

 Ashish Thapa

HTML5 AS A CROSS-PLATFORM FOR MOBILE APPLICATIONS DEVELOPMENT

 Ashish Thapa

 Bachelor’s Thesis

 Winter 2012

 Degree Programme in Information Technology

 Oulu University of Applied Sciences

PREFACE

The following research was commissioned by Comvise Oy, Oulu. It provides Software

development and Integration Services. Consultation is another major expertise of Comvise.

This topic came from Comvise to do an extended research on the evolving technology HTML5,

mainly targeting at multimedia and storage. The research was made about the features and

support of multimedia and storage of HTML5 for the mobile operating systems. An application

was built as a proof of concept. I would like to express my sincere gratitude to my thesis

supervisor, Mr Veikko Tapanien. He has been extremely encouraging and he has provided me

with his invaluable support from the beginning.

Mr Binay Guragain, the company representative, has been one of the key contributors to my

thesis. I would like to thank him, for providing guidelines about the topic and support throughout

the research process.

I would like to thank Mrs Kaija Posio, for checking the language of my thesis. She has always

been very helpful. Another person I must mention is Mr Jarmo Karppelin, for approving the thesis

topic, assigning such understanding and being an active supervisor. Last but not the least, I

would like to thank Comvise, for giving this wonderful topic to work with, OAMK for being very

supportive, my family and friends for their forever support.

3

TIIVISTELMÄ

Oulun seudun ammattikorkeakoulu
Degree Programme in Information Technology

Tekijä: Ashish Thapa
Opinnäytetyön nimi: HTML5 AS A CROSS-PLATFORM FOR MOBILE APPLICATIONS
 DEVELOPMENT
Työn ohjaaja: Veikko Tapaninen
Työn valmistumislukukausi ja -vuosi: Talvi, 2012 Sivumäärä: 73

Viimeinen puolivuosikymmen on ollut erittäin eloisa netti- ja mobiiliteknologioiden alalla. Ala on nähnyt
monta mullistavaa innovaatiota, ja HTML5 on yksi niistä. Comvise Oy pyysi tutkimaan sen kahta
odotetuinta ominaisuutta, Multimedia ja Storage. Tavoitteena oli tutkia niiden ominaisuuksia ja kuinka ne
ovat tuettuina tärkeimmissä mobiilikäyttöjärjestelmissä. Tutkimus tehtiin siten, että lukija saa käsityksen
niiden ala-aiheista, ohjeita toteutukseen ja niiden yhteensopivuudesta.

Toinen tavoite oli tehdä PhoneGap-ohjelma käyttäen nettiteknologioita, HTML5:ttä, CSS:ää ja
JavaScriptiä, jotka voidaan portata tärkeimmille mobiilikäyttöjärjestelmille jotta voidaan näyttää toteen sen
cross-platform-luonne. Se oli mielenkiintoista koska nettiteknologiat käyttivät puhelimien natiiveja
toimintoja. Käyttöliittymän tekemisessä käytettiin Sencha Touch 2:ta Android- ja iOS-käyttöjärjestelmissä
ja jQuery Mobileä Windows Phone -käyttöjärjestelmässä.

Ohjelma antaa käyttäjän ottaa kuvia tai tallentaa videota Secure Digital (SD) -muistikortille. Otetut kuvat
lähetettiin palvelimelle. Ylimääräistä ominaisuutta, Facebook Graph Application Programming Interface
(API), testattiin myös ohjelman jatkokehitystä varten. Samaa koodia käytettiin jokaisessa kolmessa
mobiilikäyttöjärjestelmässä, mutta testiympäristöt luotiin erikseen jokaiselle käyttöjärjestelmälle.

Asiasanat: HTML5, Cross-platform, Multimedia, Storage, Hybrid, PhoneGap, Application

4

ABSTRACT

Oulu University of Applied Sciences
Degree programme in Information Technology

Author: Ashish Thapa
Title of Bachelor’s thesis: HTML5 AS A CROSS-PLATFORM FOR MOBILE APPLICATIONS
 DEVELOPMENT
Supervisor: Veikko Tapaninen
Term and year of completion: Winter, 2012 Number of pages: 73

The last half a decade has been extremely vibrant in the field of web and mobile technologies. The
industry has seen some revolutionary innovations, HTML5 is one prospect. Comvise wanted me to do the
research on two of the most awaited features of HTML5, multimedia and storage. The objective was to
study about the features of Multimedia and Storage, and their support on major mobile Operating
Systems. The research was made so that it provides the reader, information about the sub-topics,
guidelines for implementing the features and their compatibility.

Another objective of the research was to build a PhoneGap application using the web –technologies,
HTML5, CSS and JavaScript, which could be ported to major mobile operating systems to prove its cross-
platform nature. It was interesting because, the native functionalities of the phone were being accessed by
web technologies. Sencha Touch 2 was chosen to build the user interface for Android and iOS operating
systems and jQuery Mobile was used for Windows Phone.

The application allowed users to capture images and record video which are then stored locally in Secure
Digital (SD) card of the phone. The images captured were uploaded to the server. An additional feature,
implementing Facebook’s Graph Application Programming Interface (API) was tested in the application for
further development of the application in future. The same code base was used in all three major mobile
operating systems but the environment was set-up individually for each operating systems.

Keywords: HTML5, Cross-platform, Multimedia, Storage, Hybrid, PhoneGap, Applications

5

CONTENTS

PREFACE 2

CONTENTS 5

1 SYMBOLS AND ABBREVIATIONS 7

2 INTRODUCTION 9

3 HTML5 10

3.1 The Origin and Evolution of HTML 10

3.2 The Existence of HTML5 11

3.3 Delta from Original Versions 12

3.4 Desktop Browser Support 12

4 INTRODUCTION OF HTML5 IN MOBILE DEVICES 14

4.1 Mobile Operating Systems 14

4.2 HTML5 in Mobile Devices 15

4.3 The Features and Additions in HTML5 16

4.4 The Features Lacking in HTML5 18

5 MULTIMEDIA 20

5.1 Video 21

5.1.1 Video Container Format and Codecs 22

5.1.2 Encoding Video Files 25

5.1.3 Implementation 25

5.2 Audio 27

5.2.1 Audio Codecs 27

5.2.2 Encoding Audio Files 28

5.2.3 Implementation 29

6 STORAGE 31

6.1 Offline Storage 31

6.1.1 Web Storage 32

6.1.2 Web SQL 35

6.1.3 IndexedDB 37

6.1.4 File System API / File API 40

6

6.2 Offline Web Applications 47

7 PROOF OF CONCEPT 51

7.1 Work Environment 51

7.2 Application, Testing and Findings 55

8 CONCLUSION 66

LIST OF REFERENCES 67

LIST OF FIGURES 73

7

1 SYMBOLS AND ABBREVIATIONS

Listed below are the abbreviations used in the whole document and their respective full form.

Abbreviation Detail

2D/3D Two Dimensional / Three Dimensional

.apk Android Application Package

ADT Android Development Tools

API Application Programming Interface

BLOB Binary Large Object

CSS Cascading Style Sheet

CPU Central Processing Unit

DTD Document Type Definition

DOM Document Object Model

GPU Graphical Processing Unit

HTMLWG Hypertext Markup Language Working Group

HTML Hypertext Markup Language

HTML 4.0 Hypertext Markup Language version 4.0

HTML5 Hypertext Markup Language version 5

HTTP Hypertext Transfer Protocol

ID Identity

IDE Integrated Development Environment

iOS iPhone Operating System

JSON JavaScript Object Notation

KB Kilobyte

MATHML Math Markup Language

MIT Massachusetts Institute of Technology

MP3/MP4 Media Player version 3 / version 4

MPEG Motion Pictures Experts Group

8

MSDN Microsoft Developer Network

PHP Hypertext Preprocessor

SGML Standard Generalized Markup Language

SD Secure Digital

SDK Software Development Kit

SVG Scalable Vector Graphics

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

USB Universal Serial Bus

WHATWG Web Hypertext Application Technology Working Group

WWW World Wide Web

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

9

2 INTRODUCTION

Comvise is a telecommunications software company, which provides a software development

and integration service and a consultation service to world’s technology innovators. Comvise has

been actively providing software services for a decade. It has been closely associated with the

mobile phone industry. The company details can be found at http://www.comvise.com.

Comvise has always been an innovative company. One of the key features that make the

company brilliant is company’s constant search for new areas to develop. Comvise is constantly

looking for future development opportunities and responses to it with a great deal of research and

analysis. Recently, there has been a lot of discussion about “can HTML5 stand out as a cross-

platform technology for different operating systems available?” No doubt, W3C is trying to make

all the specifications as a stable standard, but there is not yet a definite answer to this question.

The company therefore wanted to carry out a research about the multimedia and storage of

HTML5, and the support over different mobile operating systems. I was always curious if there

could be one platform to develop an application for different mobile operating systems. I got the

opportunity to carry out research for Comvise. The company wanted me to use the PhoneGap

framework with Sencha Touch and jQuery Mobile UI frameworks to create a PhoneGap hybrid

application. The PhoneGap application was built and tested over three major mobile operating

Systems, Android, iOS and Windows Phone as a proof of concept.

To extend the PhoneGap application to the next level, one of the major functionality of Facebook

was also implemented in the application

http://www.comvise.com/

10

3 HTML5

HTML5 is the fifth version of HTML, a language used to structure and present content for the

World Wide Web. It aims to improve HTML4 by adding new features and support to it. HTML5 is

a response to various incompatibility issues and syntax errors from previous HTML versions.

(2Expert 2012, date of retrieval 22.4.2012).

3.1 The Origin and Evolution of HTML

In 1989, Tim Berners Lee realized the need for a language to share and link the text pages

remotely, and he proposed an Internet based hypertext system. To back up this proposal, Lee

wrote a browser that could interpret the page and server software to store the original file. He

applied SGML to create HTML. It was the same markup language, he had used to create a

similar software named ENQUIRE. The difference from SGML was the concept of hyperlink. In

HTML, Lee suggested to link text files within themselves through hyper linking the text. The idea

was to create a cross reference among the text files to an immediate display of the related files

which were to be the basics of the WWW. Dan Connolly, one of the founders of W3C, along with

his colleagues collected, analyzed and drafted the widely used HTML tags. He also wrote the

document type definition for HTML 2. In 1995, HTML was extended with more HTML tags and

published as Internet Draft HTML 3 instead of the standard. The reason behind this change was

that, the draft was way too large to be a standard and included a large number of new proposals.

