
 

 

 

 
Antero Vuorilehto 

IoT Solution for Monitoring a 
Microbrewery  

 
 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Degree Programme in Electronics 

Thesis 

17 September 2021



 

Abstract 

Author(s): Antero Vuorilehto 
Title: IoT Solution for Monitoring a Microbrewery 
Number of Pages: 47 pages + 3 appendices 
Date: 17 September 2021 
 
Degree: Bachelor of Engineering 
Degree Programme: Degree Programme in Electronics 
Specialisation option: Electronics 
Instructor(s): Anssi Ikonen, Senior Lecturer 

Erkki Räsänen, Technical Director 

 
The goal of this thesis project was to implement an IoT solution for monitoring a 
microbrewery in Metropolia University of Applied Sciences and to write a full user 
manual on how to use and configure the solution according to a future user’s needs. 
The making of the solution continued an innovation project first started by students of 
Metropolia University of Applied Sciences. 
 
The finished project allows future users of the microbrewery to easily follow the 
values of a Brix-meter of the microbrewery, the temperature and pH-value of the 
liquid in the brewing kettles and even the states of the brewing process. Brix-value 
indicates the amount of sucrose in 100 grams of liquid. Monitoring the Brix-value is 
critical for the brewing process because it allows brewers to figure out the alcohol 
content of the finished product. 
 
During the thesis project, the serial communication interface and the communication 
protocol used by the microbrewery and the possible hardware equipment and 
software platforms to be used in the finished project were studied. Based on the 
study, a theoretical research on the serial communication interface and 
communication protocol, as well as presentations of the equipment and platforms 
used in the project are included in the thesis. 
 
The benefits of this thesis and its project is to help future users of the microbrewery 
in Metropolia University of Applied Sciences to remotely access the monitoring data 
of the microbrewery. The full user manual also gives the means for a future user to 
improve the features of the project for further development. 
 
Keywords:  RS485, Modbus RTU, microbrewery, electronics, 
Controllino, Arduino, c-programming 



 

Tiivistelmä 

Tekijä(t):  Antero Vuorilehto 
Otsikko: IoT-ratkaisu pienpanimon valvontaan 
Sivumäärä: 47 sivua + 3 liitettä 
Aika: 17.9.2021 
 
Tutkinto: Insinööri (AMK) 
Tutkinto-ohjelma: Sähkö- ja Automaatiotekniikka 
Suuntautumisvaihtoehto:  Elektroniikka 
Ohjaaja(t): Tutkintovastaava Anssi Ikonen 

Tekninen ohjaaja Erkki Räsänen  

 
Opinnäytetyön tavoitteena oli toteuttaa IoT-ratkaisu pienpanimon valvonnan avuksi 
sekä kirjoittaa käyttöopas kehitetyn IoT-ratkaisun käyttöä ja konfigurointia varten. 
Pienpanimo sijaitsee Metropolia Ammattikorkeakoulussa. Työ jatkoi 
innovaatioprojektia, jonka Metropolian opiskelijat ovat aikaisemmin aloittaneet. 
 
Insinöörityössä kehitetyn IoT-ratkaisun avulla tuleva pienpanimon käyttäjä voi 
etäyhteyden avulla valvoa pienpanimon käymisprosessin aikana tarvittavia tietoja, 
kuten Brix-mittarin arvoja, käymissäiliöissä olevien nesteiden lämpötiloja ja pH-arvoja 
sekä käymisprosessin eri vaiheita. Työn tärkeimpänä tavoitteena oli luoda Brix-
arvosta reaaliaikainen kaavio, jota voitaisiin seurata etäyhteydellä. Brix-arvo indikoi 
sakkaroosin määrää 100 grammassa nestettä, joka on erityisen tärkeää oluen 
panemisen kannalta. Seuraamalla Brix-arvoa, voi panimon käyttäjä arvioida valmiin 
tuotteen alkoholipitoisuutta.  
 
Insinöörityöprosessin aikana tutustuttiin pienpanimon käyttämään 
sarjaliikennerajapintaan ja kommunikointiprotokollaan sekä mahdollisiin laitteistoihin 
ja alustoihin, joita voitaisiin käyttää valmiissa työssä. Tutustumisen pohjalta luotiin 
teoreettinen tutkielma pienpanimon sarjaliikennerajapinnasta ja 
kommunikointiprotokollasta sekä esittelyt työssä käytetyistä laitteistoista ja alustoista. 
 
Tämän opinnäytetyön ja sen projektin hyötynä on auttaa tulevia Metropolia 
Ammattikorkeakoulun pienpanimon käyttäjiä pääsemään helposti käsiksi sen 
valvontaan liittyviin tietoihin etäyhteydellä. Täydellinen käyttöopas antaa ohjeet, 
kuinka jatkokehittää ja räätälöidä projektin ominaisuuksia tulevan käyttäjän tarpeiden 
mukaan. 

Avainsanat:  RS485, Modbus RTU, pienpanimo, elektroniikka, 
Controllino, Arduino, c-ohjelmointi 



 

Contents 
 
List of Abbreviations 

1 Introduction 1 

2 Theoretical Background 2 

2.1 RS485 2 

2.2 Modbus Serial 5 

2.2.1 Modbus Serial Framing 7 

2.2.2 Modbus Address Field 11 

2.2.3 Modbus Function Field 11 

2.2.4 Modbus Error Checking Field 28 

3 Hardware 34 

3.1 The Microbrewery 34 

3.2 Controllino MAXI 38 

4 Software Platforms 40 

4.1 Arduino IDE 40 

4.2 Ubidots STEM 40 

5 The Project and its Results 42 

6 Conclusions 47 

References 48 

Appendices  

Appendix 1. User Manual  

Appendix 2. Holding Registers of the Microbrewery (in Finnish)  

Appendix 3. Arduino IDE Code  



 

 

 

 

List of Abbreviations 

ASCII American Standard Code for Information Interchange 

CRC Cyclic redundancy check 

CR LF Carriage Return-Line Feed 

COM Communication Port 

DIP Dual In-line Package 

DIY Do It Yourself 

GND Signal Ground 

IDE Integrated Development Environment 

IoT  Internet of Things 

LRC Longitudinal Redundancy Check 

LSB Least Significant Bit 

MSB Most Significant Bit 

PLC Programmable Logic Controller 

PWM Pulse-Width Modulation 

RTU Remote Terminal Unit 

SCI Serial Communication Interface 

SPI Serial Peripheral Interface 



 

 

 

 

TCP/IP Transmission Control Protocol / Internet Protocol 

TTL Transistor Transistor Logic 

XOR Logical Exclusive OR 

 



1 

 

 

 

1 Introduction 

The thesis project was made for Metropolia University of Applied Sciences. The 

aim for the project was to create an IoT solution for a microbrewery, custom 

made for the university by Tankki oy, Finland during winter 2015 and spring 

2016. A microbrewery is a brewery that produces small amounts of beer. The 

microbrewery was acquired by Metropolia University of Applied Sciences for 

research and educational purposes.  

The thesis consists of a theoretical background part where the theory behind 

the serial interface (RS485) and the communication protocol (Modbus RTU) 

used in the project is explained. After that the hardware and software platforms 

used in the thesis are introduced and explained. The finished project and its 

results are shown and described in the fifth chapter. The final chapter is the 

conclusion of the thesis. 

The first goal of the thesis project was that the value from a Brix meter inside 

the microbrewery is logged and graphed into cloud so the user can read it from 

their computer. The second goal was to write a user manual on how to 

configure the user interface and the values sent to the IoT platform. The manual 

is included in Appendix 1.  



2 

 

 

 

2 Theoretical Background 

The theory behind the serial interface and the communication protocol used in 

the thesis is extensive. This chapter will clarify the theory in detail. 

2.1 RS485 

ANSI TIA/EIA-485, commonly known as RS485 is a serial communication 

interface (SCI) that was created in 1998. It is widely used in data acquisition 

and control applications where multiple nodes communicate with each other. It 

is used in industrial applications as well as hobby projects. [1.] 

RS485 network consists of a single pair of wire and a ground wire, to have up to 

32 devices at 1200 meters distance to communicate at half-duplex to each 

other. The length of the network can be extended by adding RS485 repeaters 

every 1200 meters and the number of devices used in the network can also be 

increased by 32 devices with per one repeater. Since every RS485 device 

needs to have a unique address, the maximum number of devices in a network 

with repeaters is typically 256. [2.] 

The standard defines the electrical characteristics for the drivers and receivers 

used in serial communication, the physical layer. In a “two-wire” configuration, 

RS485 uses two balanced and differential signal lines called “A” and “B”. A 

balanced signal line is typically a twisted pair cable with matching impedances. 

In RS485 the transmitter and receiver must be impedance matched as well. 

This chapter will focus on the “two-wire” configuration. 

A common RS485 topology is twisted pair cable between the RS485 

transceivers of each device and terminator resistors at the first and the last 

transceiver. The termination resistors are used to ensure signal integrity and 

avoid reflections in the transmission lines. Figure 1 is an example of this kind of 



3 

 

 

 

topology. In some cases the termination requirements and the device 

arrangements may vary. 

 

Figure 1. A typical RS485 multi-drop network [3] 

In an RS485 interface signals A and B are a differential pair, where one of the 

wires carries the original signal and the other one carries an inverted version of 

the original signal. Differential signals are superior to single-ended interfaces 

especially with long distances.  

Voltages tend to drop when distances get longer, this harms the signal integrity 

because a single-ended interface receiver references the original signal to the 

ground. With a differential receiver, the signals are referenced to each other, in 

other words the receiver looks for the voltage difference of the differential pair. 

Then it reconstructs the pair of signals back into one signal, which the host 

device can read. This allows for better signal integrity over long distances. 

Noise and electrical interference may also affect a cabling in a system, 

especially when the cables get long. A balanced twisted pair cable and a 

differential receiver will combat this very well. When there is interference or 

noise spike on one of the signals, it will also affect the other signal, and 

because the differential receiver references the signals to each other, this 

cancels the effect of noise or interference on the signal. This ability is also 

known as common mode rejection. Figure 2 shows a visual representation of 

what happens to a differential signal with common mode rejection. 



4 

 

 

 

 

Figure 2 Common mode rejection in action [3] 

RS485 bus does not require a specific voltage to transmit data, but it requires 

the differential voltage between “A” and “B” to be at least +/-200 mV at the 

receiver. Standard RS485 transceivers allow a common-mode voltage range of 

-7 V to +12 V, this allows an RS485 bus to have devices which transmit 

different voltages, if it is in the range. This is also important with longer cables 

because the transmitting device can transmit a higher differential voltage, and 

even though it drops while traveling the cable, as long as it does not drop below 

+/- 200 mV, the signal will be fine. [3.] 

Figure 3 shows a comparison of different physical layer protocols and as we 

can see, RS485 is the fastest and most versatile there. 



5 

 

 

 

 

Figure 3. Comparison between different physical layer protocols [4] 

 

2.2 Modbus Serial 

Modbus is one of the first widely used fieldbus. It is an open serial 

communication protocol used in industrial networks, originally published in 1979 

by Modicon for their own PLCs. Modicon is nowadays a branch of Schneider 

Electric’s. Modbus was originally only a serial communication protocol, but it 

has expanded to TCP/IP as well. 

