may be difficult to understand and parameter lists tend to change

quite often. Methods should be designed so that most of the needed data is

available in objects. If the objects are passed as parameters to a method, the

dependency structure should be evaluated to avoid unnecessary coupling

between the objects. (13, pp. 78-79.)

57

5.2 The Change Preventers

Figure 19 shows the design violations in the group Change Preventers (25, p.

408). These smells describe code that is difficult to change. When the code has

either Divergent Change, Shotgun Surgery or Parallel Inheritance Hierarchies

design violations, it means that the code violates the rule suggested by Fowler

and Beck [13] which says that the classes and possible changes should have

one-to-one relationship.

FIGURE 19. The Change Preventer design violations

Divergent Change design violation means that one class in the system is

commonly changed in different ways for different reasons, for example class

A methods AA, BB and CC have to be changed when a new database is added

to the system, while its methods DD and EE must change when a new financial

instrument is introduced. In this case, splitting the existing class to two separate

classes would be better than the one class. To avoid divergent change design

violation, the classes should be designed to be small enough with a single

responsibility. (13, p. 79.)

Shotgun Surgery is opposite of Divergent Change. Shotgun surgery means that

a change in the system always causes many changes to many different classes,

for example class A methods AA, AB, AC, class B methods BA, BB

and class C methods CA, CB, CC and CD. When the changes are spread

over the system, it is difficult to find all the classes that require change and it is

58

easy to miss an important change. To avoid shotgun surgery, the classes

should be designed so that a class encapsulates common behavior. (13, p. 79.)

Parallel Inheritance Hierarchies design violation means a duplicated class

hierarchy and it is a special case of the shotgun surgery. In this case, when

making a subclass of one class, a subclass of another class is also needed. (13,

p. 83.)

5.3 The Couplers

The design violations in the Couplers group (Figure 20) are related to high

coupling (25, p. 409). One of the most important design goals is to have low

coupling between the software modules.

FIGURE 20. The Coupler design violations

Feature Envy design violation is a tendency of a method to be too interested in

other classes. The most common envy is the data in the other class that is

needed for example to calculate some value in the method. To avoid feature

envy smell, the object responsibilities should be designed carefully. However,

methods often use features of several classes, in this case the heuristic is to

implement the method in the class which has most of the data. (13, pp. 80-81.)

The Inappropriate Intimacy violation relates to tight coupling where the objects

are too interested in each other’s private sections. Inheritance may lead to over-

intimacy if the subclasses will always know more about their parents than their

parents would like them to know. (13, p. 85.)

59

Message Chains is a design violation of Law of Demeter for functions. In

message chains, object A needs data from object D. To access the data, object

A has to access object B, and object B has to access object C and so on, i.e.

A.getB().getC().getD().getData(). Finally, when D is available, A asks

the data it needs. Navigating this way means that A is coupled to the structure of

the navigation and any change in the intermediate relationships causes the

client to have to change. (13, p. 84.)

A Middle Man is a class that is doing too much delegation instead of contributing

to the functionality of the application. If encapsulation is used wrongly and the

interface of the class simply delegates the requests to other classes, the design

does not have a clear single responsibility. (13, p. 85.)

5.4 The Dispensables

Figure 21 shows the design violations in the Dispensable group (25, p. 409).

These smells are an indication of a code which is representing something that is

redundant and which should be removed. The main reason to eliminate such

code is its cost; every code line costs money to maintain and understand.

FIGURE 21. The Dispensable design violations

Speculative Generality violation refers to a code which is too general and may

simply prepare for future extension. Speculative generality can be spotted when

the only users of a method or class are test cases or when the code contains all

60

sorts of hooks and special cases to handle things that are not actually required

by the existing implementation. (13, pp. 83-84.)

Duplicated Code violation is a smell which is probably the worst of the

violations. This violation is not only restricted to the source code. Duplication

can be found from any artifact which is produced during the development

project. Potential sources for duplication are, for instance, design

documentation, test specification, unit test harness, etc. In general, if the same

(code) structure is shown in multiple places, then the source smells for a

duplication which should be removed. (13, p. 76.)