W3C’s HTMLWG negotiated and altered the draft according to the need and released it as HTML

3.2 standard in 1996. The markup for mathematical formula was completely dropped from the

HTML standard in the HTML 3.2 version and later it was standardized in MATHML. (Ragget, Iam,

Alexander & Kmiec 1998, 17-34).

In December 1997, W3C published HTML4.0 as a recommendation, with three different variations

Strict, Transitional, and Frameset. In 1998, a minor editing was made to HTML 4.0 but the same

version number was used. In 1997 HTML 4.01 was published. After that W3C took an XML-based

11

markup Language XHTML over HTML. XHTML 1.0 was released in January 2000. It was a mere

reformulation of HTML 4 document in the XML version. The next recommendation of XHTML 1.1

was released in May 2001. Despite the issues like implementation, compatibility and

interoperability, W3C continued XHTML as a future of markup which created a rebellion inside the

W3C. The representative from Apple, Opera, and Mozilla proposed to choose HTML over XHTML

which W3C declined. In 2004, the unhappy members created a working group called WHATWG

which was independent of W3C. W3C continued to work on XHTML whereas WHATWG started

to work on HTML5 .In 2006 the founder of HTML, Tim Berners Lee admitted that an XML-Based

Markup was not delivering as expected, and finally in 2007 W3C accepted the new proposal from

WHATWG to develop HTML5. Since then W3C has been in charge of HTML5. Currently two

groups are working on HTML5 namely WHATWG and HTMLWG. (Ragget, Iam, Alexander &

Kmiec 1998, 17-34).

3.2 The Existence of HTML5

HTML5 certainly has additional features over the earlier versions of HTML. The real reason

behind HTML5’s existence was the complexity and confusion of HTML 4.1 and XHTML, their

interoperability and compatibility issues.

XHTML 1.0 was no different compared to HTML 4.0.1, except that its syntax was strict and XML

based. XHTML 1.1 was completely based on XML and did not support the mime type “text/html”.

The bigger problem was XHTML 2.0, which was not backwards compatible and the support for

the existing web content was very poor. Since, the web seemed to go nowhere, the

representatives from Opera, Apple and Mozilla were not happy. Ian Hickson an employee from

Opera proposed revival of HTML, which was rejected by W3C. The unhappy members then

formed Web Hypertext Application Technology Working Group (WHATWG). The group started to

work on two different specifications Web Forms 2.0 and Web Apps 1.0, later to be merged and

evolved as HTML5. The proposal of HTML5 was made to W3C, which was accepted in 2007.

Currently the two working groups HTMLWG and WHATWG are working on HTML5. WHATWG is

creating HTML5 specification which is then reviewed by HTMLWG and published as a HTML

standard. (Keith 2010, 1-8).

12

3.3 Delta from Original Versions

W3C has stated that “HTML5 is still a draft” and its content is continuously evolving but it is clear

that it will replace HTML4 which had an issue of interoperability and backward compatibility with

HTML and critical mass of deployed content. Same applies to XHTML 1.1, which is “an XML

serialization” of HTML4 and DOM level 2 HTML. HTML5 is compatible with both HTML 4 and

XHTML 1.1 but offers no compatibility with more esoteric SGML features of HTML4. The Doc-

type is case insensitive in HTML5 and not in HTML4 because HTML4 was based on SGML. It

also required a reference to the DTD. The declaration is <! DOCTYPE html > with an option for

XML. With the goal “once released should be usable” the specification will not be considered

complete until there are at least two implementations. The completeness of the specification is

tested by the test suite. In the previous versions, the committee used to recognize the final

specification before implementation. HTML5 redefines the parsing rule including an error handling

and a processing model, making it largely compatible with other popular implementations. It uses

an XML compatible “text/html” mime type for a usual text and “text/htmlsandboxed” for suspicious

and sandboxed content. HTML5 defines 3 ways to encode characters, using an HTTP content-

type header at the transport level, using a Unicode Byte Order markup at the beginning and using

a Meta char-set encoding within the first 1024 bytes. Various new elements like SVG and

MATHML are introduced in HTML5 and some existing elements and features are absent. HTML5

introduces a number of APIs to create better web applications and “HTML5 Change-Logs” to let

the users know about the changes. (W3C 2012a, date of retrieval 16.1.2012).

3.4 Desktop Browser Support

Most of the major desktop browsers like Internet Explorer, Mozilla Firefox, Google Chrome, Apple

Safari and Opera fully support “contentEditable” attribute, “hashChange” event, new semantic

elements, Canvas, Video, Audio, inline SVG elements and “getElementByClassName()” method

when accessing the DOM elements. All the major browsers except Opera have been supporting

and will support Drag and Drop, a defer attribute. All browsers and also Internet Explorer 10+

13

versions support the Offline Web Application. The session history management is currently

supported by Firefox, Chrome and Opera. IE 10.0 announced a complete support and Opera will

continue its partial support for this feature. Currently Opera supports fully the form features.

Firefox, Chrome and Safari partially support HTML5 Form Features, IE has a partial support in

version 10.0 and afterwards. Browsers are trying to maximize their HTML5 support now and then.

It is a good idea to identify the target browser and test its support of each individual feature before

developing, it further. (@Fyrd 2010, date of retrieval 16.1.2012).

14

4 INTRODUCTION OF HTML5 IN MOBILE DEVICES

Mobile Phones have changed a lot from being a mere device, with a calling and messaging

functionality. Nowadays, Smart Phones offer users a large number of functionalities and varieties

of applications. Let us look at some major smart phone operating systems.

4.1 Mobile Operating Systems

iOS:

iOS is Apple’s proprietary operating system for mobile devices. Objective-C is used to create

mobile applications and Cocoa Touch framework for the User Interface. It provides multi-touch

gestures for rich user experience and serves gaming purpose. The native browser is Web Kit

based and supports most of the HTML5 features. (Apple Inc 2012a. date of retrieval 18.1.2012).

Android OS:

The Android operating system was initially developed by Android Inc., which was later purchased

by Google in 2005. It was then released under the Apache License, which means it was made

open source and anybody could use it for free and add extensions to it. The application

developed for Android Operating systems, if compatible, runs over the entire devices which uses

Android OS. It provides features like multi-touch and multitasking. However, the device used is

responsible for the performance. The native Android browser is based on Web Kit and chrome’s

V8 JavaScript Engine. (Lee 2011, 1-3).

Windows Phone:

Initially, it started as Windows Mobile in 2003 and was replaced by Windows Phone in 2010.

Windows Phone is another innovation of the leading OS provider in PC, Microsoft. It is based on

the Windows CE kernel and has a Silverlight framework for an application and the XNA

framework for a game development. Windows Phone has unique Metro UI with tiles as its

components. The application can be downloaded from and released to the Windows Phone

15

Marketplace. It uses Internet Explorer which previously did not support HTML5 features. It

supports HTML5 since version 9 (Zhou, Zhu, Zheng & Yang 2011, 2 - 8).

Blackberry OS:

It was developed by Research In Motion (RIM) for Blackberry devices. BlackBerry devices have

smartphone functionalities like a touch screen and a multitasking but they are better known as

corporate phones. The latest operating system ships with a Web Kit based native browser. (Hill

2010, date of retrieval 30.1.2012).

Along with the operating system, the hardware that can run the operating system, input and

output methods, the processor, memory and screen functionalities are smarter than ever. Smart

phone comprises of these components to provide a way to use an application effortlessly. In other

words, the “Application is the heart of Smart Phone” and different body parts provide the support

to keep it alive. (Buzzle 2012, date of retrieval 30.1.2012).

4.2 HTML5 in Mobile Devices

Apple’s decision not to support flash on iPhone and iPad stirred the existence of plug-ins. In 2011

Adobe decided to discontinue its mobile version of flash and to support HTML5. Flash for a

mobile will eventually disappear. However, it is less likely that browsers will completely replace

the support for flash over HTML5 in the near future for a desktop. It is recommended to use a

flash format in an audio and video element as a fallback option since HTML5 is yet to be a

standard and a lot of existing content is flash based. (Adhikari 2011, date of retrieval 9.2.2012).

Not a long ago, most of the applications running on smart phones used to be native. The biggest

drawback of a native application is interoperability. An application of one platform does not work

on another platform. Leaving aside different platforms, developers sometimes had to create the

same application for one platform more than once due to the lack of backwards compatibility. It

means a huge resource loss and nightmare for developers to learn different languages. W3C has

adopted HTML5 as the future of the web and has started creating a specification targeted at web

and mobile devices. HTML5 is a good replacement for content driven native app, where a client

16

can connect to a server, which does not have to store large amount of data and which is platform

independent.

There are also frameworks to create hybrid apps, through which a developer can create native-

like app from a web app using the APIs. HTML5 apps or web-apps are usually written using

HTML, CSS3 and JavaScript and supported by most modern web browsers. To stay connected to

the Internet all the time is a big concern. That need was eradicated by HTML5 by providing

support for offline web application. This means, apps accessed when online can be accessed

later even if there is no connectivity. The offline application is actually an online-offline

application, which is cached and the device can access it later. The new HTML5 has a capacity of

up to 5MB offline storage in comparison to cookies which could store a maximum of 5 KB and

were vulnerable to security threats. Other significant HTML5 features ported to mobile are

Canvas, Video and Audio streaming, Geo-location and Local Storage. (Kravchick 2011, date of

retrieval 31.1.2012).

It's a challenge to pinpoint every feature that will be supported by all mobile browsers and how

long the support will last. The browsers are constantly improving their support and W3C is trying

to keep the size of the standard limited by keeping the most commonly used and generic features

in the standard and creating APIs for the features that are browser dependent. The other reason

for creating APIs is the non-uniformity among the browsers. The related parties who are willing to

create HTML5 apps should determine what features a browser would support.

There are JavaScript libraries such as Modernizr, which are able to provide information about the

availability of features during implementation phase. (Modernizr 2009-2012, date of retrieval

31.1.2012).

4.3 The Features and Additions in HTML5

“HTML5 Changelogs” introduces new features that are added to HTML5 .To meet today’s

requirements, various new elements are added to achieve a better structure, a better media

content and a better form handling.

17

TABLE 1. Some New Inline Elements (Refsnes Data 1999-2012a, date of retrieval 16.1.2012)

HTML5 Elements

<article> <aside> <command> <summary> <figure> <figcaption>

<header> <footer> <nav> <section> <wbr> <audio>

<video> <source> <embed> <track> <canvas> <svg>

<article>, <header>, <footer>, <nav>, <section>, <time>, <progress> are included for better

structure. Elements like <audio>, <video>, <source>, <embed>, <track> provide a new standard

for media content and <canvas> offers ways to create graphics with the script. Html5 provides

more form elements and different new values for the element’s type attribute such as tel, search,

URL email, date-time, time, color, and placeholder.