Modbus RTU and Modbus ASCII are a request-response protocol with a 

master-slave relationship, in other words it has one master that controls the 

data transactions with one or several slaves that respond to the masters’ 



6 

 

 

 

requests. Figure 4 is a basic example of Modbus serial architecture 

representing the master-slave relationship. 

 

Figure 4. Modbus serial architecture [5] 

A newer variant to Modbus family, Modbus TCP uses client/server architecture 

as seen in Figure 5. It was created to allow Modbus RTU/ASCII protocols to be 

carried over ethernet. [5.] 

 

Figure 5. Modbus TCP architecture [5] 



7 

 

 

 

2.2.1 Modbus Serial Framing 

The communication sequence between Modbus master and slaves begins by 

the master sending a request or a command on to the bus for the slaves. This is 

called “a query”. The slaves will then act according to the command received, 

supply the data requested or reply with an error if the command or request ca 

not be carried out. In case of an error, the query will be ignored. In no 

circumstances will the slaves transmit data on the bus unless required to do so 

by the master.  

A slave will return “a response” to the master if it was specifically addressed in 

the query. The response will supply the requested data, confirm that the 

message was received, or reply with an error. A Modbus master can also 

“broadcast” to all slaves. In that case the slaves will not give a response to the 

master. [6.] 

Standard Modbus network controllers can be configured as ASCII or RTU 

transmission mode, but they must be configured to only one. Modbus RTU and 

ASCII transmission modes are not compatible with each other because their 

frames are different. 

Table 1. Modbus ASCII frame [7] 

Start Address Function Data LRC End 

: 2 Chars 2 Chars N Chars 2 Chars CR LF 

 

When looking at Table 1, in Modbus ASCII configuration each eight-bit byte in a 

message is two ASCII-characters. Data transmission is slower than in RTU 

configuration, but it allows up to one second time interval between characters 

without causing an error. The message starts with a ‘:’ character and ends with 

CR LF (carriage return-line feed).  



8 

 

 

 

 

Figure 6. Modbus ASCII format for each byte [6] 

Slaves in the bus are continuously polling for ‘:’ character, if the character is 

received, the slaves will then check the address field to find out if the message 

was intended to it. Next in the frames are the function field and the data field, 

which will be explained in depth a bit further in the thesis. Before the end CR LF 

there is error checking field. The error check characters are the result of LRC 

calculation which is performed on the message contents. Each byte in Modbus 

ASCII follows the format represented in Figure 6. 

Modbus RTU frames are different from Modbus ASCII frames. Each eight-bit 

byte in a message is transmitted by two four-bit hexadecimal characters. This 

allows for greater character density and greater data rates with same baud 

rates than in ASCII configuration. While ASCII configuration allowed for up to 

one second time interval between characters, RTU messages must be sent 

continuously. Modbus RTU frame is shown in Table 2. 

Table 2. Modbus RTU frame [7] 

Start Address Function Data CRC End 

3.5 Char 
time 

8 Bit 8 Bit N * 8Bit 16 Bit 3.5 Char 
time 

 

While in ASCII mode the frame starts with ‘:’ character, Modbus RTU frame 

begins with 3.5-character times gap in transmission. If there is no transmission 

on the bus for 3.5-character times, the devices on the network start to search 

for their address, which is sent with two four-bit hexadecimal characters. Each 

device in the network will decode the address field. After address, the frame 



9 

 

 

 

continues with Function code, data, and the CRC frame. If the CRC sent does 

not match the CRC calculated on the receiving side, the message will be 

ignored, and the slave will send an error to the master. The frame ends after 

another 3.5-character times interval.  

If there is longer than 1.5-character times interval of silence in the transmission, 

the whole message will be deemed incomplete, and the receiving device returns 

to wait for the next address field. If a new message begins before the 3.5-

character times in the end, the device will think that the message is not 

complete and thinks it is continuation of the previous message. The receiving 

device will then set an error since the CRC value will not be valid for the 

combined messages. Each byte in Modbus RTU follows the format shown in 

Figure 7. [7.] 

 

Figure 7. Modbus RTU format for each byte [6] 

 

How long the 3.5-character times is will depend on the baud rate. If the baud 

rate is higher than 19200, Modbus states that 1.5-character times must be fixed 

to 750 microseconds and for 3.5-character times 1750 microseconds. For baud 

rates under 19200 the character times must be calculated. Let’s use 9600 baud 

rate as an example: 

Calculating the Modbus RTU character time  (1) 

11

9600
= 0.001145𝑠 = 1.145𝑚𝑠 



10 

 

 

 

With 9600 baud rate, 1-character times is 1.145ms as seen in Equation 1. So, 

1.5-character times is 1.715ms and 3.5-character times is 4.0075ms as. 

Table 3 is an example to show the difference between one Modbus ASCII and 

Modbus RTU message: 

Table 3. Difference between Modbus RTU and Modbus ASCII message 

 Message RTU ASCII (hex) 

Start - 3.5-character 
times 

3A (1 byte) 

Address (slave) 30 (slave 30) 1E (1 byte) 33 30 (2 bytes) 

Function 03 (read holding 
registers) 

03 (1 byte) 30 33 (2 bytes) 

Starting address 
high 

 00 (1 byte) 30 30 (2 bytes) 

Starting address 
low 

99 + (40001 
offset) 

63 (1 byte) 36 33 (2 bytes) 

Number of 
registers high 

 00 (1 byte) 30 30 (2 bytes) 

Number of 
registers low 

3 03 (1 byte) 30 33 (2 bytes) 

Error check - F7 BA (2 bytes) 
CRC calculator 

37 39 (2 bytes) 
LRC calculation 
(79 in hex) 

Stop - - 0D 0A = CR LF 
(2 bytes) 

Total bytes  8 17 

 

This message will read holding registers with Function code 03, from slave 

number 30, starting from 40100 to 40102. As we can see Modbus ASCII needs 

a lot more bytes to accomplish the same outcome. 



11 

 

 

 

2.2.2 Modbus Address Field 

All the fields in a Modbus frame have a specific job to do. The next sub-

chapters will go through each of the fields more in depth. 

After the message starts with ‘:’ character in ASCII configuration or 3.5-

character times of silence in RTU configuration, all the devices in the network 

will start to look for their own address which is sent in the first field of Modbus 

message, the address field. 

Simply put, Modbus master will address a specific device in the address field 

with one byte in RTU configuration, or two bytes, in other words two characters 

in ASCII configuration. When a slave responds to the master, it will put its own 

address in the address field of the response. Valid addresses range from 1 to 

247 and address 0 is reserved for broadcasting to all slaves in the network. 

Slaves do not respond to broadcast messages. 

2.2.3 Modbus Function Field 

The function field’s purpose is for the master to tell the slave what to do. 

Modbus master will once again send one byte in RTU configuration and 2 

characters in ASCII configuration inside the function field of the Modbus 

message frame. The function code can be from 1 to 255 but most of the 

function codes are either reserved for future uses, not in use or not 

implemented in a module.  

 

  



12 

 

 

 

Table 4. Common function code for Modbus 

Function code What it does 

01 (01 RTU / 30 31 ASCII) Read coil status 0x reference 

02 (02 RTU / 30 32 ASCII) Read input status 1x reference 

03 (03 RTU / 30 33 ASCII) Read holding registers 4x reference 

04 (04 RTU / 30 34 ASCII) Read input registers 3x reference 

05 (05 RTU / 30 35 ASCII) Write single coil 0x reference 

06 (06 RTU / 30 36 ASCII) Write single register 4x reference 

15 (0F RTU / 31 35 ASCII) Write multiple coils 0x reference 

16 (10 RTU / 31 36 ASCII) Write multiple registers 4x 
reference 

 

Table 4 shows some of the more common function codes and what the function 

code does. Coils are 1-bit registers which can be read or written. Discrete inputs 

are 1-bit registers for read only functions. With coils you can read or write the 

state of a switch but with discrete inputs you can only read the state. Holding 

registers and input registers are both 16-bit registers. Holding registers are 

probably the most used register in Modbus, it can be read or written. Input 

registers are read only. The references written in the “what it does” field of the 

Table 4 are used to reference to the right register: 

- Coils (0x) = 00001 – 09999 

- Discrete inputs (1x) = 10001 – 19999 

- Input registers (3x) = 30001 – 39999 

- Holding registers (4x) = 40001 - 49999 

Every function code has a unique query and response. To understand how they 

work, there will be some examples. The examples will be addressing imaginary 



13 

 

 

 

slave 30 in the network. The error checking field will be left empty, and the 

queries and responses will be shown in Modbus RTU for simplicity. 

Function code 01, read coil status: 

- Reads the ON/OFF status of a discrete coil 

- Specifies the starting coil and the number of coils to be read 

- Logic 1 is ON and logic 0 is OFF 

- In the response one coil corresponds to one bit of data  

- First coil corresponds to the LSB of the response 

Table 5 shows an example of Function code 01 query and Table 6 shows the 

response for the query. A query is sent to read the states of coils 0, 1 and 2. 

Coils 0 and 2 are conducting current, so the state of those will be logic 1. Coil 1 

is not conducting current, so its state will be logic 0. 

Table 5. Function code 01 Modbus query 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 1 01 

Starting address high 0 00 

Starting address low 0 00 

Number of coils high 0 00 

Number of coils low 3 03 

Error checking - - 

 

 



14 

 

 

 

Table 6. Function code 01 Modbus response 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 1 01 

Byte count 1 01 

Data 5 05 

Error check - - 

 

A query was sent to read the state of coils 0 to 2. In the response we get the 

byte count which in this case is one. If we would have read coils from 0 to 8, we 

would have gotten two bytes of data because one coil corresponds to one bit of 

data and Modbus messages have eight bits reserved for data, so one byte. 

The content of the data field of the response is decimal five, hexadecimal 05 

which in binary equals to 0000 0101. Since the first coil read corresponds to the 

LSB of the data byte and then next coil is the next bit and so on. It can be seen 

that coil 0 conducts current, coil 1 does not conduct current and coil 2 conducts 

current. 

Function code 02, read input status: 

- Reads the ON/OFF state of a discrete input register 

- Specifies the starting coil and the number of coils to be read 

- Logic 1 is ON and logic 0 is OFF 

- In the response one discrete input register corresponds to one bit of data 

- First discrete input register corresponds to the LSB of the response 



15 

 

 

 

Function code 02 is almost the same as Function code 01, but the reference 

code is 1x, it references to different registers, the discrete 1-bit input registers. 

Tables 7 and 8 show the query and response of Function code 02. In the query, 

the discrete input registers 0 to 10 are read, meaning discrete input registers 

10001 to 10011. The reference 1x is integrated into the function code, in other 

words, when reading discrete input register 0 with Function code 02, it will be 

referenced to the discrete input register 10001. 

Table 7. Function code 02 Modbus query 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 2 02 

Starting address high 0 00 

Starting address low 0 00 

Number of inputs high 0 00 

Number of inputs low 11 0B 

Error checking - - 

 

Table 8. Function code 02 Modbus response 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 1 01 

Byte count 2 02 

Data (inputs 7 to 0) 177 B1 

Data (inputs 10 to 8) 3 03 

Error check - - 

 



16 

 

 

 

Since the query is sent to read more than eight input registers, the response will 

contain two bytes of data. First byte will contain the data starting from the first 

discrete input register read up to the eighth and the second byte of data will 

contain the data from discrete input registers 9 to 10.  