Lazy Class violation is an indication of a class that is not doing enough, i.e., the

class does not have enough responsibilities. Lazy Class is usually seen with a

class inheritance hierarchy where a subclass was added to support a planned

future extension but the extension was never implemented. A lazy class should

be either removed or its responsibility should be increased. Data Class violation

relates to Lazy Class and it describes a class that does not have anything else

than data variables and getter/setter methods for the data (or the data is even

made public in the worst case). Such data holders should be eliminated

because they are manipulated in too much detail by other classes making them

to suffer from Feature Envy violation. (13, p. 83.)

61

5.5 The Object-Oriented Abusers

The design violations in the group Object-Oriented Abusers are shown in Figure

22 (25, p. 408). The smells in this group are an indication of a code that does

not take a full advantage of the possibilities of the object-oriented design.

FIGURE 22. The Object-Oriented Abuser design violations

The Refused Bequest violation is an indication of improper class inheritance

design. Often, the improper inheritance design means that a subclass does not

accept all the properties given by its parent class. In this case, the parent class

should hold only the data and methods that are common. This leads to the

general advice that all superclasses should be abstract. On the other hand, a

subclass may be reusing the parent class behavior while it does not want to

support the interface of the parent class. This indicates that the inheritance

hierarchy may be unneeded and could be replaced for example with delegation.

(13, p. 87.)

The Switch Statements violation is identified for example when the object type is

detected in switch statement. Usually this means that the module also violates

the open-closed-principle as the function has to detect the object type. Switch

statements are effectively causing code duplication in object-oriented systems.

Every time when a new type is added, each switch statement has to be updated

to reflect with the new type. In such case switch statements should be replaced

with polymorphism if they are spread all over the system. (13, p. 82.)

62

Temporary Field violation means a case where the member variable of an

object is set only in certain circumstances when a certain method is called. This

means that the member variable should be declared in the method scope

instead of in the class scope. Usually, temporary fields are shown together with

a method that requires several variables, for example, for a complicated

algorithm, and the temporary variables are valid only during the algorithm. (13,

p. 84.)

The Alternative Classes with Different Interfaces violations indicate the lack of a

common interface for the closely related classes. Hence, the smell indicates

improper inheritance design. The closely related classes should be designed so

that their protocols are the same to ensure the consistency. Polymorphism helps

to achieve the consistency in the inheritance hierarchy. (13, pp. 85-86.)

63

6 DISCUSSION

According to my own experience from agile projects, the following items are

commonly ignored by the development teams for some reasons:

 Refactoring is not done properly

 Unit testing is missing

 Definition-of-done is not followed

 Software design principles and patterns are not applied

Failing refactorings and the lack of unit testing are closely related. If automated

unit tests are missing, then refactoring cannot be done properly as there is no

guarantee that the code change done in the refactoring phase preservers the

observable behavior of the system. Nevertheless, I have often seen code

changes which are committed into the version control system after the code

review and claimed to be “refactorings” even there is no guarantee of

maintaining the observable behavior. These changes usually cause regression

and hence a rework is needed later. The worst in this scenario is that often such

changes are committed into the version control by a senior developer who had a

feeling that nothing will be broken by the change. In the worst case the

developer had such high confidence about the change that s/he did not test the

change at all in the target environment.