The <video> element combined with <source> tags and control attributes like play, pause,

volume, preload, height, width provide ways to embed a movie/video in a web page without using

a plug-in from third parties. Similarly, <audio> element specifies a standard way to embed audio

file in a webpage without using third party plug-ins like flash. HTML5 has provided <canvas>

element, as a container to be used with Scripting (Usually JavaScript) to draw graphics on the fly.

Canvas cannot draw anything by itself unless a built-in object is available, “getContext(“2d”)”

object, which can invoke methods to draw different shapes. (Refsnes Data 1999-2012a, date of

retrieval 16.1.2012).

Not everything used in the HTML document may be a first class HTML5 citizen. Some may be

W3C specifications, such as SVG. Some may be APIs in the WHATWG HTML specification, but

they may not be in the W3C standard. It will be hard to say what the standard will exactly look

like. Some APIs are neither part of the WHATWG HTML specification nor the W3C HTML5

specification. They rather have their own specification.

18

TABLE 2. Some APIs in HTML5 (Wikipedia 2011, date of retrieval 16.1.2012)

WHATWG Specification Own API

Drag and Drop API Web SQL Database API (Depreciated)

Offline Web Application API Indexed Database API

Document Editing API File API

History API Directories and System API

MIME-type API File Writer API

4.4 The Features Lacking in HTML5

HTML5 is not a silver-bullet that many people are expecting it to be. HTML5 is an initiative to

create a standard, for a consistent deployment among the devices. The implementation degree of

the HTML5 features varies from not implemented to fully implement. In the near future, it is very

less likely that HTML5 will be a high performance environment to run a heavy audio/video

processing. HTML5 is not ideal for heavy database queries or heavy 2D/3D graphics where it

needs an extreme CPU or GPU processing. It still assumes a connected environment, and many

apps and “Offline APIs”, which HTML5 provides are not ready to work smoothly on multiple

platforms. The other important issues are App discovery and Monetization. The app provider

stores do not support web applications. The reason is that they generate revenue selling the

native apps from their stores. Hence it is hard to find the web-apps. In addition, the third party

developers have to rely on an advertisement for the revenue whereas in the store they can get

the revenue according to the number of application downloads. (Closs 2011, date of retrieval

1.2.2012)

The gap between HTML-based apps and native apps is huge and it is not closing anytime soon.

Developers are still developing native apps and big players like Apple, Google and Nokia are

supporting them. In fact, very few, if any, are going to an HTML5-only way. (Siegler 2011, date of

retrieval 1.2.2012).

19

“HTML5 offers the promise of write once run anywhere, but really it is a fallacy. To get the most

out of HTML5 you need to write once, customize everywhere.” (thebeebs 2011, date of retrieval

1.2.2012).

20

5 MULTIMEDIA

“Multimedia comes in different formats. It can be almost anything you can hear or see. Examples:

Pictures, music, sound, videos, records, films, animations and more. Modern Web Pages have

often embedded multimedia elements, and modern browsers have support for various multimedia

formats.” (Refsnes Data 1999-2012b, date of retrieval 8.2.2012)

Before the evolution of HTML5, text and image were native citizens of the markup but audio and

video streaming had to rely on a third party plug-in to deliver multimedia contents. The situation

was even worse before, when the Internet speed was slow and people could not imagine an

audio and video streaming through the web. A Media player was the only choice. Major tech-

giants Microsoft, Apple, Real Networks, and Macromedia had their proprietary players. Microsoft

shipped a Media Player with Windows. Apple’s QuickTime was used as a Mac-only software,

later released for Windows. Real networks first introduced its Real Audio Player with a .Ra and

.Ram format and later allowed the video streaming using the H.263 video format. Eventually,

these audio and video formats were bundled together under the name Real Player which was

delivered as an option in Windows 98. Macromedia had its Shockwave Flash Player using an

SWF format to exchange data, audio and video. It also supported simple animations. Macromedia

was later acquired by Adobe and this technology was renamed Adobe Flash which later became

the de facto standard for browser plug-ins with more than three fourth of market share among the

plug-in.

Flash made the static web pages dynamic and it provided a more interactive web, with a better

multimedia experience. Microsoft and Apple also have their plug-ins Silverlight and QuickTime.

Vendors had their way of delivering multimedia but there was no standard. Users needed to have

the appropriate players and plug-ins installed on their machine. The plug-ins needed constant

updating and the existence of different vender specific plug-ins could conflict with other plug-ins

creating instability and sometimes crashing the player. Another known issue was security, since

plug-ins run on the client side. It was an easy target of malware. Vendors provided the remedy as

next-release but it was quite a hassle for end users to wait for latest versions of plug-ins and

upgrade them frequently. (Devlin 2012, 24-28).

21

5.1 Video

HTML5 provides a standard way to embed a video/movie within the web page with <video>

element. The Video element is stable, but still evolving. Different attributes and functionalities are

constantly added and upgraded.

A very minimum absolute version of embedding a video element inside a webpage instance could

be:

<video src = “video.webm”></video>

The Video element supports a global attribute and has its own optional attributes. (Refsnes Data

1999-2012c, date of retrieval 8.2.2012).

Almost all the major desktop and mobile browsers support the video element but there is no

single format of video that all browsers support. To be a standard, the HTML5 Working Group

considered that an ideal format should have extremely high compression, the best image quality

with a less decode processor use. It should not hold any patents and be a royalty free existence

of hardware decoder, also supported by all User Agents. Initially Ogg Theora was recommended

and later made a standard that should be supported by User Agents along with Theora video and

Vorbis audio. Although there are no known patents regarding an Ogg format, companies like

Apple and Nokia are concerned about the number of unknown patents waiting for companies with

an extensive resource to use before they can sue. Eventually, Ogg was removed from the

specification without any agreement of the standard format. Multiple sources should be provided

from which the browser could select the format it support. Browser sniffing is an alternative but it

is an error prone. The optional attribute “src” could be replaced with a source element <source>.

The “type” attribute specifies the MIME type and optionally some required codecs. (Wikipedia

2012, date of retrieval 10.2.2012)

22

FIGURE 1. The screenshot of support table for HTML5 Video Element (@Fyrd 2012a, date of
retrieval 2.11.2012)

5.1.1 Video Container Format and Codecs

To deal with multiple video formats the “type” attribute should contain the MIME type “video/”

followed by the container type and the list of codecs. The container must support the codec used

because not all video streams are compatible with all containers. There are many video

containers available, three major and recommended containers are MP4, Ogg, and WebM.

MP4: MP4 is based on the Quick Time container (.mov). It is usually with mp4/m4v extensions.

MP4 accepts H.264 as a video and AAC as an audio codec

Ogg: Ogg is an open source media container managed by Xiph, org. It does not have any known

patents and it can be freely used for commercial and non-commercial purposes. It accepts

Theora as a video and Vorbis as an Audio codec.

WebM: WebM is an open source container, which accepts a VP8 video codec, developed by

Google based on a similar technique by ON2 named Matroska. It accepts Vorbis as Audio codec.

The flash container could be used as a fallback option when dealing with desktop browsers.

Microsoft also provides its Audio Video Interleave (AVI) proprietary container. It is not compatible

with most of the video and audio codec, but it is still used.

23

Video Codecs:

The above-mentioned containers provide information only about how the audio and video tracks

are stored. They do not say what to do next. Video codecs are responsible for decoding the video

stream and display images serially. Audio CODECS decodes the audio stream and provide the

input to the speakers.

H.264

H.264 was developed by MPEG group to provide a single codec from low processing devices like

mobile phones to desktop computers. It provides different profiles so that devices with different

processing power can decode accordingly. It is a patented technology, licensed through MPEGLA

group. It can be embedded into containers like MP4 and MKV.

FIGURE 2. The screenshot of a support table for H.264 codec (@Fyrd 2012a, date of retrieval
2.11.2012

Theora

Theora evolved from a VP3 codec is an open source and is not subject to any known patents. It is

maintained by xiph.org Foundation. It can be embedded on any container but it is mostly used in

the Ogg container.

24

FIGURE 3. The screenshot of a support table for THEORA (@Fyrd 2012a, date of retrieval
2.11.2012

VP8

VP8 was developed by ON2. VP8 was released as an open source after Google acquired ON2,

and it is often compared with H.264 in quality and easy decoding technique. It is embedded in

WebM container. Modern videos contain a video track and an audio track, which are interrelated.

The marker inside the audio track makes the synchronization with a video possible.

FIGURE 4. The screenshot of a support table for VP8 (@Fyrd 2012a, date of retrieval 2.11.2012)

(Pilgrim 2010, 81-88).

25

5.1.2 Encoding Video Files

A modern desktop and a mobile browser support at least one of the above mentioned codec.

Thus, video files should be encoded in any one of these formats before using in the application.

There are plenty of encoders to convert a video from one format to another. Some encoders are

Micro Video Converter:

It runs on both Windows and Mac. It not only converts a video format to Theora, WebM and MP4.

It can also convert the audio formats.

Handbrake:

Handbrake is open source and capable of encoding a video to a Theora and MP4 format on

Windows, Linux and Mac.

For desktop applications, Media Converter could be a viable option since it is an online converter

capable of encoding a video to Theora, MP4 and Flash FLV with or without downloading the

converter.

 (Devlin 2012, 65-66).

5.1.3 Implementation

HTML5 provides two ways to include the video in applications using <video> element. The Video

element has either a single source or multiple sources. In case of a single source, including the

video element is fairly easy. It could be done like including an image. To play a WebM file

<video src = “video.webm” ></video>

It is a good idea to include two optional attributes the height and width of the video element. It

could be same as the height and width used in encoding the video. The control of the video could

be provided manually using HTML, CSS and JavaScript or the browser could be given the

information to provide built-in controls

26

<video src = “video.webm” width = “320” height = “240” controls></video>

HTML5 provides an optional preload attribute, which starts to download a video implicitly as soon

as the application starts. If otherwise stated, the preload could have three values : auto, metadata

and none. If the value is “auto”, the video starts to download when the page/application loads. If

the value is “metadata”, only metadata is loaded. If the value is “none”, the page/application does

not start downloading the video when the application/page loads. In network critical devices, like

mobile and tablets where the user might have to pay for every byte they use, it is not a good

choice.

The optional attribute “autoplay” provides a way to start downloading or play after the page loads.