The data field of the response consists of B1 03 in hexadecimal, which in 

decimal is 177 and 3 and in binary 10110001 and 00000011. Table 9 and 10 

show which discrete inputs according to the response data are on and off: 

Table 9. Function code 02 example responses first data byte 

1 0 1 1 0 0 0 1 

Input 7 Input 6 Input 5 Input 4 Input 3 Input 2 Input 1 Input 0 

ON OFF ON ON OFF OFF OFF ON 

 

Table 10. Function code 02 example responses second data byte 

0 0 0 0 0 0 1 1 

- - - - - Input 10 Input 9 Input 8 

- - - - - OFF ON ON 

 

Function code 03, Read holding register: 

- Reads the content of 16-bit holding registers 

- Specifies the starting holding register and the number of holding register 

to read 

- In the response one holding register corresponds to two bytes of data 

- First byte contains the high order bits, and second byte contains the low 

order bits 



17 

 

 

 

Holding registers are read or write registers which usually are used to set an 

analog output, most commonly 0-10V or 4-20mA, which control a thermostat or 

a fan. Nowadays there are many applications where holding registers are used 

also as analog input registers. The reference of holding registers is 4x which is 

implemented in the function code. Holding register 1 is addressed as 0 and is 

referenced to the holding register 40001 in this case.  

Let’s say a query is sent to read the holding register 4. It contains data which is 

used to set an analog output of 0-10V to 5V. A 16-bit Digital to analog converter 

is used, so 0V would be 0, 10V would be 65536. The query and response of 

Function code 03 is shown in Tables 11 and 12. 

Table 11. Function code 03 Modbus query 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 3 03 

Starting address high 0 00 

Starting address low 3 03 

Number of holding 
registers high 

0 00 

Number of holding 
registers low 

1 01 

Error checking - - 

 

  



18 

 

 

 

Table 12. Function code 03 Modbus response 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 3 03 

Byte count 2 02 

Data Holding register 4 
HIGH 

 80 

Data Holding register 4 
LOW 

32768 00 

Error check - - 

 

The response contains two bytes of data, and the value of the data is 32768 

which equals to 65536/2, which in our scenario means that the holding register 

that contains the data which is used to set an analog output of 0-10V, has been 

set to 32768 which equals to 5V. 

Function code 04, read input register: 

- Reads the content of 16-bit input registers 

- Specifies the starting input register and the number of input register to 

read 

- In the response one input register corresponds to two bytes of data 

- First byte contains the high order bits, and second byte contains the low 

order bits 

As with Function code 01 and function code 02, the function codes 03 and 04 

are almost the same. Function code 04 addresses the 16-bit input registers with 

a reference 3x, so registers 30001 to 39999. Input registers are read only so 



19 

 

 

 

they are usually used for analog sensor inputs, like the temperature of a room 

or the humidity of air. 

In the example query shown in Table 13 a query is sent to read input registers 2 

and 3, addressed as 1 and 2, which contain data from a sensor which measures 

the weight in grams of water inside two different containers. 

Table 13. Function code 04 Modbus query 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 4 04 

Starting address high 0 00 

Starting address low 1 01 

Number of input 
registers high 

0 00 

Number of input 
registers low 

2 02 

Error checking - - 

 

  



20 

 

 

 

Table 14. Function code 04 Modbus response 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 4 04 

Byte count 4 04 

Data Input register 2 
HIGH 

 27 

Data Input register 2 
LOW 

10000 10 

Data Input register 3 
HIGH 

 4E 

Data Input register 3 
Low 

20000 20 

Error check - - 

 

The response shown in Table 14 consists of four bytes of data. The first two 

bytes contain the data inside input register 2 and the next two bytes contain the 

data inside input register 3. The data inside the input register 2 is 27 10 and 

input register 3 is 4E 20, which are 10000 and 20000 in decimal. The input 

registers contain the mass of water inside a container in grams, so there are 10 

kg and 20 kg of water in the two different containers. 

Since input registers contain binary data, the values inside them are usually 

scaled in different ways for better resolution. A device using Modbus Serial 

usually has a manual where you can see which register or coil has what data 

stored, and how it is scaled. 

  



21 

 

 

 

Function code 05, write single coil: 

- Writes a single coil (1-bit register) as 1 or 0 in other words ON or OFF 

- Query sends a byte where the four higher order bits represent the state 

to be written 

- FF 00 sets the coils ON and 00 00 sets the coil OFF 

- Can be broadcasted with address field 0, which will write the coil 

addressed in all the devices in the network 

- All other data values are invalid 

- Response is an echo of the query 

Function code 05 is used to change the state of a coil. It is used to turn on 

lights, turn off heaters or turn on fans for example. It can only set a single coil 

with one query. In the example query shown in Table 15 there is a switch that 

controls a fan on coil 154. It is currently off, and it needs to be turned on. Since 

the response is an echo of the query, there will not be a separate table for the 

response. 

Table 15. Function code 05 Modbus query and response 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 5 05 

Coil address high  00 

Coil address low 154 9A 

Data high 255 FF 

Data low 0 00 

Error check - - 



22 

 

 

 

 

Function code 06, write single register: 

- Writes a value inside a single 16-bit holding register  

- Query addresses a single register and sends the data to be set to the 

register 

- Can be broadcasted with address field 0, which will write the value sent 

in the query to all registers with the same address in the network 

- Response is an echo of the query 

While function code 05 is used to turn ON and OFF switches, function code 06 

is used to write a desired data inside a register. Function code 06 reference 

code is 4x, so it addresses the holding registers. Holding registers are used to 

set an analog output to a specific value, limits, or targets for the device or even 

configurations like baud rate which need more data than one bit. 

In the function code 03 example the holding register 4 is read and it had a value 

of 32768 in it, which equals to 5V analog output. Holding register 4 controlled a 

thermostat in the earlier scenario. Now in this example the analog output is set 

to 7.5V which would be 49152 in decimal or C000 in hexadecimal. After the 

query, the slave sets the value of holding register 4 to 49152, which translates 

to 7.5V in the example analog output. The response is an echo of the query and 

they are shown in Table 16. 

  



23 

 

 

 

Table 16. Function code 06 Modbus query and response 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 6 06 

Holding register address 
high 

 00 

Holding register address 
low 

3 03 

Data high  C0 

Data low 49152 00 

Error check - - 

 

Function code 15, Write multiple coils: 

- Writes a sequence of coils to ON or OFF state 

- Query addresses the starting coil, the number of coils to write in 

ascending order, the data to write and the byte count 

- The coils which are set ON or OFF is specified in the data field of the 

query 

- Broadcast will write the same block of coils in all the devices in the 

network 

- Logic 1 is ON and logic 0 is OFF 

- Unused bits in a data byte should be set to zero 

While function code 05 could turn a single switch ON or OFF, Function code 15 

can do the same thing for a sequence of coils. In the example there is a 



24 

 

 

 

sequence of eight coils, and the state of the first five coils in the sequence need 

to be changed. The starting point and state of the coils is shown in Table 17. 

Table 17. Starting point of Function code 15 example 

0 1 1 0 0 0 0 1 

Coil 7 Coil 6 Coil 5 Coil 4 Coil 3 Coil 2 Coil 1 Coil 0 

OFF ON ON OFF OFF OFF OFF ON 

 

A query is sent to turn coil 0 OFF and coils 1, 2, 3 and 4 ON and do nothing to 

coils 5, 6 and 7. The query and the response are shown in Tables 18 and 19. 

Table 18. Function code 15 Modbus query 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 15 0F 

Coil starting address 
high 

 00 

Coil starting address low 0 00 

Number of coils high   

Number of coils low 5 05 

Byte count 1 01 

Data 30 1E 

Error check - - 

 

 



25 

 

 

 

Table 19. Function code 15 Modbus response 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 15 0F 

Coil starting address 
high 

 00 

Coil starting address low 0 00 

Number of coils high   

Number of coils low 5 05 

Error check - - 

 

Function code 15 response will be sent after the data in the query has been 

written to the coils. The response will not contain the byte count or the data to 

be written. The starting point of the example should now have changed and is 

shown in Table 20. 

Table 20. The state of coils in Function code 15 after the query 

0 1 1 1 1 1 1 0 

Coil 7 Coil 6 Coil 5 Coil 4 Coil 3 Coil 2 Coil 1 Coil 0 

OFF ON ON ON ON ON ON OFF 

 

Coils 5, 6 and 7 have not changed and coils 0, 1, 2, 3 and 4 have changed to 

the states wanted. 

  



26 

 

 

 

Function code 16, write multiple registers: 

- Writes a value to a sequence of holding registers 

- Query addresses the starting holding register, the number of holding 

registers to be written in ascending order, the data to write  

- Broadcast will write the same sequence of registers in all the devices in 

the network 

- Response doesn’t contain the data to be written 

Function code 16 is the equivalent to function code 06 as is Function code 15 to 

function code 05. In the previous example function code 06 was used to write a 

value to holding register 4, in this example another thermostat is added to the 

system that needs to be controlled and it is controlled by the value in holding 

register 5. We want holding registers 4 and 5 to have the exact same value of 

49152, which translated to 7.5V in the analog output of the earlier example. The 

example query of Function code 16 is shown in Table 21. 

  



27 

 

 

 

Table 21. Function code 16 Modbus query 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 16 10 

Holding register starting 
address high 

 00 

Holding register starting 
address low 

3 03 

Number of holding 
registers high 

 00 

Number of holding 
registers low 

2 02 

First register data high  C0 

First register data low 49152 00 

Second register data 
high 

 C0 

Second register data 
low 

49152 00 

Error check - - 

 

This query will write the same value of 49152, C000 in hexadecimal to both, the 

starting holding register and to the next holding register from the start, so 

holding registers 4 and 5. 

  



28 

 

 

 

Table 22. Function code 16 Modbus response 

Name Decimal Modbus RTU (hex) 

Slave address 30 1E 

Function code 16 10 

Holding register starting 
address high 

 00 

Holding register starting 
address low 

3 03 

Number of holding 
registers high 

 00 

Number of holding 
registers low 

2 02 

Error check - - 

 

Function code 16 response shown in Table 22 will not send the written data 

back to the Modbus master. Otherwise, it will echo the query. Broadcasted 

query will not be responded to. [8.] 

 

2.2.4 Modbus Error Checking Field 

Error checking in Modbus can be done by parity checking, or by performing an 

LRC or CRC calculation on the Modbus messages content and adding the 

result to the last field of standard Modbus message, the error checking field. 

The fields contents are different with Modbus ASCII and Modbus RTU. This 

chapter will handle the different forms of error checking. First the parity 

checking then Modbus ASCII error checking and then Modbus RTU error 

checking. 



29 

 

 

 

The standard character in a Modbus message contains 10-bits in ASCII 

configuration and 11-bits in RTU configuration. The character, or byte consists 

of a start bit, seven data bits in ASCII and eight data bits in RTU configuration 

one parity bit and a stop bit. If there is no parity checking implemented, there 

will be two stop bits. Figures 8 and 9 show the standard character frames of 

Modbus ASCII and Modbus RTU configuration. Bits are sent from left to right, 

LSB being the start bit. 