Furthermore, the development teams are still too often missing automated

testing. In the worst case the unit tests are missing entirely. Unfortunately, this

means that the development team is writing their code with the Edit and Pray

method. When the development is done in this mode, developers are using

many efforts to carefully understand the existing code before modifying it. Once

enough knowledge is gained from the change point, a modification is

implemented. Then the system is run to see if the change was enabled. This is

followed by further smoke tests to make sure nothing is broken in the

neighboring components. In general, working with care is not something a

development team should avoid, but implementing the software changes should

64

be effective, as working with too much care slows down the development or

even stops it. When the unit tests are in place, they will provide a safety net for

the developers; the working method changes from Edit and Pray to Cover and

Modify. The safety net allows the developers to see easily the effects of

implemented modification by running the tests. Another unit testing related flaw

is that the tests are not written during the development, instead the tests are

written after the implementation has been finished. I have seen trials where the

development team is requested to write the unit tests to the existing software

systems. In general, creating unit tests afterwards require a great deal of efforts

and it might be impossible to get parts of the existing code under the test

harness because the components are not designed for testability. Bringing the

system under test harness afterwards is not usually the most attractive and

valued task from the developer’s viewpoint.

Definition-of-done is also a property of technical excellence which is not always

followed by the development teams, i.e. it may be ignored in sprint review

meetings, even it is one of the most important artifacts which can prove the work

is really done. The definition-of-done states that the user story must pass its

acceptance tests and other non-functional criteria in order to be acceptable in

the sprint review. It should be clear that no user stories should be accepted in

the sprint review if any of the items defined in DoD is not fulfilled. Still, many of

the sprints which I have seen accepted are often missing many of the points

listed in the DoD. It is clearly the product owner’s fault if such stories are

accepted. This behavior mainly means hiding an unfinished work from the

stakeholders and creating an unnecessary burden to the development team to

finish the unfinished implementation in the upcoming sprints.

The software design principles are quite often unknown to developers. Thus, the

software designs are done on the ad-hoc basis which leads to a bad software

architecture. These decisions might slow down the development speed of the

software system. In other words, the first version might be delivered fast, but

enhancements and improvements are extremely difficult to implement as the

65

software system does not have the characteristics of a good software design

which would allow an easier extension of the system. Bad designs may have

effect to willingness to have unit tests implemented; if the code constantly needs

structural changes, then unit tests need changes and maintenance too. After a

certain amount of time, the team might claim that having unit tests in such

software system slows down the development as the maintenance of unit tests

is taking too much development time. The claim is valid from the viewpoint that

too much development time is burnt for unit test maintenance, but ignoring unit

testing is not the solution to speed up the development. Instead, the team

should concentrate on healing the design of the system in such a way that the

existing code remains intact. In other words, the team should apply the design

principles and patterns to their designs.

66

7 CONCLUSION

The thesis problem was obvious; what the main principles, practices and

patterns are that agile development team should know and apply in a real world

agile software development project to build software systems successfully.

Software design has changed recently as agile process models are adopted.

The developers are now responsible for growing healthy software designs and

architectures. To do it right, developers have to understand the characteristics

of good design and the methods which support the building of high quality

systems. This must be supported by the project stakeholders to require the best

possible quality from the development team. Hence the project management

and other stakeholders are impacted; they must also understand the agile

principles and patterns in order to steer the development team work to the

correct direction.

The principles, practices and patterns are widely documented in the literature,

but unfortunately in many agile projects, the teams are still often lacking the

skills presented in this thesis. To fill this cap in the knowledge, the skills should

be taught either by universities or by employer organized trainings or self-study

learning by individuals. Overall this means that the whole team should be

encouraged to develop their skills in order to improve their craftsmanship.

Further research could concentrate on applying the presented principles,

practices and patterns in practice to evaluate how well a team with an

intermediate experience could grow healthy software in an agile project. This

could be organized for example as a software design course where students

execute a smallish software development project. In the end of the project each

design would be evaluated and compared in terms of design and quality

outcome to an up-front designed and implemented version to understand the

quality differences between them.

67

8 REFERENCES

[1] Jurgen Appelo, Management 3.0: Leading Agile Developers, Developing Agile Leaders,

Addison-Wesley, 2010.

[2] Dean Leffingwell, Scaling Software Agility: Best Practices for Large Enterprises,

Addison-Wesley, 2007.