It can be used with or without providing a value. For video streaming sites like YouTube, it might

be great but similar to the preload attribute. It is not a smart move for mobile device with limited

network bandwidth and the user might get annoyed with this feature if misused. If “autoplay” is

selected, it will override the “preload” attribute since it is necessary to download to play. The

“loop” attribute allows the video to play repeatedly and the “poster" attribute provides the image

that the user can see when the video is not playing. If the “autoplay” is false, by default it shows

the first frame of the video as a poster.

<video src =“video.webm” height = “320” width =“240” controls autoplay loop>

A Video can be included from multiple sources in HTML5 using a source element. The <video>

element can include and can contain a multiple <source> element. The browser will then go

through each source and play the first possible video. The type attribute in <source> element

holds the “MIME” type of the particular container so that the browsers do not have to load each

video. It helps to reduce network bandwidth significantly. The optional attributes could be used

within the video element in a similar way as a single source

<video height = “320” width= “240” controls preload poster = “pic.jpeg” loop>

<source src = “video.mp4” type = “video/mp4”’>

<source src = “video.webm” type = “video/webm”’>

<source src = “video.ogv” type = “video/ogg”’>

</video>

27

Including a codec in the type attribute can be helpful for browsers to decide if they can play the

video or not. Using the codec in the type attribute, needs certainty. The format of the string should

be accurate, including the quotes used. Otherwise, the browser will not recognize the source.

<video height = “320” width= “240” controls preload poster = “pic.jpeg” loop>

<source src=“video.mp4” type=‘video/mp4; codecs= “avc1.42E01E, mp4a.40.2” ’>

<source src = “video.webm” type = ‘video/webm; codecs= “vp8, vorbis” ’>

<source src = “video.ogv” type = ‘video/ogg; codecs= “Theora, Vorbis” ’>

</video>

 (Pilgrim 2010, 110-112).

Most modern browsers support the video element, to target legacy browsers who do not support

the video. It is also a viable option to provide flash as a fallback option and a download option

with a caption that your browser could not play the video, so here is the link to download.

5.2 Audio

HTML5 also provides a similar way like video to embed an audio in the application using a native

<audio> element. Most modern desktops and mobile browsers support audio element. There

would be no need of using the third party plug-ins. Major audio codecs supported are:

 5.2.1 Audio Codecs

Vorbis

Vorbis is an audio codec mostly used in Ogg container and WebM recently. It is an open source

and popular among gaming communities and companies. It can compress the audio file to a

small size yet maintaining its quality. It is ideal when streaming across over the web because it

saves network bandwidth. It uses “application/ogg” MIME type and “audio/ogg” codec.

MP3

28

Media Player 3 (MP3) is a patented codec developed by MPEG, which only specifies how to

decode the format with no specific encoder. It is one of the most used formats. It has different

sound quality due to different encoders used; MP3 uses “audio/mpeg” MIME type and

“audio/mp3” codec

AAC

Apple uses an advanced Audio codec for the iTunes store. It was conceived as a successor of

the MP3, thus AAC has a better sound quality than MP3. It uses “audio/aac” MIME type and

“audio/aac” codec.

MP4

Media Player 4 (MP4) is also used as container (more about the container in the video section).

But it can only be used for audio encoding. It uses “audio/mp4” as MIME type and “audio/mp4” as

codecs. Audio Element supports all the global attributes and also has its own optional elements.

5.2.2 Encoding Audio Files

Different browsers support different audio formats. There are audio encoders which convert the

audio file from one format to another.

Micro Video Converter

Micro Video Converters with a drag and drop interface allows files to change to a different format

like Ogg, WAV, and Mp3.

Media Converter

It is an online conversion application, which provides a way to change the audio file format to

MP3, WAV and Ogg. For legacy browsers who do not support a native audio element, the

29

fallback option to flash, QuickTime or other third party could be provided. The download option

could be another viable way for the user who does not have both native support and plug-ins.

FIGURE 5. The screenshot of support table for HTML5 Audio Element (@Fyrd 2012b, date of

 retrieval 2.11.2012)

5.2.3 Implementation

The implementation is fairly easy, for example if the audio file is only in a single format like Ogg

Vorbis, then it can be included like

<audio src= “audio.ogg”> </audio>

Then, there are optional attributes like controls, autoplay, loop and preload. Similar to that of the

video element, the control attributes provide the control mechanism explicitly. Otherwise the

browser uses its built-in control technique, and the auto-play downloads the file and starts to play

as soon as the application/webpage starts to load. The loop makes the audio play repeatedly,

“preload” only downloads the video and keeps at the ready state to play the format. It might be a

great option for audio sharing sites but in other cases, it might be loss of resources or it would be

unwanted. Playing an audio file with different source is also similar to that video, It is

recommended to use at least mp3 and ogg format, more sources are optional.

<audio control autoplay loop>

30

<source src = “audio.ogg” type = “audio/ogg” >

<source src = “audio.mp3” type = “audio/mp3””>

<source src = “audio.wav” type = “audio/wav” >

</audio> (Devlin 2012, 44 – 59).

31

6 STORAGE

“When web developers think of storing anything about the user, they immediately think of

uploading to the server” (HTML5ROCKS 2012b, date of retrieval 14.2.2012)

HTML5 changes that attitude by providing two offline capabilities: Application Caching and Offline

Storage. Application caching saves logic whereas Offline storage stores the data. Application

Caching uses caching and Offline storage uses client side data storing to serve some common

purposes. To make the app work even if there is no network connection, app caching and storage

data boosts performance because it reduces the network latency and data could be cached or

stored without the need of a dedicated server. (Mahemoff, M. 2011, date of retrieval 14.2.2012)

6.1 Offline Storage

Offline Storage before HTML5 Era

Prior to HTML5 offline storage, some technologies were invented to serve a persistent storage on

the client side. Cookies are small software created with the intent to hold a small amount of data

on the client side mostly identifying information and the rest of the data on the server. (Mahemoff,

M. 2011, date of retrieval 14.2.2012)

Cookies slow down the application as they are transmitted with every HTTP request, they pose

threats, and they are mostly sent unencrypted. The size of cookies is about 4KB, which is enough

to slow down the speed, but its use does not match its cost. The need was a large storage space

on the client’s side, which remains even after the page is refreshed or the connection is lost. The

specific and plug-in based hacks of the browsers have been applied to increase the storage

space. One of the noticeable browser specific behavior was Microsoft's' “user Data” shipped with

IE 5.0. Since it was browser specific, supported with only IE and limited size of 64KB, it could not

be widely adopted. The different plug-ins for Google gears, Adobe flash and Java were

introduced for storing data. They were somewhat successful, but there was no uniformity. Brad

Neuberg and others had to try to hack dojox's storage to provide a unified interface to all the plug-

32

ins. Despite such efforts there was no single storage mechanism on which all agreed. Therefore,

different storage limitations and user experience existed. (Pilgrim 2010, 127-128).

Offline Storage in HTML5 Era

HTML5 provides different yet related APIs for the client-side data storage. The APIs are Web

Storage API, Web SQL Database, Indexed Database and File Access or File API. These new

APIs are more compatible and they are accepted by major browsers compared to plug-ins based

or browser specific storage hacks. Most modern desktop and mobile browsers support offline

storage. In case of legacy browsers, older technology could be useful. (Mahemoff 2011, date of

retrieval 14.2.2012)

All the APIs have their specific features but they still serve some common features. The data

passed to the browser’s storage is saved locally on the client side. It allows search, retrieval and

sometimes batch manipulation. All the APIs provide sandboxed data. The browser allows saving,

manipulation and retrieval if, and only if, the protocol domain and port match with each other.

Otherwise, the request is disqualified. The storage space is an issue that browsers are enforcing

separately. At present, browsers are allowed to store 5MB data in Web Storage and 25MB in

Web SQL. The Indexed database is still in the working draft and yet to be implemented by any

major browsers. Transactions are supported in both database formats like any relational

database and “race conditions” are restricted. It is a phenomenon of operation in the database

parallel where one operation could affect the database in such a way that, the state is unknown

and results are unpredictable and corrupted. Most storage formats support synchronous and

asynchronous modes. The former is a way of doing one operation one at a time, which blocks all

other operations, whereas the later allows a parallel operation at the same time. Web Workers is

still in its working draft. It could be used alternatively to perform operations in separate threads,

which could be expensive or not compatible with all browsers. Thus, it should be checked before

use. (Mahemoff, M. 2010, date of retrieval 14.2.2012)

6.1.1 Web Storage

Web Storage was once a part of HTML5 specification and later it split into its own separate API.

HTML5 provides two objects, local storage and session storage, for storing data on the client

33

browser. It uses JavaScript to store and access the data. (Refsnes Data 1999-2012d, date of

retrieval 16.1.2012)

Local Storage

It is a way for applications to store key-value pairs in the client’s browser. The specification

indicates that the value can be of any type, is a fallacy. The values should be serialized

(converted to strings) before storing and parsed before accessing. JSON API can be used to

“stringify” and parse to store and access respectively. (Mahemoff, M. 2011, date of retrieval

14.2.2012).

Similar to cookies, this data persists even if the application is closed. Unlike cookies, they do not

transmit to a server with HTTP requests (unless a user wants them to do it). The data stored is

not available for a cross browser usage. Using “Local Storage” the data can be accessed in an

offline mode and stored on the server when there is a network connectivity. It can be a

performance booster by minimizing the network requests. (Kappart, L. 2011, date of retrieval

15.2.2012)

Session Storage

It is a variant of Local Storage. In Session Storage, the data stored on the browser persists to the

current session only. Once the user exits from the current browsing tab, the data expires. It is

suitable for independent browsing, where data from one tab cannot be transmitted to another tab.

It is safer than a local storage. Both Local and Session storage are not by any means used to

store valuable data. The data stored in a local storage should be manually removed. The location

of data depends on the browser or manual configuration. (Sheridan, M. 2011, date of retrieval

15.2.2012).

All the major modern desktop and mobile browsers natively support web Storage.

34

FIGURE 6. The screenshot of a support table for HTML5 Web Storage (@Fyrd 2012c, date of

retrieval 2.11.2012)

Implementation:

Both local storage and session storage are objects of type Storage. Session storage attributes

returns the value of type Storage, associated with the documents assigned in the session storage

area. Each storage object implements Storage interface

Interface Storage {

readonly attribute unsigned long length;

DOMString key (unsigned long index);

Getter DOMString getItem(DOMString key);

Setter creator void setItem(DOMString key, DOMString value);

delete void removeItem(DOMString key);

void clear ();

 };

The “length” attribute returns the number of key/value pairs present in the list. The key method

returns name of the key in nth index. It provides a getter method to get the values associated with

the key and returns null if there is no value associated with the key. The setter method allows

setting the key and valuing the pair. The remove method allows the removal of individual

35

key/value pair and the clear method allows removing all key/value pairs in the list. (W3C 2011b,

date of retrieval 15.2.2012).