 

Figure 8. Modbus ASCII character frame [8] 

 

Figure 9. Modbus RTU character frame [8] 



30 

 

 

 

Parity checking in Modbus is applied to each character sent. Modbus master 

generates parity checking in the character and includes it in the message 

contents before transmission. 

In Even or Odd parity checking configuration, Modbus master calculates the 

amount of even or odd 1-bits in the data field and sets the parity bit accordingly 

in every frame of every character.  

Let’s use Modbus RTU character frame as an example, so eight data bits. The 

sequence of bits is as follows: 10010010. Modbus master then calculates the 

number of 1-bits and sets the parity bit accordingly. The sequence has three 

bits set as one, so an odd amount of 1-bits. In Even Parity configuration the 

parity bit would be set as one in this occasion and in Odd Parity, the parity bit 

would be set as zero. Then the Modbus slave would calculate the amount of 1-

bits in the message received and if the parity bit does not match, the slave will 

set an error. 

To summarize parity checking: 

-  If Even Parity is used, Modbus master calculates the amount of 1-bits in 

a character and sets the parity bit as 1 if the amount is odd, and 0 if it is 

even.  

- If Odd Parity is used, Modbus master calculates the amount of 1-bits in a 

character and sets the parity bit as 0 if the amount is odd, and 1 if it is 

even. 

If No Parity checking is used, the parity bit is transformed into an additional stop 

bit and no parity check can be made.  

Parity checking is used more commonly in Modbus ASCII configuration. Since 

Modbus RTU, which uses CRC calculation as error checking, is starting to be a 

lot more used than Modbus ASCII, it unfortunately makes parity checking 

almost obsolete. Still, Even, Odd and no parity checking options should be 



31 

 

 

 

implemented into Modbus controllers because some users might want to or 

need to have the option to use parity checking. 

LRC method is used as error checking in Modbus ASCII configuration. It is 

implemented in the error checking field, and it contains two ASCII characters, 

which total to two bytes, even though LRC value is only one byte. Its contents 

are determined by performing an LRC calculation by the transmitting device on 

the contents of the message, excluding the ‘:’ colon character and the message 

termination CR LF characters. The receiving device will then perform the 

calculation again and if there LRC values do not match, it will set an error.  

LRC calculation is done by adding together all the 8-bit bytes in a message and 

discarding all the carry overs and then performing a 2s complement on the 

result. As an example, let’s think that there is four 8-bit bytes in a message with 

decimal values of 60 and 40. First, change the decimal values into binary 

values: 

- 60 = 00111100 

- 40 = 00101000 

Then add the 8-bit bytes together and discard the carry overs: 

- 60 = 0011 1100 

40 = 0010 1000 

- Which equal to: 

100 = 0110 0100 

  



32 

 

 

 

After adding all the 8-bit bytes together, take 2s complement from it, so invert all 

the resulting bits and then add 1 to the LSB. 

- Inverted 100 = 1001 1011 

- Add +1 to the LSB = 1001 1011 + 1 = 1001 1100 

- 2s complement 1001 1100 = -100 

The LRC value would be -100 or 10011100 in binary and 0x64 in hexadecimal. 

In this scenario 36 34 would then be written in Modbus ASCII configuration as 

the LRC value in the error checking field.  

In Modbus RTU configuration, error checking is done by CRC calculation. CRC 

value is a 16-bit binary value added to the error checking field of the Modbus 

message. As in LRC check, the CRC calculation is also done for the entire 

Modbus message. The fields contents are determined by performing an CRC 

calculation by the transmitting device on the contents of the message. The 

receiving device will then perform the calculation again and if there CRC values 

do not match, it will set an error. 

Calculating the CRC value is a lot more complex, and there will not be an 

example calculation of it in this thesis. The CRC calculation process is done as 

follows: 

- Set all the bits in one 16-bit register to one 

- Take the eight bits of data from a character and exclude the start, parity 

and stop bits 

- XOR the eight bits of data into the least significant byte of the preset 16-

bit register 

- Shift the 16-bit register towards the LSB with a zero 



33 

 

 

 

- Check the value of the LSB, if it is 0, then do nothing. If it is 1 then XOR 

a preset fixed value to the CRC value 

- Repeat the process for eight shifts 

- Then take the next characters eight bits of data and repeat until you have 

gone through all the data bytes in the message 

- CRC will be the final value after the process has been done for all of the 

data bytes in the message 

CRC value is then added to the error checking field of a Modbus RTU message, 

by writing the low order byte first. If our CRC value would be 11110000 

00001111, we would write first 0F and then F0 in the error checking field. [9.] 

Now we have gone through the basics of Modbus Serial and delved a little 

deeper into the framing and Modbus messages and its fields. In the next 

chapter, there will be information on the hardware used for the thesis project. 



34 

 

 

 

3 Hardware 

The aim for the thesis project was to read data via RS485 from a microbrewery, 

which uses Modbus RTU as its communication protocol and then send the data 

to an IoT platform. This chapter will present the Microbrewery and the PLC, 

Controllino MAXI, used for the project.  

As this is an electronics degree thesis, it does not delve too deep into the 

operations of the microbrewery. The microbrewery chapter will go through the 

properties of the main board of the AutoLog® PLC used to control the system. 

The Controllino chapter will explain why the Controllino MAXI by CONELCOM 

GmbH was chosen as the PLC for the project and go through some of its 

properties. 

 

3.1 The Microbrewery 

Probably the most fundamental part of the project, the microbrewery, was 

custom made for Metropolia University of Applied Science by Tankki oy, Finland 

during winter 2015 and spring 2016. Metropolia uses it to teach brewing 

technology to its students and for research purposes. Ironically speaking, even 

though the whole project is about integrating data from the microbrewery into 

IoT, it is probably the part where the least amount of work was put into. Figures 

10 and 11 are pictures of the microbrewery to visualize the main system of the 

project.  



35 

 

 

 

 

Figure 10. Front view of the microbrewery 

 

Figure 11. Four fermentation tanks of the microbrewery 



36 

 

 

 

The system is controlled by AutoLog® 20AN shown in Figure 12. It is a modular 

PLC from FF-Automation, Finland and the main functions of the microbrewery 

are controlled by a touch screen control panel. [10.] 

The main board AL20AN can be expanded with [11]:  

- DI16 digital input board 

- RO16 relay output board 

- RIO8 digital input / relay out board 

- DO32 digital output board 

- EXA8/4 analog board (12bit), that can be used to expand number of I/O 
connections 

 

Figure 12. Autolog AL20AN main board 

The main boards properties are [11]: 

- Input voltage 18 -30VDC / 15.5 - 24VAC or 10 -30VDC / 7.5 - 24VAC 

from external supply unit 

- Eight analog inputs, which can be configured as up to 24 digital inputs 

with a ratio of one analog input into three digital inputs 



37 

 

 

 

- Two 12-bit analog outputs with 0-5V configuration and 0-10V 

configuration 

- Eight 24VDC digital inputs 

- Eight 24VDC 1A digital outputs 

- I2C interface for the touch screen control panel 

- I2C port to connect extension boards 

- RS232 serial interface for programming or data communication, SER1 

- RS232 serial interface with RS485 conversion module for data 

communication SER2 

  



38 

 

 

 

3.2 Controllino MAXI 

Easy to use, fairly cheap, has RS485 transceiver and can be connected to the 

IoT. These were the criteria for the microcontroller to use in the project. 

Controllino MAXI by CONELCOM GmbH shown in Figure 13, meets all of the 

criteria and more. It is a fully Arduino compatible PLC with open-source 

software, designed for industrial and DIY projects. And on top of it all, it can be 

also mounted on a DIN-rail. 

 

Figure 13. Controllino Maxi [12] 

It is basically an Arduino in a PLC form for automation applications. It can be 

programmed with software’s that are compatible with Arduino like Labview, 

Matlab, Atmel Studio and of course Arduino IDE.  

The PLC needs a supply voltage of 12VDC or 24VDC which makes it perfect for 

automation application. It is equipped with: 

- 12 configurable analog or digital inputs 



39 

 

 

 

- 6 digital inputs 

- 2 analog inputs 0-10V 

- 2 interrupt inputs 

- 8 digital PWM outputs 2A 

- 2 analog outputs 0-10V 

- 10 relay outputs 

- I2C, SPI, RS485 and ethernet interface 

- 2 serial TTL interface 

- A built-in real-time clock 

It also has pin headers which connect straight to the microcontroller on a 5V 

logic level. [12.] 

The Controllino MAXI might have been a bit too much for the project, since only 

RS485 and ethernet was needed, but thinking ahead, Controllino MAXI is the 

perfect solution for the microbrewery if something needs to be implemented 

later. 

  



40 

 

 

 

4 Software Platforms 

This chapter introduces the software platforms used in the thesis project and 

explains why they were chosen for the project. 

4.1 Arduino IDE 

The open-source software, Arduino Integrated Development Environment or 

Arduino IDE makes writing code fast and easy. Since Controllino MAXI is fully 

Arduino compatible, it was a no-brainer to use Arduino IDE as the programming 

platform. 

There are probably thousands of third-party libraries for Arduino IDE which 

makes writing working code very fast. Especially things like configuring your 

device for Modbus- or ethernet protocol might be really time consuming. With 

Arduino IDE you can just find libraries online and add them to your project 

through the software with a few clicks. 

It also has an easy-to-use serial monitor to debug your code and test what you 

have implemented, so there is no need for external terminal emulator software 

like PuTTy or TeraTerm. Uploading the code is also very easy and fast, connect 

your Arduino compatible device via USB to your computer, compile the code 

and upload it to your device. [13.] 

 

4.2 Ubidots STEM 

It was easy to pick the programming platform to use in the project but picking 

the IoT platform turned out to be more difficult. There were several options to 

choose from and even more options if some money would have been used on 

the platform. To narrow down the options from which to choose, decisions were 

made that the IoT platform for the project should be free or at least free to some 

extent. 



41 

 

 

 

It was also wanted that the platform would be easy to configure with minimal 

knowledge of IoT. Options like Blynk and Arduino IoT Cloud emerged but there 

were some problems with both. Arduino IoT Cloud needed a board, which is 

compatible with the platform and Controllino MAXI was not one of them so that 

was a no for Arduino IoT Cloud. Blynk was a good candidate with possibility to 

implement the project onto a phone app, but I have been working with Blynk 

before, and the free version of it is very limited with the widgets you can use. 

Then Ubidots STEM was found. An IoT platform by Ubidots for educational 

purposes and non-commercial use, created in 2018. For free, Ubidots STEM 

users can sign-up up to three devices and 10 variables per device. With Ubidots 

STEM you can also send 4000 “dots” per day to the platform. A dot is a data 

point containing a value and timestamp. You can have up to three dashboards 

and you can place up to 10 widgets per dashboard. For a free platform Ubidots 

STEM was a very solid platform for the project. With more money invested, you 

can always get a better one though. 

Ubidots STEM is limited as well, but the ease of use and the configurability of 

the dashboard made it enjoyable to use, so it was decided to use it as the IoT 

platform. In the project it is not needed to send data too often to the IoT, so the 

4000 dots limit won’t be a problem. Every five minutes you can send almost 14 

dots to the platform. There is also a limitation of 10 variables per device, so 

basically every five minutes you can send a dot to each of the variables you use 

and still stay withing the 4000 dots per day limitation. Brewing beer is not very 

time critical, so getting data every five minutes will work just fine. Of course, you 

can configure the code so that some of the more time critical variables get data 

sent to them more often. [14.] 