[3] Manifesto for Agile Software Development, date of data acquisition 10 Mar 2012, available

at: http://agilemanifesto.org

[4] Agile vs. XP: The differences and Similarities, date of data acquisition 09 Apr 2012,

available at: http://objectmentor.com/omSolutions/agile_xp_differences.html

[5] Manifesto for Software Craftsmanship, date of data acquisition 10 Mar 2012, available at:

http://manifesto.softwarecraftsmanship.org

[6] Andrew Hunt, The Pragmatic Programmer: From Journeyman to Master,

Addison-Wesley, 1999.

[7] Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,

Prentice Hall, 2008.

[8] Introduction to Test Driven Development (TDD), date of data acquisition 09 Sep 2012,

available at: http://www.agiledata.org/essays/tdd.html

[9] Best Practices for Peer Code Review, date of data acquisition 09 Sep 2012, available at

http://support.smartbear.com/resources/cc/11_Best_Practices_for_Peer_Code_Review.pdf

[10] Best Kept Secrets of Peer Code Review, date of data acquisition 09 Sep 2012, available

at http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf

[11] Craig Larman, Practices for Scaling Lean & Agile Development: Large, Multisite, and

Offshore Product Development with Large-Scale Scrum, Addison-Wesley, 2010.

[12] What is the Definition of Done (DoD) in Agile?, date of data acquisition 09 Sep 2012,

available at http://www.solutionsiq.com/resources/agileiq-blog/bid/64395/What-is-the-

Definition-of-Done-DoD-in-Agile

[13] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.

[14] Michael Feathers, Working Effectively with Legacy Code, Prentice Hall, 2004.

[15] Martin C. Robert, Agile Principles, Patterns, and Practices in C#, Prentice Hall, 2006.

[16] John Dooley, Software Development and Professional Practice, Apress, 2011.

[17] Design Principles and Patterns, date of data acquisition 10 Mar 2012, available at:

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

[18] The Open-Closed Principle, date of data acquisition 10 Mar 2012, available at:

http://www.objectmentor.com/resources/articles/ocp.pdf

[19] The Liskov Substitution Principle, date of data acquisition 10 Mar 2012, available at:

http://www.objectmentor.com/resources/articles/lsp.pdf

http://agilemanifesto.org/
http://objectmentor.com/omSolutions/agile_xp_differences.html
http://manifesto.softwarecraftsmanship.org/
http://www.agiledata.org/essays/tdd.html
http://support.smartbear.com/resources/cc/11_Best_Practices_for_Peer_Code_Review.pdf
http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
http://www.solutionsiq.com/resources/agileiq-blog/bid/64395/What-is-the-Definition-of-Done-DoD-in-Agile
http://www.solutionsiq.com/resources/agileiq-blog/bid/64395/What-is-the-Definition-of-Done-DoD-in-Agile
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/lsp.pdf

68

[20] The Dependency Inversion Principle, date of data acquisition 10 Mar 2012, available at:

http://www.objectmentor.com/resources/articles/dip.pdf

[21] The Single Responsibility Principle, date of data acquisition 10 Mar 2012, available at:

http://www.objectmentor.com/resources/articles/srp.pdf

[22] The Interface Segregation Principle, date of data acquisition 10 Mar 2012, available at:

http://www.objectmentor.com/resources/articles/isp.pdf

[23] Erich Gamma, Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1994.

[24] Alan Shalloway, Design Patterns Explained: A New Perspective on Object-Oriented

Design, Addison-Wesley, 2004.

[25] Mika V. Mäntylä, Subjective evaluation of software evolvability using code smells: An

empirical study, date of data acquisition 16-Mar-2012, available at:

http://www.soberit.hut.fi/~mmantyla/ESE_2006.pdf

http://www.objectmentor.com/resources/articles/dip.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/isp.pdf
http://www.informit.com/authors/author_bio.aspx?ISBN=9780201633610
http://www.informit.com/authors/author_bio.aspx?ISBN=9780201633610
http://www.soberit.hut.fi/~mmantyla/ESE_2006.pdf