Web Storage fires “storage” event every time the methods in Storage interface are used and

some data are changed. The event can be accessed by a global “Window” object using

“addEventListener()” method. If the browser does not support the method, new event handlers

could be registered. (Pilgrim 2010, 131).

There are some downsides of Web Storage. It is not a database and does not have transactions.

The size limit is low, so it is not good for larger data. It also has issues of data integrity and

security. (Mahemoff, M. 2011, date of retrieval 12.2.2012).

6.1.2 Web SQL

HTML5’s Web SQL Database provides options to create and access database client’s side using

JavaScript. It is based on SQLite with a relational structure, allowing querying and manipulating

using joins. It supports an asynchronous and synchronous mode of querying. It does not have a

5MB storage limitation as Web Storage. The Web SQL database is not agile and deprecated from

HTML5 specification. Indexed Database possibly replaces Web SQL. (Mahemoff, M. 2011, date

of retrieval 12.2.2012)

FIGURE 7. The screenshot of support table for HTML5 Web SQL Database (@Fyrd 2012d, date

of retrieval 2.11.2012).

36

It is depreciated technology, but currently supported by many browsers, it seems IndexedDB is

the future of databases.

 Implementation

To open a database or to create one if the database does not exist, the “openDatabase()” method

should be used with the name of a database, the version of the database, the display name and

an estimated size in bytes as the argument. The optional callback of type Database Callback

interface could be invoked if the database has not been yet created.

 var db = window.openDatabase(“Database Name”, “version”, “Description”, “size”);

The default size of database is 5MB. The user can be prompted if an additional amount is

needed. The empty parameter in a version means any version is accepted and

“INVALID_STATE_ERR” exception is thrown if the database version mismatches. The change

“version()” method allows an asynchronous verification of the version number and changes it

during schema updating. (W3C 2011c, date of retrieval 5.3.2012).

The transactions are the wrappers of SQL statements, which allow multiple SQL statements

within the transaction. It has a unique “rollback" property which enables it to prevent updating the

database if one or more SQL statements within the transaction fail. The transaction also contains

optional callbacks for success and error.

db.transaction (function (tx) {

// perform the SQL activity

}, errorCallback, successCallback);

It is recommended to use read Transaction, if the intention is only to read from the database. If

the intention is to read and write, then the read write transaction should be used. The above-

mentioned code represents the read-write transaction

37

db.readTransaction (function (tx) {

// this is read transaction

}, errorCallback, successCallback)

The read write transaction blocks the UI. In case of a synchronous processing, it is recommended

to use Web Workers.

ExecuteSQL is used to execute the actual SQL query once the transaction object is available.

This method is able to perform as queried, for instance creating a table, inserting a row and

deleting partial or complete data.

tx.executeSQL (SQLStatement, optional arguments, optional successCallback,

optional errorCallback);

The “tx” is the object of the transaction, used to invoke the method. The SQL statements are

standard SQL statements as strings with a possibility of arguments. The “callback” is of type

“SQLStatementCallback” and “errorCallback” is of type “SQLStatementErrorCallback”

tx.executeSQL (‘CREATE TABLE documented (id, name)’);

 (Sharp 2010, date of retrieval 5.3.2012).

6.1.3 IndexedDB

Indexed Database also known as IndexdedDB, is a hybrid database with an attempt to combine

the strength of Web Storage and Web SQL and leave out their weaknesses. Indexed DB uses

JavaScript object store with indexes to perform the queries and to iterate over indexes for an

instant searching of data. Unlike relational databases, IndexedDB is a NOSQL database, which is

more agile, and no schema should be defined up front. In this way, it is similar to Web Storage

with the addition that IndexedDB can have multiple data stores / databases. It provides

Asynchronous APIs that improve the performance so that one action does not affect others.

Synchronous APIs perform one action at a time.

38

FIGURE 8. The screenshot of a support table for IndexedDB (@Fyrd 2012e, date of retrieval

2.11.2012)

The support for Indexed Database could also be checked programmatically

if (window.indexedDB) {

// do something

} else {

//use third party solution

}

Modernizr could be another option

if (Modernizr.indexedDB) {

// do something

} else {

// use third party solutions

}

Implementation

Creating an Object Store

39

var db = window.indexedDB.open(“database”, “Personal Database”);

if (db.version != “1”) {

db.createObjectStore (“PersonalDB”,

 // create a new object store

“id”, //key path

true); //auto-increment

db.setVersion (“1”);

} else {

// database is already initialized

}

Keypath must be name of an enumerated property of all objects being stored in the Object Store

DB versioning is optional.

Storing data in the Object Store

var store = db.openObjectStore (“PersonalDB”);

var data = store. put(name: “Ryan”, gender: “Male”, hobby:" football”);

The “add()” and “put()” method both could be used for this purpose, using one after another

method with the same ID might result into an overriding of data

Finding things in Object Store: There are two options to search for data by a key or by a query.

Retrieving by Key (indexes)

Create Index

db.createIndex (“PersonsName”, “Person”, false);

var index = db.openIndex (“PersonsName”);

var id = index.get(“Ryan”);

40

Querying (cursors): To Restrict the name from A to Z

var range = new KeyRange.bound(‘A’, ‘Z’);

var cursor = index.openObjectCursor(range);

While (cursor. continue ()) {

//continue to do something

}

Using IndexedDB, JavaScript could be used to perform all the activities without need of SQL

statements. (Ranganathan & Wilsher 2010, date of retrieval 16.2.2012).

6.1.4 File System API / File API

HTML5 provides a way to interact with large files and binary data. File System allows to create,

read, write and navigate files to the sandboxed section of the user’s local file system. HTML5

provides separate APIs to serve different purposes. (Bidelman 2011a, date of retrieval 21.2.2012)

HTML5 has specified three different APIs File API, File API Writer and File API: Directories and

system File API for reading and manipulating files include File interface, Blob interface, File List

interface, FileReader interface and URIScheme.

FIGURE 9. The screenshot of a support table for File Reader API (@Fyrd 2012f, date of retrieval

2.11.2012)

41

File and Blob

File API introduces separate interfaces representing Blob and File. Blob represents immutable

raw data and provides a method to slice the raw data into chunks of raw data. It also provides a

size attribute to represent the size of the chunk of raw data to read both synchronously and

asynchronously.

The constructor to create a new Blob object could take Array Buffer, Blob or DOMString as a

parameter

var blobObject = new Blob ()

The slice method takes three optional parameters start, end, and content. It returns a new blob

object ranging from an option start to an end parameter.

Blob slice (optional long start, optional long end, optional DOMString content

Type);

The start parameter of type long takes a value for start point treated as a byte-order position,

where the first byte represents the zero position. If the start is negative, the relative Start should

be the sum of the start and size. The second parameter of type long is a value for the end. The

third parameter is optional of type DOMString. It is used to set a content type header on the Blob

object returned by the method, which could be empty. It also provides two read only attributes,

size and type. They are the size and media type of Blob object. The File inherits from Blob and

describes one file in the File List with read only attributes “name” and “lastModifiedDate” of type

DOMString and Date respectively. The error exception should be thrown if the file requested does

not exist or is modified in an unusual situation irrespective of a synchronous or asynchronous

read. (W3C 2012d, date of retrieval 9.3.2012)

Retrieving File and Reading

FileList interface represents a list of files. The object of this type could be created to know the

number of files. The getter method returns the file with the provided index of type long and returns

null if no file exists in the list.

42

File item (unsigned long length) to read file FileReader Interface provides the constructor to

create an object and different methods to read the File or Blob into the memory in different ways.

Creating constructor

var fileReader = new FileReader();

Methods to read Blob or File

void readAsArrayBuffer(Blob blob)

void readAsTextBlob(blob, optional DOMString encoding)

void readAsDataURL(Blob blob)

The reader object could be in three stated 0, 1, 2 of type short. The API also provides an event

handler attribute and a type. They are responsible for firing the events asynchronously, which

updates the result. It also provides a way to create an object of type “FileReaderSync” for the

synchronous reading of Blob and File. (W3C 2012d, date of retrieval 9.3.2012)

File API: Writer

The API to write into files from web application files, includes BlobBuilder interface, FileSaver

interface, FileWriter interface and FileWriterSync interface

FIGURE 10. The screenshot of a support table for File System and File Writer API (@Fyrd 2012g,

date of retrieval 2.11.2012).

43

Appending data to Blob / File

BlobBuilder interface provides “append()” method with three different parameters of type “Blob”,

“ArrayBuffer” and “DOMString” with optional “DOMString” type ending. (W3C 2012e, date of

retrieval 10.3.2012).

Writing to a File

The API introduces FileWriter Interface with methods to write, seek and truncate and read-only

attributes position and length of type long. The “fileWriter” is created by calling “createWriter()”

method of the “FileEntry” interface from the object returned after successfully creating a file.

fileEntry.createWriter (Function (fileWriter) {

}, errorHandler);

 To write the provided data at the certain position

void write(Blob data)

Seek the position where the next write action should occur

void seek(long offset)

Change the length of the file

void truncate(unsigned long size)

To write into a file synchronously, the API provides FileWriterSync Interface that inherits from

FileSaverSync. It is recommended to use a synchronous way with web workers so that it does not

lock other activities and User Interface. “FileError” Interface is used to report error codes

asynchronously and “FileException” to report exceptions synchronously.

Note: When an application is granted a write access, it does not necessarily mean that a read

access is also provided. User agents could control the quota and interrupt or warn the user if the

44

size exceeds the limit, disk space is a concern or bandwidth is reached. Creating risky names

and opening unsafe files should be prohibited and MIME type of file should match. (W3C 2012e,

date of retrieval 10.3.2012).

File API: Directories and System

It provides access to files and directories inside a sandboxed section in user’s local system. This

API targets to mitigate the use cases not served by a database to interact with large files, blobs or

directories in the client-side file system. (W3C 2011f, date of retrieval 11.3.2012)

Opening FileSystem

The LocalFileSystem Interface in the API provides a method to access the File System. If the

method is called for the first time, a new sandboxed space for a storage purpose is created. The

application cannot then access another application’s data as well as data from other storage

areas such as a hard drive.

requestFileSystem (unsigned short type, unsigned long size, FileSystemCallback

successCallback, optional ErrorCallback errorCallback);

The type could be temporary and persistent represented by 0 and 1 respectively. User agents

can remove the temporary data whereas users must be prompted to delete the persistent data.