 

  



42 

 

 

 

5 The Project and its Results 

The task was to implement an IoT solution for the microbrewery in Metropolia 

University of Applied Sciences food laboratory. RS485 had to be used as the 

serial communication interface with Modbus RTU as the communication 

protocol. The main goal for the project was to log data from the Brix-meter of 

the brewery into a graph in the cloud. The work started with the physical layer of 

the project, connecting the Controllino into the microbrewery. 

First, the SER2 port, as in the datasheet, or COM2 port, as labelled on the tank 

itself shown in Figure 14, was configured for the use of RS485 with DIP-

switches, SW1 in Figure 12.  

Then RS485 signals A, B and GND were connected from the SER2 port into the 

Controllino MAXI PLC. Next, the supply voltage of 24VDC from the external 

power supply was connected to power the Controllino MAXI. The PLC was also 

connected into a router provided for the project through its ethernet port.  

 

Figure 14. SER2 port of the microbrewery 



43 

 

 

 

After the electrical connections were made, the Modbus holding register 

addresses, seen in Appendix 3, were studied and the programming of the 

Controllino MAXI PLC begun. Figure 15 shows the wired up Controllino MAXI 

 

Figure 15. Controllino MAXI wired up and ready to be programmed 

The most time-consuming part of the project was programming the hardware. 

What happens in the code will be explained in this chapter and the code will be 

added in full as Appendix 3. The code is divided into five parts, or tabs in 

Arduino IDE to make it easier to debug and read the different parts of the code. 

First is the tab for the included libraries, defines and global variables of the 

code. The included libraries are ready-made libraries to make using Controllino, 

ModbusRTU and Ubidots quite a bit easier. The possibility to use these libraries 

is the reason Arduino IDE is so popular among hobbyists in my opinion. 

In the first tab, Controllino MAXI is set as the Modbus master and the addresses 

for the slave and master is defined. The COM port is set and everything 



44 

 

 

 

necessary for the ethernet and Ubidots STEM is defined. Then a couple of 

global variables and the ModbusQuery struct used in the later parts of the code 

are declared. 

The second part of the code is the setup, where the Baud rate is set the 

ethernet is started. The Modbus queries are also set there. Every holding 

register of the microbrewery was wanted to be read, so it would be easier to 

modify the code when someone wants to upload data to the cloud. It was found 

out that only 29 holding registers could be read per query, so in the setup, five 

different queries were set with four of them reading 29 holding registers and the 

last of them reading five. The variables for the loop of the code were also set in 

this part. 

In the loop part the queries are sent to the Modbus slave and the contents of 

the holding registers are combined into a single array called tankkiRegister, 

indexed as in the holding register file in Appendix 2. The contents of the holding 

registers are also printed to the serial monitor for debugging purposes. After 

sending the queries the loop will call the SendToUbidots function where the 

received data is sent to Ubidots STEM. 

If the microbrewery will ever have this solution in use, the user should consider 

adding a lot more delay before sending the data of the holding registers into 

Ubidots STEM because of the limitations of the dots sent to the platform per 

day. It is not necessary to get new data from the microbrewery to the IoT 

platform too often because the brewing process is not that time critical. 

The fourth part is the part which can be modified to choose and change what 

holding registers values are sent to the IoT platform. It consists of defining the 

variable labels seen in the Ubidots STEM and then the function SendToUbidots. 

In the function there are declarations of variables with values assigned to them 

from scaling the values in tankkiRegister array and then sending the variables 

into Ubidots STEM. Comments have been added to the fourth tab, which 

explain how to modify the SendToUbidots function as the user needs. 



45 

 

 

 

The final tab of the code contains only the two different scaling functions used 

to get usable values out from the holding registers. In Appendix 2, there are 

three different types of scaling for the values inside the holding registers: 

0. No scaling 

1. Scaling 1 = if you get a value of 1250 as a temperature you 

need to deduct 1000 from it and divide the number by 10. Then 

you get 25 as the temperature, Units are shown in the Appendix 

2. 

2. Scaling 2 = just divide the value you get by 100, so if you get 

700 as the pH reading, divide it by 100 and you get seven. 

After programming the Controllino MAXI the configuration of Ubidots STEM 

platform was next. The plan was to add as much data and graphs of different 

sorts on the dashboard as possible, because one goal of the thesis was to write 

a user manual on how to configure the platform and the values sent to it. Having 

a lot of different data and configures on the Ubidots STEM side would make it 

easier to go through the different options on how to set up the platform the way 

the user wants. 



46 

 

 

 

 

Figure 16. Ubidots STEM dashboard for the project 

When the microbrewery is powered on, the Controllino MAXI will start querying 

the Modbus holding registers, stores the data in a buffer variable and sends it 

into the Ubidots STEM platform. In the project the temperature of the four 

fermentation tanks as a graph and a numerical value, the pH value and the 

temperature of the kettle, the temperature of the flushing water and of course 

the Brix value, which was the whole purpose of the project is sent to the 

dashboard of Ubidots STEM. The dashboard can be seen in Figure 16.  

  



47 

 

 

 

6 Conclusions 

The first goal of the thesis project was to implement the possibility to read and 

log Brix value to an IoT platform from the microbrewery of Metropolia University 

of Applied Sciences. Unfortunately, it is not allowed to use the microbrewery so 

tests could not be made to provide any other value than zero as Brix value from 

the Brix meter. The second goal was to create a manual for anyone who wishes 

to set and configure the solution for their own use. 

Even though both goals of the thesis project were successfully finished, there is 

a lot of room for improvement. There are arbitrary ways to improve it like 

cleaning the code and installing the hardware more properly, but its functionality 

can also be improved a lot.  

Only the capability to read from the holding registers of the microbrewery was 

implemented in the thesis project but writing to the registers and controlling the 

microbrewery from the cloud is also possible to add. Adding money or building 

your own IoT platform would be a good way to improve the thesis project as 

well. As for second goal, the manual was made as simple to read as possible 

and configuring the code to the user’s own preference is made easy as well. 

Making things remotely and easily accessible is the future of the modern world. 



48 

 

 

 

References 

1 Lammert Bies. Practical information about implementing RS485. 
https://www.lammertbies.nl/comm/info/RS485 
Accessed 11 August 2021. 

2 B+B Smartwork, BASICS OF THE RS485 STANDARD. 
https://www.bb-elec.com/Learning-Center/All-White-Papers/Serial/Basics-
of-the-RS485-Standard.aspx 
Accessed 19 August 2021 

3 Jason Kelly, CUI DEVICES, RS485 Serial Interface Explained. 
https://www.cuidevices.com/blog/RS485-serial-interface-explained 
Accessed 11 August 2021 

4 OPTCORE 2018 (updated 2021), What is the difference between RS-232, 
RS-422, and RS-485? 
https://www.optcore.net/difference-between-rs-232-rs-422-and-rs-485/ 
Accessed 23 August 2021 

5 William (Bill) L. Mostia, Jr., P.E., principal engineer, WLM Engineering Co. 
2019, Introduction to Modbus. 
https://www.controlglobal.com/articles/2019/introduction-to-modbus/ 
Accessed 23 August 2021 

6 Technical support note MTL Fieldbus network solutions, 2019, Introduction 
to Modbus. https://www.mtl-
inst.com/images/uploads/TSN_MTL838C_Modbus_Rev_1.pdf 
Accessed 23 August 2021 

7 Modbus Tools, Protocol Description. 
https://www.modbustools.com/modbus.html 
Accessed 6 September 2021 

8 Bruce Cyburt, Automation.com, 2012, Introduction to Modbus. 
https://www.automation.com/en-us/articles/2012-1/introduction-to-modbus 
Accessed 2 September 2021 

9 MODICON, Inc., Industrial Automation Systems 1996, Modicon - Modbus 
Protocol Reference Guide.  
https://modbus.org/docs/PI_MBUS_300.pdf 
Accessed 5 September 2021 

10 Santeri Tenhovirta, 2016, Studies on Operation and Carbohydrate Yield in 
a Microbrewery, Engineer’s thesis.   
https://www.theseus.fi/bitstream/handle/10024/116123/tenhovirta_santeri.
pdf?sequence=1&isAllowed=y 
Accessed 6 September 2021 



49 

 

 

 

11 FF-AUTOMATION OY, 2006, AL 20AN Programmable Logic Controller 
Instruction Manual. 
http://www.ff-
automation.com/download/Documents/English/AutoLog_Manuals/ManAL2
0AN29122006.pdf 
Accessed 6 September 2021 

12 CONELCOM GmbH, 2018, Controllino Instruction Manual 
"CONTROLLINO" MINI, MAXI and MEGA. 
https://www.controllino.com/wp-content/uploads/2019/02/CONTROLLINO-
Instruction-Manual-V1.5-2018-12-14.pdf  
Accessed 6 September 2021 

13 Arduino, Introduction. 
https://www.arduino.cc/en/Guide/Introduction 
Accessed 14 September 2021 

14 Ubidots, Ubidots STEM. 
https://ubidots.com/stem/ 
Accessed 14 September 2021 



 

Appendix 1 

 

 

 

1

Appendices 

Appendix 1. User Manual 

Contents 

1. Set up Ubidots STEM account 

2. Set up Controllino MAXI as the Ubidots STEM device 

3. Modify the Arduino Code 

o Modify the variables sent to Ubidots STEM 

o Flash Arduino code into Controllino 

4.  Configure Ubidots STEM platform 

Tools needed: 

- USB 2.0 A – B cable 

- Arduino IDE 

- Internet access 

  



 

Appendix 1 

 

 

 

2

1. Set up Ubidots STEM account 

1. Go to https://industrial.ubidots.com/accounts/signup_industrial/ 

2. A popup comes up, click on the “Take me to Ubidots STEM” 

 

 

3. Make an account, check “My IoT project is for personal, non-commercial 

use” box and click “Sign up for free”. 

 



 

Appendix 1 

 

 

 

3

4. Go through the quick tutorial and then delete the demo dashboards by 

clicking next to the “Demo dashboard” text 

 

5. Click on the trashcan icon and confirm with delete on the popup which 

shows up to delete the demo dashboards. Do it for all the demo 

dashboards. 

 

 



 

Appendix 1 

 

 

 

4

6. Go back and click on the devices popup menu. Click devices. 

 

7. Delete the demo device by clicking on the trash can and confirming with 

delete. 

 

8. Now you have a fresh Ubidots STEM account with everything extra 

deleted. 

 

 



 

Appendix 1 

 

 

 

5

9. Next click on the user icon on the main toolbar and click API credentials 

from the popup menu 

 

10.  API credential menu will show up, here you can check and copy the 

Default token for your Ubidots STEM account, which will be needed in 

setting up Controllino MAXI 

 

  



 

Appendix 1 

 

 

 

6

2. Set up Controllino MAXI as the Ubidots STEM device 

1. If you don’t already have Arduino IDE software, download it from this link: 

https://www.arduino.cc/en/software 

2. Download the Arduino code named written for this project located in: 

oma.metropolia.fi Olutprosessi innovaatioprojekti 2020 workspace 

in the folder Arduino Code. The file is named 

TankkiThesisArduinoCode.zip 

3. Extract the folder into a location you want 

4. The contents of the folder should look like this: 

 

5. Open the TankkiThesis Arduino file 

6. On the first tab called TankkiThesis, on the lines 18 and 19 are the 

definitions for your Ubidots Default token and Device label.  