The size represents the storage size in bytes and “sucessCallback” is called if the call is a

success and “errorCallback” is called if an error is encountered. “LocalFileSystemSync” Interface

describes the method and properties in the synchronous opening of File System. (Bidelman

2011b, 11-12)

The method “requestFileSystemSync()” could be used to obtain an access synchronously which

could then be used with web workers without locking the UI. (Bidelman 2011b, 53)

45

Working with Files and Directories

The FileEntry Interface represents files in the sandboxed area of FileSytem, which inherits Entry

Interface. The entry interface exposes methods to get metadata about the entry. The methods are

move, copy and remove. Various Boolean attributes like “isFile” and “isDirectory” and DOMString

attributes “name”, “fullpath” and “filesystem” are provided for reading. (Bidelman 2011b, 15)

Creating a File

To create a file or look up if the file exists, “DirectoryEntryInterface” provides a method to be used

with “FileSystem” object that is returned as successCallback.

fs.root.getFile (“filename.txt”, {create: true, exclusive: true})

It creates a file with a name, if there is no file with the same name and causes failure if the target

already exists. (Bidelman 2011b, 16-17)

Importing Files

Files can be imported using input field, HTML5 drag and drop API, using XMLHTTPRQUEST to

fetch remote binary data or to use a copy pasting technique. These ways to import files into a file

system are savior for the security problems and unable to access beyond the sandboxed file

system. (Bidelman 2011b, 20-21)

Removing Files

To remove the files from the File Entry, a FileEntry object should invoke the remove method with

the first argument for successCallback and an optional errorCallback as the second argument.

fileEntry.remove (function () { }, error);

 (Bidelman 2011b, 28-29)

46

Reading Directory

To read entries from a directory, a directory reader should be created to invoke “readEntries()”

method until all the entries have completed reading.

var dirReader = fs.root.createReader();

dirReader.readEntries (function (resultOfReading) { }, errorHandler);

(Bidelman 2011b, 34-35)

Removing Directory

To remove empty directories, the object of “DirectoryEntry” Interface could be used to invoke

“remove()” method and to remove a directory with contents “removeRecursively()” could be used.

dirEntry.remove (function() { }, error);

dirEntry.removeRecusrively(function () { } , error);

 (Bidelman 2011b, 36)

Copying a file and a directory could be done using the same “copyTo()” method. The copy of

directory copies all its content, too. The object of FileEntry interface is required to invoke the

method.

entry.copyTo (DirectoryEntry parent, optional DOMString newName, optional

EntryCallback successCallback, optional ErrorCallback errorCallback);

In the similar way, the entry could be moved to a different location in the file system. Moving the

file or directory on top of an existing file or directory replaces the file or directory, if the move is

successful.

entry.moveTo(DirectoryEntry parent, optional DOMString newName, optional

EntryCallback successCallback, optional ErrorCallback errorCallback).

47

The renaming could be done with the same method as moving providing a new optional name for

the entry and making current working directory as the destination directory. (Bidelman 2011b, 37-

41).

Similar to that of File API, a method is provided to create URL for the file system. The FileEntry

object should invoke “toURL()” method to get the URL and “resolveLocalFileSystemURL()” with a

URL, successCallback and errorCallback gives back the URL. (Bidelman 2011b, 43-45).

6.2 Offline Web Applications

It is a challenge to remain connected to a network every time in order to use web-based

applications. This problem is slightly mitigated by browser caching, but counting on browser

cache will not always work. The browser itself may replace or remove the cache for a storage

reason or the user might accidentally clear the cache. (Rouget 2010, date of retrieval 24.2.2012).

To overcome this situation, HTML5 provides a mechanism known as Application Cache (App

Cache). It provides the browser a manifest file when the user first starts the application in an

online mode. The manifest file includes all the resources like HTML, CSS, JavaScript, images,

style sheet, video, etc. cached and stored locally to be used later in an offline mode. (Flirtman

2010, 308)

In subsequent visits, the browser tries to download to see if the manifest file has changed. If it

has not changed or if the network is not available then it will load the application and resource

from Cache memory. Otherwise, the browser will download and store the manifest file again. To

check the network state, DOM provides a flag and events are fired once the state is changed.

Other actions such as creating or storing the data locally, depends on the developer. HTML5 App

Cache can take the application offline by providing the Cache. (Pilgrim 2010, 137)

Implementing cache gives three major advantages. It gives the user a full access to the

application even if there is no connectivity. Caching makes loading faster since all the resources

48

are cached locally. It reduces the server-client interaction thus reducing the bandwidth. The

decision to specify which resource or files should be cached depends on the developer (Bidelman

2010k, date of retrieval 25.2.2012)

Figure 11. The screenshot of support a table of Offline Web Applications (@Fyrd 2012h, date of
retrieval 2.11.2012)

Manifest File

A manifest file must start with CACHE MANIFEST possibly followed by an absolute or a relative

URL of the file or resource to be cached. A manifest file could have optional NETWORK, CACHE

and FALLBACK sections. The “#” sign is used for commenting.

NETWORK

Files and resources listed under this section are accessible when there is network connectivity

and should not be cached. So, they are not available offline.

FALLBACK

This section includes a fallback page when the resource is not accessible. The reason of

inaccessibility could be the lack of network connectivity or failure in caching. It contains one or

more pairs of fallback resources. The first URL in the pair is the preferred URL referred to match

49

and the second URL should be served when there is no connectivity. To use the same fallback

for every resource, the first URL can be left “/” which means a root path.

CACHE

By default, the manifest file starts with “CACHE” section. URLs could be listed by declaring the

CACHE: section explicitly or by leaving the manifest to handle. It is a good practice to include a

CACHE section explicitly, at least when other sections are present. URLs of every resource that

an application needs to operate, regardless of the type of path, relative or absolute, must be listed

on separate lines. If the page visited points to the manifest file, it is cached automatically hence

there is no need to list the URI into the manifest. (Apple Inc 2011, date of retrieval 25.2.2012).

Implementation

// Start of manifest file by default starts with CACHE section

CACHE MANIFEST

#v1 26-02-2012 //last update description in comment

index.html //caching the html file

styleOfIndex.css //caching the css file

imageOfIndex.png // caching the image

//Start of FALLBACK section with one URL fallback.html

FALLBACK:

//Start of NETWORK section with resource network. Html to be loaded when there

is a connection

NETWORK:

When the browser visits a page with “manifest” attribute for the first time or does not find cache, it

loads the page and fetches all the resources from manifest. This will be the start of application

cache. In subsequent visits, it uses JavaScript “window.applicationCache” objects to fire various

events to keep the script updated. Using “window.applicationCache”, the status of cache could be

accessed. The status properties provided are UNCACHED, IDLE, CHECKING, DOWNLOADING,

50

UPDATEREADY, OBSELETE of type “short” and have constant positive value of 0, 1, 2, 3, 4 and

5 respectively.(WHATWG 2011, date of retrieval 26.2.2012)

To access the cache state, various events and their handler are exposed. The events are

“checking”, “noUpdate”, “downloading”, “progress”, “cached”, “updateReady”, “obsolete” and

“error”. The “checking” event is always fired. If the browser does not have the manifest cached, it

will fire “downloading” event to download resources listed in the manifest file. The “progress”

event is fired to inform about the progress and “cached” event to notify the successful caching of

the manifest file. If something goes wrong, the browser fires an “error” event and stops the

downloading. The reasons for error mostly encountered are “file does not exist”, “failed to

download”, “manifest file being changed”, “updated during download period”, “failing to download

one or more resources listed in manifest file”. However, there could be many reasons beyond

these, it is always better to debug to know the reason and source of error. If the previously visited

page has cached the resource and manifest file is unchanged then “noUpdate” event will be fired.

The browser fires a progress event periodically and a final “updateReady” event after the

successful download. (Pligrim 2010, 137-144).

51

7 PROOF OF CONCEPT

This proof of concept is a demonstration of implementing the PhoneGap framework to develop a

hybrid application using web technologies and deploy in multiple mobile operating systems. The

code base remains the same for all the operating systems, which support PhoneGap. User

Interface frameworks were selected based on compatibility.

7.1 Work Environment

The following Framework, IDEs and Tools were chosen for the application development.

PhoneGap

PhoneGap is an open source framework, initially started by Nitobi, to build cross-platform hybrid

applications. It was acquired by Adobe in 2011. Currently, PhoneGap is licensed by Apache and

renamed to Apache Cordova. The standard web-technologies such as HTML, CSS and

JavaScript are used to create the PhoneGap applications. PhoneGap is particularly useful to

apply the existing web development skills to create a mobile application, and accessing the

device functionality, which a mobile browser normally cannot offer. After being wrapped with

PhoneGap, the code base built for one environment could be deployed to multiple platforms.

However, some tweaking in the code might be required due to the specific features the targeted

device might have. PhoneGap largely reduces the resource and effort since the organization

does not have to hire developers for every platform. The developer does not have to learn

different languages. (Adobe Systems Inc. 2012, date of retrieval 21.10.2012)

52

 FIGURE 12. The architecture of PhoneGap Application

Figure 12 illustrates the architecture of a PhoneGap application built as a proof of the concept.

The application is developed with the web – technologies, but using PhoneGap the result is a

binary achieve like native ones. Two different User Interface frameworks Sencha Touch 2 and

jQuery Mobile were used to test the application. As the above figure describes, the application

using Sencha Touch was built for Android and iOS devices. Since Windows Phone does not

support Sencha Touch 2, jQuery Mobile was used.

53

Figure 13. The screenshot of PhoneGap Architecture (IBM 2011, date of retrieval 22.10.2012)

PhoneGap accesses the web view of the native browser when the URL with optional additional

properties is provided. The engine that renders the web view could be different, for instance Web

Kit for an Android browser. On top of the web view, the UI could be created using HTML, CSS

and JavaScript or other UI frameworks such as Sencha Touch, jQuery Mobile etc. The complete

height and width of the device is available for creating a PhoneGap application. To access native

functionalities, PhoneGap provides a set of APIs. The APIs act as a bridge and handle the

communication between PhoneGap and Operating Systems. PhoneGap has provided a

mechanism to write custom plug-in. Despite using web technologies, the application is distributed

through the existing ecosystem (Google Play for Android, AppStore for iOS, and Windows phone

store for Windows Phone). The PhoneGap application can communicate with Users and Servers.

The servers are responsible for the business logic and communicating with the databases or

other repositories. (Trice 2012a, date of retrieval 22.10.2012).