  



 

Appendix 1 

 

 

 

7

7. Change the Default token to the token you can copy from your freshly 

created Ubidots STEM accounts API credentials NOTE. The default 

token is different for every account 

 

 

 



 

Appendix 1 

 

 

 

8

8. To be able to work with the Controllino devices in the Arduino IDE, you 

will need to install the Controllino board using the preconfigured Arduino 

Board Manager. 

9. Go to Tools -> Board -> Boards Manager 

 

10. A boards manager popup will show up. Search for Controllino and install 

it 

 

 



 

Appendix 1 

 

 

 

9

11. When the board is installed, select it by going Tools -> Board -> 

Controllino_Boards-avr -> Controllino MAXI 

 

12. Then install these libraries. Install the ModbusRTU library as well, as it is 

needed for Controllino MAXI to be able to communicate with the 

microbrewery 

o Ubidots Ethernet library 

https://github.com/ubidots/ubidots-arduino-ethernet 

 

o Controllino library 

https://github.com/CONTROLLINO-PLC/CONTROLLINO_Library 

o ModbusRTU library 

https://github.com/smarmengol/Modbus-Master-Slave-for-Arduino 

  



 

Appendix 1 

 

 

 

10

13. To install the libraries, go to the link -> take your cursor to the green code 

popup menu -> click download ZIP. DO NOT EXTRACT THE ZIP-FILE 

 

14. To add the downloaded libraries into Arduino IDE, go to Sketch -> 

Include Library -> Add .ZIP library. Locate and add the downloaded .ZIP 

files. 

 



 

Appendix 1 

 

 

 

11

15.  Finally close and restart the Arduino IDE. 

16. Now we have everything setup for the Controllino MAXI to be able to 

send data to Ubidots STEM. 

3. Modify Arduino Code 

1. To modify the device name and the variables sent to your Ubidots STEM 

platform, the code needs to be adjusted. 

2. We don’t need to do anything yet to the Ubidots STEM platform. When 

the Controllino MAXI is configured and powered on, It will send and 

create the Device and the Variables automatically into Ubidots STEM. 

3. To set the name for the device you want to have in Ubidots STEM 

platforms side. Open TankkiThesis Arduino file. 

4. Click on the tab a_Setup and look for line 10. Modify the name inside the 

quotation marks as you wish. This is the name of the device you will see 

on Ubidots STEM platform side. 

 



 

Appendix 1 

 

 

 

12

5. To modify the variables sent to Ubidots STEM platform click on the tab 

c_SendToUbidots 

6. From line 4 to 13 you can modify the name of the variable seen in 

Ubidots STEM side. Just change the name inside the quotation marks as 

you wish 

 

7. Then declare variables inside SendToUbidots() function and store a 

value of a holding register into it. You can see what each holding register 

contains in Appendix 2.  

8. All of the data inside the holding registers are stored in the array called 

tankkiRegister with tankkiRegister[0] being Holding register A1, and 

tankkiRegister[120] being Holding register A121. 

 



 

Appendix 1 

 

 

 

13

9. Use floating point values if you need decimals for the value.  

10. Check which type of scaling you need from Appendix 2. 

a. If the The holding register has Skaala as 1 use 

scaling1() and pass the corresponding tankkiRegister value into it 

 

Example: To send the kettles temperature into Ubidots. 

 

In Appendix 2. You can see that the kettle temperature is stored in 

Holding register A1 and uses scaling 1. 

 

Declare a floating point variable -> pass tankkiRegister[0] into 

scaling1 function -> store the returned data into the floating point 

variable. 

 

 

b. If the The holding register has Skaala as 2 use 

scaling2() and pass the corresponding tankkiRegister value into it 

 

Example: To send the pH value into Ubidots. 

 

In Appendix 2. You can see that the pH measurement is stored in 

Holding register A14 and uses scaling 2. 

 



 

Appendix 1 

 

 

 

14

Declare a floating point variable -> pass tankkiRegister[13] into 

scaling2 function -> store the returned data into the floating point 

variable. 

 

 

 

c. If the The holding register has Skaala as 0 just store the value 

from tankkiRegister array linked to the corresponding Holding 

register into the variable 

11.  Finally add the variables where you have stored the data from 

tankkiRegister array into the add function and send the data to Ubidots. 

 

12.  The data from the holding register A14 containing the pH measurement 

is stored in the variable pH. The VARIABLE_LABEL2 is defined as “pH”   

13. In Ubidots STEM you will now have a variable called pH and it contains 

the data from the Arduino variable called pH which stores the data from 

Holding Register A14. 



 

Appendix 1 

 

 

 

15

14. Variable label will be the name of the variable seen in Ubidots STEM 

side. Double check that the variable label you want will contain the right 

data. 

15. NOTE1 THE MAXIMUM NUMBER OF VARIABLES THAT CAN BE 

SENT TO UBIDOTS STEM IS 10 WITHOUT PAYING EXTRA.  

16. NOTE2 ONLY 5 VARIABLES CAN BE SENT TO UBIDOTS WITH ONE 

client.sendAll() FUNCTION 

 

 

4. Configure Ubidots STEM platform 

1. Sign in to your Ubidots STEM account. 

2. Go to your devices from the Devices popup menu. 

3. If the Controllino MAXI has been up and running, it should have added a 

new device to your device list named ”controllino” 

 

4. Click on the name of the device to open its menu 

5. You should see all the variables you have added to the Arduino Code 

and sent to Ubidots STEM 



 

Appendix 1 

 

 

 

16

 

6. Here you can change the name of your device by clicking on the brush 

7. You can also change the name of the variables by clicking on the 

corresponding brush 

8. There is also an add variable button when you scroll down the menu, 

there you can add own raw variables or synthetic variables. 

a. Raw variables are not needed to add, because by sending a new 

variable configured in the Arduino code into Ubidots, it 

automatically creates a new variable into the list 

b. You can take the data from a raw variable and create a synthetic 

variable from it. This way you can modify the value with equations. 

This is not needed for this application because the scaling is done 

in the Arduino code. Note. Adding synthetic variables will 

count to the 10 variable limit. 



 

Appendix 1 

 

 

 

17

 

9. To use the data stored in the variables in Ubidots STEM you will need to 

make a new dashboard 

10. Go to Data -> Dashboard and click add new dashboard 

 

  



 

Appendix 1 

 

 

 

18

11.  A popup window will show up where you can edit the dashboards 

settings 

 

12.  After you have configured the settings for the dashboard as you like, 

click on the confirm mark to create the dashboard. 

13.  You will be taken to your newly created dashboard where you can add 

widgets to the dashboard. There are a lot of different widgets you can 

use ranging from graphs to charts and just plain numeric values 

 



 

Appendix 1 

 

 

 

19

14.  To add a line graph, click on the “Add new widget” button and from the 

popup menu select double axis. 

 

15.  A new menu will show up where you can configure your graph the way 

you want.  

 



 

Appendix 1 

 

 

 

20

16. To link a variable sent to Ubidots STEM into a widget you want, click on 

the “Add Variables” button, select your device and select the variable you 

want to be linked on that widget. 

 

17. Then configure the widget as you like and click the green check mark. 

Some widgets can log data from more than one variable. 

18. Now you have created a new widget which will show data from a variable 

you chose. Note. You can always edit the created widgets 

afterwards. 

19. Next, you can keep on adding widgets for every variable you want to see 

on the dashboard. The limit for widgets is 10, as is for the variables. 



 

Appendix 2 

 

 

 

1

Appendix 2. Holding Registers of the Microbrewery (in Finnish) 

Metropolia Ammattikorkeakoulu   PIENPANIMO 
     
 KÄYTTÖOHJE SIVU 1/3 
Osoite Skaala Sisältö [yksikkö] (tehdasasetus)  
 
A  1 1 Kattilan lämpötila TE1 [°C] 
A  2 1 Kattilan lämpötilan ohjearvo [°C] 
A  3 1 Menoveden lämpötila TE2 [°C] 
A  4 1 Menoveden ohjearvo [°C] 
A  5 1 Kuumavesisäiliön lämpötila TE3 [°C] 
A  6 1 Kuumavesisäiliön ohjearvo [°C] 
A  7 1 Lämpötila lämmönvaihtimen jälkeen TE4 [°C] 
A  8 1 Lämmönvaihtimen asetus jäähdytyksessä (5.0 °C) 
A  9 1 varalla 
A 10 1 varalla 
 
A 11 1 Käytössä olevan mäskäysportaan asetus [°C] 
A 12 1 varalla 
 
A 13 2 Konsentraatiomittaus [Brix] [0.00 - 30.00] 
A 14 2 pH-mittaus [0.00 - 14.00] 
A 15 2 varalla 
A 16 2 varalla 
 
A 17 2 Käymissäiliön 1 massa [kg] 
A 18 2 Käymissäiliön 2 massa [kg] 
A 19 2 Käymissäiliön 3 massa [kg] 
A 20 2 Käymissäiliön 4 massa [kg] 
 
A 21 1 Konsentraatiomittauksen lämpötila [°C] 
A 22 1 pH-mittauksen lämpötila [°C] 
A 23 1 Käymissäiliön 1 lämpötila TE21 [°C] 
A 24 1 Käymissäiliön 2 lämpötila TE22 [°C] 
A 25 1 Käymissäiliön 3 lämpötila TE23 [°C] 
A 26 1 Käymissäiliön 4 lämpötila TE24 [°C] 
 
A 27 1 Lohkoroottoripumpun ohjaus käsikäytöllä POT1 [%] 
A 28 0 Kuumavesisäiliön lämmitysteho [kW] 
 
A 29 1 Lämmitysventtiilin TV1 ohjausjännite [%] 
A 30 1 Sekoittimen M1 ohjausjännite [%] 
A 31 1 Lohkoroottoripumpun P2 ohjausjännite [%] 
A 32 1 varalla 
 
A 33 0 Sekoittimen ohjaustapa [0=seis, 1=käsin eteen, 2=käsin taakse, 
3=automaatti] 
A 34 0 Mitattu nousunopeus [sek/°C] 
 
A 35 0 Ohjelmavaihe [0=seis, 1=lämmitys, 2=nosto, 3=porras, 4=keitto, 
5=valmis, 6=keskeytys] 
A 36 0 Mäskäysporras [1 - 5, 0=ei portaalla] 
A 37 2 Portaan aikaa jäljellä [min.sek] 
A 38 2 Aika prosessin alusta [hh.min] 
 
A 39 0 Talletettavan reseptin numero [0 - 20] 



 

Appendix 2 

 

 

 

2

A 40 0 Käytössä olevan reseptin numero [1 - 20] 
 
A 41 1 Porras 1, lämpötila-asetus [°C] 
 MÄSKÄYSRESEPTI 
A 42 0 Porras 1, pito-aika [min]  (A 41 - A 62) 
A 43 1 Porras 1, sekoittimen ohjaus [%] 
... 
 
 
 
 
Metropolia Ammattikorkeakoulu   PIENPANIMO 
     
 KÄYTTÖOHJE SIVU 2/3 
Osoite Skaala Sisältö [yksikkö] (tehdasasetus)  
 
A 53 1 Porras 5, lämpötila-asetus [°C] 
A 54 0 Porras 5, pito-aika [min] 
A 55 1 Porras 5, sekoittimen ohjaus [%] 
 
A 56 0 Lämpötilan nostonopeus [60 sek/°C] 
A 57 1 Sekoittimen ohjaus nostovaiheessa [50.0 %] 
A 58 1 Maksimi lämpötilaero TE2 - TE1 nostossa (13.0 °C) 
A 59 1 Minimi lämpötilaero TE2 - TE1 nostossa (8.0 °C) 
A 60 1 Maksimi lämpötilaero TE2 - TE1 portaalla (3.0 °C) 
A 61 1 Lämpötilan rajoitusalue ennen porrasta (1.0 °C) 
A 62 1 Portaan lämpötilan hyväksymishystereesi (0.3 °C) 
 
A 63 0 Portaan lämmityksen kompensoinnin jyrkkyys (10) 
A 64 1 Mäskäyksen lämpötilan hälytyshystereesi (1.0 °C) 
A 65 0 Mäskäyksen lämpötilan hälytysviive (10 sek) 
 
A 66 0 Keittoaika [60 min] 
A 67 1 Lämmitysveden asetus keitossa (115.0 °C) 
A 68 1 Keittoajan aloituslämpötila (99.0 °C) 
A 69 1 varalla 
A 70 1 Sekoittimen ohjaus nostossa (50.0%) 
A 71 1 Sekoittimen ohjaus keitossa (50.0%) 
 
A 72 1 Lämmityssäiliön minimilämpötila (60.0 °C) 
A 73 1 Lämmityssäiliön minimiero mäskäyksessä (20.0 °C) 
A 74 1 Lämmityssäiliön lämpötila keitossa (120.0 °C) 
A 75 1 Lämmityssäiliön säätöhystereesi (0.5 °C) 
A 76 1 Lämmityssäiliön säätöviive (10 sek) 
 
A 77 0 Keiton hälytysaika 1 (20 min) (nämä ei vielä ohjelmassa) 
A 78 0 Keiton hälytysaika 2 (40 min) 
A 79 0 Keiton hälytysaika 3 (60 min) 
A 80 0 varalla 
 
A 81 0 Käymissäiliön 1 tila [0 = ei käytössä, 1 = pito, 2 = alkujäähdytys] 
A 82 1 Lämpötila-asetus (15.0 °C) 
A 83 1 Lämpötilasäädön hystereesi (0.5 °C) 
A 84 0 Lämpötilan säätöviive (10 sek) 
A 85 1 Lämpötilan hälytyshystereesi (1.0 °C) 
A 86 0 Lämpötilan hälytysviive (10 min) 
 



 

Appendix 2 

 

 

 

3

A 87 0 Käymissäiliön 2 tila [0 = ei käytössä, 1 = pito, 2 = alkujäähdytys] 
A 88 1 Lämpötila-asetus (15.0 °C) 
A 89 1 Lämpötilasäädön hystereesi (0.5 °C) 
A 90 0 Lämpötilan säätöviive (10 sek) 
A 91 1 Lämpötilan hälytyshystereesi (1.0 °C) 
A 92 0 Lämpötilan hälytysviive (10 min) 
 
A 93 0 Käymissäiliön 3 tila [0 = ei käytössä, 1 = pito, 2 = alkujäähdytys] 
A 94 1 Lämpötila-asetus (15.0 °C) 
A 95 1 Lämpötilasäädön hystereesi (0.5 °C) 
A 96 0 Lämpötilan säätöviive (10 sek) 
A 97 1 Lämpötilan hälytyshystereesi (1.0 °C) 
A 98 0 Lämpötilan hälytysviive (10 min) 
 
 
 
Metropolia Ammattikorkeakoulu   PIENPANIMO 
     
 KÄYTTÖOHJE SIVU 3/3 
Osoite Skaala Sisältö [yksikkö] (tehdasasetus)  
 
A 99 0 Käymissäiliön 4 tila [0 = ei käytössä, 1 = pito, 2 = alkujäähdytys] 
A 100 1 Lämpötila-asetus (15.0 °C) 
A 101 1 Lämpötilasäädön hystereesi (0.5 °C) 
A 102 0 Lämpötilan säätöviive (10 sek) 
A 103 1 Lämpötilan hälytyshystereesi (1.0 °C) 
A 104 0 Lämpötilan hälytysviive (10 min) 
... 
 
A 107 1 Sekoittimen miniminopeus (5.0 %) 
A 108 1 Sekoittimen maksiminopeus (100.0 %) 
A 109 1 Lohkoroottoripumpun miniminopeus (5.0 %) 
A 110 1 Lohkoroottoripumpun maksiminopeus (100.0 %) 
… 
 
A 112 0 Säätäjän numero [1=TV1, 2=LR-pumppu] 
A 113 1 Säätöpoikkeama 
A 114 1 Säädön ohjausarvo [%] 
A 115 1 Säätöpoikkeaman minimi (-15.0) 
A 116 1 Säätöpoikkeaman maksimi (15.0) 
A 117 0 Säädön laskentaväli (3 sek) 
A 118 0 I-säädön laskentaväli (1 x A 117) 
A 119 0 I-säädön estoaika (5 sek) 
A 120 0 Vahvistus (10) 
A 121 0 I-säädön vahvistus (20) 
 
F  1 Hälytysnäyttö 
 
HÄLYTYSKOODIT: 
 
  1 = mäskäyksen lämpötilapoikkeama tai TE1 anturivika 
  2 = lämmitysveden TE2 anturivika 
  3 = lämmityssäiliön lämpötilapoikkeama tai TE3 anturivika 
  4 = lämmönvaihtimen TE4 anturivika 
  5 = käymissäiliö 1 lämpötilapoikkeama tai TE21 anturivika 
  6 = käymissäiliö 2 lämpötilapoikkeama tai TE22 anturivika 
  7 = käymissäiliö 3 lämpötilapoikkeama tai TE23 anturivika 



 

Appendix 2 

 

 

 

4

  8 = käymissäiliö 4 lämpötilapoikkeama tai TE24 anturivika 
  9 = pintakytkimen LSE1 hälytys (lämmityssäiliö)  
10 = taajuusmuuttajan SC1 hälytys (sekoitin) 
11 = taajuusmuuttajan SC2 hälytys (lohkoroottoripumppu) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PLC Number = 1, 9600 Baud, NO parity, 1 stop bit. 
MODBUS osoite = 42149 (tai 4X:2149) + A XX 
eli A 1 = 42150 ja A 110 = 42259 
 
Skaalaukset: Autologissa wordit tyyppiä UINT 
0 = paljas luku 
1 = 1 desimaali, offset -100.0 esim. lämpötilat -50.0 (500) - 154.7 (2547) 
2 = 2 desimaalia, ei offsettiä 
 
INDIKOINNIT: 42148 
 
bit 0 sekoitin käy 
bit 1 lohkoroottoripumppu käy vasemmalle 
bit 2 lohkoroottoripumppu käy oikealle 
bit 3 kiertovesipumppu päällä (ohjaus) 
bit 4 pintakytkin LSE1 ok 
bit 5 lämmitysvaraaja lämmin 
bit 6 varalla 
bit 7 reseptiä muutettu 
bit 8 käymissäiliö 1 venttiili auki 
bit 9 käymissäiliö 2 venttiili auki 
bit 10 käymissäiliö 3 venttiili auki 
bit 11 käymissäiliö 4 venttiili auki 
bit 12 
bit 13 
bit 14 
bit 15 
 
HÄLYTYKSET: 42147 
 
bit 0 mäskäyksen lämpötilapoikkeama tai TE1 anturivika 
bit 1 lämmitysveden TE2 anturivika 
bit 2 lämmityssäiliön lämpötilapoikkeama tai TE3 anturivika 
bit 3 lämmönvaihtimen TE4 anturivika 
bit 4 käymissäiliö 1 lämpötilapoikkeama tai TE21 anturivika 
bit 5 käymissäiliö 2 lämpötilapoikkeama tai TE22 anturivika 



 

Appendix 2 

 

 

 

5

bit 6 käymissäiliö 3 lämpötilapoikkeama tai TE23 anturivika 
bit 7 käymissäiliö 4 lämpötilapoikkeama tai TE24 anturivika 
bit 8 pintakytkimen LSE1 hälytys (lämmityssäiliö) 
bit 9 taajuusmuuttajan SC1 hälytys (sekoitin) 
bit 10 taajuusmuuttajan SC2 hälytys (lohkoroottoripumppu) 
 

 



 

Appendix 3 

 

 

 

1

Appendix 3. Arduino IDE Code 

The include, defines and global variables 

 

#include <Controllino.h>  

#include "ModbusRtu.h"     

#include <Ethernet.h> 

#include <SPI.h> 

#include <UbidotsEthernet.h> 

 

// This MACRO defines Modbus master address. 

// For any Modbus slave devices are reserved addresses in the range from 1 to 

247. 

// Important note only address 0 is reserved for a Modbus master device! 

#define MasterModbusAdd  0 

#define SlaveModbusAdd  1 

//SET COM PORT 

#define RS485Serial     3 

//Setup as ModbusMaster 

Modbus ControllinoModbusMaster(MasterModbusAdd, RS485Serial, 0); 

 

// ubidots defines 

#define TOKEN "BBFF-gS2Ytzst5k1BbADFHFWyIZE3d9v215" // Assign your 

Ubidots TOKEN 

#define DEVICE_LABEL "controllino"  // Put here your Ubidots variable ID 

 

/* Enter a MAC address for your controller below */ 

byte mac[] = { 0x54, 0x83, 0x3A, 0x07, 0x2E, 0xB1 }; 

 

/* initialize the instance */ 

Ubidots client(TOKEN); 

 



 

Appendix 3 

 

 

 

2

// This is an structe which contains a query to an slave device 

modbus_t ModbusQuery[5]; 

//Define global variables 

uint16_t ModbusSlaveRegisters1[29]; 

uint16_t ModbusSlaveRegisters2[29]; 

uint16_t ModbusSlaveRegisters3[29]; 

uint16_t ModbusSlaveRegisters4[29]; 

uint16_t ModbusSlaveRegisters5[5]; 

 

uint8_t myState; // machine state 

uint8_t currentQuery; // pointer to message query 

unsigned long WaitingTime; 

 

int i = 1, j = 0; 

int tankkiRegister[121]; 

 

The setup 

 

void setup() { 

  // initialize serial communication at 9600 bits per second: 

  Serial.begin(9600); 

  Serial.print(F("Starting ethernet...")); 

  if (!Ethernet.begin(mac)) { 

    Serial.println(F("failed")); 

  } else { 

    Serial.println(Ethernet.localIP()); 

  } 

  client.setDeviceLabel("controllino"); 

  /* Give the Ethernet shield a second to initialize */ 

  delay(2000); 

  Serial.println(F("Ready")); 

  delay(1000); 



 

Appendix 3 

 

 

 

3

  Serial.println("-----------------------------------------"); 

  Serial.println("CONTROLLINO Modbus RTU Master Test Sketch"); 

  Serial.println("-----------------------------------------"); 

  Serial.println(""); 