54

Sencha Touch

Sencha Touch is one of the most powerful application frameworks to build complex hybrid apps.

It has a steep learning curve and it does not completely support all the native functionalities like

the PhoneGap but it perfectly replicates the native UI and provides a great support for touch

events and animations. (Zwick 2010, date of retrieval 22.10.2012)

jQuery Mobile

jQuery Mobile is a cross-platform User Interface framework under MIT license. It supports major

operating systems and could be used on top of other native functionality accessing frameworks

such as PhoneGap. Easy learning curve is its strength. (The jQuery Foundation 2012, date of

retrieval 23.10.2012).

Eclipse

Eclipse is an open source Integrated Development Environment maintained by Eclipse.org. Along

with Android SDK and ADT plugin, Eclipse is ready to create Android applications. The

application could be run in emulator and device. Android Virtual Device must be set up, to run in

an emulator. For deploying in a device, it could be done by connecting the device via a USB

cable or generating the .apk (Android application packaged) file. (Trice 2012b, date of retrieval

23.10.2012).

Microsoft Visual Studio Express

It is a Microsoft proprietary IDE for creating Windows Phone Application. The created application

could be deployed to an emulator and a device. Visual Studio comes with the Windows Phone

SDK or it could be integrated later if a previous version of Visual C# Express or Visual Studio

2008 or later version is installed. (Microsoft 2012, date of retrieval 23.10.2012).

55

Xcode

It is Apple’s proprietary IDE to create applications for Mac OS and iOS. The iOS application could

be deployed to an emulator as well as an iOS device such as iPhone, iPad. (Apple Inc.2012b,

date of retrieval 25.10.2012)

Aptana

Aptana is an open source IDE used for web development, maintained by Appcelerator Inc. It is

mostly used with an eclipse for writing and debugging web technologies namely HTML, CSS and

JavaScript. (Appcelerator, Inc (2005-2011), date of retrieval 23.10.2012)

7.2 Application, Testing and Findings

The application was built to testify:

- If web technologies could be used to create a hybrid application, that runs over different

mobile operating systems.

- If PhoneGap can access the native functionalities of different platforms, using the same

code base.

- If mobile UI frameworks could be used together with PhoneGap to provide the hybrid

app with a better look and feel.

- How the app behaves when ported to different mobile operating systems.

Setting up Environment

Eclipse, Visual Studio Express for Windows Phone, and Xcode should be installed and properly

setup. The PhoneGap plug-in for the respective mobile operating system must be downloaded.

56

Set-up PhoneGap for Android

For Android, the .js file must be placed in a WWW folder, which is a sub-folder of the assets

folder. The .jar file must be inside manually created “libs” folder and a build path must be

configured properly. The activity class must extend DroidGap. “super.loadUrl

(“file:///android_asset/www/index.html”)” is called within “onCreate()” method . The method loads

a web view in the index.html file through which the application can navigate. The PhoneGap fires

the “deviceready” event when PhoneGap.js is loaded. All other PhoneGap functions can be called

after the device is ready.

PhoneGap for Windows Phone

In a windows phone, PhoneGapStarter.zip must be copied to the Silverlight for Windows Phone

folder inside C:\Users\[username]\Documents\ VisualStudio2010\Templates\Project Templates. If

the folder does not exist, it should be manually created. Select a PhoneGap starter application

while creating a new project (CordovaStarter for newer versions with the version number). The

“deviceReady” callback is not fired on Windows Phone. Instead of that, it is “binded” to an

initialize function. The “app. initialize()” function is called to check if the PhoneGap has finished

loading.

PhoneGap for iOS

For iOS, the PhoneGap installation wizard guides the developer to install PhoneGap. Before that

the downloaded PhoneGap content should be extracted in under “libs/iOS” folder and the

package installer should be run. If the PhoneGap installation is complete, it adds a PhoneGap

project template to Xcode. Using that template a new PhoneGap project can be created.

User Interface

Two different UI frameworks were implemented to build the application. Sencha

Touch 2 was used to create a user interface for Android and iOS operating systems and jQuery

57

mobile for the Windows Phone. Sencha Touch only works with a web-kit based browser but not

with Windows Phone’s browser.

Figure 14. The screenshot of UI Code for Android and iOS using Sencha Touch 2

Figure 15. The screenshot of UI Code for Windows Phone using jQuery Mobile

58

Figure 16. The screenshot of UI in Windows FIGURE 17. The screenshot of UI in

Phone Emulator while capturing image. iPhone.

 FIGURE 18. The screenshot of UI in SG-S

59

Single Code Base for Multiple Platforms

The application is intended to capture images and record a video, upload an image to a PHP

server and provide the image location in the server. The application uses the URL to upload the

image to the Facebook. The image and video recorded are stored in the SD card of the Phone,

too. Currently the native PhoneGap-plug-in-facebook-connect are only available for iOS and

Android platforms.

Capture Image

There are two buttons available to capture an image and to record a video. To capture an image,

"getPicture()" method is invoked by the camera object. The method contains callback methods for

success and failure and optional parameters of quality and type of expected image. If the image

capture is successful, URI of the image is retrieved. The other option is to retrieve a base64-

encoded string of the image. To upload an image, PhoneGap provides File Transfer API, whose

instance is created to call the “upload()” method with the parameters including imageURI returned

from the success callback function above. Other parameters include the complete URL of the

server, success callback, error callback functions and an instance of FileUploadOptions with the

key, name, mime type and id. Upload success calls “transuc()” method which returns a response

code, a response and a number of bytes sent, the failure returns error code as an alert message.

Figure 19. The screenshot of code to capture image used in multiple platform

60

 Figure 20. The screenshot of iPhone while FIGURE 21. The screenshot of Windows Phone

 capturing image. emulator while capturing image

 FIGURE 22. The screenshot of SG-S while

 capturing image.

61

Record Video

When pressing the Record Video button, the application calls for “captureVideo()” method and

starts recording. This method takes success and failure callback functions and an optional, limit

option, for the number of times the video recording application can be used. If the application

cannot record video, the capture error is called. If the video recording is successful, the success

callback which has mediaFile is called. The “resolveLocalFileSystemURI()” function provides the

information about the Directory Entry or File Entry depending upon the type.

 Figure 23. The screenshot of a code to record a video in multiple platforms

 Upload Captured Image to Facebook

To host the image captured and uploaded from the application, a PHP server was set up. The

server receives the image from FileTransfer object of PhoneGap and it moves to a folder. The

URL of image is used to provide image to “post” method of Facebook’s Graph API. Every time a

picture is taken and uploaded to the server overriding the previous image.

62

Setup for Android

Place facebook_js_sdk.js and cdv-plugin-fb-connect.js in the WWW folder. The Facebook

JavaScript SDK allows Facebook Login use APIs through JavaScript. Cordova plugin is a

JavaScript version of the plug-in. Connectplugin.java, the native plug-in for Android should be

placed under “org.apache.cordova.facebook” folder. The “com.facebook.android” package should

be placed inside the source folder to compile the ConnectPlugin.

SetUp For iOS

Place the facebook_js_sdk.js into WWW directory in XCode. After selecting the Target, link the

necessary frameworks. Copy the contents from “native/ios” in Cordova folder to XCode and

WWW folder to WWW directory in Xcode. The necessary domains should be whitelisted and

scheme should be added.

Post to Facebook

First, the app needs to be initialized with “app ID” and other parameters like “nativeInterface”,

“useCachedDialogue”. Init function is called when the PhoneGap is ready to be used. If the app is

correctly initialized, then it will display a log message saying “Cordova Facebook Connect plugin

initialized successfully.” Otherwise, there might be error in configuration, which needs to be

rectified.

To upload an image, the Graph API is called with necessary parameters. In this application the

destination to be uploaded is the “me/photos” and the method is “post” and the image URL is

above mentioned URL from the PHP server. The image is passed from the URL of the server,

where the image is first uploaded using FileTransfer API. The other parameters are message and

oAuth. Facebook responds with post ID if successful and response if there is any error.

63

FIGURE 24: The screenshot of an Image uploaded FIGURE 25. The screenshot of an image

 to Facebook from iOS uploaded successfully to Facebook

FIGURE 26. The screenshot of an Image in Server

64

FIGURE 27. The screenshot of an image uploaded by the application in Facebook

Application Results and Findings

The Phonegap application was built and tested in Windows Phone, Android and iOS operating

systems. The application runs over all the platforms. Due to unavailability of Windows Phone

device, the emulator was used to test the application. All three operating systems supported

Image capture event. Android and iOS devices supported video recording and file uploading. But

Windows Phone emulator did not support video recording. Image and Video were also stored

locally in the SD card of the devices. There was a configuration issue between iOS and Facebook

plug-in in the application, so the image uploading functionality did not work on iOS. In Android,

the image upload to Facebook was also successful. It was an extended functionality test, if

PhoneGap application could be taken to another level.

Possibility of further development

This application has a possibility of further development. I plan to run and test the application in a

Windows Phone device. The configuration issue in the application between iOS and Facebook

65

plug-in could be solved and it should be able to upload the image. The application in Android

currently does what it was intended to do. With some minor changes in User interface and

functionality, it should be possible to launch in the Android Market Place. But, I plan to add a

video uploading functionality before launching.

66

8 CONCLUSION

The topic of this bachelor’s thesis was very challenging, and yet interesting. An immense

research and effort was required for the completion of this thesis. The results achieved were very

satisfying.

The research was carried out by studying multimedia and storage of HTML5 and their cross-

platform nature. The research showed that HTML5 is still on the way to be a complete cross-

platform. Some of the desired functionalities are currently available for all the operating systems

but other functionalities are on the process of development. The first complete draft is expected

by 2014. To test the currently supported functionalities, the application was developed as a proof

of the concept. The application worked across all the platforms as expected, using the same code

base. However, some obvious minor glitches were discovered. Therefore HTML5 retains the

cross-platform nature on functionalities that are currently supported.

Personally, this thesis helped me to gain a good knowledge of different browsers, operating

systems, multimedia and storage of HTML5. I now have better understanding about the hybrid

application architecture. I believe the knowledge that I have acquired during the study of this new

technology will be useful for the future.