  // ModbusQuery 0: read registers 

  ModbusQuery[0].u8id = SlaveModbusAdd; // slave address 

  ModbusQuery[0].u8fct = 3; // function code (this one is registers read) 

  ModbusQuery[0].u16RegAdd = 2149; // start address in slave 

  ModbusQuery[0].u16CoilsNo = 29; // number of elements (coils or registers) to 

read 

  ModbusQuery[0].au16reg = ModbusSlaveRegisters1; // pointer to a memory 

array in the CONTROLLINO 

 

  // ModbusQuery 1: read registers 

  ModbusQuery[1].u8id = SlaveModbusAdd; // slave address 

  ModbusQuery[1].u8fct = 3; // function code (this one is registers read) 

  ModbusQuery[1].u16RegAdd = 2178; // start address in slave 

  ModbusQuery[1].u16CoilsNo = 29; // number of elements (coils or registers) to 

read 

  ModbusQuery[1].au16reg = ModbusSlaveRegisters2; // pointer to a memory 

array in the CONTROLLINO 

 

  // ModbusQuery 2: read registers 

  ModbusQuery[2].u8id = SlaveModbusAdd; // slave address 

  ModbusQuery[2].u8fct = 3; // function code (this one is registers read) 

  ModbusQuery[2].u16RegAdd = 2207; // start address in slave 

  ModbusQuery[2].u16CoilsNo = 29; // number of elements (coils or registers) to 

read 

  ModbusQuery[2].au16reg = ModbusSlaveRegisters3; // pointer to a memory 

array in the CONTROLLINO 

 

  // ModbusQuery 3: read registers 



 

Appendix 3 

 

 

 

4

  ModbusQuery[3].u8id = SlaveModbusAdd; // slave address 

  ModbusQuery[3].u8fct = 3; // function code (this one is registers read) 

  ModbusQuery[3].u16RegAdd = 2236; // start address in slave 

  ModbusQuery[3].u16CoilsNo = 29; // number of elements (coils or registers) to 

read 

  ModbusQuery[3].au16reg = ModbusSlaveRegisters4; // pointer to a memory 

array in the CONTROLLINO 

 

  // ModbusQuery 4: read registers 

  ModbusQuery[4].u8id = SlaveModbusAdd; // slave address 

  ModbusQuery[4].u8fct = 3; // function code (this one is registers read) 

  ModbusQuery[4].u16RegAdd = 2265; // start address in slave 

  ModbusQuery[4].u16CoilsNo = 5; // number of elements (coils or registers) to 

read 

  ModbusQuery[4].au16reg = ModbusSlaveRegisters5; // pointer to a memory 

array in the CONTROLLINO 

 

 

  ControllinoModbusMaster.begin( 9600 ); // baud-rate at 19200 

  ControllinoModbusMaster.setTimeOut( 5000 ); // if there is no answer in 5000 

ms, roll over 

 

  WaitingTime = millis() + 3000; 

  myState = 0; 

  currentQuery = 0; 

} 

  



 

Appendix 3 

 

 

 

5

The loop 

 

void loop() { 

  Ethernet.maintain(); 

  switch ( myState ) { 

    case 0: 

      if (millis() > WaitingTime) myState++; // wait state 

      break; 

    case 1: 

      Serial.print("---- Sending query "); 

      Serial.print(currentQuery); 

      Serial.println(" -------------"); 

      ControllinoModbusMaster.query( ModbusQuery[currentQuery] ); // send 

query (only once) 

      myState++; 

      currentQuery++; 

      if (currentQuery == 6) 

      { 

        currentQuery = 0; 

      } 

      break; 

    case 2: 

      ControllinoModbusMaster.poll(); // check incoming messages 

      if (ControllinoModbusMaster.getState() == COM_IDLE) 

      { 

        // response from the slave was received 

        myState = 0; 

        WaitingTime = millis() + 2000; 

        // debug printout 

        if (currentQuery == 1) 

        { 

          i = ModbusQuery[0].u16RegAdd; 



 

Appendix 3 

 

 

 

6

          j = 0; 

          // registers read was proceed 

          Serial.println("---------- READ RESPONSE RECEIVED ----"); 

          Serial.print("Slave "); 

          Serial.println(SlaveModbusAdd, DEC); 

 

 

 

          for (i = ModbusQuery[currentQuery - 1].u16RegAdd ; i < 

ModbusQuery[currentQuery].u16RegAdd; i++) { 

            Serial.print("REGISTER "); 

            Serial.print(j + 1); 

            Serial.print(": "); 

            Serial.println(ModbusSlaveRegisters1[j]); 

            tankkiRegister[j] = ModbusSlaveRegisters1[j]; 

            j++; 

          } 

        } 

        else if (currentQuery == 2) { 

          int k = 0; 

          for (i = ModbusQuery[1].u16RegAdd ; i < ModbusQuery[2].u16RegAdd; 

i++) { 

            Serial.print("REGISTER "); 

            Serial.print(j + 1); 

            Serial.print(": "); 

            Serial.println(ModbusSlaveRegisters2[k]); 

            tankkiRegister[j] = ModbusSlaveRegisters2[k]; 

            j++; 

            k++; 

          } 

        } 

        else if (currentQuery == 3) { 



 

Appendix 3 

 

 

 

7

          int k = 0; 

          for (i = ModbusQuery[2].u16RegAdd ; i < ModbusQuery[3].u16RegAdd; 

i++) { 

            Serial.print("REGISTER "); 

            Serial.print(j + 1); 

            Serial.print(": "); 

            Serial.println(ModbusSlaveRegisters3[k]); 

            tankkiRegister[j] = ModbusSlaveRegisters3[k]; 

            j++; 

            k++; 

          } 

        } 

        else if (currentQuery == 4) { 

          int k = 0; 

          for (i = ModbusQuery[3].u16RegAdd ; i < ModbusQuery[4].u16RegAdd; 

i++) { 

            Serial.print("REGISTER "); 

            Serial.print(j + 1); 

            Serial.print(": "); 

            Serial.println(ModbusSlaveRegisters4[k]); 

            tankkiRegister[j] = ModbusSlaveRegisters4[k]; 

            j++; 

            k++; 

          } 

        } 

        else if (currentQuery == 5) { 

          int k = 0; 

          for (i = ModbusQuery[4].u16RegAdd ; i < 2270; i++) { 

            Serial.print("REGISTER "); 

            Serial.print(j + 1); 

            Serial.print(": "); 

            Serial.println(ModbusSlaveRegisters5[k]); 



 

Appendix 3 

 

 

 

8

            tankkiRegister[j] = ModbusSlaveRegisters5[k]; 

            j++; 

            k++; 

          } 

          SendToUbidots(); 

        } 

      } 

      break; 

  } 

} 

 

Send to Ubidots 

 

//Define the desired variable labels for Ubidots 

//Maximum of 10 variables, comment out the labels that are not needed 

//These are the names you will see in the Ubidots platform as variables 

#define VARIABLE_LABEL1 "BRIX" 

#define VARIABLE_LABEL2 "pH" 

#define VARIABLE_LABEL3 "state" 

#define VARIABLE_LABEL4 "kettletemp" 

#define VARIABLE_LABEL5 "flushwatertemp" 

#define VARIABLE_LABEL6 "tanktemp1" 

#define VARIABLE_LABEL7 "tanktemp2" 

#define VARIABLE_LABEL8 "tanktemp3" 

#define VARIABLE_LABEL9 "tanktemp4" 

//#define VARIABLE_LABEL10 "xxxx" 

 

/* examples = 

 *  You want to add the variable: temperature of pH measure to Ubidots 

 *  define a Variable label not in use with a name suited for it 

 *  #define VARIABLE_LABEL10 "pHtempMeasure" 

 */ 



 

Appendix 3 

 

 

 

9

void SendToUbidots() { 

  float BRIX = scaling2(tankkiRegister[12]);                //Array tankkiRegister[] 

contains data from all of TANKKI's holding registers     

  float pH = scaling2(tankkiRegister[13]);                  //Check from Tankkis 

register map to see which register contains which value 

  float kettletemp = scaling1(tankkiRegister[0]);           //tankkiRegister[0] = 

Holding register 42150 

  float flushwatertemp = scaling1(tankkiRegister[2]);       //tankkiRegister[x] = 

Holding register x + 42150 

  int state = tankkiRegister[86];                           //Define your variables and 

check the scaling if needed in Tankkis register map 

  float tanktemp[4];                                        //functions are 

scaling1(tankkiRegister[x]); and scaling2(tankkiRegister[x]); 

  tanktemp[0] = scaling1(tankkiRegister[22]);               //Use float or double 

values if decimals are needed 

  tanktemp[1] = scaling1(tankkiRegister[23]); 

  tanktemp[2] = scaling1(tankkiRegister[24]); 

  tanktemp[3] = scaling1(tankkiRegister[25]); 

 

/* examples =  

 * You want to add the value of the temperature of pH measure to Ubidots 

 * Check the holding register number = A22 = 42171 --> tankkiRegister[x] = 

x+42150 --> tankkiRegister[21] 

 * Then check if scaling is needed --> Holding register 42171 uses scaling 

number 1 --> scaling1(tankkiRegister[21] 

 * Then choose a variable name suited for the data contained in the register --> 

pHtemp 

 * Define the variable as a floating point and give it the corresponding value of 

holding register 42171 with scaling number 1 

 * float pHtemp = scaling1(tankkiRegister[21]; 

 */ 



 

Appendix 3 

 

 

 

10

/*______________________________________________________________

_______________________________________________________________

_________*/ 

  client.add(VARIABLE_LABEL1, BRIX);                        //Variable label = 

Variable name you want in ubidots 

  client.add(VARIABLE_LABEL2, pH);                          //Second parameter = 

variable in code (can be anything) 

  client.add(VARIABLE_LABEL3, state);                       //Variables have to be 

sent maximum 5 at a time 

  client.add(VARIABLE_LABEL4, kettletemp);                  //uncomment or 

comment the variables needed or not needed 

  client.add(VARIABLE_LABEL5, flushwatertemp); 

  client.sendAll(); 

 

  client.add(VARIABLE_LABEL6, tanktemp[0]); 

  client.add(VARIABLE_LABEL7, tanktemp[1]); 

  client.add(VARIABLE_LABEL8, tanktemp[2]); 

  client.add(VARIABLE_LABEL9, tanktemp[3]); 

  //client.add(VARIABLE_LABEL10, yourVariable); 

  client.sendAll(); 

} 

/* examples =  

 * you want to send the value of the temperature of pH measure to Ubidots 

 * in previous examples we have defined the VARIABLE_LABEL10 as 

pHtempMeasure 

 * We have also given the variable phtemp the value of the holding register 

42171 with number 1 scaling 

 * Now all we have to do is write or modify an existing variable: 

 * client.add(VARIABLE_LABEL10, phtemp); 

 */ 

 

  



 

Appendix 3 

 

 

 

11

The scaling functions 

 

float scaling1(int tankkiRegister) { 

  float v = tankkiRegister; 

  v -= 1000; 

  v /= 10; 

  return v; 

} 

float scaling2(int tankkiRegister) { 

  float v = tankkiRegister; 

  v /= 100; 

  return v; 

}



 

Appendix 4 

 

 

 

12

4. Pictures of the project 

 

 