67

LIST OF REFERENCES

2Expert, 2012. What Is It Important for HTML5 To Defeat Flash?. Date of retrieval 22.4.2012

http://www.2expertsdesign.com/web-designs/what-is-it-important-for-html5-to-defeat-flash

@Fyrd, 2010. Can I use. Date of retrieval 16.1.2012

http://caniuse.com/

@Fyrd, 2012a. Can I use. Date of retrieval 16.1.2012

http://caniuse.com/#feat=video

@Fyrd, 2012b.Can I use. Date of retrieval 2.11.2012

http://caniuse.com/#feat=audio

@Fyrd, 2012c. Can I use. Date of retrieval 2.11.2012

http://caniuse.com/#feat=namevalue-storage

@Fyrd, 2012d. Can I use. Date of retrieval 2.11.2012

http://caniuse.com/#feat=sql-storage

@Fyrd. 2010e. Can I use. Date of retrieval 2.11.2012

http://caniuse.com/#feat=indexeddb

@Fyrd. 2010f. Can I use. Date of retrieval 2.11.2012

http://caniuse.com/#feat=filereader

@Fyrd. 2010g. Can I use. Date of retrieval 2.11.2012

http://caniuse.com/#feat=filesystem

@Fyrd. 2010h. Can I use. Date of retrieval 2.11.2012

http://caniuse.com/#feat=offline-apps

68

Adhikari, R. 2011. Adobe Sends Mobile Flash Packing. Date of retrieval 9.2.2012

http://www.technewsworld.com/story/73720.html

Adobe Systems Inc, 2012. About the Project. Date of retrieval 21.10.2012

http://www.phonegap.com/about

Appcelerator Inc, 2005-2011. Date of retrieval 23.10.2012

http://www.aptana.com/

Apple Inc, 2011. HTML5 Offline Application Cache. Date of retrieval 25.2.2012

http://developer.apple.com/library/safari/#documentation/iPhone/Conceptual/SafariJSDatabaseG

uide/OfflineApplicationCache/OfflineApplicationCache.html

Apple Inc, 2012a. Develop Apps for iOS. Date of retrieval 18.1.2012

https://developer.apple.com/technologies/ios/

Apple Inc, 2012b. Developer Tools. Date of retrieval 25.10.2012

https://developer.apple.com/technologies/tools/

Bidelman, E. 2011a, EXPLORING THE FILE SYSTEM APIS, Date of retrieval 21.2.2012

http://www.html5rocks.com/en/tutorials/file/filesystem/

Bidelman, E. 2011b. Using the HTML5 Filesystem API. First Edition. CA: O'Reilly Media

Bidelman, E. 2011k, A BIGINNER'S GUIDE TO USING THE APPLICATION CACHE. Date of

retrieval 21.2.2012

http://www.html5rocks.com/en/tutorials/appcache/beginner/

Buzzle, 2012. The Need for a Smartphone. Date of retrieval 30.1.2012

http://www.buzzle.com/articles/the-need-for-a-smartphone.html

69

Closs, T. 2011. HTML5 vs. Native apps - what’s between the devil and the deep blue sea?. Date

of retrieval 1.2.2012

http://www.madewithmarmalade.com/blog/html5-vs-native-apps-%E2%80%93

what%E2%80%99s-between-devil-and-deep-blue-sea

Devlin, I. HTML5 Multimedia: DESIGN and DEVELOP. Berkeley, CA: Peachpit Press

Flirtman, M. 2010. Programming the Mobile Web. CA: O'Reilly Media

Hill, S. 2010. Overview of the BlackBerry OS. Date of retrieval 30.1.2012

http://www.brighthub.com/mobile/blackberry-platform/articles/87707.aspx

HTML5ROCKS 2012b, HTML5 FEATURES STORAGE. Date of retrieval 14.2.2012

http://www.html5rocks.com/en/features/storage

IBM 2011, PhoneGap Day – IBM, PhoneGap and the Enterprise. Date of retrieval 22.10.2012

http://www.slideshare.net/drbac/phonegap-day-ibm-phonegap-and-the-enterprise

Kappart, L. 2011. Introduction to HTML5 Web Storage. Date of retrieval 15.2.2012

http://sixrevisions.com/html/introduction-web-storage/

Keith, J. 2010. HTML5 FOR WEB DESIGNERS: A BRIEF HISTORY OF MARKUP. New York:

Jeffrey Zeldman

Kravchick, O. 2011. Native vs. HTML5 Application Development. Date of retrieval 31.1.2012

http://myok12.wordpress.com/2011/06/29/native-vs-html5-application-development/

Lee, Wei-Meng. 2011. Beginning Android Application Development. Hoboken, NJ, USA: Wrox

Mahemoff, M. 2010. CLIENT-SIDE STORAGE. Date of retrieval 14.2.2012

http://www.html5rocks.com/en/tutorials/offline/storage/

70

Mahemoff, M. 2011. “OFFLINE”: WHAT DOES IT MEAN AND WHY SHOULD I CARE?.

http://www.html5rocks.com/en/tutorials/offline/whats-offline/

Microsoft, 2012. Visual Studio 2010 Express For Windows Phone. Date of retrieval 23.10.2012

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff630878(v=vs.92).aspx

Modernizr, 2009-2012. Documentation. Date of retrieval 31.1.2012

http://modernizr.com/docs/

Pilgrim, M. 2010. HTML5: Up and Running. First Edition. CA: O’Reilly Media, Inc

Ranganathan, A. & Wilsher, S. Firefox 4: An early walk-through of IndexedDB. Date of retrieval

16.2.2012

https://hacks.mozilla.org/2010/06/comparing-indexeddb-and-webdatabase/

Refsnes Data, 1999-2012a. HTML5 New Elements. Date of retrieval 16.1.2012

http://www.w3schools.com/html/html5_new_elements.asp

Resnes Data. 1999-2012b. HTML <video> tag. Date of retrieval 10.2.2012

http://www.w3schools.com/tags/tag_video.asp

Resnes Data. 1999-2012c. HTML Multimedia. Date of retrieval 8.2.2012

http://www.w3schools.com/html/html_media.asp

Refsnes Data. 1999-2012c. HTML5 Web Storage. Date of retrieval 16.1.2012

http://www.w3schools.com/html/html5_webstorage.asp

Rouget, A. 2010. Offline web applications. Date of retrieval 24.2.2012

https://hacks.mozilla.org/2010/01/offline-web-applications/

Raggett, D. , Iam, J. , Alexander, I. & Kmiec, M. 1998. Ragget on HTML4. Second Edition.

Harlow, England: Adinson Wesley Longman

71

Siegler, M. 2011. HTML5 Is An Oncoming Train, But Native App Development Is an Oncoming

Rocket ship. 1.2.2012

http://techcrunch.com/2011/02/09/html5-versus-native-apps/

Sharp, R. 2010. Introducing Web SQL Databases. Date of retrieval 5.3.2012

http://html5doctor.com/introducing-web-sql-databases/

Sheridan, M. 2011, Building Web Pages with Local Storage. Date of retrieval 15.2.2012

http://www.sitepoint.com/building-web-pages-with-local-storage/

thebeebs, 2011. Mobile Apps in HTML5: do it but realize, it's not a panacea. Date of retrieval

1.2.2012

http://blogs.msdn.com/b/thebeebs/archive/2011/12/19/mobile-apps-in-html5-do-it-but-realise-it-s-

not-a-panacea.aspx

The jQuery Foundation. 2012. jQuery Mobile. Date of retrieval 23.10.2012

http://www.jquerymobile.com

Trice, A. 2012a. PhonegGap Explained Visually. Date of retrieval 22.10.2012

http://phonegap.com/2012/05/02/phonegap-explained-visually/

Trice, A. 2012b. Getting started with PhoneGap in Eclipse for Android. Date of retrieval

23.10.2012

http://www.adobe.com/devnet/html5/articles/getting-started-with-phonegap-in-eclipse-for-

android.html

W3C. 2012a. HTML5 differences from HTML4. Date of retrieval 16.1.2012

http://www.w3.org/TR/2012/WD-html5-diff-20121025/

W3C. 2011b. Web Storage. Date of retrieval 15.2.2012

http://www.w3.org/TR/webstorage/

72

W3C. 2011c. WEB SQL. Date of retrieval 15.2.2012

http://www.w3.org/TR/webdatabase/

W3C, 2011d. FILE API. Date of retrieval 22.2.2012

http://www.w3.org/TR/FileAPI/

W3C, 2011d. FILE API. Date of retrieval 9.3.2012

http://www.w3.org/TR/FileAPI/

W3C, 2011e. File API: Writer. Date of retrieval 10.3.2012

http://www.w3.org/TR/file-writer-api/

W3C, 2011f. File API: Directories and System. Date of retrieval 11.3.2012

http://www.w3.org/TR/file-system-api/

WHATWG, 2011. Offline Web Application. Date of retrieval 26.2.2012

http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html#appcacheevents

Wikipedia 2011, date of retrieval 16.1.2012

http://en.wikipedia.org/wiki/HTML5

Wikipedia 2012, date of retrieval 10.2.2012

http://en.wikipedia.org/wiki/HTML5_video

Zhou, Z., Zhu, R. Zheng, P. & Yang, B. 2011. Windows Phone 7 Programming for Android and

iOS Developers. Hoboken, NJ, USA: Wrox

Zwick, C. 2010. Sencha Touch: The HTML5 Mobile App Framework. Date of retrieval 22.10.2012

http://mobile.tutsplus.com/articles/news/sencha-touch-html5-mobile-framework/

73

LIST OF FIGURES

Number Figure Description

1 Screenshot of support table of HTMl5 Element.

2 Screenshot of support table for H.264 Codec.

3 Screenshot of support table for THEORA Codec.

4 Screenshot of support table for VP8 Codec.

5 Screenshot of support table of HTML5 Audio Element.

6 Screenshot of support table of HTML5 Web Storage.

7 Screenshot of support table of Web SQL Database.

8 Screenshot of support table of IndexedDB.

9 Screenshot of support table of File Reader API.

10 Screenshot of File System and File System and Writer API

11 Screenshot of Offline Web Application

12 Architecture of PhoneGap Application

13 Screenshot of PhoneGap Architecture

14 Screenshot of UI Code for Android and iOS using Sencha Touch 2

15 Screenshot of UI Code for Windows Phone using jQuery Mobile

16 Screenshot of UI Code for Windows Phone Emulator

17 Screenshot of UI in iPhone

18 Screenshot of UI in Samsung Galaxy S

19 Screenshot of code to capture image used in multiple platform .

20 Screenshot of iPhone while capturing image

21 Screenshot of Windows Phone Emulator while capturing image

22 Screenshot of Samsung Galaxy S while capturing image

23 Screenshot of code to record video in multiple platforms

24 Screenshot of image upload to Facebook from iOS.

25 Screenshot of image upload success to Facebook ZTE

26 Screenshot of Image in Server

27 Screenshot of image uploaded by the application in Facebook

